CN112635324B - Semiconductor structure and forming method thereof - Google Patents
Semiconductor structure and forming method thereof Download PDFInfo
- Publication number
- CN112635324B CN112635324B CN201910905730.9A CN201910905730A CN112635324B CN 112635324 B CN112635324 B CN 112635324B CN 201910905730 A CN201910905730 A CN 201910905730A CN 112635324 B CN112635324 B CN 112635324B
- Authority
- CN
- China
- Prior art keywords
- forming
- dielectric layer
- layer
- gate structure
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 195
- 239000004065 semiconductor Substances 0.000 title claims abstract description 54
- 239000000758 substrate Substances 0.000 claims abstract description 56
- 230000008569 process Effects 0.000 claims description 156
- 239000000463 material Substances 0.000 claims description 82
- 238000005530 etching Methods 0.000 claims description 45
- 239000003989 dielectric material Substances 0.000 claims description 35
- 238000005229 chemical vapour deposition Methods 0.000 claims description 17
- 238000001312 dry etching Methods 0.000 claims description 17
- 238000000231 atomic layer deposition Methods 0.000 claims description 16
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 13
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 13
- 238000005520 cutting process Methods 0.000 claims description 9
- 238000001020 plasma etching Methods 0.000 claims description 7
- 238000001039 wet etching Methods 0.000 claims description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 306
- 238000002955 isolation Methods 0.000 description 25
- 238000010586 diagram Methods 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 229910052814 silicon oxide Inorganic materials 0.000 description 11
- 238000007517 polishing process Methods 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000009286 beneficial effect Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 5
- 238000000137 annealing Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 239000011241 protective layer Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 229910000449 hafnium oxide Inorganic materials 0.000 description 2
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- UQZIWOQVLUASCR-UHFFFAOYSA-N alumane;titanium Chemical compound [AlH3].[Ti] UQZIWOQVLUASCR-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/62—Fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/23—Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
- H10D64/251—Source or drain electrodes for field-effect devices
- H10D64/256—Source or drain electrodes for field-effect devices for lateral devices wherein the source or drain electrodes are recessed in semiconductor bodies
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及半导体制造领域,尤其是涉及一种半导体结构及其形成方法。The present invention relates to the field of semiconductor manufacturing, and in particular to a semiconductor structure and a forming method thereof.
背景技术Background Art
鳍式场效应晶体管(Fin FET)是一种新兴的多栅器件,它一般包括凸出于半导体衬底表面的鳍部,覆盖部分所述鳍部的顶部表面和侧壁的栅极结构,位于栅极结构两侧的鳍部中的源漏掺杂区。与平面式的金属-氧化物半导体场效应晶体管相比,鳍式场效应晶体管具有更强的短沟道抑制能力,具有更强的工作电流。Fin FET is an emerging multi-gate device, which generally includes a fin protruding from the surface of a semiconductor substrate, a gate structure covering a portion of the top surface and sidewalls of the fin, and source and drain doping regions in the fin on both sides of the gate structure. Compared with planar metal-oxide semiconductor field effect transistors, fin field effect transistors have stronger short channel suppression capabilities and higher operating currents.
随着半导体技术的进一步发展,集成电路器件的尺寸越来越小,传统的鳍式场效应晶体管的制造工艺也受到了挑战。With the further development of semiconductor technology, the size of integrated circuit devices is getting smaller and smaller, and the manufacturing process of traditional fin field effect transistors is also challenged.
因此,现有技术中的鳍式场效应晶体管的性能有待提升。Therefore, the performance of the FinFET in the prior art needs to be improved.
发明内容Summary of the invention
本发明解决的技术问题是提供一种半导体结构及其形成方法,能够改善半导体结构性能。The technical problem solved by the present invention is to provide a semiconductor structure and a method for forming the same, which can improve the performance of the semiconductor structure.
为解决上述技术问题,本发明技术方案提供一种半导体结构的形成方法,包括:提供衬底;在所述衬底上形成伪栅极结构;在所述衬底上形成第一介质层,所述第一介质层暴露出所述伪栅极结构,且所述第一介质层表面低于或齐平于所述伪栅极结构顶部表面;去除伪栅极结构,在所述第一介质层内形成栅极开口,在所述栅极开口内形成栅极结构;去除所述第一介质层,暴露出所述栅极结构两侧的衬底表面;在去除所述第一介质层之后,在所述衬底上、所述栅极结构顶部表面和侧壁表面形成停止层;在所述停止层上形成第二介质层;在所述第二介质层内形成插塞,所述插塞位于相邻的栅极结构之间。In order to solve the above technical problems, the technical solution of the present invention provides a method for forming a semiconductor structure, including: providing a substrate; forming a pseudo gate structure on the substrate; forming a first dielectric layer on the substrate, the first dielectric layer exposing the pseudo gate structure, and the surface of the first dielectric layer is lower than or flush with the top surface of the pseudo gate structure; removing the pseudo gate structure, forming a gate opening in the first dielectric layer, and forming a gate structure in the gate opening; removing the first dielectric layer to expose the substrate surface on both sides of the gate structure; after removing the first dielectric layer, forming a stop layer on the substrate, the top surface and the side wall surface of the gate structure; forming a second dielectric layer on the stop layer; forming a plug in the second dielectric layer, the plug is located between adjacent gate structures.
可选的,去除所述第一介质层的工艺包括回刻蚀工艺。Optionally, the process of removing the first dielectric layer includes an etch-back process.
可选的,所述回刻蚀工艺包括反应离子刻蚀工艺、SiCoNi刻蚀工艺或Certas刻蚀工艺。Optionally, the back etching process includes a reactive ion etching process, a SiCoNi etching process or a Certas etching process.
可选的,形成所述停止层的工艺包括化学气相沉积工艺或者原子层沉积工艺。Optionally, the process of forming the stop layer includes a chemical vapor deposition process or an atomic layer deposition process.
可选的,所述停止层的材料包括氮化硅或氮氧化硅。Optionally, the material of the stop layer includes silicon nitride or silicon nitride oxide.
可选的,所述插塞的形成方法包括:在所述第二介质层表面形成图形化的掩膜层;以所述图形化的掩膜层为掩膜刻蚀所述第二介质层,在所述第二介质层内形成初始插塞开口,所述初始插塞开口暴露出所述衬底表面的停止层;去除所述衬底表面的停止层,形成插塞开口;在所述插塞开口内形成插塞。Optionally, the method for forming the plug includes: forming a patterned mask layer on the surface of the second dielectric layer; etching the second dielectric layer using the patterned mask layer as a mask to form an initial plug opening in the second dielectric layer, wherein the initial plug opening exposes a stop layer on the surface of the substrate; removing the stop layer on the surface of the substrate to form a plug opening; and forming a plug in the plug opening.
可选的,刻蚀所述第二介质层的工艺包括干法刻蚀工艺。Optionally, the process of etching the second dielectric layer includes a dry etching process.
可选的,去除所述停止层的工艺包括干法刻蚀工艺或湿法刻蚀工艺。Optionally, the process of removing the stop layer includes a dry etching process or a wet etching process.
可选的,所述衬底包括基底以及位于基底上的鳍部,所述基底上具有第三介质层,所述第三介质层位于所述鳍部侧壁且低于所述鳍部顶部表面;所述第一介质层位于所述第三介质层表面,所述栅极结构横跨所述鳍部且位于所述第一介质层内。Optionally, the substrate includes a base and a fin located on the base, the base has a third dielectric layer, the third dielectric layer is located on the side wall of the fin and is lower than the top surface of the fin; the first dielectric layer is located on the surface of the third dielectric layer, and the gate structure spans the fin and is located in the first dielectric layer.
可选的,去除所述第一介质层直至暴露出所述栅极结构两侧的衬底表面的方法包括:刻蚀部分所述第一介质层,直至暴露出所述栅极结构两侧的鳍部顶部表面,在所述第三介质层上、所述栅极结构部分侧壁表面以及鳍部的侧壁表面形成第四介质层。Optionally, the method of removing the first dielectric layer until the substrate surface on both sides of the gate structure is exposed includes: etching a portion of the first dielectric layer until the top surface of the fin on both sides of the gate structure is exposed, and forming a fourth dielectric layer on the third dielectric layer, a portion of the side wall surface of the gate structure, and the side wall surface of the fin.
可选的,所述停止层位于所述暴露出的鳍部表面、第四介质层表面以及栅极结构顶部表面和侧壁表面。Optionally, the stop layer is located on the exposed fin surface, the fourth dielectric layer surface, and the top surface and sidewall surface of the gate structure.
可选的,所述栅极结构包括栅介质层、位于栅介质层上的功函数层以及位于功函数层上的栅极层。Optionally, the gate structure includes a gate dielectric layer, a work function layer located on the gate dielectric layer, and a gate layer located on the work function layer.
可选的,所述栅极结构的形成方法包括:在所述栅极开口内形成栅介质材料层、位于栅介质材料层上的功函数材料层以及位于功函数材料层上的栅极材料层;平坦化所述栅极材料层、功函数材料层以及栅介质材料层,直至暴露出所述第一介质层表面,形成所述栅极结构。Optionally, the method for forming the gate structure includes: forming a gate dielectric material layer, a work function material layer on the gate dielectric material layer, and a gate material layer on the work function material layer in the gate opening; and planarizing the gate material layer, the work function material layer, and the gate dielectric material layer until the surface of the first dielectric layer is exposed to form the gate structure.
可选的,去除所述伪栅极结构之前,还包括:切割部分伪栅极结构。Optionally, before removing the dummy gate structure, the method further includes: cutting a portion of the dummy gate structure.
可选的,去除所述伪栅极结构的工艺包括干法刻蚀工艺或湿法刻蚀工艺。Optionally, the process of removing the dummy gate structure includes a dry etching process or a wet etching process.
相应的,本发明技术方案还提供一种采用上述任一项方法形成的半导体结构。Correspondingly, the technical solution of the present invention also provides a semiconductor structure formed by any of the above methods.
与现有技术相比,本发明的技术方案具有以下有益效果:Compared with the prior art, the technical solution of the present invention has the following beneficial effects:
本发明技术方案半导体结构的形成方法中,先去除所述第一介质层,直至暴露出所述栅极结构两侧的衬底表面,再在所述衬底上、所述栅极结构顶部表面和侧壁表面形成停止层,在停止层上形成第二介质层,在第二介质层内形成插塞。一方面,所述栅极结构顶部表面和侧壁表面的停止层对所述栅极结构起到保护作用,使得在形成所述插塞过程中,刻蚀所述第二介质层时能够自动停止在所述停止层表面,使得后续形成的插塞位置能够自对准,不会对所述栅极结构造成损伤,有利于半导体结构性能的提升。另一方面,形成栅极结构之后,去除所述第一介质层,再在所述栅极结构顶部表面和侧壁表面以及衬底上形成停止层,使得先形成的所述伪栅极结构的高度减小,从而使得去除伪栅极结构时形成的栅极开口深宽比较小,从而在所述栅极开口内形成栅极结构的工艺难度降低。In the method for forming a semiconductor structure of the technical solution of the present invention, the first dielectric layer is first removed until the substrate surfaces on both sides of the gate structure are exposed, and then a stop layer is formed on the substrate, the top surface and the side wall surface of the gate structure, a second dielectric layer is formed on the stop layer, and a plug is formed in the second dielectric layer. On the one hand, the stop layer on the top surface and the side wall surface of the gate structure protects the gate structure, so that in the process of forming the plug, the etching of the second dielectric layer can automatically stop on the surface of the stop layer, so that the position of the plug formed subsequently can be self-aligned, and will not cause damage to the gate structure, which is beneficial to the improvement of the performance of the semiconductor structure. On the other hand, after the gate structure is formed, the first dielectric layer is removed, and then a stop layer is formed on the top surface and the side wall surface of the gate structure and the substrate, so that the height of the pseudo gate structure formed first is reduced, so that the depth and width of the gate opening formed when the pseudo gate structure is removed is relatively small, thereby reducing the process difficulty of forming the gate structure in the gate opening.
进一步,所述停止层位于所述鳍部表面以及第四介质层表面,使得形成的所述插塞位于所述鳍部表面和与所述鳍部表面齐平的第四介质层表面,从而使得所述插塞与所述栅极结构之间的电容减小,从而提升了半导体结构的性能。Furthermore, the stop layer is located on the fin surface and the fourth dielectric layer surface, so that the formed plug is located on the fin surface and the fourth dielectric layer surface flush with the fin surface, thereby reducing the capacitance between the plug and the gate structure, thereby improving the performance of the semiconductor structure.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1至图6是一实施例中半导体结构形成过程的剖面结构示意图;1 to 6 are schematic cross-sectional views of a semiconductor structure forming process in one embodiment;
图7至图18是本发明实施例中半导体结构的形成过程的剖面结构示意图。7 to 18 are schematic cross-sectional views of the formation process of the semiconductor structure according to the embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
如背景技术所述,现有技术中鳍式场效应晶体管的性能有待提升。As described in the background art, the performance of FinFETs in the prior art needs to be improved.
图1至图6是一实施例中半导体结构形成过程的剖面结构示意图。1 to 6 are schematic cross-sectional views of a semiconductor structure forming process according to an embodiment.
请参考图1,提供衬底100,所述衬底100上具有鳍部(未图示),所述衬底上具有伪栅极结构101,所述伪栅极结构101横跨所述鳍部;在所述伪栅极结构101两侧的鳍部内形成源漏掺杂区(未图示);在所述伪栅极结构101侧壁和衬底100表面形成停止层102;在所述停止层102上和衬底100上形成隔离层103,所述伪栅极结构101位于所述隔离层103内。Please refer to Figure 1, a substrate 100 is provided, the substrate 100 has a fin (not shown), the substrate has a dummy gate structure 101, and the dummy gate structure 101 spans the fin; source and drain doping regions (not shown) are formed in the fins on both sides of the dummy gate structure 101; a stop layer 102 is formed on the sidewall of the dummy gate structure 101 and the surface of the substrate 100; an isolation layer 103 is formed on the stop layer 102 and the substrate 100, and the dummy gate structure 101 is located in the isolation layer 103.
请参考图2,对所述伪栅极结构101进行切割;切割所述伪栅极结构101之后,去除所述伪栅极结构101,在所述隔离层103内形成栅极开口(未图示);在所述栅极开口内形成初始栅极结构104。Please refer to FIG. 2 , the dummy gate structure 101 is cut; after cutting the dummy gate structure 101 , the dummy gate structure 101 is removed, a gate opening (not shown) is formed in the isolation layer 103 ; and an initial gate structure 104 is formed in the gate opening.
请参考图3,去除部分初始栅极结构104,形成栅极结构108,在所述栅极结构108顶部与所述隔离层103内形成凹槽(未图示);在所述凹槽内形成保护层105。3 , a portion of the initial gate structure 104 is removed to form a gate structure 108 , a groove (not shown) is formed on the top of the gate structure 108 and in the isolation layer 103 ; and a protection layer 105 is formed in the groove.
请参考图4、图5和图6,图4为图6沿剖面线AA’方向的结构示意图,图5为图6沿剖面线BB’方向的结构示意图,在所述隔离层103内形成源插塞106和漏插塞107,所述源插塞106于所述源掺杂区电连接,所述漏插塞107与所述漏掺杂区电连接。Please refer to Figures 4, 5 and 6, Figure 4 is a schematic diagram of the structure of Figure 6 along the section line AA', and Figure 5 is a schematic diagram of the structure of Figure 6 along the section line BB'. A source plug 106 and a drain plug 107 are formed in the isolation layer 103, and the source plug 106 is electrically connected to the source doping region, and the drain plug 107 is electrically connected to the drain doping region.
所述半导体结构的形成过程中,一方面,为了避免在所述隔离层103内形成源插塞106和漏插塞107的开口时的侧向刻蚀对所述栅极结构108造成损伤,从而在所述栅极结构108的侧壁形成停止层102、在所述栅极结构108的顶部形成保护层105,以保护所述栅极结构108。而所述保护层105位于所述栅极结构108顶部,需要刻蚀一部分初始栅极结构104,为了保证形成的半导体结构的性能,所述栅极结构108需要一定的高度,从而需要增加所述初始栅极结构104的预设高度。所述初始栅极结构104的预设高度即为所述伪栅极结构101的高度,所述伪栅极结构101的高度较高,则在对所述伪栅极结构101进行切断时的难度较大,容易出现切割位置的伪栅极结构101去除不干净导致半导体结构短路,同时不好切割导致形成的器件尺寸均匀性较差,影响半导体结构的性能。During the formation of the semiconductor structure, on the one hand, in order to prevent the lateral etching when forming the openings of the source plug 106 and the drain plug 107 in the isolation layer 103 from damaging the gate structure 108, a stop layer 102 is formed on the sidewall of the gate structure 108 and a protective layer 105 is formed on the top of the gate structure 108 to protect the gate structure 108. The protective layer 105 is located on the top of the gate structure 108, and a portion of the initial gate structure 104 needs to be etched. In order to ensure the performance of the formed semiconductor structure, the gate structure 108 needs a certain height, so it is necessary to increase the preset height of the initial gate structure 104. The preset height of the initial gate structure 104 is the height of the dummy gate structure 101. If the height of the dummy gate structure 101 is high, it is more difficult to cut the dummy gate structure 101, and it is easy to cause the dummy gate structure 101 at the cutting position to be not removed cleanly, resulting in a short circuit of the semiconductor structure. At the same time, it is difficult to cut, resulting in poor uniformity of the size of the formed device, which affects the performance of the semiconductor structure.
另一方向,若是不形成所述保护层105和停止层102,则在形成源插塞106和漏插塞107时的精准度要求很高,若所述源插塞106和漏插塞107的位置有偏移,则所述源插塞106和漏插塞107容易与所述栅极结构108发生漏电、短路的现象,从而影响半导体结构的性能。On the other hand, if the protection layer 105 and the stop layer 102 are not formed, the accuracy required when forming the source plug 106 and the drain plug 107 is very high. If the positions of the source plug 106 and the drain plug 107 are offset, the source plug 106 and the drain plug 107 are prone to leakage and short circuit with the gate structure 108, thereby affecting the performance of the semiconductor structure.
再一方面,所述源插塞106和漏插塞107也横跨所述鳍部(如图6所示),一部分插塞位于鳍部上(如图4所示),一部分插塞位于鳍部侧壁的隔离层103上。在所述源插塞106和漏插塞107的形成过程中,需要先在所述隔离层103内形成插塞开口,为了确保所述插塞开口能够完全暴露出所述源漏掺杂区表面,则刻蚀所述隔离层103的工艺会过刻蚀以保证去除干净所述源漏掺杂区表面的隔离层103和保护层102,从而在完全暴露出所述源漏掺杂区表面时,所述鳍部侧壁的隔离层103的刻蚀深度大于所述源漏掺杂区表面的隔离层103的刻蚀深度,从而位于所述鳍部上的一部分插塞高度较小,位于鳍部侧壁的隔离层103上的一部分插塞高度较高,使得所述插塞与所述栅极结构104之间产生寄生电容,使得所述半导体结构的功耗较大,影响了所述半导体结构的性能。On the other hand, the source plug 106 and the drain plug 107 also span the fin (as shown in FIG. 6 ), a portion of the plugs is located on the fin (as shown in FIG. 4 ), and a portion of the plugs is located on the isolation layer 103 on the sidewall of the fin. During the formation of the source plug 106 and the drain plug 107, it is necessary to first form a plug opening in the isolation layer 103. In order to ensure that the plug opening can completely expose the surface of the source and drain doped regions, the process of etching the isolation layer 103 will over-etch to ensure that the isolation layer 103 and the protective layer 102 on the surface of the source and drain doped regions are completely removed. Therefore, when the surface of the source and drain doped regions is completely exposed, the etching depth of the isolation layer 103 on the sidewall of the fin is greater than the etching depth of the isolation layer 103 on the surface of the source and drain doped regions. Therefore, a portion of the plug located on the fin has a smaller height, and a portion of the plug located on the isolation layer 103 on the sidewall of the fin has a higher height, so that parasitic capacitance is generated between the plug and the gate structure 104, resulting in greater power consumption of the semiconductor structure, which affects the performance of the semiconductor structure.
为了解决上述问题,本发明技术方案提供一种半导体结构及其形成方法,通过先去除第一介质层,再在所述栅极结构顶部表面和侧壁表面以及衬底上形成停止层,在停止层上形成第二介质层,在第二介质层内形成插塞。所述栅极结构顶部表面和侧壁表面的停止层对所述栅极结构起到保护作用,使得在形成所述插塞的过程中,刻蚀所述第二介质层时能够自动停止在所述停止层表面,使得后续形成的插塞位置能够自对准,不会对所述栅极结构造成损伤,有利于半导体结构性能的提升。In order to solve the above problems, the technical solution of the present invention provides a semiconductor structure and a method for forming the same, wherein the first dielectric layer is first removed, and then a stop layer is formed on the top surface and side wall surface of the gate structure and the substrate, a second dielectric layer is formed on the stop layer, and a plug is formed in the second dielectric layer. The stop layer on the top surface and side wall surface of the gate structure protects the gate structure, so that in the process of forming the plug, the etching of the second dielectric layer can automatically stop on the surface of the stop layer, so that the position of the plug formed subsequently can be self-aligned, and the gate structure will not be damaged, which is beneficial to the improvement of the performance of the semiconductor structure.
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above-mentioned objects, features and beneficial effects of the present invention more obvious and easy to understand, specific embodiments of the present invention are described in detail below with reference to the accompanying drawings.
图7至图18是本发明实施例中半导体结构的形成过程的剖面结构示意图。7 to 18 are schematic cross-sectional views of the formation process of the semiconductor structure according to the embodiment of the present invention.
请参考图7和图8,图8为图7在剖面线DD’方向的结构示意图,图7为图8在剖面线CC’方向的结构示意图,提供衬底。Please refer to Figures 7 and 8, Figure 8 is a schematic diagram of the structure of Figure 7 in the direction of section line DD', and Figure 7 is a schematic diagram of the structure of Figure 8 in the direction of section line CC', and a substrate is provided.
所述衬底包括基底200以及位于基底200上的鳍部300。The substrate includes a base 200 and a fin 300 located on the base 200 .
所述衬底的材料包括硅、硅锗、锗、绝缘体上硅或者绝缘体上锗。在本实施例中,所述衬底的材料包括硅。The material of the substrate includes silicon, silicon germanium, germanium, silicon on insulator or germanium on insulator. In this embodiment, the material of the substrate includes silicon.
在其他实施例中,所述衬底为平面衬底。In other embodiments, the substrate is a planar substrate.
在所述衬底上形成第三介质层201,所述第三介质层201位于所述鳍部300侧壁且低于所述鳍部300顶部表面。A third dielectric layer 201 is formed on the substrate. The third dielectric layer 201 is located on the sidewall of the fin 300 and is lower than the top surface of the fin 300 .
所述第三介质层201的形成方法包括:在所述衬底上形成初始第三介质材料层;平坦化所述初始第三介质材料层,直至暴露出所述鳍部300顶部表面,形成第三介质材料层;回刻蚀所述第三介质材料层,使得所述第三介质层201低于所述鳍部300顶部表面。The method for forming the third dielectric layer 201 includes: forming an initial third dielectric material layer on the substrate; planarizing the initial third dielectric material layer until the top surface of the fin 300 is exposed to form a third dielectric material layer; and etching back the third dielectric material layer so that the third dielectric layer 201 is lower than the top surface of the fin 300.
所述第三介质层201的材料包括氧化硅或氮化硅;形成所述第三介质层201的工艺包括化学气相沉积工艺或原子层沉积工艺;平坦化所述初始第三介质材料层的工艺包括化学机械抛光工艺或刻蚀工艺。The material of the third dielectric layer 201 includes silicon oxide or silicon nitride; the process of forming the third dielectric layer 201 includes a chemical vapor deposition process or an atomic layer deposition process; the process of planarizing the initial third dielectric material layer includes a chemical mechanical polishing process or an etching process.
在本实施例中,所述第三介质层201的材料包括氧化硅;形成所述第三介质层201的工艺包括化学气相沉积工艺;平坦化所述初始第三介质材料层的工艺包括化学机械抛光工艺。In this embodiment, the material of the third dielectric layer 201 includes silicon oxide; the process of forming the third dielectric layer 201 includes a chemical vapor deposition process; and the process of planarizing the initial third dielectric material layer includes a chemical mechanical polishing process.
在其他实施例中,能够不形成所述第三介质层201。In other embodiments, the third dielectric layer 201 may not be formed.
请参考图9,图9是在图8基础上的剖面结构示意图,在所述衬底上形成伪栅极结构。Please refer to FIG. 9 , which is a schematic cross-sectional structure diagram based on FIG. 8 , in which a dummy gate structure is formed on the substrate.
在本实施例中,所述伪栅极结构横跨于所述鳍部300上,且所述伪栅极结构位于鳍部300的部分侧壁表面和部分底部表面。In this embodiment, the dummy gate structure spans over the fin 300 , and the dummy gate structure is located on a portion of the sidewall surface and a portion of the bottom surface of the fin 300 .
在本实施例中,所述伪栅极结构包括伪栅介质层(未图示)和位于伪栅介质层上的伪栅极层202。In this embodiment, the dummy gate structure includes a dummy gate dielectric layer (not shown) and a dummy gate layer 202 located on the dummy gate dielectric layer.
所述伪栅极结构的形成方法包括:在所述衬底上形成伪栅介质材料层(未图示);在所述伪栅介质材料层上形成伪栅极材料层(未图示);在所述伪栅极材料层上形成第一掩膜层(未图示),所述第一掩膜层暴露出所述伪栅极材料层表面;以所述第一掩膜层为掩膜刻蚀所述伪栅极材料层和所述伪栅介质材料层,直至暴露出所述衬底表面,在所述衬底上形成所述伪栅极结构。The method for forming the pseudo gate structure includes: forming a pseudo gate dielectric material layer (not shown) on the substrate; forming a pseudo gate material layer (not shown) on the pseudo gate dielectric material layer; forming a first mask layer (not shown) on the pseudo gate material layer, wherein the first mask layer exposes the surface of the pseudo gate material layer; etching the pseudo gate material layer and the pseudo gate dielectric material layer using the first mask layer as a mask until the substrate surface is exposed, thereby forming the pseudo gate structure on the substrate.
所述伪栅介质层的材料包括低K(K小于3.9)材料;所述伪栅极层202的材料包括多晶硅;形成所述伪栅介质材料层的工艺包括原子层沉积工艺或化学气相沉积工艺;形成所述伪栅极材料层的工艺包括物理气相沉积工艺或者外延生长工艺;所述第一掩膜层的材料包括光刻胶或硬掩膜材料,所述硬掩膜材料包括氧化硅或氮化硅。The material of the pseudo gate dielectric layer includes a low-K (K less than 3.9) material; the material of the pseudo gate layer 202 includes polysilicon; the process of forming the pseudo gate dielectric material layer includes an atomic layer deposition process or a chemical vapor deposition process; the process of forming the pseudo gate material layer includes a physical vapor deposition process or an epitaxial growth process; the material of the first mask layer includes a photoresist or a hard mask material, and the hard mask material includes silicon oxide or silicon nitride.
在本实施例中,所述伪栅介质层的材料包括氧化硅;所述伪栅极层202的材料包括多晶硅;形成所述伪栅介质材料层的工艺包括原子层沉积工艺;形成所述伪栅极材料层的工艺包括物理气相沉积工艺;所述第一掩膜层的材料包括光刻胶。In this embodiment, the material of the pseudo gate dielectric layer includes silicon oxide; the material of the pseudo gate layer 202 includes polysilicon; the process of forming the pseudo gate dielectric material layer includes an atomic layer deposition process; the process of forming the pseudo gate material layer includes a physical vapor deposition process; and the material of the first mask layer includes photoresist.
形成所述伪栅极结构之后,在所述伪栅极结构侧壁形成侧墙203。After the dummy gate structure is formed, a spacer 203 is formed on the sidewall of the dummy gate structure.
形成所述侧墙203的方法包括:在所述衬底上、所述伪栅极结构的侧壁表面和顶部表面形成侧墙材料层(未图示);回刻蚀所述侧墙材料层,直至暴露出所述伪栅极结构的顶部表面,在所述伪栅极结构侧壁形成侧墙203。The method for forming the sidewall 203 includes: forming a sidewall material layer (not shown) on the substrate, the sidewall surface and the top surface of the dummy gate structure; etching back the sidewall material layer until the top surface of the dummy gate structure is exposed, and forming a sidewall 203 on the sidewall of the dummy gate structure.
所述侧墙203的材料包括氮化硅、氧化硅或氮氧化硅;形成所述侧墙材料层的工艺包括原子层沉积工艺或化学气相沉积工艺。The material of the sidewall spacer 203 includes silicon nitride, silicon oxide or silicon oxynitride; the process of forming the sidewall material layer includes atomic layer deposition process or chemical vapor deposition process.
在本实施例中,所述侧墙203的材料包括氮化硅,所述氮化硅结构致密,能够很好地对所述栅极结构进行电隔离;形成所述侧墙材料层的工艺包括化学气相沉积工艺,所述化学气相沉积工艺能够快速形成结构致密的侧墙材料层。In this embodiment, the material of the sidewall 203 includes silicon nitride, which has a dense structure and can effectively electrically isolate the gate structure; the process of forming the sidewall material layer includes a chemical vapor deposition process, which can quickly form a dense sidewall material layer.
请继续参考图9,形成侧墙203之后,在所述衬底上形成第一介质层204,所述第一介质层204暴露出所述伪栅极结构,且所述第一介质层204表面低于或齐平于所述伪栅极结构顶部表面。Please continue to refer to FIG. 9 . After the spacer 203 is formed, a first dielectric layer 204 is formed on the substrate. The first dielectric layer 204 exposes the dummy gate structure, and the surface of the first dielectric layer 204 is lower than or flush with the top surface of the dummy gate structure.
在本实施例中,所述第一介质层204表面齐平于所述伪栅极结构顶部表面。In this embodiment, the surface of the first dielectric layer 204 is flush with the top surface of the dummy gate structure.
所述第一介质层204的形成方法包括:在所述衬底上形成介质材料层(未图示);平坦化所述介质材料层,直至暴露出所述伪栅极结构顶部表面,形成所述第一介质层204。The method for forming the first dielectric layer 204 includes: forming a dielectric material layer (not shown) on the substrate; and planarizing the dielectric material layer until the top surface of the dummy gate structure is exposed to form the first dielectric layer 204 .
所述第一介质层204用于将后续形成的栅极结构与其他结构电隔离。所述第一介质层204的材料包括低K材料,所述低K材料包括氧化硅或氮化硅;形成所述介质材料层的工艺包括原子层沉积工艺或化学气相沉积工艺;平坦化所述介质材料层的工艺包括化学机械抛光工艺或刻蚀工艺。The first dielectric layer 204 is used to electrically isolate the gate structure to be formed subsequently from other structures. The material of the first dielectric layer 204 includes a low-K material, and the low-K material includes silicon oxide or silicon nitride; the process of forming the dielectric material layer includes an atomic layer deposition process or a chemical vapor deposition process; and the process of planarizing the dielectric material layer includes a chemical mechanical polishing process or an etching process.
在本实施例中,所述第一介质层204的材料包括氧化硅;形成所述介质材料层的工艺包括化学气相沉积工艺;平坦化所述介质材料层的工艺包括化学机械抛光工艺。In this embodiment, the material of the first dielectric layer 204 includes silicon oxide; the process of forming the dielectric material layer includes a chemical vapor deposition process; and the process of planarizing the dielectric material layer includes a chemical mechanical polishing process.
请参考图10和图11,图11为图10的俯视图,图10为图11在剖面线HH’方向的结构示意图,形成第一介质层204之后,切割部分伪栅极结构,在第一介质层204内形成凹槽(未图示),在所述凹槽内形成隔离结构205。Please refer to Figures 10 and 11. Figure 11 is a top view of Figure 10, and Figure 10 is a structural schematic diagram of Figure 11 in the direction of section line HH'. After the first dielectric layer 204 is formed, part of the pseudo gate structure is cut to form a groove (not shown) in the first dielectric layer 204, and an isolation structure 205 is formed in the groove.
切割部分伪栅极结构,使得所述伪栅极结构分离开来,从而后续形成的栅极结构能够形成不同功能的半导体结构,使得在同一个衬底上的半导体器件的功能多样性得到满足。Part of the dummy gate structure is cut to separate the dummy gate structure, so that the gate structure formed subsequently can form a semiconductor structure with different functions, so that the functional diversity of the semiconductor device on the same substrate is met.
后续在形成栅极结构之后,需要先去除第一介质层,再在所述栅极结构顶部表面和侧壁表面形成停止层,所述切割部分伪栅极结构的工艺在形成停止层的工艺之前,则所述伪栅极结构不需要较高的高度,从而在切割部分所述伪栅极结构时,所述去除工艺难度较小,所述伪栅极结构容易去除干净。After the gate structure is formed, it is necessary to remove the first dielectric layer first, and then form a stop layer on the top surface and side wall surface of the gate structure. The process of cutting part of the dummy gate structure is before the process of forming the stop layer, so the dummy gate structure does not need a high height. Therefore, when cutting part of the dummy gate structure, the removal process is less difficult and the dummy gate structure is easy to remove.
切割部分伪栅极结构的方法包括:在所述第一介质层204上形成第二掩膜层(未图示),所述第二掩膜层暴露出部分所述伪栅极结构表面;以所述第二掩膜层为掩膜,刻蚀所述伪栅极结构,直至暴露出所述衬底表面,在所述第一介质层204内形成凹槽(未图示);在所述凹槽内和衬底上形成隔离材料层(未图示);平坦化所述隔离材料层,直至暴露出所述伪栅极结构顶部表面,在所述凹槽内形成隔离结构205。The method for cutting part of the dummy gate structure includes: forming a second mask layer (not shown) on the first dielectric layer 204, the second mask layer exposing part of the surface of the dummy gate structure; using the second mask layer as a mask, etching the dummy gate structure until the substrate surface is exposed, and forming a groove (not shown) in the first dielectric layer 204; forming an isolation material layer (not shown) in the groove and on the substrate; flattening the isolation material layer until the top surface of the dummy gate structure is exposed, and forming an isolation structure 205 in the groove.
所述隔离结构205用于对切割后的伪栅极结构电隔离,以便后续形成的栅极结构的功能能够相互独立不受干扰。所述隔离结构205的材料包括氧化硅或氮化硅;形成所述隔离材料层的工艺包括化学气相沉积工艺或原子层沉积工艺;刻蚀所述伪栅极结构的工艺包括干法刻蚀工艺或湿法刻蚀工艺;平坦化所述隔离材料层的工艺包括化学机械抛光工艺或回刻蚀工艺。The isolation structure 205 is used to electrically isolate the pseudo gate structure after cutting, so that the functions of the gate structure formed subsequently can be independent of each other without interference. The material of the isolation structure 205 includes silicon oxide or silicon nitride; the process of forming the isolation material layer includes a chemical vapor deposition process or an atomic layer deposition process; the process of etching the pseudo gate structure includes a dry etching process or a wet etching process; the process of flattening the isolation material layer includes a chemical mechanical polishing process or a back etching process.
在本实施例中,所述隔离结构205的材料包括氧化硅;形成所述隔离材料层的工艺包括化学气相沉积工艺,所述化学气相沉积工艺能够快速形成厚度较厚且结构致密的隔离材料层;刻蚀所述伪栅极结构的工艺包括干法刻蚀工艺,所述干法刻蚀工艺能够形成形貌良好的凹槽侧壁,避免影响后续形成的栅极结构的尺寸精度;平坦化所述隔离材料层的工艺包括化学机械抛光工艺。In this embodiment, the material of the isolation structure 205 includes silicon oxide; the process of forming the isolation material layer includes a chemical vapor deposition process, and the chemical vapor deposition process can quickly form an isolation material layer with a thicker thickness and a dense structure; the process of etching the pseudo gate structure includes a dry etching process, and the dry etching process can form a groove sidewall with good morphology to avoid affecting the dimensional accuracy of the subsequently formed gate structure; the process of flattening the isolation material layer includes a chemical mechanical polishing process.
请参考图12,图12是在图10基础上的结构示意图,在切割部分伪栅极结构之后,去除伪栅极结构,在所述第一介质层204内形成栅极开口(未图示);在所述栅极开口内形成栅极结构。Please refer to FIG. 12 , which is a schematic diagram of the structure based on FIG. 10 . After cutting part of the dummy gate structure, the dummy gate structure is removed, and a gate opening (not shown) is formed in the first dielectric layer 204 ; a gate structure is formed in the gate opening.
所述栅极结构包括栅介质层(未图示)、位于栅介质层上的功函数层(未图示)以及位于功函数层上的栅极层206。The gate structure includes a gate dielectric layer (not shown), a work function layer (not shown) located on the gate dielectric layer, and a gate layer 206 located on the work function layer.
所述栅极结构的形成方法包括:在所述栅极开口内形成栅介质材料层(未图示)、位于栅介质材料层上的功函数材料层(未图示)以及位于功函数材料层上的栅极材料层(未图示);平坦化所述栅极材料层、功函数材料层以及栅介质材料层,直至暴露出所述第一介质层204表面,形成所述栅极结构。The method for forming the gate structure includes: forming a gate dielectric material layer (not shown) in the gate opening, a work function material layer (not shown) located on the gate dielectric material layer, and a gate material layer (not shown) located on the work function material layer; and planarizing the gate material layer, the work function material layer, and the gate dielectric material layer until the surface of the first dielectric layer 204 is exposed to form the gate structure.
所述栅介质层的材料包括高K(大于3.9)材料,所述高K材料包括氧化铪或氧化铝;形成所述栅介质材料层的工艺包括化学沉积工艺、原子层沉积工艺或者原位水汽生成工艺;所述功函数层的材料包括氮化钽、钛铝或氮化钛;形成所述功函数材料层的工艺包括化学气相沉积工艺或者原子层沉积工艺;所述栅极层205的材料包括金属,所述金属包括铜或钨;形成所述栅极材料层的工艺包括物理气相沉积工艺或者电镀工艺;平坦化所述栅极材料层、功函数材料层以及栅介质材料层的工艺包括化学机械抛光工艺或回刻蚀工艺。The material of the gate dielectric layer includes a high-K (greater than 3.9) material, and the high-K material includes hafnium oxide or aluminum oxide; the process for forming the gate dielectric material layer includes a chemical deposition process, an atomic layer deposition process or an in-situ water vapor generation process; the material of the work function layer includes tantalum nitride, titanium aluminum or titanium nitride; the process for forming the work function material layer includes a chemical vapor deposition process or an atomic layer deposition process; the material of the gate layer 205 includes a metal, and the metal includes copper or tungsten; the process for forming the gate material layer includes a physical vapor deposition process or an electroplating process; the process for planarizing the gate material layer, the work function material layer and the gate dielectric material layer includes a chemical mechanical polishing process or an etching back process.
在本实施例中,所述栅介质层的材料包括氧化铪,形成所述栅介质材料层的工艺包括原子层沉积工艺,所述原子层沉积工艺能够形成结构致密、厚度较薄的栅介质材料层;形成所述功函数材料层的工艺包括原子层沉积工艺;形成所述栅极材料层的工艺包括物理气相沉积工艺;平坦化所述栅极材料层、功函数材料层以及栅介质材料层的工艺包括化学机械抛光工艺。In this embodiment, the material of the gate dielectric layer includes hafnium oxide, and the process of forming the gate dielectric material layer includes an atomic layer deposition process, which can form a gate dielectric material layer with a dense structure and a thin thickness; the process of forming the work function material layer includes an atomic layer deposition process; the process of forming the gate material layer includes a physical vapor deposition process; and the process of planarizing the gate material layer, the work function material layer and the gate dielectric material layer includes a chemical mechanical polishing process.
请参考图13和图14,图13为图14在剖面线EE’方向的结构示意图,图14为图13在剖面线FF’方向的结构示意图,去除部分所述第一介质层204,直至暴露出所述栅极结构两侧的鳍部表面,在所述第三介质层201上、所述栅极结构部分侧壁表面以及鳍部的侧壁表面形成第四介质层207。Please refer to Figures 13 and 14, Figure 13 is a schematic diagram of the structure of Figure 14 in the direction of section line EE', and Figure 14 is a schematic diagram of the structure of Figure 13 in the direction of section line FF'. A portion of the first dielectric layer 204 is removed until the fin surfaces on both sides of the gate structure are exposed, and a fourth dielectric layer 207 is formed on the third dielectric layer 201, the side wall surfaces of the gate structure, and the side wall surfaces of the fins.
所述第四介质层207表面相对于鳍部300顶部表面的差值范围为0~100埃。若所述第四介质层207表面低于所述鳍部300顶部表面,则所述刻蚀工艺可能会对鳍部表面造成损伤,不利于半导体结构性能的提升;若所述第四介质层207表面高于所述鳍部300顶部表面太多,则所述刻蚀工艺暴露不出鳍部表面,无法在鳍部表面形成停止层。The difference between the surface of the fourth dielectric layer 207 and the top surface of the fin 300 ranges from 0 to 100 angstroms. If the surface of the fourth dielectric layer 207 is lower than the top surface of the fin 300, the etching process may damage the surface of the fin, which is not conducive to improving the performance of the semiconductor structure; if the surface of the fourth dielectric layer 207 is too much higher than the top surface of the fin 300, the etching process cannot expose the surface of the fin, and a stop layer cannot be formed on the surface of the fin.
在本实施例中,所述第四介质层207表面与所述鳍部300顶部表面齐平。在其他实施例中,所述第四介质层表面略高于所述鳍部顶部表面。In this embodiment, the surface of the fourth dielectric layer 207 is flush with the top surface of the fin 300. In other embodiments, the surface of the fourth dielectric layer is slightly higher than the top surface of the fin.
去除部分所述第一介质层204,直至暴露出所述栅极结构两侧的鳍部表面,为后续在所述衬底上、所述第四介质层207上以及所述栅极结构顶部表面和侧壁表面形成停止层提供结构支持,以便后续在所述停止层上形成第二介质层,在第二介质层内形成插塞时的刻蚀工艺能够自动停止在所述停止层表面,使得后续形成的插塞位置能够自对准,所述栅极结构顶部表面和侧壁表面的停止层对所述栅极结构起到保护作用,不会对所述栅极结构造成损伤,有利于半导体结构性能的提升;同时,形成的停止层位于所述鳍部表面以及第四介质层表面,使得形成的所述插塞位于所述鳍部表面和与所述鳍部表面齐平的第四介质层表面,从而使得所述插塞与所述栅极结构之间的电容减小,从而提升了半导体结构的性能。A portion of the first dielectric layer 204 is removed until the fin surfaces on both sides of the gate structure are exposed, so as to provide structural support for the subsequent formation of a stop layer on the substrate, the fourth dielectric layer 207, and the top surface and side wall surface of the gate structure, so as to form a second dielectric layer on the stop layer, and the etching process when forming a plug in the second dielectric layer can automatically stop on the stop layer surface, so that the position of the plug formed subsequently can be self-aligned, and the stop layer on the top surface and side wall surface of the gate structure protects the gate structure and does not cause damage to the gate structure, which is beneficial to the improvement of the performance of the semiconductor structure; at the same time, the formed stop layer is located on the fin surface and the fourth dielectric layer surface, so that the formed plug is located on the fin surface and the fourth dielectric layer surface flush with the fin surface, thereby reducing the capacitance between the plug and the gate structure, thereby improving the performance of the semiconductor structure.
在本实施例中,去除部分所述第一介质层204的工艺包括回刻蚀工艺。所述回刻蚀工艺包括反应离子刻蚀工艺、SiCoNi刻蚀工艺或Certas刻蚀工艺。所述回刻蚀工艺对所述鳍部和栅极结构的刻蚀选择比较大,从而能够在去除部分所述第一介质层204的同时对所述鳍部和栅极结构的损伤较小,同时保证所形成的第四介质层表面平坦,有利于后续停止层的形成。In this embodiment, the process of removing part of the first dielectric layer 204 includes an etch-back process. The etch-back process includes a reactive ion etching process, a SiCoNi etching process or a Certas etching process. The etch-back process has a relatively large etching selectivity for the fin and the gate structure, so that the fin and the gate structure can be less damaged while removing part of the first dielectric layer 204, and at the same time, the surface of the formed fourth dielectric layer is ensured to be flat, which is conducive to the formation of a subsequent stop layer.
所述Certas刻蚀工艺包括远程干法刻蚀和远程干法刻蚀后进行的第一原位退火;所述远程干法刻蚀的参数包括:采用的气体包括NH3和HF,NH3的流量为200sccm~500sccm,HF的气体流量为20sccm~200sccm,腔室压强为0.1torr~760torr,温度为-40摄氏度~25摄氏度;所述第一原位退火的参数包括:温度为60摄氏度~100摄氏度,腔室压强为0.1torr~760torr。The Certas etching process includes remote dry etching and a first in-situ annealing after the remote dry etching; the parameters of the remote dry etching include: the gases used include NH3 and HF, the flow rate of NH3 is 200sccm~500sccm, the gas flow rate of HF is 20sccm~200sccm, the chamber pressure is 0.1torr~760torr, and the temperature is -40 degrees Celsius to 25 degrees Celsius; the parameters of the first in-situ annealing include: the temperature is 60 degrees Celsius to 100 degrees Celsius, and the chamber pressure is 0.1torr~760torr.
所述SiCoNi刻蚀工艺包括远程等离子体刻蚀和远程等离子体刻蚀后进行的第二原位退火;所述远程等离子体刻蚀的参数包括:采用的气体包括NH3和NF3,NH3的流量为200sccm~500sccm,NF3的气体流量为20sccm~200sccm,源射频功率为50瓦~2000瓦,偏置电压为30伏~500伏,腔室压强为0.1torr~760torr,温度为-40摄氏度~25摄氏度;所述第二原位退火的参数包括:温度为60摄氏度~100摄氏度,腔室压强为0.1torr~760torr。The SiCoNi etching process includes remote plasma etching and a second in-situ annealing performed after the remote plasma etching; the parameters of the remote plasma etching include: the gases used include NH3 and NF3 , the flow rate of NH3 is 200sccm~500sccm, the gas flow rate of NF3 is 20sccm~200sccm, the source RF power is 50 watts~2000 watts, the bias voltage is 30 volts~500 volts, the chamber pressure is 0.1torr~760torr, and the temperature is -40 degrees Celsius to 25 degrees Celsius; the parameters of the second in-situ annealing include: the temperature is 60 degrees Celsius~100 degrees Celsius, and the chamber pressure is 0.1torr~760torr.
所述反应离子刻蚀工艺的参数包括:采用的气体包括C4F6和O2或者C4F8和O2,C4F6或C4F8的流量为10sccm~20sccm,O2的流量为8sccm~15sccm,源射频功率为0瓦~100瓦,偏置电压为800伏~1200伏,腔室压强为10mtorr~20mtorr。The parameters of the reactive ion etching process include: the gases used include C 4 F 6 and O 2 or C 4 F 8 and O 2 , the flow rate of C 4 F 6 or C 4 F 8 is 10 sccm to 20 sccm, the flow rate of O 2 is 8 sccm to 15 sccm, the source RF power is 0 watt to 100 watts, the bias voltage is 800 volts to 1200 volts, and the chamber pressure is 10 mtorr to 20 mtorr.
在其他实施例中,去除全部的所述第一介质层。In other embodiments, the entire first dielectric layer is removed.
请参考图15和图16,图15为图16在剖面线KK’方向的结构示意图,图16为图15在剖面线JJ’方向的结构示意图,在所述暴露出的鳍部300表面、所述第四介质层207表面以及所述栅极结构顶部表面和侧壁表面形成停止层208。Please refer to Figures 15 and 16, Figure 15 is a schematic diagram of the structure of Figure 16 in the direction of section line KK', and Figure 16 is a schematic diagram of the structure of Figure 15 in the direction of section line JJ'. A stop layer 208 is formed on the surface of the exposed fin 300, the surface of the fourth dielectric layer 207, and the top surface and side wall surface of the gate structure.
所述停止层208对所述栅极结构起到保护作用,使得后续在形成插塞过程中,刻蚀所形成第二介质层时,能够停止在所述停止层208表面,使得形成的插塞位置能够自对准,不会对所述栅极结构造成损伤;同时,先去除部分所述第一介质层204,再在所述栅极结构顶部表面和侧壁表面以及第四介质层207上形成停止层,使得所述伪栅极结构顶部无需再形成额外的阻挡层以保护所述伪栅极结构顶部,从而使得初始形成的所述伪栅极结构的高度无需太高,从而以所述伪栅极结构为基准形成的第一介质层厚度无需太厚,进而使得去除伪栅极结构时在第一介质层内形成的栅极开口深宽比较小,使得在所述栅极开口内形成栅极结构的工艺难度降低;同时,所述停止层208位于所述第四介质层207表面,后续在所述鳍部表面以及第四介质层表面形成初始插塞开口时,位于所述第四介质层207表面的初始插塞开口停止在所述停止层208上,使得位于所述第四介质层207上的插塞开口深宽比较小,有利于后续插塞的形成;另一方面,所述停止层208位于所述鳍部表面以及第四介质层207表面,使得形成的所述插塞位于所述鳍部表面和第四介质层207表面,从而使得所述插塞与所述栅极结构之间的寄生电容减小,从而提升了半导体结构的性能。The stop layer 208 protects the gate structure, so that in the subsequent process of forming the plug, when etching the formed second dielectric layer, it can stop on the surface of the stop layer 208, so that the formed plug position can be self-aligned and will not cause damage to the gate structure; at the same time, first remove a portion of the first dielectric layer 204, and then form a stop layer on the top surface and side wall surface of the gate structure and the fourth dielectric layer 207, so that no additional barrier layer is required to be formed on the top of the pseudo gate structure to protect the top of the pseudo gate structure, so that the height of the initially formed pseudo gate structure does not need to be too high, and the thickness of the first dielectric layer formed based on the pseudo gate structure does not need to be too thick, so that the gate opening formed in the first dielectric layer when removing the pseudo gate structure The depth-width ratio of the opening is relatively small, which reduces the process difficulty of forming a gate structure in the gate opening; at the same time, the stop layer 208 is located on the surface of the fourth dielectric layer 207, and when the initial plug opening is subsequently formed on the surface of the fin and the surface of the fourth dielectric layer, the initial plug opening located on the surface of the fourth dielectric layer 207 stops on the stop layer 208, so that the depth-width ratio of the plug opening located on the fourth dielectric layer 207 is relatively small, which is conducive to the subsequent formation of the plug; on the other hand, the stop layer 208 is located on the surface of the fin and the surface of the fourth dielectric layer 207, so that the formed plug is located on the surface of the fin and the surface of the fourth dielectric layer 207, thereby reducing the parasitic capacitance between the plug and the gate structure, thereby improving the performance of the semiconductor structure.
所述停止层208的材料与所述第四介质层207的材料不同,所述停止层208的材料与后续形成的第二介质层的材料不同,从而后续形成插塞时,刻蚀所述第二介质层的工艺能够停止在所述停止层208表面。所述停止层208的材料包括氮化硅或氮氧化硅;形成所述停止层208的工艺包括化学气相沉积工艺或者原子层沉积工艺。The material of the stop layer 208 is different from the material of the fourth dielectric layer 207, and the material of the stop layer 208 is different from the material of the second dielectric layer formed subsequently, so that when the plug is formed subsequently, the process of etching the second dielectric layer can stop at the surface of the stop layer 208. The material of the stop layer 208 includes silicon nitride or silicon oxynitride; the process of forming the stop layer 208 includes a chemical vapor deposition process or an atomic layer deposition process.
在本实施例中,所述停止层208的材料包括氮化硅,所述氮化硅与后续形成的第二介质层具有较高的刻蚀选择比,从而形成所述插塞的刻蚀工艺能够精确地停在所述停止层208表面;形成所述停止层208的工艺包括原子层沉积工艺,所述原子层沉积工艺能够形成结构致密且厚度均匀的停止层208。In this embodiment, the material of the stop layer 208 includes silicon nitride, and the silicon nitride has a high etching selectivity ratio with the subsequently formed second dielectric layer, so that the etching process for forming the plug can stop precisely on the surface of the stop layer 208; the process for forming the stop layer 208 includes an atomic layer deposition process, and the atomic layer deposition process can form a stop layer 208 with a dense structure and uniform thickness.
在本实施例中,所述停止层208的厚度范围为100埃~300埃,若所述停止层208的厚度太小,则所述停止层208起到形成所述插塞过程中的刻蚀停止作用;若所述停止层208的厚度太厚,则后续在鳍部表面形成插塞时,需要去除鳍部表面的部分停止层,则去除所述停止层的工艺需加大条件,同时也会使形成的插塞开口深宽比较大,不利于插塞材料的填充。In this embodiment, the thickness of the stop layer 208 ranges from 100 angstroms to 300 angstroms. If the thickness of the stop layer 208 is too small, the stop layer 208 serves to stop the etching in the process of forming the plug; if the thickness of the stop layer 208 is too thick, when the plug is subsequently formed on the surface of the fin, part of the stop layer on the surface of the fin needs to be removed, and the process of removing the stop layer needs to increase the conditions. At the same time, the depth and width of the formed plug opening will be relatively large, which is not conducive to the filling of the plug material.
请参考图17和图18,图17为图18在剖面线GG’方向的结构示意图,图18为图17在剖面线II’方向的结构示意图,在所述停止层208上形成第二介质层209。Please refer to Figures 17 and 18, Figure 17 is a schematic diagram of the structure of Figure 18 in the direction of section line GG', and Figure 18 is a schematic diagram of the structure of Figure 17 in the direction of section line II'. A second dielectric layer 209 is formed on the stop layer 208.
所述第二介质层209的形成方法包括:在所述停止层208上形成介质材料层(未图示);平坦化所述介质材料层,形成所述第二介质层209。The method for forming the second dielectric layer 209 includes: forming a dielectric material layer (not shown) on the stop layer 208 ; and planarizing the dielectric material layer to form the second dielectric layer 209 .
所述第二介质层209用于为后续在所述第二介质层209内形成的插塞提供结构支持,同时对所述栅极结构、插塞以及其他的半导体结构进行电隔离。所述第二介质层209的材料包括氧化硅或氮化硅;形成所述第二介质层209的工艺包括原子层沉积工艺或化学气相沉积工艺;平坦化所述第二介质材料层的工艺包括化学机械抛光工艺或者回刻蚀工艺。The second dielectric layer 209 is used to provide structural support for the plugs subsequently formed in the second dielectric layer 209, and to electrically isolate the gate structure, the plugs and other semiconductor structures. The material of the second dielectric layer 209 includes silicon oxide or silicon nitride; the process of forming the second dielectric layer 209 includes an atomic layer deposition process or a chemical vapor deposition process; the process of planarizing the second dielectric material layer includes a chemical mechanical polishing process or an etch-back process.
在本实施例中,所述第二介质层209的材料包括氧化硅;形成所述第二介质层209的工艺包括化学气相沉积工艺,所述化学气相沉积工艺能够快速形成厚度较厚且结构致密的第二介质层209;平坦化所述第二介质材料层的工艺包括化学机械抛光工艺。In this embodiment, the material of the second dielectric layer 209 includes silicon oxide; the process of forming the second dielectric layer 209 includes a chemical vapor deposition process, and the chemical vapor deposition process can quickly form a second dielectric layer 209 with a relatively thick thickness and a dense structure; the process of planarizing the second dielectric material layer includes a chemical mechanical polishing process.
请继续参考图17和图18,在所述第二介质层209内形成插塞210,所述插塞210位于相邻的栅极结构之间。Continuing to refer to FIG. 17 and FIG. 18 , a plug 210 is formed in the second dielectric layer 209 , and the plug 210 is located between adjacent gate structures.
所述插塞210用于在半导体结构之间进行电连接。The plug 210 is used to make electrical connections between semiconductor structures.
所述插塞210的形成方法包括:在所述第二介质层209表面形成图形化的掩膜层(未图示);以所述图形化的掩膜层为掩膜刻蚀所述第二介质层209,在所述第二介质层209内形成初始插塞开口(未图示),所述初始插塞开口暴露出所述鳍部表面的停止层208;去除所述鳍部表面的停止层208,形成插塞开口(未图示);在所述插塞开口内形成插塞210。The method for forming the plug 210 includes: forming a patterned mask layer (not shown) on the surface of the second dielectric layer 209; etching the second dielectric layer 209 using the patterned mask layer as a mask to form an initial plug opening (not shown) in the second dielectric layer 209, wherein the initial plug opening exposes the stop layer 208 on the surface of the fin; removing the stop layer 208 on the surface of the fin to form a plug opening (not shown); and forming the plug 210 in the plug opening.
所述栅极结构顶部表面和侧壁表面的停止层208对所述栅极结构起到保护作用,使得在形成插塞过程中,刻蚀所述第二介质层209的工艺能够停止在所述停止层208表面,使得形成的插塞210的位置能够自对准,不会对所述栅极结构造成损伤;同时,所述停止层208位于所述第四介质层207表面,在所述鳍部表面以及第四介质层207表面形成插塞开口时,位于所述第四介质层207表面的插塞开口停止在所述停止层208上,使得位于所述第四介质层207上的插塞开口深宽比较小,有利于插塞材料的填充;另一方面,所述停止层208位于所述鳍部表面以及第四介质层207表面,使得形成的所述插塞210位于所述鳍部表面和与所述鳍部表面齐平的第四介质层207表面,从而使得所述插塞210与所述栅极结构之间的寄生电容减小,从而提升了半导体结构的性能。The stop layer 208 on the top surface and the sidewall surface of the gate structure protects the gate structure, so that in the process of forming the plug, the process of etching the second dielectric layer 209 can be stopped on the surface of the stop layer 208, so that the position of the formed plug 210 can be self-aligned and will not cause damage to the gate structure; at the same time, the stop layer 208 is located on the surface of the fourth dielectric layer 207, and when the plug opening is formed on the surface of the fin and the surface of the fourth dielectric layer 207, the plug opening located on the surface of the fourth dielectric layer 207 stops on the stop layer 208, so that the depth and width of the plug opening located on the fourth dielectric layer 207 are relatively small, which is conducive to the filling of the plug material; on the other hand, the stop layer 208 is located on the surface of the fin and the surface of the fourth dielectric layer 207, so that the formed plug 210 is located on the surface of the fin and the surface of the fourth dielectric layer 207 flush with the fin surface, so that the parasitic capacitance between the plug 210 and the gate structure is reduced, thereby improving the performance of the semiconductor structure.
刻蚀所述第二介质层209的工艺包括干法刻蚀工艺或湿法刻蚀工艺;去除所述停止层208的工艺包括干法刻蚀工艺或湿法刻蚀工艺;所述插塞210的材料包括金属,所述金属包括铜或钨。The process of etching the second dielectric layer 209 includes a dry etching process or a wet etching process; the process of removing the stop layer 208 includes a dry etching process or a wet etching process; the material of the plug 210 includes metal, and the metal includes copper or tungsten.
在本实施例中,刻蚀所述第二介质层209的工艺包括干法刻蚀工艺,所述干法刻蚀工艺能够避免侧向刻蚀对所述栅极结构造成损伤;去除所述停止层208的工艺包括干法刻蚀工艺;所述插塞210的材料包括钨。In this embodiment, the process of etching the second dielectric layer 209 includes a dry etching process, and the dry etching process can prevent lateral etching from damaging the gate structure; the process of removing the stop layer 208 includes a dry etching process; and the material of the plug 210 includes tungsten.
至此,形成的半导体结构,所述半导体结构的性能得到了提升。At this point, a semiconductor structure is formed, and the performance of the semiconductor structure is improved.
相应的,本发明实施例还提供一种采用上述方法形成的半导体结构,请继续参考图17和图18,包括:Accordingly, an embodiment of the present invention further provides a semiconductor structure formed by the above method, please continue to refer to FIG. 17 and FIG. 18, including:
衬底,所述衬底包括基底200和位于基底200上的鳍部300;A substrate, the substrate comprising a base 200 and a fin 300 located on the base 200;
位于衬底上的栅极结构206,所述栅极结构206横跨在所述鳍部300上;A gate structure 206 located on the substrate, wherein the gate structure 206 spans over the fin 300;
位于鳍部侧壁的第三介质层201和第四介质层207,所述第四介质层207齐平于所述鳍部300顶部表面;A third dielectric layer 201 and a fourth dielectric layer 207 located on the sidewalls of the fin, wherein the fourth dielectric layer 207 is flush with the top surface of the fin 300;
位于第四介质层207上的停止层208;a stop layer 208 located on the fourth dielectric layer 207;
位于停止层208上的第二介质层209;A second dielectric layer 209 located on the stop layer 208;
位于所述鳍部300表面以及第二介质层209内的插塞210。The plug 210 is located on the surface of the fin 300 and in the second dielectric layer 209 .
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed as above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be subject to the scope defined by the claims.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910905730.9A CN112635324B (en) | 2019-09-24 | 2019-09-24 | Semiconductor structure and forming method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910905730.9A CN112635324B (en) | 2019-09-24 | 2019-09-24 | Semiconductor structure and forming method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112635324A CN112635324A (en) | 2021-04-09 |
CN112635324B true CN112635324B (en) | 2024-08-23 |
Family
ID=75282776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910905730.9A Active CN112635324B (en) | 2019-09-24 | 2019-09-24 | Semiconductor structure and forming method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112635324B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108461544A (en) * | 2017-02-17 | 2018-08-28 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9006072B2 (en) * | 2013-03-14 | 2015-04-14 | United Microelectronics Corp. | Method of forming metal silicide layer |
CN105762108B (en) * | 2014-12-19 | 2019-03-29 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
CN109962014B (en) * | 2017-12-26 | 2022-10-04 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and method of forming the same |
-
2019
- 2019-09-24 CN CN201910905730.9A patent/CN112635324B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108461544A (en) * | 2017-02-17 | 2018-08-28 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and forming method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN112635324A (en) | 2021-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111180513B (en) | Semiconductor device and method of forming the same | |
CN110797262B (en) | Semiconductor device and method of forming the same | |
CN107799462B (en) | Method of forming a semiconductor structure | |
CN107039272B (en) | Method for forming fin type transistor | |
CN109979986B (en) | Semiconductor device and method of forming the same | |
CN113555285B (en) | Method for forming semiconductor structure | |
CN106952816B (en) | Method of forming a fin transistor | |
CN109148296B (en) | Semiconductor structure and method of forming the same | |
CN111863723B (en) | Semiconductor structure and forming method thereof | |
CN109003899A (en) | The forming method of semiconductor structure and forming method thereof, fin formula field effect transistor | |
CN104008974A (en) | Semiconductor device and method for manufacturing the same | |
CN109994548B (en) | Semiconductor structure and method of forming the same | |
CN107180760A (en) | Semiconductor structure and forming method thereof | |
CN112635324B (en) | Semiconductor structure and forming method thereof | |
CN107591327B (en) | Method for forming fin field effect transistor | |
CN107170685B (en) | Method for forming fin type transistor | |
CN113053739B (en) | Semiconductor structure and forming method thereof | |
CN112151382B (en) | Semiconductor structure and forming method thereof | |
CN112117192B (en) | Method for forming semiconductor structure | |
CN112652578B (en) | Method of forming semiconductor structure, transistor | |
CN110739265B (en) | Semiconductor structure and forming method thereof | |
CN113496894A (en) | Method for forming semiconductor structure | |
CN111508896A (en) | Semiconductor structure and forming method thereof | |
CN113937163B (en) | Semiconductor device and method of forming the same | |
CN110875388B (en) | Semiconductor device and method of forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |