CN107170685B - Method for forming fin type transistor - Google Patents
Method for forming fin type transistor Download PDFInfo
- Publication number
- CN107170685B CN107170685B CN201610130608.5A CN201610130608A CN107170685B CN 107170685 B CN107170685 B CN 107170685B CN 201610130608 A CN201610130608 A CN 201610130608A CN 107170685 B CN107170685 B CN 107170685B
- Authority
- CN
- China
- Prior art keywords
- layer
- gate
- forming
- oxide layer
- trench
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
- H10D30/024—Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
一种鳍式晶体管的形成方法,包括:提供包括N型核心区和P型核心区的衬底,衬底表面具有鳍部和隔离层;在N型核心区和P型核心区的鳍部侧壁和顶部表面形成第一栅氧层;在隔离层和第一栅氧层表面形成分别横跨N型核心区和P型核心区鳍部的伪栅层;在隔离层和鳍部上形成介质层,介质层暴露出伪栅层顶部;去除伪栅层,在N型核心区的介质层内形成第一沟槽,在P型核心区的介质层内形成第二沟槽;去除第一沟槽底部的第一栅氧层;在N型核心区暴露出的鳍部侧壁和顶部表面形成第二栅氧层;在第二栅氧层表面形成填充满第一沟槽的第一栅极结构;在第一栅氧层表面形成填充满第二沟槽的第二栅极结构。所形成的鳍式晶体管性能改善。
A method for forming a fin transistor, comprising: providing a substrate including an N-type core region and a P-type core region, the surface of the substrate having a fin and an isolation layer; on the fin side of the N-type core region and the P-type core region A first gate oxide layer is formed on the wall and the top surface; a dummy gate layer is formed on the surface of the isolation layer and the first gate oxide layer respectively across the fins of the N-type core region and the P-type core region; a dielectric is formed on the isolation layer and the fins layer, the dielectric layer exposes the top of the dummy gate layer; the dummy gate layer is removed, a first trench is formed in the dielectric layer of the N-type core region, and a second trench is formed in the dielectric layer of the P-type core region; the first trench is removed A first gate oxide layer at the bottom of the trench; a second gate oxide layer is formed on the sidewalls and top surface of the fin exposed in the N-type core region; a first gate oxide layer that fills the first trench is formed on the surface of the second gate oxide layer structure; a second gate structure filled with the second trench is formed on the surface of the first gate oxide layer. The formed fin transistor has improved performance.
Description
技术领域technical field
本发明涉及半导体制造技术领域,尤其涉及一种鳍式晶体管的形成方法。The present invention relates to the technical field of semiconductor manufacturing, and in particular, to a method for forming a fin transistor.
背景技术Background technique
随着半导体制造技术的飞速发展,半导体器件朝着更高的元件密度,以及更高的集成度的方向发展。晶体管作为最基本的半导体器件目前正被广泛应用,因此随着半导体器件的元件密度和集成度的提高,平面晶体管的栅极尺寸也越来越短,传统的平面晶体管对沟道电流的控制能力变弱,产生短沟道效应,产生漏电流,最终影响半导体器件的电学性能。With the rapid development of semiconductor manufacturing technology, semiconductor devices are developing towards higher component density and higher integration. As the most basic semiconductor device, transistors are currently being widely used. Therefore, with the increase in the component density and integration of semiconductor devices, the gate size of planar transistors is getting shorter and shorter, and the traditional planar transistors have the ability to control the channel current. become weaker, resulting in short channel effect and leakage current, which ultimately affects the electrical performance of semiconductor devices.
为了克服晶体管的短沟道效应,抑制漏电流,现有技术提出了鳍式场效应晶体管(Fin FET),鳍式场效应晶体管是一种常见的多栅器件。鳍式场效应晶体管的结构包括:位于半导体衬底表面的鳍部和介质层,所述介质层覆盖部分所述鳍部的侧壁,且介质层表面低于鳍部顶部;位于介质层表面、以及鳍部的顶部和侧壁表面的栅极结构;位于所述栅极结构两侧的鳍部内的源区和漏区。In order to overcome the short channel effect of the transistor and suppress the leakage current, the prior art proposes a fin field effect transistor (Fin FET), which is a common multi-gate device. The structure of the fin field effect transistor includes: a fin and a dielectric layer located on the surface of the semiconductor substrate, the dielectric layer covers part of the sidewall of the fin, and the surface of the dielectric layer is lower than the top of the fin; and gate structures on the top and sidewall surfaces of the fins; source and drain regions within the fins on both sides of the gate structures.
然而,随着半导体器件的密度提高、尺寸缩小,所形成的鳍式场效应晶体管的性能变差、可靠性下降。However, as the density and size of semiconductor devices are increased, the performance and reliability of the formed fin field effect transistors are degraded.
发明内容SUMMARY OF THE INVENTION
本发明解决的问题是提供一种鳍式晶体管的形成方法,所形成的鳍式晶体管性能改善。The problem to be solved by the present invention is to provide a method for forming a fin transistor with improved performance of the formed fin transistor.
为解决上述问题,本发明提供一种鳍式晶体管的形成方法,包括:提供衬底,所述衬底包括N型核心区和P型核心区,所述N型核心区和P型核心区的衬底表面分别具有鳍部,所述衬底表面具有隔离层,所述隔离层覆盖所述鳍部的部分侧壁,且所述隔离层表面低于所述鳍部的顶部表面;采用第一氧化工艺在所述N型核心区和P型核心区的鳍部侧壁和顶部表面形成第一栅氧层;在所述隔离层和第一栅氧层表面形成分别横跨所述N型核心区和P型核心区鳍部的伪栅层,所述伪栅层覆盖在部分鳍部侧壁和顶部上;在所述隔离层和鳍部上形成介质层,所述介质层覆盖所述伪栅层的侧壁,且所述介质层暴露出所述伪栅层顶部;去除所述伪栅层,在所述N型核心区的介质层内形成第一沟槽,在所述P型核心区的介质层内形成第二沟槽,所述第一沟槽和第二沟槽暴露出所述第一栅氧层;去除第一沟槽底部的第一栅氧层,并暴露出N型核心区的鳍部侧壁和顶部表面;采用第二氧化工艺在所述N型核心区暴露出的鳍部侧壁和顶部表面形成第二栅氧层,所述第二栅氧层的等效氧化层厚度小于第一栅氧层的等效氧化层厚度;在所述第一栅氧层表面形成填充满所述第一沟槽的第一栅极结构;在所述第二栅氧层表面形成填充满所述第二沟槽的第二栅极结构。In order to solve the above problems, the present invention provides a method for forming a fin transistor, including: providing a substrate, the substrate includes an N-type core region and a P-type core region, and the N-type core region and the P-type core region have The surfaces of the substrates respectively have fins, the surfaces of the substrates have isolation layers, the isolation layers cover part of the sidewalls of the fins, and the surfaces of the isolation layers are lower than the top surfaces of the fins; using the first The oxidation process forms a first gate oxide layer on the sidewalls and top surfaces of the fins of the N-type core region and the P-type core region; and forms a first gate oxide layer on the surface of the isolation layer and the first gate oxide layer respectively across the N-type core region A dummy gate layer of the fins in the core region and the P-type core region, the dummy gate layer covers part of the sidewalls and the top of the fins; a dielectric layer is formed on the isolation layer and the fins, and the dielectric layer covers the dummy the sidewall of the gate layer, and the dielectric layer exposes the top of the dummy gate layer; the dummy gate layer is removed, a first trench is formed in the dielectric layer of the N-type core region, and a first trench is formed in the P-type core region A second trench is formed in the dielectric layer of the region, and the first trench and the second trench expose the first gate oxide layer; the first gate oxide layer at the bottom of the first trench is removed, and the N-type oxide layer is exposed the sidewalls and top surface of the fins of the core region; a second gate oxide layer is formed on the sidewalls and top surfaces of the fins exposed in the N-type core region by a second oxidation process, and the equivalent of the second gate oxide layer is The thickness of the oxide layer is less than the equivalent thickness of the oxide layer of the first gate oxide layer; a first gate structure filled with the first trench is formed on the surface of the first gate oxide layer; on the surface of the second gate oxide layer forming a second gate structure filling the second trench.
可选的,所述第一氧化工艺为原位蒸汽生成工艺。Optionally, the first oxidation process is an in-situ steam generation process.
可选的,所述第一栅氧层的厚度为5埃~15埃。Optionally, the thickness of the first gate oxide layer is 5 angstroms to 15 angstroms.
可选的,所述第二氧化工艺为化学氧化工艺。Optionally, the second oxidation process is a chemical oxidation process.
可选的,所述第二栅氧层的厚度为5埃~15埃。Optionally, the thickness of the second gate oxide layer is 5 angstroms to 15 angstroms.
可选的,所述衬底还包括:N型外围区和P型外围区,所述N型外围区和P型外围区的衬底表面分别具有鳍部;在形成第一栅氧层之前,采用第三氧化工艺在所述N型外围区和P型外围区的鳍部侧壁和顶部表面形成第三栅氧层。Optionally, the substrate further includes: an N-type peripheral region and a P-type peripheral region, the substrate surfaces of the N-type peripheral region and the P-type peripheral region respectively have fins; before forming the first gate oxide layer, A third gate oxide layer is formed on the sidewalls and top surfaces of the fins of the N-type peripheral region and the P-type peripheral region by a third oxidation process.
可选的,所述伪栅层还横跨所述N型外围区和P型外围区的鳍部。Optionally, the dummy gate layer also spans the fins of the N-type peripheral region and the P-type peripheral region.
可选的,在去除所述伪栅层之后,在所述N型外围区的介质层内形成第三沟槽,在所述P型外围区的介质层内形成第四沟槽,所述第一沟槽和第二沟槽暴露出所述第三栅氧层。Optionally, after removing the dummy gate layer, a third trench is formed in the dielectric layer of the N-type peripheral region, and a fourth trench is formed in the dielectric layer of the P-type peripheral region. A trench and a second trench expose the third gate oxide layer.
可选的,还包括:在所述第三栅氧层表面形成填充满第三沟槽的第三栅极结构、以及填充满第四沟槽的第四栅极结构。Optionally, the method further includes: forming a third gate structure filling the third trench and a fourth gate structure filling the fourth trench on the surface of the third gate oxide layer.
可选的,所述第三栅氧层的形成工艺包括原位蒸汽生成工艺;所述第三栅氧层的厚度为15埃~25埃。Optionally, the formation process of the third gate oxide layer includes an in-situ steam generation process; the thickness of the third gate oxide layer is 15 angstroms to 25 angstroms.
可选的,去除第一沟槽底部的第一栅氧层的步骤包括:在所述第一栅氧层表面形成第一图形化层,所述第一图形化层暴露出第一沟槽底部的第一栅氧层;以所述第一图形化层为掩膜,刻蚀所述第一栅氧层,直至暴露出N型核心区的鳍部侧壁和顶部表面为止。Optionally, the step of removing the first gate oxide layer at the bottom of the first trench includes: forming a first patterned layer on the surface of the first gate oxide layer, and the first patterned layer exposes the bottom of the first trench the first gate oxide layer; using the first patterned layer as a mask, etching the first gate oxide layer until the sidewalls and the top surface of the fin of the N-type core region are exposed.
可选的,刻蚀所述第一栅氧层的工艺为湿法刻蚀工艺或各向同性的干法刻蚀工艺。Optionally, the process of etching the first gate oxide layer is a wet etching process or an isotropic dry etching process.
可选的,在形成第二栅氧层之后,形成第一栅极结构和第二栅极结构之前,进行第一退火工艺。Optionally, after forming the second gate oxide layer and before forming the first gate structure and the second gate structure, a first annealing process is performed.
可选的,所述第一退火工艺为尖峰退火或激光退火。Optionally, the first annealing process is spike annealing or laser annealing.
可选的,所述第一栅极结构包括第一栅介质层、以及位于第一栅介质层上的第一栅极层,所述第一栅极层填充满所述第一沟槽;所述第二栅极结构包括第二栅介质层、以及位于第二栅介质层上的第二栅极层,所述第二栅极层填充满所述第二沟槽。Optionally, the first gate structure includes a first gate dielectric layer and a first gate layer located on the first gate dielectric layer, and the first gate layer fills the first trench; The second gate structure includes a second gate dielectric layer and a second gate layer located on the second gate dielectric layer, and the second gate layer fills the second trench.
可选的,所述第一栅极结构和第二栅极结构的形成步骤包括:在所述介质层表面、第一沟槽的内壁表面和第二沟槽的内壁表面形成栅介质膜;在形成栅介质膜之后,形成填充满所述第一沟槽和第二沟槽的栅极膜;平坦化所述栅极膜和栅介质膜直至暴露出所述介质层表面为止,在第一沟槽内形成第一栅介质层和第一栅极层,在第二沟槽内形成第二栅介质层和第二栅极层。Optionally, the step of forming the first gate structure and the second gate structure includes: forming a gate dielectric film on the surface of the dielectric layer, the inner wall surface of the first trench and the inner wall surface of the second trench; After the gate dielectric film is formed, a gate film is formed that fills the first trench and the second trench; the gate film and the gate dielectric film are planarized until the surface of the dielectric layer is exposed. A first gate dielectric layer and a first gate electrode layer are formed in the trench, and a second gate dielectric layer and a second gate electrode layer are formed in the second trench.
可选的,还包括:在形成所述栅介质膜之后,进行第二退火工艺。Optionally, the method further includes: after forming the gate dielectric film, performing a second annealing process.
可选的,所述鳍部的顶部表面还具有掩膜层。Optionally, the top surface of the fin portion further has a mask layer.
可选的,所述隔离层的形成步骤包括:在所述衬底和鳍部表面形成隔离膜;平坦化所述隔离膜;在平坦化所述隔离膜之后,回刻蚀所述隔离膜直至暴露出部分鳍部侧壁为止;在回刻蚀所述隔离膜的同时或之后,去除所述掩膜层。Optionally, the step of forming the isolation layer includes: forming an isolation film on the surfaces of the substrate and the fin; planarizing the isolation film; after planarizing the isolation film, etch back the isolation film until until part of the sidewalls of the fins are exposed; while or after the isolation film is etched back, the mask layer is removed.
可选的,在形成所述隔离层之前,在所述衬底和鳍部表面形成衬垫氧化层;在形成所述隔离层之后,去除暴露出的衬垫氧化层。Optionally, before forming the isolation layer, a pad oxide layer is formed on the surfaces of the substrate and the fin; after the isolation layer is formed, the exposed pad oxide layer is removed.
与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
本发明的形成方法中,在去除伪栅层之后,在N型核心区形成暴露出第一栅氧层的第一沟槽,在P型核心区形成暴露出第一栅氧层的第二沟槽。其中,所述第一栅氧层在形成伪栅层之前,采用第一氧化工艺形成于鳍部侧壁和顶部表面。在去除所述伪栅层之后,去除第一沟槽底部的第一栅氧层,并以第二氧化工艺在第一沟槽暴露出的鳍部侧壁和顶部表面再形成第二氧化层。所述第二氧化层位于第一沟槽内,所述第一沟槽位于N型核心区内,则所述第一沟槽用于形成N型核心区的鳍式晶体管。由于所形成的第二氧化层的等效氧化层厚度小于第一栅氧层,因此,在以所述第二栅氧层作为N型核心区的鳍式晶体管内的栅氧层时,能够提高N型核心区所形成的鳍式晶体管的性能,同时,所述第二栅氧层内的缺陷或杂质对N型核心区的鳍式晶体管的偏压温度不稳定效应的影响较小。因此,在N型核心区形成的鳍式晶体管的性能改善。同时,采用第一氧化工艺形成的第一栅氧层作为P型核心区形成的鳍式晶体管的栅氧层,而采用第一氧化工艺形成的第一栅氧层内的缺陷或杂质较少,能够改善P型核心区的鳍式晶体管的偏压温度不稳定效应,从而改善P型核心区的鳍式晶体管的性能。In the formation method of the present invention, after removing the dummy gate layer, a first trench exposing the first gate oxide layer is formed in the N-type core region, and a second trench exposing the first gate oxide layer is formed in the P-type core region groove. Wherein, before forming the dummy gate layer, the first gate oxide layer is formed on the sidewall and top surface of the fin by a first oxidation process. After the dummy gate layer is removed, the first gate oxide layer at the bottom of the first trench is removed, and a second oxide layer is formed on the exposed sidewalls and top surfaces of the fin portion of the first trench by a second oxidation process. The second oxide layer is located in the first trench, the first trench is located in the N-type core region, and the first trench is used to form a fin transistor in the N-type core region. Since the equivalent oxide thickness of the formed second oxide layer is smaller than that of the first gate oxide layer, when the second gate oxide layer is used as the gate oxide layer in the fin transistor in the N-type core region, it can improve the At the same time, defects or impurities in the second gate oxide layer have less influence on the bias temperature instability effect of the fin transistor in the N-type core region. Therefore, the performance of the fin transistor formed in the N-type core region is improved. At the same time, the first gate oxide layer formed by the first oxidation process is used as the gate oxide layer of the fin transistor formed by the P-type core region, and the defects or impurities in the first gate oxide layer formed by the first oxidation process are less, The bias temperature instability effect of the fin transistor in the P-type core region can be improved, thereby improving the performance of the fin transistor in the P-type core region.
附图说明Description of drawings
图1至图9是本发明实施例的鳍式晶体管的形成过程的剖面结构示意图。FIG. 1 to FIG. 9 are schematic cross-sectional structural diagrams of a formation process of a fin transistor according to an embodiment of the present invention.
具体实施方式Detailed ways
如背景技术所述,随着半导体器件的密度提高、尺寸缩小,所形成的鳍式场效应晶体管的性能变差、可靠性下降。As described in the background art, as the density and size of semiconductor devices are increased, the performance and reliability of the formed fin field effect transistors are deteriorated.
经过研究发现,为了进一步缩小器件尺寸、提高器件密度,在鳍式场效应晶体管的基础上,引入了高K金属栅晶体管,即以高K介质材料作为栅介质层,以金属材料作为栅极。而且,为了改善高K介质材料的栅介质层与鳍部之间的结合状态,在所述高K介质材料的栅介质层与鳍部之间还需要形成栅氧层进行粘合。所述高K金属栅晶体管采用后栅(GateLast)工艺形成,其中一种后栅工艺中是在去除多晶硅的伪栅层并形成栅极沟槽之后,再于栅极沟槽的内壁表面形成高K介质材料的栅介质层。After research, it was found that in order to further reduce the size of the device and improve the density of the device, a high-K metal gate transistor was introduced on the basis of the fin field effect transistor, that is, a high-K dielectric material was used as the gate dielectric layer, and metal material was used as the gate. Moreover, in order to improve the bonding state between the gate dielectric layer of the high-K dielectric material and the fins, a gate oxide layer needs to be formed between the gate dielectric layer of the high-K dielectric material and the fins for bonding. The high-K metal gate transistor is formed by a gate-last (GateLast) process. In one gate-last process, after the dummy gate layer of polysilicon is removed and a gate trench is formed, a high-K metal gate is formed on the inner wall surface of the gate trench. A gate dielectric layer of K dielectric material.
对于外围区的鳍式场效应晶体管来说,由于对栅氧层的质量要求较低,且需要栅氧层的厚度较高,因此,外围区的栅氧层能够在形成伪栅层之前形成,而去除所述伪栅层的工艺对所述栅氧层造成的损伤,对外围区晶体管的性能影响较小。For the fin field effect transistor in the peripheral region, since the quality requirements of the gate oxide layer are low and the thickness of the gate oxide layer is required to be high, the gate oxide layer in the peripheral region can be formed before the dummy gate layer is formed. However, the damage to the gate oxide layer caused by the process of removing the dummy gate layer has little effect on the performance of the transistor in the peripheral region.
对于核心区的鳍式场效应晶体管来说,对栅氧层的质量要求较高,受损的栅氧层不仅容易引起经时击穿(Time Dependent Dielectric Breakdown,简称TDDB),引起短沟道效应、减小驱动电流、提高功耗,还容易引起偏压温度不稳定效应(Bias TemperatureInstability,简称BTI),所形成的鳍式场效应晶体管性能变差。For the fin field effect transistor in the core area, the quality of the gate oxide layer is relatively high, and the damaged gate oxide layer not only easily causes Time Dependent Dielectric Breakdown (TDDB), but also causes short channel effect. , reduce the driving current, increase the power consumption, and easily cause the bias temperature instability effect (Bias Temperature Instability, BTI for short), and the performance of the formed fin field effect transistor deteriorates.
为了避免去除伪栅层的刻蚀工艺对核心区栅氧层造成损伤,核心区的栅氧层需要在去除伪栅层之后形成。并且,在去除所述伪栅层之后,采用氧化工艺在鳍部暴露出的顶部和侧壁表面形成核心区的栅氧层,形成所述核心区的栅氧层的工艺能够为原位蒸汽生成(In-Situ Steam Generation,简称ISSG)工艺。In order to avoid damage to the gate oxide layer in the core region caused by the etching process for removing the dummy gate layer, the gate oxide layer in the core region needs to be formed after the dummy gate layer is removed. In addition, after removing the dummy gate layer, an oxidation process is used to form a gate oxide layer of the core region on the exposed top and sidewall surfaces of the fin, and the process of forming the gate oxide layer of the core region can be in-situ steam generation. (In-Situ Steam Generation, referred to as ISSG) process.
所述原位蒸汽生成工艺所形成的核心区栅氧层内缺陷或杂质较少、且密度分布均匀。然而,采用原位蒸汽生成工艺形成的核心区栅氧层具有较厚的等效氧化层厚度(Equivalent Oxide Thickness,简称EOT),容易对鳍式场效应晶体管产生不良影响。对于核心区的P型鳍式场效应晶体管来说,其偏压温度不稳定效应主要由栅氧层内的缺陷或杂质引起,因此需要采用所述原位蒸汽生成工艺形成P型鳍式场效应晶体管的核心区栅氧层。The gate oxide layer in the core region formed by the in-situ steam generation process has fewer defects or impurities and has a uniform density distribution. However, the gate oxide layer in the core region formed by the in-situ vapor generation process has a relatively thick Equivalent Oxide Thickness (EOT), which is prone to adversely affect the fin field effect transistor. For the P-type fin field effect transistor in the core region, the bias temperature instability effect is mainly caused by defects or impurities in the gate oxide layer, so it is necessary to use the in-situ steam generation process to form the P-type fin field effect. The gate oxide layer in the core region of the transistor.
然而,对于核心区的N型鳍式场效应晶体管来说,其偏压温度不稳定效应主要由高K介质材料的栅介质层的质量决定,而核心区的栅氧层质量的影响因素较小。采用所述原位蒸汽生成工艺形成N型鳍式场效应晶体管的核心区栅氧层,反而容易造成栅氧层的等效氧化层厚度增大,不仅不能改善偏压温度不稳定效应,还容易造成所形成的N型鳍式场效应晶体管的性能变差。However, for the N-type fin field effect transistor in the core region, the bias temperature instability effect is mainly determined by the quality of the gate dielectric layer of the high-K dielectric material, while the quality of the gate oxide layer in the core region is less affected. . Using the in-situ steam generation process to form the gate oxide layer of the core region of the N-type fin field effect transistor will easily increase the equivalent oxide thickness of the gate oxide layer, which not only cannot improve the bias temperature instability effect, but also easily As a result, the performance of the formed N-type fin field effect transistor is deteriorated.
为了解决上述问题,本发明提供一种鳍式晶体管的形成方法,包括:提供衬底,所述衬底包括N型核心区和P型核心区,所述N型核心区和P型核心区的衬底表面分别具有鳍部,所述衬底表面具有隔离层,所述隔离层覆盖所述鳍部的部分侧壁,且所述隔离层表面低于所述鳍部的顶部表面;采用第一氧化工艺在所述N型核心区和P型核心区的鳍部侧壁和顶部表面形成第一栅氧层;在所述隔离层和第一栅氧层表面形成分别横跨所述N型核心区和P型核心区鳍部的伪栅层,所述伪栅层覆盖在部分鳍部侧壁和顶部上;在所述隔离层和鳍部上形成介质层,所述介质层覆盖所述伪栅层的侧壁,且所述介质层暴露出所述伪栅层顶部;去除所述伪栅层,在所述N型核心区的介质层内形成第一沟槽,在所述P型核心区的介质层内形成第二沟槽,所述第一沟槽和第二沟槽暴露出所述第一栅氧层;去除第一沟槽底部的第一栅氧层,并暴露出N型核心区的鳍部侧壁和顶部表面;采用第二氧化工艺在所述N型核心区暴露出的鳍部侧壁和顶部表面形成第二栅氧层,所述第二栅氧层的等效氧化层厚度小于第一栅氧层的等效氧化层厚度;在所述第一栅氧层表面形成填充满所述第一沟槽的第一栅极结构;在所述第二栅氧层表面形成填充满所述第二沟槽的第二栅极结构。In order to solve the above problems, the present invention provides a method for forming a fin transistor, including: providing a substrate, the substrate includes an N-type core region and a P-type core region, and the N-type core region and the P-type core region have The surfaces of the substrates respectively have fins, the surfaces of the substrates have isolation layers, the isolation layers cover part of the sidewalls of the fins, and the surfaces of the isolation layers are lower than the top surfaces of the fins; using the first The oxidation process forms a first gate oxide layer on the sidewalls and top surfaces of the fins of the N-type core region and the P-type core region; and forms a first gate oxide layer on the surface of the isolation layer and the first gate oxide layer respectively across the N-type core region A dummy gate layer of the fins in the core region and the P-type core region, the dummy gate layer covers part of the sidewalls and the top of the fins; a dielectric layer is formed on the isolation layer and the fins, and the dielectric layer covers the dummy the sidewall of the gate layer, and the dielectric layer exposes the top of the dummy gate layer; the dummy gate layer is removed, a first trench is formed in the dielectric layer of the N-type core region, and a first trench is formed in the P-type core region A second trench is formed in the dielectric layer of the region, and the first trench and the second trench expose the first gate oxide layer; the first gate oxide layer at the bottom of the first trench is removed, and the N-type oxide layer is exposed the sidewalls and top surface of the fins of the core region; a second gate oxide layer is formed on the sidewalls and top surfaces of the fins exposed in the N-type core region by a second oxidation process, and the equivalent of the second gate oxide layer is The thickness of the oxide layer is less than the equivalent thickness of the oxide layer of the first gate oxide layer; a first gate structure filled with the first trench is formed on the surface of the first gate oxide layer; on the surface of the second gate oxide layer forming a second gate structure filling the second trench.
其中,在去除伪栅层之后,在N型核心区形成暴露出第一栅氧层的第一沟槽,在P型核心区形成暴露出第一栅氧层的第二沟槽。其中,所述第一栅氧层在形成伪栅层之前,采用第一氧化工艺形成于鳍部侧壁和顶部表面。在去除所述伪栅层之后,去除第一沟槽底部的第一栅氧层,并以第二氧化工艺在第一沟槽暴露出的鳍部侧壁和顶部表面再形成第二氧化层。所述第二氧化层位于第一沟槽内,所述第一沟槽位于N型核心区内,则所述第一沟槽用于形成N型核心区的鳍式晶体管。由于所形成的第二氧化层的等效氧化层厚度小于第一栅氧层,因此,在以所述第二栅氧层作为N型核心区的鳍式晶体管内的栅氧层时,能够提高N型核心区所形成的鳍式晶体管的性能,同时,所述第二栅氧层内的缺陷或杂质对N型核心区的鳍式晶体管的偏压温度不稳定效应的影响较小。因此,在N型核心区形成的鳍式晶体管的性能改善。同时,采用第一氧化工艺形成的第一栅氧层作为P型核心区形成的鳍式晶体管的栅氧层,而采用第一氧化工艺形成的第一栅氧层内的缺陷或杂质较少,能够改善P型核心区的鳍式晶体管的偏压温度不稳定效应,从而改善P型核心区的鳍式晶体管的性能。Wherein, after removing the dummy gate layer, a first trench exposing the first gate oxide layer is formed in the N-type core region, and a second trench exposing the first gate oxide layer is formed in the P-type core region. Wherein, before forming the dummy gate layer, the first gate oxide layer is formed on the sidewall and top surface of the fin by a first oxidation process. After the dummy gate layer is removed, the first gate oxide layer at the bottom of the first trench is removed, and a second oxide layer is formed on the exposed sidewalls and top surfaces of the fin portion of the first trench by a second oxidation process. The second oxide layer is located in the first trench, the first trench is located in the N-type core region, and the first trench is used to form a fin transistor in the N-type core region. Since the equivalent oxide thickness of the formed second oxide layer is smaller than that of the first gate oxide layer, when the second gate oxide layer is used as the gate oxide layer in the fin transistor in the N-type core region, it can improve the At the same time, defects or impurities in the second gate oxide layer have less influence on the bias temperature instability effect of the fin transistor in the N-type core region. Therefore, the performance of the fin transistor formed in the N-type core region is improved. At the same time, the first gate oxide layer formed by the first oxidation process is used as the gate oxide layer of the fin transistor formed by the P-type core region, and the defects or impurities in the first gate oxide layer formed by the first oxidation process are less, The bias temperature instability effect of the fin transistor in the P-type core region can be improved, thereby improving the performance of the fin transistor in the P-type core region.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more clearly understood, the specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图1至图9是本发明实施例的鳍式晶体管的形成过程的剖面结构示意图。FIG. 1 to FIG. 9 are schematic cross-sectional structural diagrams of a formation process of a fin transistor according to an embodiment of the present invention.
请参考图1,提供衬底200,所述衬底200包括N型核心区210和P型核心区220,所述N型核心区210和P型核心区220的衬底200表面分别具有鳍部201,所述衬底200表面具有隔离层202,所述隔离层202覆盖所述鳍部201的部分侧壁,且所述隔离层202表面低于所述鳍部201的顶部表面。Referring to FIG. 1, a
在本实施例中,所述衬底200还包括:N型外围区230和P型外围区240,所述N型外围区230和P型外围区240的衬底200表面分别具有鳍部201。In this embodiment, the
所述N型核心区210用于形成N型核心器件;所述P型核心区220用于形成P型核心器件;所述N型外围区230用于形成N型外围器件;所述P型外围区240用于形成P型外围器件。The N-
所述核心器件的密度大于外围器件密度,且所述核心器件的特征尺寸(CriticalDimension,简称CD)小于所述外围器件的特征尺寸。所述核心器件的工作电流或工作电压小于所述外围器件的工作电流或工作电压。The density of the core device is greater than the density of the peripheral device, and the characteristic dimension (CriticalDimension, CD for short) of the core device is smaller than the characteristic dimension of the peripheral device. The working current or working voltage of the core device is smaller than the working current or working voltage of the peripheral device.
所述鳍部201的顶部表面还能够具有掩膜层。所述掩膜层作为刻蚀形成所述鳍部201的掩膜,而且所述掩膜层还能够在后续工艺过程中,用于保护鳍部201的顶部表面。The top surface of the
在本实施例中,所述衬底200和鳍部201的形成步骤包括:提供半导体基底;在所述半导体基底的部分表面形成掩膜层,所述掩膜层覆盖需要形成鳍部201的对应位置和形状;以所述掩膜层为掩膜,刻蚀所述半导体基底,形成所述衬底200和鳍部201。In this embodiment, the steps of forming the
所述半导体基底为硅衬底、锗衬底和硅锗衬底。在本实施例中,所述半导体基底为单晶硅衬底,即所述鳍部201和衬底200的材料为单晶硅。The semiconductor substrates are silicon substrates, germanium substrates and silicon germanium substrates. In this embodiment, the semiconductor substrate is a single crystal silicon substrate, that is, the materials of the
所述掩膜层的形成步骤包括:在所述半导体基底表面形成掩膜材料膜;在所述掩膜材料膜表面形成第二图形化层;以第二图形化层为掩膜刻蚀所述掩膜材料膜直至暴露出半导体基底表面为止,形成所述掩膜层。The forming step of the mask layer includes: forming a mask material film on the surface of the semiconductor substrate; forming a second patterned layer on the surface of the mask material film; etching the second patterned layer as a mask The mask layer is formed by the mask material film until the surface of the semiconductor substrate is exposed.
在一实施例中,所述第二图形化层为图形化的光刻胶层,所述第二图形化层采用涂布工艺和光刻工艺形成。在另一实施例中,为了缩小所述鳍部201的特征尺寸、以及相邻鳍部201之间的距离,所述第二图形化层采用多重图形化掩膜工艺形成。所述多重图形化掩膜工艺包括:自对准双重图形化(Self-aligned Double Patterned,SaDP)工艺、自对准三重图形化(Self-aligned Triple Patterned)工艺、或自对准四重图形化(Self-alignedDouble Double Patterned,SaDDP)工艺。In one embodiment, the second patterned layer is a patterned photoresist layer, and the second patterned layer is formed by a coating process and a photolithography process. In another embodiment, in order to reduce the feature size of the
刻蚀所述半导体基底的工艺为各向异性的干法刻蚀工艺。所述鳍部201的侧壁相对于衬底200的表面垂直或倾斜,且当所述鳍部201的侧壁相对于衬底200表面倾斜时,所述鳍部201的底部尺寸大于顶部尺寸。在本实施例中,所述鳍部201的侧壁相对于衬底200表面倾斜。The process of etching the semiconductor substrate is an anisotropic dry etching process. The sidewalls of the
所述N型外围区230和N型核心区210的衬底200和鳍部201内还具有第一阱区,所述P型外围区240和P型核心区220的衬底200和鳍部201内还具有第二阱区。所述第一阱区和第二阱区采用离子注入工艺形成;所述第一阱区和第二阱区能够在刻蚀半导体基底以形成鳍部201之前形成;或者,所述第一阱区和第二阱区能够在形成鳍部201之后形成。The
在另一实施例中,所述鳍部通过刻蚀形成于衬底表面的半导体层形成;所述半导体层采用选择性外延沉积工艺形成于所述衬底表面。所述衬底为硅衬底、硅锗衬底、碳化硅衬底、绝缘体上硅衬底、绝缘体上锗衬底、玻璃衬底或III-V族化合物衬底,例如氮化镓衬底或砷化镓衬底等。所述半导体层的材料为硅、锗、碳化硅或硅锗。In another embodiment, the fin is formed by etching a semiconductor layer formed on the surface of the substrate; the semiconductor layer is formed on the surface of the substrate by a selective epitaxial deposition process. The substrate is a silicon substrate, a silicon germanium substrate, a silicon carbide substrate, a silicon-on-insulator substrate, a germanium-on-insulator substrate, a glass substrate or a III-V compound substrate, such as a gallium nitride substrate or GaAs substrates, etc. The material of the semiconductor layer is silicon, germanium, silicon carbide or silicon germanium.
所述隔离层202的形成步骤包括:在所述衬底200和鳍部201表面形成隔离膜;平坦化所述隔离膜;在平坦化所述隔离膜之后,回刻蚀所述隔离膜直至暴露出部分鳍部201侧壁为止;在回刻蚀所述隔离膜的同时或之后,去除所述掩膜层。The steps of forming the
在本实施例中,在形成所述隔离层202之前,在所述衬底200和鳍部201表面形成衬垫氧化层;在形成所述隔离层202之后,去除暴露出的衬垫氧化层。In this embodiment, before forming the
在本实施例中,所述隔离层202的材料为氧化硅;所述隔离层202的厚度是所述鳍部201高度的1/4~1/2。所述隔离膜的形成工艺为流体化学气相沉积工艺(FCVD,FlowableChemical Vapor Deposition)。在其它实施例中,所述隔离膜还能够采用其它化学气相沉积工艺或物理气相沉积工艺形成;所述其它化学气相沉积工艺包括等离子体增强化学气相沉积工艺(PECVD)或高深宽比化学气相沉积工艺(HARP)。In this embodiment, the material of the
在本实施例中,所述流体化学气相沉积工艺的步骤包括:在所述衬底200、鳍部201和掩膜层表面形成前驱介质膜;进行退火工艺,使前驱介质膜固化,形成所述隔离膜。In this embodiment, the steps of the fluid chemical vapor deposition process include: forming a precursor dielectric film on the surfaces of the
所述平坦化工艺为化学机械抛光工艺(CMP);在本实施例中,所述化学机械抛光工艺以所述掩膜层作为停止层。回刻蚀所述隔离膜的工艺为各向同性的干法刻蚀工艺、各向异性的干法刻蚀工艺或湿法刻蚀工艺。The planarization process is a chemical mechanical polishing process (CMP); in this embodiment, the chemical mechanical polishing process uses the mask layer as a stop layer. The process of etching back the isolation film is an isotropic dry etching process, an anisotropic dry etching process or a wet etching process.
在本实施例中,在回刻蚀所述隔离膜的同时或之后,去除所述掩膜层。在形成所述隔离层202之后,去除暴露出的衬垫氧化层;由于所述暴露出的衬垫氧化层在回刻蚀隔离膜的工艺会受到损伤,因此所述衬垫氧化层203不适于作为后续的栅氧化层,因此需要去除所述衬垫氧化层。In this embodiment, the mask layer is removed while or after the isolation film is etched back. After the
所述衬垫氧化层的形成工艺为原位蒸汽生成(In-Situ Steam Generation,简称ISSG)工艺。所述原位蒸汽生成工艺的参数包括:温度为700℃~1200℃,气体包括氢气和氧气,氧气流量为1slm~50slm,氢气流量为1slm~10slm,时间为20秒钟~10分钟。所述原位蒸汽生成工艺形成的衬垫氧化层具有良好的阶梯覆盖能力,能够使所形成的衬垫氧化层紧密地覆盖于鳍部201的侧壁表面,而且所形成的衬垫氧化层的厚度均匀。The formation process of the pad oxide layer is an in-situ steam generation (In-Situ Steam Generation, ISSG for short) process. The parameters of the in-situ steam generation process include: the temperature is 700°C to 1200°C, the gas includes hydrogen and oxygen, the oxygen flow is 1 slm to 50 slm, the hydrogen flow is 1 slm to 10 slm, and the time is 20 seconds to 10 minutes. The pad oxide layer formed by the in-situ steam generation process has good step coverage capability, so that the formed pad oxide layer can tightly cover the sidewall surface of the
通过形成所述衬垫氧化层,能够修复所述衬底200和鳍部201表面在前序刻蚀工艺及离子注入工艺过程中受到的损伤。而且,所述衬垫氧化层还能够在后续制程中保护鳍部201和衬底200的表面。By forming the pad oxide layer, damages on the surfaces of the
请参考图2,采用第三氧化工艺在所述N型外围区230和P型外围区240的鳍部201侧壁和顶部表面形成第三栅氧层203。Referring to FIG. 2 , a third
所述第三栅氧层203用于形成N型外围区230和P型外围区240的鳍式晶体管内的栅氧层,用于在N型外围区230和P型外围区240增强鳍部201与后续形成的栅介质层之间的结合强度,所述栅介质层的材料为高K介质材料(介电系数大于3.9)。The third
所述第三栅氧层203的形成步骤包括:采用第三氧化工艺分别在N型核心区210、N型外围区230、P型核心区220和P型外围区240的鳍部201表面形成第三栅氧膜;在所述N型核心区210和P型核心区220的第三栅氧膜表面形成第一图形化层;以所述第一图形化层为掩膜,刻蚀所述第三栅氧膜,直至暴露出N型外围区230和P型外围区240的鳍部201侧壁和顶部表面,形成第三栅氧层203。The forming step of the third
所述第三栅氧层203的材料为氧化硅;所述第三栅氧层203的厚度为15埃~25埃。在本实施例中,所述第三栅氧层203的厚度为20埃;所述第三栅氧膜的形成工艺包括原位蒸汽生成工艺;形成所述第三栅氧膜的原位蒸汽生成工艺的参数包括:温度为700℃~1200℃,气体包括氢气和氧气,氧气流量为1slm~50slm,氢气流量为1slm~10slm,时间为10秒钟~5分钟。The material of the third
请参考图3,采用第一氧化工艺在所述N型核心区210和P型核心区220的鳍部201侧壁和顶部表面形成第一栅氧层204。Referring to FIG. 3 , a first
所述第一栅氧层204用于核心区210的鳍式晶体管内的栅氧层。由于核心区210用于形成核心器件,而核心器件的器件密度较高,且工作电压较低,因此,需要使所述第一栅氧层204的物理厚度较小,以满足缩小器件尺寸的需求,同时,需要使所述第一栅氧层204内的等效氧化层厚度需要较小,以满足减小工作电压的需求。The first
在本实施例中,所述第一栅氧层204的材料为氧化硅;所述第一氧化工艺为原位蒸汽生成工艺。采用原位蒸汽生成工艺形成的第一栅氧层204内,缺陷或杂质较少,所述第一栅氧层204的密度较高,有利于减少P型鳍式晶体管内的偏压不稳定效应。然而,采用原位蒸汽生成工艺形成的第一栅氧层204的等效氧化层厚度较大,容易使所形成的鳍式晶体管的阈值电压提高,因此,采用原位蒸气生成工艺形成第一栅氧层204对鳍式晶体管的性能改善有限。In this embodiment, the material of the first
所述第一栅氧层204的厚度为5埃~15埃;在本实施例中,所述第一栅氧层204的厚度为10埃。所述第一栅氧层204的厚度小于第三栅氧层203的厚度,使得第一栅氧层204能够降低核心器件的工作电压。The thickness of the first
形成所述第一栅氧层204的原位蒸汽生成工艺的参数包括:温度为700℃~1200℃,气体包括氢气和氧气,氧气流量为1slm~50slm,氢气流量为1slm~10slm,时间为10秒钟~5分钟。由于所述第一栅氧层204的厚度小于第三栅氧层203的厚度,形成所述第一栅氧层204的工艺时间小于形成第三栅氧膜的工艺时间。The parameters of the in-situ steam generation process for forming the first
请参考图4,在所述隔离层202和第一栅氧层204表面形成分别横跨所述N型核心区210和P型核心区220鳍部201的伪栅层205,所述伪栅层205覆盖在部分鳍部201侧壁和顶部上。Referring to FIG. 4 , a
在本实施例中,所述伪栅层205还横跨所述N型外围区230和P型外围区240的鳍部201。位于所述N型核心区210、N型外围区230、P型核心区220或P型外围区240的伪栅层205能够为同一伪栅层205或不同伪栅层205。In this embodiment, the
所述伪栅层205的材料为多晶硅。所述伪栅层205的形成步骤包括:在所述隔离层202表面、第三栅氧层203表面和第一栅氧层204表面形成伪栅极膜;对所述伪栅极膜进行平坦化;在所述平坦化工艺之后,在所述伪栅极膜表面形成第三图形化层,所述第三图形化层覆盖需要形成伪栅层205的位置和形状;以所述第三图形化层为掩膜,刻蚀所述伪栅极膜,直至暴露出隔离层202和鳍部201表面为止,形成伪栅层205。The material of the
在本实施例中,还包括:在所述伪栅层205的侧壁表面形成侧墙;在所述伪栅层205和侧墙两侧的鳍部201内形成源区和漏区。In this embodiment, the method further includes: forming spacers on the sidewall surfaces of the
所述侧墙的材料包括氧化硅、氮化硅和氮氧化硅中的一种或多种组合。所述侧墙的形成步骤包括:采用沉积工艺在所述伪栅层205表面形成侧墙膜;回刻蚀所述侧墙膜直至暴露出鳍部201表面,形成侧墙。The material of the spacer includes one or more combinations of silicon oxide, silicon nitride and silicon oxynitride. The steps of forming the spacers include: forming a spacer film on the surface of the
在一实施例中,所述源区和漏区以离子注入工艺形成。在另一实施例中,所述源区和漏区的形成步骤还包括:在所述伪栅层205和侧墙两侧的鳍部201内形成凹槽;采用选择性外延沉积工艺在所述凹槽内形成应力层;在所述应力层内掺杂离子,形成源区和漏区。所述掺杂工艺为离子注入工艺、原位掺杂工艺中的一种或两种组合。In one embodiment, the source and drain regions are formed by an ion implantation process. In another embodiment, the step of forming the source region and the drain region further includes: forming grooves in the
当所形成的鳍式晶体管为P型鳍式晶体管时,所述应力层的材料为硅锗,所述应力层内掺杂的离子为P型离子,且所述应力层为Σ型应力层。当所形成的鳍式晶体管为N型鳍式晶体管时,所述应力层的材料为碳化硅,所述应力层内掺杂的离子为N型离子。When the formed fin transistor is a P-type fin transistor, the material of the stressor layer is silicon germanium, the ions doped in the stressor layer are P-type ions, and the stressor layer is a Σ-type stressor layer. When the formed fin transistor is an N-type fin transistor, the material of the stressor layer is silicon carbide, and the ions doped in the stressor layer are N-type ions.
请参考图5,在所述隔离层202和鳍部201上形成介质层206,所述介质层206覆盖所述伪栅层205的侧壁,且所述介质层206暴露出所述伪栅层205顶部。Referring to FIG. 5 , a
所述介质层206的形成步骤包括:在所述隔离层202、鳍部201和伪栅层205的表面形成介质膜;平坦化所述介质膜直至暴露出所述伪栅层205的顶部表面为止,形成所述介质层206。The steps of forming the
所述介质膜的形成工艺为化学气相沉积工艺、物理气相沉积工艺或原子层沉积工艺。所述介质层206的材料为氧化硅、氮化硅、氮氧化硅、低k介质材料(介电系数为大于或等于2.5、小于3.9,例如多孔氧化硅、或多孔氮化硅)或超低k介质材料(介电系数小于2.5,例如多孔SiCOH)。The formation process of the dielectric film is a chemical vapor deposition process, a physical vapor deposition process or an atomic layer deposition process. The material of the
在本实施例中,所述介质层206的材料为氧化硅;所述介质膜的形成工艺为流体化学气相沉积(Flowable Chemical Vapor Deposition,简称FCVD)工艺、高密度等离子沉积(High Density Plasma,简称HDP)工艺、等离子体增强沉积工艺中的一种或多种。In this embodiment, the material of the
请参考图6,去除所述伪栅层205(如图5所示),在所述N型核心区210的介质层206内形成第一沟槽211,在所述P型核心区220的介质层206内形成第二沟槽221,所述第一沟槽211和第二沟槽221暴露出所述第一栅氧层204。Referring to FIG. 6 , the dummy gate layer 205 (as shown in FIG. 5 ) is removed, a
在本实施例中,还包括:在去除所述伪栅层205之后,在所述N型外围区230的介质层206内形成第三沟槽231,在所述P型外围区240的介质层206内形成第四沟槽241,所述第一沟槽231和第二沟槽221暴露出所述第三栅氧层203。In this embodiment, the method further includes: after removing the
去除所述伪栅层205的工艺为干法刻蚀工艺和湿法刻蚀工艺中的一种或两种组合;其中,所述干法刻蚀工艺为各向同性的干法刻蚀工艺。The process of removing the
在本实施例中,所述伪栅层205的材料为多晶硅,去除所述伪栅层205的工艺为等离子体干法刻蚀工艺;所述等离子体干法刻蚀工艺的参数包括:气体包括碳氟气体、HBr和Cl2中的一种或多种、以及载气,所述碳氟气体包括CF4、CHF3、CH2F2或CH3F,所述载气为惰性气体,例如He,气体流量为50sccm~400sccm,压力为3毫托~8毫托。In this embodiment, the material of the
在另一实施例中,去除所述伪栅层205的工艺为湿法刻蚀工艺,所述湿法刻蚀工艺的刻蚀液为氢氟酸和双氧水的混合溶液。In another embodiment, the process of removing the
请参考图7,去除第一沟槽211底部的第一栅氧层204(如图6所示),并暴露出N型核心区210的鳍部201侧壁和顶部表面。Referring to FIG. 7 , the first
所述第一栅氧层204内部的杂质或缺陷较少、较致密,有利于改善P型鳍式晶体管的偏压不稳定性。然而,所述第一栅氧层204的等效氧化层厚度较大,容易提高鳍式晶体管的阈值电压,依旧容易对作为核心器件的鳍式晶体管的性能造成影响。尤其是对于作为核心器件的N型鳍式晶体管来说,其偏压温度不稳定效应需通过改善高K介质材料的栅介质层的质量得以抑制,因此,即使所述第一栅氧层204作为N型鳍式晶体管的栅氧层,会使得作为核心器件的N型鳍式晶体管的性能变差。The impurities or defects inside the first
因此,本实施例中,通过去除第一栅氧层204,并在N型核心区210的鳍部201表面形成等效氧化层厚度更小的第二栅氧层,以改善N型核心区210形成的鳍式晶体管的性能。Therefore, in this embodiment, the N-
去除第一沟槽211底部的第一栅氧层204的步骤包括:在所述第一栅氧层204表面形成第一图形化层207,所述第一图形化层207暴露出第一沟槽211底部的第一栅氧层204;以所述第一图形化层207为掩膜,刻蚀所述第一栅氧层204,直至暴露出N型核心区210的鳍部201侧壁和顶部表面为止;去除所述第一图形化层207。The step of removing the first
所述第一图形化层207包括光刻胶层,所述光刻胶层采用涂布工艺和光刻工艺形成。在形成所述光刻胶层之前,还能够在所述第二沟槽221(如图6所示)、第三沟槽231(如图6所示)和第四沟槽241(如图6所示)内、以及介质层206表面形成抗反射层,所述抗反射层的表面平坦;在所述抗反射层表面形成所述光刻胶层;所述抗反射层用于抑制光刻工艺中的光线漫反射,以提高光刻胶层的图形精确度。The first
刻蚀所述第一栅氧层204的工艺为湿法刻蚀工艺或各向同性的干法刻蚀工艺。在本实施例中,所述第一栅氧层204的材料为氧化硅;当采用湿法刻蚀工艺去除所述第一栅氧层204时,所述湿法刻蚀工艺的刻蚀液为氢氟酸溶液。当采用各向同性的干法刻蚀工艺去除所述第一栅氧层204时,所述各向同性的干法刻蚀工艺能够为SICONI工艺。The process of etching the first
在本实施例中,采用SICONI工艺刻蚀去除第一沟槽211底部的第一栅氧层204。所述SICONI工艺的参数包括:功率10W~100W,频率小于100kHz,刻蚀温度为40摄氏度~80摄氏度,压强为0.5托~50托,刻蚀气体包括NH3、NF3、He,其中,NH3的流量为0sccm~500sccm,NF3的流量为20sccm~200sccm,He的流量为400sccm~1200sccm,NF3与NH3的流量比为1:20~5:1。In this embodiment, the first
请参考图8,采用第二氧化工艺在所述N型核心区210暴露出的鳍部201侧壁和顶部表面形成第二栅氧层208,所述第二栅氧层208的等效氧化层厚度小于第一栅氧层204(如图6所示)的等效氧化层厚度。Referring to FIG. 8 , a second
所述第二栅氧层208用于作为N型核心区210形成的鳍式晶体管的栅氧层。所述第二栅氧层208的材料为氧化硅;所述第二栅氧层208的形成工艺为化学氧化工艺。The second
采用化学氧化工艺形成的第二栅氧层208,等效氧化层厚度小于第一栅氧层204,因此,所述第二栅氧层208有利于减小N型核心区210形成的鳍式晶体管的阈值电压,从而提高作为核心器件的N型鳍式晶体管的性能。The equivalent thickness of the second
所述化学氧化工艺的步骤包括:采用通入臭氧的水溶液对所述鳍部201暴露出的侧壁和顶部表面进行氧化,在所述鳍部201的侧壁和顶部表面形成第二栅氧层223。其中,在所述通入臭氧的水溶液中,臭氧在水中的浓度为1%~15%。The steps of the chemical oxidation process include: oxidizing the exposed sidewalls and top surfaces of the
所述第二栅氧层208的厚度为5埃~15埃。在本实施例中,所述第二栅氧层208的厚度为10埃。所述第二栅氧层208的厚度不宜过薄,否则所述第二栅氧层208容发生隧穿,使鳍式晶体管的性能变差;所述第二栅氧层208的厚度也不宜过厚,否则容易使等效氧化层厚度增加,使得鳍式晶体管的阈值电压增大,则所形成的鳍式晶体管不宜作为核心器件。The thickness of the second
请参考图9,在所述第二栅氧层208表面形成填充满所述第一沟槽211(如图8所示)的第一栅极结构212;在所述第一栅氧层204表面形成填充满所述第二沟槽221(如图8所示)的第二栅极结构222。Referring to FIG. 9 , a
在本实施例中,在形成第二栅氧层208之后,形成第一栅极结构212和第二栅极结构222之前,进行第一退火工艺。所述第一退火工艺为尖峰退火或激光退火。所述第一退火工艺用于消除鳍部201内部和表面、以及第二栅氧层208和第三栅氧层203内的缺陷或杂质。In this embodiment, after forming the second
在本实施例中,还包括:在所述第三栅氧层203表面形成填充满第三沟槽231(如图8所示)的第三栅极结构232、以及填充满第四沟槽241(如图8所示)的第四栅极结构242。In this embodiment, the method further includes: forming a
所述第一栅极结构212包括第一栅介质层、以及位于第一栅介质层上的第一栅极层,所述第一栅极层填充满所述第一沟槽211;所述第二栅极结构222包括第二栅介质层、以及位于第二栅介质层上的第二栅极层,所述第二栅极层填充满所述第二沟槽221。The
所述第三栅极结构232包括第三栅介质层、以及位于第三栅介质层上的第三栅极层,所述第三栅极层填充满所述第三沟槽231;所述第四栅极结构242包括第四栅介质层、以及位于第四栅介质层上的第四栅极层,所述第四栅极层填充满所述第四沟槽241。The
所述第一栅极结构212、第二栅极结构222、第三栅极结构232和第四栅极结构242的形成步骤包括:在所述介质层206表面、第一沟槽211、第二沟槽221、第三沟槽231和第四沟槽241的内壁表面形成栅介质膜;在形成栅介质膜之后,形成填充满所述第一沟槽211、第二沟槽221、第三沟槽231和第四沟槽241的栅极膜;平坦化所述栅极膜和栅介质膜直至暴露出所述介质层206表面为止,在第一沟槽211内形成第一栅介质层和第一栅极层,在第二沟槽221内形成第二栅介质层和第二栅极层,在第三沟槽231内形成第三栅介质层和第三栅极层,在第四沟槽241内形成第四栅介质层和第四栅极层。The steps of forming the
所述第一栅介质层、第二栅介质层、第三栅介质层和第四栅介质层的材料为高k介质材料(介电系数大于3.9);所述高k介质材料包括氧化铪、氧化锆、氧化铪硅、氧化镧、氧化锆硅、氧化钛、氧化钽、氧化钡锶钛、氧化钡钛、氧化锶钛或氧化铝。所述栅介质膜的形成工艺为原子层沉积工艺。The materials of the first gate dielectric layer, the second gate dielectric layer, the third gate dielectric layer and the fourth gate dielectric layer are high-k dielectric materials (the dielectric coefficient is greater than 3.9); the high-k dielectric materials include hafnium oxide, Zirconium oxide, hafnium silicon oxide, lanthanum oxide, zirconium oxide silicon, titanium oxide, tantalum oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, or aluminum oxide. The formation process of the gate dielectric film is an atomic layer deposition process.
所述第一栅极层、第二栅极层、第三栅极层和第四栅极层的材料包括铜、钨、铝或银;所述栅极膜的形成工艺包括化学气相沉积工艺、物理气相沉积工艺、原子层沉积工艺、电镀工艺或化学镀工艺。平坦化所述栅极膜和栅介质膜工艺为化学机械抛光工艺(CMP)。The materials of the first gate layer, the second gate layer, the third gate layer and the fourth gate layer include copper, tungsten, aluminum or silver; the formation process of the gate film includes a chemical vapor deposition process, Physical vapor deposition process, atomic layer deposition process, electroplating process or electroless plating process. The process of planarizing the gate film and the gate dielectric film is a chemical mechanical polishing process (CMP).
在一实施例中,在形成所述栅极膜之前,还包括在所述栅介质膜表面形成功函数膜;在所述功函数膜表面形成栅极膜;在平坦化所述栅极膜之后,平坦化所述功函数膜直至暴露出所述介质层206表面为止,形成功函数层。在第一沟槽211和第三沟槽231内形成的功函数层的材料包括N型功函数材料;在第二沟槽221和第四沟槽241内形成的功函数层的材料包括P型功函数材料。In one embodiment, before forming the gate film, it further includes forming a work function film on the surface of the gate dielectric film; forming a gate film on the surface of the work function film; after planarizing the gate film , planarizing the work function film until the surface of the
在本实施例中,在形成所述栅介质膜之后,进行第二退火工艺。所述第二退火工艺用于消除第一栅介质层、第二栅介质层、第三栅介质层和第四栅介质层内的缺陷或杂质。而且,所述退火工艺还能够用于激活位于鳍部201内的源区和漏区内的杂质离子。In this embodiment, after the gate dielectric film is formed, a second annealing process is performed. The second annealing process is used to remove defects or impurities in the first gate dielectric layer, the second gate dielectric layer, the third gate dielectric layer and the fourth gate dielectric layer. Furthermore, the annealing process can also be used to activate impurity ions in the source and drain regions within the
综上,本实施例中,在去除伪栅层之后,在N型核心区形成暴露出第一栅氧层的第一沟槽,在P型核心区形成暴露出第一栅氧层的第二沟槽。其中,所述第一栅氧层在形成伪栅层之前,采用第一氧化工艺形成于鳍部侧壁和顶部表面。在去除所述伪栅层之后,去除第一沟槽底部的第一栅氧层,并以第二氧化工艺在第一沟槽暴露出的鳍部侧壁和顶部表面再形成第二氧化层。所述第二氧化层位于第一沟槽内,所述第一沟槽位于N型核心区内,则所述第一沟槽用于形成N型核心区的鳍式晶体管。由于所形成的第二氧化层的等效氧化层厚度大于第一栅氧层,因此,在以所述第二栅氧层作为N型核心区的鳍式晶体管内的栅氧层时,能够提高N型核心区所形成的鳍式晶体管的性能,同时,所述第二栅氧层内的缺陷或杂质对N型核心区的鳍式晶体管的偏压温度不稳定效应的影响较小。因此,在N型核心区形成的鳍式晶体管的性能改善。同时,采用第一氧化工艺形成的第一栅氧层作为P型核心区形成的鳍式晶体管的栅氧层,而采用第一氧化工艺形成的第一栅氧层内的缺陷或杂质较少,能够改善P型核心区的鳍式晶体管的偏压温度不稳定效应,从而改善P型核心区的鳍式晶体管的性能。To sum up, in this embodiment, after the dummy gate layer is removed, a first trench exposing the first gate oxide layer is formed in the N-type core region, and a second trench exposing the first gate oxide layer is formed in the P-type core region groove. Wherein, before forming the dummy gate layer, the first gate oxide layer is formed on the sidewall and top surface of the fin by a first oxidation process. After the dummy gate layer is removed, the first gate oxide layer at the bottom of the first trench is removed, and a second oxide layer is formed on the exposed sidewalls and top surfaces of the fin portion of the first trench by a second oxidation process. The second oxide layer is located in the first trench, the first trench is located in the N-type core region, and the first trench is used to form a fin transistor in the N-type core region. Since the equivalent thickness of the formed second oxide layer is larger than that of the first gate oxide layer, when the second gate oxide layer is used as the gate oxide layer in the fin transistor in the N-type core region, the At the same time, defects or impurities in the second gate oxide layer have less influence on the bias temperature instability effect of the fin transistor in the N-type core region. Therefore, the performance of the fin transistor formed in the N-type core region is improved. Meanwhile, the first gate oxide layer formed by the first oxidation process is used as the gate oxide layer of the fin transistor formed by the P-type core region, and the defects or impurities in the first gate oxide layer formed by the first oxidation process are less, The bias temperature instability effect of the fin transistor in the P-type core region can be improved, thereby improving the performance of the fin transistor in the P-type core region.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610130608.5A CN107170685B (en) | 2016-03-08 | 2016-03-08 | Method for forming fin type transistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610130608.5A CN107170685B (en) | 2016-03-08 | 2016-03-08 | Method for forming fin type transistor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107170685A CN107170685A (en) | 2017-09-15 |
CN107170685B true CN107170685B (en) | 2020-02-07 |
Family
ID=59848941
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610130608.5A Active CN107170685B (en) | 2016-03-08 | 2016-03-08 | Method for forming fin type transistor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107170685B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12262523B2 (en) * | 2021-11-30 | 2025-03-25 | Changxin Memory Technologies, Inc. | Manufacturing method of semiconductor structure and semiconductor structure |
CN114496796B (en) * | 2021-12-30 | 2023-04-28 | 广东芯粤能半导体有限公司 | Trench transistor and forming method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102456691A (en) * | 2010-10-29 | 2012-05-16 | 索尼公司 | Semiconductor device and manufacturing method of semiconductor device |
CN103681672A (en) * | 2012-08-31 | 2014-03-26 | 三星电子株式会社 | Semiconductor device and method of fabricating the same |
CN104979198A (en) * | 2014-04-02 | 2015-10-14 | 中芯国际集成电路制造(上海)有限公司 | Method for forming fin type field effect transistor |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8941177B2 (en) * | 2012-06-27 | 2015-01-27 | International Business Machines Corporation | Semiconductor devices having different gate oxide thicknesses |
KR20150133012A (en) * | 2014-05-19 | 2015-11-27 | 삼성전자주식회사 | Semiconductor device |
-
2016
- 2016-03-08 CN CN201610130608.5A patent/CN107170685B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102456691A (en) * | 2010-10-29 | 2012-05-16 | 索尼公司 | Semiconductor device and manufacturing method of semiconductor device |
CN103681672A (en) * | 2012-08-31 | 2014-03-26 | 三星电子株式会社 | Semiconductor device and method of fabricating the same |
CN104979198A (en) * | 2014-04-02 | 2015-10-14 | 中芯国际集成电路制造(上海)有限公司 | Method for forming fin type field effect transistor |
Also Published As
Publication number | Publication date |
---|---|
CN107170685A (en) | 2017-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106684144B (en) | The manufacturing method of semiconductor structure | |
CN107039272B (en) | Method for forming fin type transistor | |
CN104795331B (en) | The forming method of transistor | |
CN106847893B (en) | Method of forming a fin field effect transistor | |
CN106653691A (en) | Production method of semiconductor structure | |
CN106847685A (en) | The forming method of high-K metal gate transistor | |
CN106952816B (en) | Method of forming a fin transistor | |
CN109390235B (en) | Semiconductor structure and forming method thereof | |
CN106952874B (en) | The forming method of multi-Vt fin transistor | |
CN104517901B (en) | The forming method of CMOS transistor | |
CN106952908B (en) | Semiconductor structure and manufacturing method thereof | |
TW201916122A (en) | Method of forming semiconductor device | |
CN106571339B (en) | Method for forming fin field effect transistor | |
US10056465B2 (en) | Transistor device and fabrication method | |
CN104752215A (en) | Transistor forming method | |
CN109980003A (en) | Semiconductor devices and forming method thereof | |
CN106952815A (en) | Method for forming fin transistors | |
CN106328694B (en) | Method of forming a semiconductor structure | |
CN104253047A (en) | Forming method of transistor | |
TWI786454B (en) | Method for forming semiconductor device | |
CN108807377B (en) | Semiconductor device and method of forming the same | |
CN107170685B (en) | Method for forming fin type transistor | |
CN107045981A (en) | The forming method of semiconductor structure | |
CN106847696B (en) | Method for forming fin field effect transistor | |
CN109103102B (en) | Semiconductor structure and method of forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |