[go: up one dir, main page]

CN109980003A - Semiconductor devices and forming method thereof - Google Patents

Semiconductor devices and forming method thereof Download PDF

Info

Publication number
CN109980003A
CN109980003A CN201711444580.3A CN201711444580A CN109980003A CN 109980003 A CN109980003 A CN 109980003A CN 201711444580 A CN201711444580 A CN 201711444580A CN 109980003 A CN109980003 A CN 109980003A
Authority
CN
China
Prior art keywords
forming
fin
groove
semiconductor device
dummy gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711444580.3A
Other languages
Chinese (zh)
Other versions
CN109980003B (en
Inventor
周飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
SMIC Advanced Technology R&D Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
SMIC Advanced Technology R&D Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp, SMIC Advanced Technology R&D Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201711444580.3A priority Critical patent/CN109980003B/en
Publication of CN109980003A publication Critical patent/CN109980003A/en
Application granted granted Critical
Publication of CN109980003B publication Critical patent/CN109980003B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/23Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
    • H10D64/251Source or drain electrodes for field-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/024Manufacture or treatment of FETs having insulated gates [IGFET] of fin field-effect transistors [FinFET]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/62Fin field-effect transistors [FinFET]
    • H10D30/6215Fin field-effect transistors [FinFET] having multiple independently-addressable gate electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/124Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

一种半导体器件及其形成方法,方法包括:提供半导体衬底,所述半导体衬底上具有鳍部和隔离结构,隔离结构覆盖部分鳍部的侧壁;在隔离结构内形成第一凹槽,所述第一凹槽侧壁暴露出鳍部侧壁;形成横跨所述鳍部的伪栅极结构,所述伪栅极结构覆盖鳍部的部分顶部表面和部分侧壁表面;形成伪栅极结构后,在伪栅极结构两侧的鳍部中形成第二凹槽,第二凹槽与第一凹槽连通,且第二凹槽底部与第一凹槽底部齐平;在第一凹槽和第二凹槽内形成源漏掺杂层。所述方法提高了半导体器件的性能。

A semiconductor device and a method for forming the same, the method comprising: providing a semiconductor substrate with a fin and an isolation structure on the semiconductor substrate, the isolation structure covering part of the sidewall of the fin; forming a first groove in the isolation structure, The sidewalls of the first recess expose the sidewalls of the fin; a dummy gate structure is formed across the fin, the dummy gate structure covers part of the top surface and part of the sidewall surface of the fin; and a dummy gate is formed After the pole structure is formed, a second groove is formed in the fins on both sides of the dummy gate structure, the second groove is communicated with the first groove, and the bottom of the second groove is flush with the bottom of the first groove; A source-drain doped layer is formed in the groove and the second groove. The method improves the performance of the semiconductor device.

Description

半导体器件及其形成方法Semiconductor device and method of forming the same

技术领域technical field

本发明涉及半导体制造领域,尤其涉及一种半导体器件及其形成方法。The present invention relates to the field of semiconductor manufacturing, in particular to a semiconductor device and a method for forming the same.

背景技术Background technique

MOS(金属-氧化物-半导体)晶体管,是现代集成电路中最重要的元件之一。MOS晶体管的基本结构包括:半导体衬底;位于半导体衬底表面的栅极结构,所述栅极结构包括:位于半导体衬底表面的栅介质层以及位于栅介质层表面的栅电极层;位于栅极结构两侧半导体衬底中的源漏掺杂区。MOS (Metal-Oxide-Semiconductor) transistors are one of the most important components in modern integrated circuits. The basic structure of a MOS transistor includes: a semiconductor substrate; a gate structure located on the surface of the semiconductor substrate, the gate structure including: a gate dielectric layer located on the surface of the semiconductor substrate and a gate electrode layer located on the surface of the gate dielectric layer; Source and drain doped regions in the semiconductor substrate on both sides of the pole structure.

随着半导体技术的发展,传统的平面式的MOS晶体管对沟道电流的控制能力变弱,造成严重的漏电流。鳍式场效应晶体管(Fin FET)是一种新兴的多栅器件,它一般包括凸出于半导体衬底表面的鳍部,覆盖部分所述鳍部的顶部表面和侧壁的栅极结构,位于栅极结构两侧的鳍部中的源漏掺杂区。With the development of semiconductor technology, the control ability of traditional planar MOS transistors on channel current is weakened, resulting in serious leakage current. Fin Field Effect Transistor (Fin FET) is an emerging multi-gate device, which generally includes a fin protruding from the surface of a semiconductor substrate, a gate structure covering part of the top surface and sidewalls of the fin, Source and drain doped regions in the fins on both sides of the gate structure.

然而,现有技术中鳍式场效应晶体管构成的半导体器件的性能仍有待提高。However, the performance of the semiconductor device formed by the fin field effect transistor in the prior art still needs to be improved.

发明内容SUMMARY OF THE INVENTION

本发明解决的技术问题是提供一种半导体器件及其形成方法,以提高半导体器件的性能。The technical problem solved by the present invention is to provide a semiconductor device and a method for forming the same, so as to improve the performance of the semiconductor device.

为解决上述技术问题,本发明提供一种半导体器件的形成方法,包括:提供半导体衬底,所述半导体衬底上具有鳍部和隔离结构,隔离结构覆盖部分鳍部的侧壁;在隔离结构内形成第一凹槽,所述第一凹槽侧壁暴露出鳍部侧壁;形成横跨所述鳍部的伪栅极结构,所述伪栅极结构覆盖鳍部的部分顶部表面和部分侧壁表面;形成伪栅极结构后,在伪栅极结构两侧的鳍部中形成第二凹槽,第二凹槽与第一凹槽连通,且第二凹槽底部与第一凹槽底部齐平;在第一凹槽和第二凹槽内形成源漏掺杂层。In order to solve the above technical problems, the present invention provides a method for forming a semiconductor device, including: providing a semiconductor substrate, the semiconductor substrate has a fin and an isolation structure, and the isolation structure covers part of the sidewall of the fin; forming a first groove inside, the sidewalls of the first groove exposing the sidewalls of the fin; forming a dummy gate structure spanning the fin, the dummy gate structure covering part of the top surface and part of the fin sidewall surface; after the dummy gate structure is formed, a second groove is formed in the fins on both sides of the dummy gate structure, the second groove is communicated with the first groove, and the bottom of the second groove is connected with the first groove The bottom is flush; the source and drain doped layers are formed in the first groove and the second groove.

可选的,所述第一凹槽的形成步骤包括:在隔离结构上形成覆盖所述鳍部侧壁的牺牲层;在形成所述牺牲层之后,对暴露出的隔离结构进行离子注入,在隔离结构内形成掺杂区;形成掺杂层后,去除所述牺牲层;去除所述牺牲层之后,以掺杂区为掩膜,刻蚀所述隔离结构,在隔离结构内形成所述第一凹槽。Optionally, the step of forming the first groove includes: forming a sacrificial layer covering the sidewalls of the fins on the isolation structure; after forming the sacrificial layer, performing ion implantation on the exposed isolation structure, A doped region is formed in the isolation structure; after the doped layer is formed, the sacrificial layer is removed; after the sacrificial layer is removed, the isolation structure is etched using the doped region as a mask, and the first layer is formed in the isolation structure a groove.

可选的,所述第二凹槽的形成步骤包括:形成伪栅极结构后,在鳍部侧壁表面形成鳍部侧墙;形成鳍部侧墙之后,在伪栅极结构两侧的鳍部中形成初始第二凹槽,所述初始第二凹槽侧壁暴露出鳍部侧墙侧壁;去除初始第二凹槽侧壁的鳍部侧墙,在伪栅极结构两侧的鳍部鳍部内形成第二凹槽。Optionally, the step of forming the second groove includes: after forming the dummy gate structure, forming fin spacers on the surface of the sidewalls of the fins; after forming the fin spacers, forming fin spacers on both sides of the dummy gate structure An initial second groove is formed in the initial second groove, and the sidewalls of the initial second groove expose the sidewalls of the fin spacers; the fin spacers of the sidewalls of the initial second groove are removed, and the fins on both sides of the dummy gate structure A second groove is formed in the top fin.

可选的,所述牺牲层的形成步骤包括:在所述鳍部表面形成初始牺牲层;回刻蚀所述初始牺牲层,直至暴露出鳍部表面,在所述鳍部侧壁表面形成牺牲层。Optionally, the step of forming the sacrificial layer includes: forming an initial sacrificial layer on the surface of the fin; etching back the initial sacrificial layer until the surface of the fin is exposed, and forming a sacrificial layer on the surface of the sidewall of the fin Floor.

可选的,所述牺牲层的材料与隔离结构不同。Optionally, the material of the sacrificial layer is different from that of the isolation structure.

可选的,所述牺牲层的材料包括:氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅。Optionally, the material of the sacrificial layer includes: silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride or silicon oxycarbonitride.

可选的,所述牺牲层的厚度为2纳米~8纳米。Optionally, the thickness of the sacrificial layer is 2 nanometers to 8 nanometers.

可选的,对所述隔离结构进行离子注入后,回刻蚀隔离结构前,还包括对所述隔离结构进行退火处理;所述退火处理的温度范围为800摄氏度~1100 摄氏度,所述退火处理的时间为5秒~100秒,所述退火处理利用的气体为氮气,所述氮气的流量范围为10sccm~1000sccm。Optionally, after the ion implantation is performed on the isolation structure and before the isolation structure is etched back, the isolation structure further includes annealing treatment; the temperature range of the annealing treatment is 800 degrees Celsius to 1100 degrees Celsius, and the annealing treatment The time for the annealing treatment is 5 seconds to 100 seconds, the gas used in the annealing treatment is nitrogen, and the flow rate of the nitrogen gas ranges from 10 sccm to 1000 sccm.

可选的,所述第一离子包括硅离子。Optionally, the first ions include silicon ions.

可选的,所述离子注入的参数包括:能量范围为5KeV~30KeV,剂量范围为1.0E14atom/cm2~1.0E16atom/cm2Optionally, the parameters of the ion implantation include: an energy range of 5KeV to 30KeV, and a dose range of 1.0E14atom/cm 2 to 1.0E16atom/cm 2 .

可选的,去除所述牺牲层的工艺包括干法刻蚀工艺或者湿法刻蚀工艺。Optionally, the process of removing the sacrificial layer includes a dry etching process or a wet etching process.

可选的,第一凹槽侧壁到底部的的夹角呈圆角,且第一凹槽侧壁为倾斜。Optionally, the included angle from the side wall of the first groove to the bottom is rounded, and the side wall of the first groove is inclined.

可选的,回刻蚀所述隔离结构的工艺为各向同性的干法刻蚀工艺或者各向同性的湿法刻蚀工艺。Optionally, the process of etching back the isolation structure is an isotropic dry etching process or an isotropic wet etching process.

可选的,干法回刻蚀所述隔离结构的工艺参数包括:采用的气体包括NH3气体、NF3气体和He,NH3气体的流量为100sccm~500sccm,NF3气体的流量为20sccm~2000sccm,He的流量为500sccm~2000sccm,压强为2torr~10torr,时间为20秒~100秒。Optionally, the process parameters for dry etching back the isolation structure include: the gas used includes NH 3 gas, NF 3 gas and He, the flow rate of the NH 3 gas is 100sccm~500sccm, and the flow rate of the NF 3 gas is 20sccm~ 2000sccm, the flow rate of He is 500sccm~2000sccm, the pressure is 2torr~10torr, and the time is 20s~100s.

可选的,形成所述鳍部侧墙的步骤包括:在伪栅极结构形成之后,在所述鳍部和伪栅极结构上形成侧墙材料层;回刻蚀所述侧墙材料层,直至暴露出伪栅极结构顶部表面,在所述鳍部侧壁形成鳍部侧墙,在栅极结构侧壁形成栅极侧墙。Optionally, the step of forming the fin spacer includes: after the dummy gate structure is formed, forming a spacer material layer on the fin and the dummy gate structure; and etching back the spacer material layer, Until the top surface of the dummy gate structure is exposed, fin spacers are formed on the sidewalls of the fins, and gate spacers are formed on the sidewalls of the gate structure.

可选的,所述源漏掺杂层的形成工艺为外延工艺。Optionally, the formation process of the source and drain doped layers is an epitaxy process.

可选的,当所述半导体器件的类型为P型器件时,所述源漏掺杂层的材料包括:硅、锗或硅锗;所述半导体器件的类型为N型器件时,所述源漏掺杂层的材料包括:硅、砷化镓或铟镓砷。Optionally, when the type of the semiconductor device is a P-type device, the material of the source and drain doped layers includes: silicon, germanium or silicon germanium; when the type of the semiconductor device is an N-type device, the source The material of the drain doping layer includes: silicon, gallium arsenide or indium gallium arsenide.

可选的,还包括:形成源漏掺杂层后,在半导体衬底、伪栅极结构和源漏掺杂层上形成介质层,所述介质层暴露出伪栅极结构顶部表面;形成介质层后,去除伪栅极结构,形成栅开口;形成栅开口后,在栅开口内形成栅极结构。Optionally, it further includes: after forming the source-drain doped layer, forming a dielectric layer on the semiconductor substrate, the dummy gate structure and the source-drain doped layer, the dielectric layer exposing the top surface of the dummy gate structure; forming a dielectric layer After layering, the dummy gate structure is removed to form a gate opening; after the gate opening is formed, a gate structure is formed in the gate opening.

相应的,本发明还提供一种半导体结构,包括:半导体衬底,半导体衬底上具有鳍部和隔离结构,隔离结构覆盖部分鳍部的侧壁;位于隔离结构内的第一凹槽,所述第一凹槽侧壁暴露出鳍部侧壁;位于所述鳍部上的伪栅极结构,所述伪栅极结构横跨鳍部,覆盖鳍部的部分顶部表面和部分侧壁表面;位于所述伪栅极结构两侧的鳍部内的源漏掺杂层,所述源漏掺杂层还位于第一凹槽内。Correspondingly, the present invention also provides a semiconductor structure, comprising: a semiconductor substrate, the semiconductor substrate has a fin and an isolation structure, the isolation structure covers part of the sidewall of the fin; a first groove located in the isolation structure, so The sidewalls of the first groove expose the sidewalls of the fins; a dummy gate structure located on the fins, the dummy gate structures span the fins and cover part of the top surface and part of the sidewall surfaces of the fins; The source and drain doped layers are located in the fins on both sides of the dummy gate structure, and the source and drain doped layers are also located in the first grooves.

可选的,第一凹槽侧壁到底部的夹角呈圆角,且第一凹槽侧壁为倾斜。Optionally, the angle between the side wall of the first groove and the bottom is rounded, and the side wall of the first groove is inclined.

本发明还提供一种采用上述任意一项方法形成的半导体器件。The present invention also provides a semiconductor device formed by any one of the above methods.

与现有技术相比,本发明实施例的技术方案具有以下有益效果:Compared with the prior art, the technical solutions of the embodiments of the present invention have the following beneficial effects:

在本发明技术方案的形成方法中,在隔离结构中形成第一凹槽,在鳍部中形成第二凹槽,在第一凹槽和第二凹槽内形成源漏掺杂层,源漏掺杂层部分位于第一凹槽和第二凹槽内,则高于隔离结构部分的源漏掺杂层的体积相对减小,从而使得源漏掺杂层顶部与于隔离结构表面的高度较低,源漏掺杂层顶部相对于鳍部顶部表面的高度也较低。后续会在伪栅极结构的位置形成栅极结构,栅极结构与源漏掺杂层之间通过栅极侧墙隔离,源漏掺杂层高于鳍部顶部的部分与栅极结构之间形成寄生电容,源漏掺杂层高于鳍部顶部的部分的高度较低,栅极结构与源漏掺杂层相交的面积较小,二者之间的寄生电容较小,从而提高了器件的性能。In the formation method of the technical solution of the present invention, a first groove is formed in the isolation structure, a second groove is formed in the fin, a source-drain doped layer is formed in the first groove and the second groove, the source-drain The doped layer is partially located in the first groove and the second groove, so the volume of the source and drain doped layers higher than the isolation structure portion is relatively reduced, so that the top of the source and drain doped layers is higher than the surface of the isolation structure. Low, the height of the top of the source-drain doped layer relative to the top surface of the fin is also low. Subsequently, a gate structure will be formed at the position of the dummy gate structure. The gate structure and the source-drain doped layer are isolated by gate spacers, and the part of the source-drain doped layer higher than the top of the fin and the gate structure is separated. The parasitic capacitance is formed, the height of the part of the source-drain doped layer higher than the top of the fin is lower, the area where the gate structure and the source-drain doped layer intersect is smaller, and the parasitic capacitance between the two is smaller, thereby improving the device performance.

进一步,第一凹槽为以掺杂层为掩膜刻蚀隔离结构而形成,刻蚀隔离结构时是利用刻蚀掺杂层和未被离子注入的隔离结构的刻蚀速率的差异来形成第一凹槽,从而使得第一凹槽侧壁相对倾斜。源漏掺杂层为外延生长形成,第一凹槽倾斜的侧壁定义了源漏掺杂层的生长方向,使得源漏掺杂层在平行于半导体衬底表面方向上的生长速率提高,从而源漏掺杂层在沿半导体衬底平面水平方向长得更宽,使得源漏掺杂层沿鳍部高度方向的高度降低,源漏掺杂层高于鳍部顶部的部分的高度较低,与栅极结构的寄生电容较小,从而提高了器件的性能。Further, the first groove is formed by using the doped layer as a mask to etch the isolation structure, and the first groove is formed by using the difference between the etching rates of the doped layer and the isolation structure without ion implantation when etching the isolation structure. a groove, so that the side walls of the first groove are relatively inclined. The source-drain doped layer is formed by epitaxial growth, and the inclined sidewall of the first groove defines the growth direction of the source-drain doped layer, so that the growth rate of the source-drain doped layer in the direction parallel to the surface of the semiconductor substrate is increased, thereby The source-drain doped layer grows wider in the horizontal direction along the plane of the semiconductor substrate, so that the height of the source-drain doped layer along the height direction of the fin is reduced, and the height of the part of the source-drain doped layer higher than the top of the fin is lower, The parasitic capacitance with the gate structure is smaller, thereby improving the performance of the device.

附图说明Description of drawings

图1是一种半导体器件的形成方法各步骤的结构示意图;1 is a schematic structural diagram of each step of a method for forming a semiconductor device;

图2至图12是本发明实施例的半导体器件的形成过程的结构示意图。FIG. 2 to FIG. 12 are schematic structural diagrams of the formation process of the semiconductor device according to the embodiment of the present invention.

具体实施方式Detailed ways

正如背景技术所述,现有技术形成的半导体器件的性能较差。As mentioned in the background, semiconductor devices formed by the prior art have poor performance.

图1是一种半导体器件形成过程的结构示意图;1 is a schematic structural diagram of a semiconductor device formation process;

请参考图1,提供半导体衬底101,半导体衬底101上具有若干鳍部110;在所述半导体衬底101上形成隔离结构102,所述隔离结构102覆盖鳍部110 部分侧壁;在所述鳍部110上形成横跨所述鳍部的栅极结构,所述栅极结构覆盖部分鳍部110侧壁和顶部表面;在所述栅极结构两侧形成侧墙,所述侧墙覆盖栅极结构侧壁;在所述栅极结构和侧墙两侧的鳍部和隔离结构内形成凹槽;在凹槽中外延形成源漏掺杂层131。Referring to FIG. 1, a semiconductor substrate 101 is provided, and the semiconductor substrate 101 has a plurality of fins 110; an isolation structure 102 is formed on the semiconductor substrate 101, and the isolation structure 102 covers part of the sidewall of the fins 110; A gate structure spanning the fins is formed on the fins 110 , and the gate structures cover part of the sidewalls and the top surface of the fins 110 ; sidewalls are formed on both sides of the gate structure, and the sidewalls cover sidewalls of the gate structure; grooves are formed in the fins and isolation structures on both sides of the gate structure and the sidewalls; source and drain doped layers 131 are epitaxially formed in the grooves.

源漏掺杂层为外延生长工艺形成,源漏掺杂层位于隔离结构内的凹槽部分的底部宽度比较小,在沿垂直于鳍部延伸方向和平行于衬底方向的平面方向有限制作用,从而使得源漏掺杂层在垂直于鳍部延伸方向和垂直于衬底方向的高度更高一些,同时,由于源漏掺杂层低于隔离结构部分的体积较小,则高于隔离结构部分的体积相对较大,则源漏掺杂层沿鳍部高度方向上的高度相对较高,源漏掺杂层顶部表面高于鳍部表面的高度越高。源漏掺杂层与后续形成的栅极结构通过侧墙隔离,二者之间存在寄生电容,当源漏掺杂层高度越高时,源漏掺杂层与栅极结构之间的相对面积越大,寄生电容较大,从而影响器件的性能。The source and drain doped layers are formed by an epitaxial growth process. The bottom width of the grooves where the source and drain doped layers are located in the isolation structure is relatively small, which has a limiting effect along the plane direction perpendicular to the extension direction of the fins and parallel to the substrate direction. , so that the height of the source and drain doped layers is higher in the direction perpendicular to the extension direction of the fins and the direction perpendicular to the substrate. If the volume of the part is relatively large, the height of the source-drain doping layer along the height direction of the fin is relatively high, and the height of the top surface of the source-drain doping layer higher than the surface of the fin is higher. The source-drain doped layer and the gate structure formed subsequently are separated by sidewalls, and there is parasitic capacitance between the two. When the height of the source-drain doped layer is higher, the relative area between the source-drain doped layer and the gate structure The larger the value, the larger the parasitic capacitance, which affects the performance of the device.

在此基础上,本发明提供一种半导体器件的形成方法,在所述鳍部与隔离层相接处形成凹槽,扩大源漏掺杂层低于隔离结构部分的体积,减小高于隔离结构部分的源漏掺杂层的体积,从而使得源漏掺杂层在体积确定的情况下沿鳍部高度方向的高度较低,从而降低源漏掺杂层与后续形成的栅极结构之间的相对面积,减小二者之间的寄生电容,从而提高器件的性能。On this basis, the present invention provides a method for forming a semiconductor device. A groove is formed at the junction of the fin and the isolation layer, the volume of the source-drain doping layer below the isolation structure is enlarged, and the volume of the source and drain doped layer below the isolation structure is reduced, and the volume above the isolation layer is reduced. The volume of the source and drain doped layers of the structure part, so that the height of the source and drain doped layers along the height direction of the fins is lower when the volume is determined, thereby reducing the gap between the source and drain doped layers and the gate structure formed subsequently The relative area of the device reduces the parasitic capacitance between the two, thereby improving the performance of the device.

为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and beneficial effects of the present invention more clearly understood, specific embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

请参考图2,提供半导体衬底201,半导体衬底201上具有鳍部210。Referring to FIG. 2 , a semiconductor substrate 201 is provided, and the semiconductor substrate 201 has fins 210 thereon.

本实施例中,所述半导体衬底201的材料为单晶硅。所述半导体衬底201 还可以是多晶硅或非晶硅。所述半导体衬底201的材料还可以为锗、锗化硅、砷化镓等半导体材料。In this embodiment, the material of the semiconductor substrate 201 is single crystal silicon. The semiconductor substrate 201 may also be polysilicon or amorphous silicon. The material of the semiconductor substrate 201 may also be semiconductor materials such as germanium, silicon germanium, and gallium arsenide.

本实施例中,所述鳍部210通过图形化所述半导体衬底201而形成。在其它实施例中,可以是:在所述半导体衬底上形成鳍部材料层,然后图形化所述鳍部材料层,从而形成鳍部210。In this embodiment, the fins 210 are formed by patterning the semiconductor substrate 201 . In other embodiments, a fin material layer may be formed on the semiconductor substrate, and then the fin material layer may be patterned to form the fin 210 .

本实施例中,鳍部210的材料为单晶硅。在其它实施例中,鳍部的材料为单晶锗硅或者其它半导体材料。所述鳍部210的数量为一个或多个。In this embodiment, the material of the fin portion 210 is single crystal silicon. In other embodiments, the material of the fin is single crystal germanium silicon or other semiconductor materials. The number of the fins 210 is one or more.

本实施例中,还包括位于鳍部顶部的衬垫掩膜层203,所述衬垫掩膜层 203的材料为氮化硅。所述衬垫掩膜层203在后续形成隔离结构的过程中作为平坦化的停止层。In this embodiment, a pad mask layer 203 located on the top of the fin is also included, and the material of the pad mask layer 203 is silicon nitride. The pad mask layer 203 serves as a planarization stop layer in the subsequent process of forming the isolation structure.

请参考图3,在半导体衬底201上形成隔离结构202,所述隔离结构203 覆盖鳍部210的部分侧壁表面。Referring to FIG. 3 , an isolation structure 202 is formed on the semiconductor substrate 201 , and the isolation structure 203 covers part of the sidewall surface of the fin 210 .

所述隔离结构202的形成步骤包括:在所述衬底201上形成初始隔离膜,所述初始隔离膜覆盖所述鳍部210的顶部表面;平坦化所述初始隔离膜,直至露出鳍部210顶部的衬垫掩膜层203表面;回刻蚀所述初始隔离膜,暴露出所述鳍部210的部分侧壁,形成隔离结构202。所述隔离结构202用于电学隔离相邻的鳍部210。The steps of forming the isolation structure 202 include: forming an initial isolation film on the substrate 201 , the initial isolation film covering the top surface of the fins 210 ; planarizing the initial isolation film until the fins 210 are exposed The surface of the top liner mask layer 203 ; the initial isolation film is etched back to expose part of the sidewalls of the fins 210 to form the isolation structure 202 . The isolation structures 202 are used to electrically isolate adjacent fins 210 .

所述初始隔离膜的材料包括氧化硅或氮化硅。The material of the initial isolation film includes silicon oxide or silicon nitride.

在本实施例中,所述初始隔离膜的材料为氧化硅;回刻蚀后所述初始隔离膜的厚度是所述鳍部210高度的1/4~1/2。所述初始隔离膜的形成工艺为流体化学气相沉积工艺(Flowable Chemical Vapor Deposition,简称FCVD)。In this embodiment, the material of the initial isolation film is silicon oxide; the thickness of the initial isolation film after etching back is 1/4˜1/2 of the height of the fin portion 210 . The formation process of the initial isolation film is a fluid chemical vapor deposition process (Flowable Chemical Vapor Deposition, FCVD for short).

在其他实施例中,所述初始隔离膜还能够采用等离子体增强化学气相沉积工艺(PECVD)或者高深宽比化学气相沉积工艺(HARP)。In other embodiments, the initial isolation film can also employ plasma enhanced chemical vapor deposition (PECVD) or high aspect ratio chemical vapor deposition (HARP).

所述平坦化工艺为化学机械抛光工艺(CMP);在本实施例中,所述化学机械抛光工艺以直至暴露出所述鳍部202顶部的衬垫掩膜层203表面为止。The planarization process is a chemical mechanical polishing process (CMP); in this embodiment, the chemical mechanical polishing process is performed until the surface of the pad mask layer 203 on top of the fins 202 is exposed.

回刻蚀所述初始隔离膜的工艺为湿法刻蚀工艺或干法刻蚀工艺中的一种或两种组合。The process of etching back the initial isolation film is one or a combination of a wet etching process or a dry etching process.

本实施例中,所述隔离结构202的材料为氧化硅。In this embodiment, the material of the isolation structure 202 is silicon oxide.

形成隔离结构后,在隔离结构内形成第一凹槽,所述第一凹槽侧壁暴露出鳍部侧壁。After the isolation structure is formed, a first groove is formed in the isolation structure, and the sidewalls of the first grooves expose the sidewalls of the fins.

所述第一凹槽的形成步骤包括:在隔离结构上形成覆盖所述鳍部侧壁的牺牲层;在形成所述牺牲层之后,对牺牲层暴露出的隔离结构进行离子注入,在隔离结构内形成掺杂区;形成掺杂层后,去除所述牺牲层;去除所述牺牲层之后,以所述掺杂区为掩膜,刻蚀所述隔离结构,在隔离结构内形成所述第一凹槽。具体请参考图4~图7。The step of forming the first groove includes: forming a sacrificial layer covering the sidewalls of the fins on the isolation structure; after forming the sacrificial layer, performing ion implantation on the isolation structure exposed by the sacrificial layer, and performing ion implantation on the isolation structure. forming a doped region; after forming the doped layer, removing the sacrificial layer; after removing the sacrificial layer, using the doped region as a mask, etching the isolation structure, and forming the first a groove. For details, please refer to FIG. 4 to FIG. 7 .

请参考图4,形成隔离结构202后,在鳍部210侧壁形成牺牲层220,所述牺牲层220覆盖鳍部210侧壁表面。Referring to FIG. 4 , after the isolation structure 202 is formed, a sacrificial layer 220 is formed on the sidewall of the fin portion 210 , and the sacrificial layer 220 covers the sidewall surface of the fin portion 210 .

所述牺牲层220用于定义后续形成的第一凹槽204的宽度,并且在后续离子注入时保护牺牲层220下面的隔离结构202。The sacrificial layer 220 is used to define the width of the first groove 204 formed subsequently, and to protect the isolation structure 202 under the sacrificial layer 220 during subsequent ion implantation.

所述牺牲层220的形成步骤包括:在所述鳍部210和隔离结构202上形成初始牺牲层(未图示);回刻蚀初始牺牲层,在所述鳍部210侧壁表面形成牺牲层220。The steps of forming the sacrificial layer 220 include: forming an initial sacrificial layer (not shown) on the fin portion 210 and the isolation structure 202 ; etching back the initial sacrificial layer to form a sacrificial layer on the sidewall surface of the fin portion 210 220.

所述初始牺牲层的形成工艺包括沉积工艺,沉积工艺包括:化学气相沉积工艺或原子层沉积工艺。The formation process of the initial sacrificial layer includes a deposition process, and the deposition process includes a chemical vapor deposition process or an atomic layer deposition process.

所述牺牲层220的材料包括:氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅。The material of the sacrificial layer 220 includes: silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride or silicon oxycarbonitride.

所述牺牲层220的材料和隔离结构202不同,后续去除牺牲层220时,能够保证在去除牺牲层220的同时,减少对隔离结构202的损伤。The material of the sacrificial layer 220 is different from that of the isolation structure 202 . When the sacrificial layer 220 is subsequently removed, it can ensure that the sacrificial layer 220 is removed while reducing damage to the isolation structure 202 .

本实施例中,所述牺牲层220的材料为氮化硅。In this embodiment, the material of the sacrificial layer 220 is silicon nitride.

本实施例中,所述牺牲层220的厚度为2纳米~8纳米。In this embodiment, the thickness of the sacrificial layer 220 is 2 nanometers to 8 nanometers.

所述牺牲层220厚度小于2nm时,后续所形成的第一凹槽204的宽度较小,后续形成的源漏掺杂层251底部宽度较小,高度无法降低,与后续形成的栅极结构之间的寄生电容较大;所述牺牲层220厚度大于8nm时,后续形成的第一凹槽204宽度过宽,后续形成的源漏掺杂层251底部过大,相邻源漏掺杂层251之间容易发生桥接,进而影响器件性能。When the thickness of the sacrificial layer 220 is less than 2 nm, the width of the first groove 204 formed subsequently is small, the width of the bottom of the source-drain doped layer 251 formed subsequently is small, and the height cannot be reduced, which is different from the gate structure formed subsequently. The parasitic capacitance between them is relatively large; when the thickness of the sacrificial layer 220 is greater than 8 nm, the width of the subsequently formed first groove 204 is too wide, the bottom of the subsequently formed source and drain doped layers 251 is too large, and the adjacent source and drain doped layers 251 are too wide. Bridges are prone to occur between them, which in turn affects device performance.

请参考图5,形成牺牲层220后,对牺牲层220暴露出的隔离结构202进行离子注入,在隔离结构202内形成掺杂区230。Referring to FIG. 5 , after the sacrificial layer 220 is formed, ion implantation is performed on the isolation structure 202 exposed by the sacrificial layer 220 to form a doped region 230 in the isolation structure 202 .

对所述隔离结构202进行离子注入。Ion implantation is performed on the isolation structure 202 .

所述衬底掩膜层203在离子注入时保护鳍部210。The substrate mask layer 203 protects the fins 210 during ion implantation.

形成掺杂区230后,后续以所述掺杂区230为掩膜,刻蚀所述隔离结构 202,所述掺杂区230的刻蚀速率较慢,未被离子注入部分的隔离结构202刻蚀速率较快,同样的刻蚀条件下,二者的刻蚀速率差,导致未被离子注入部分的隔离结构202的深度较深,从而形成第一凹槽204,为后续源漏掺杂层形成提供空间。After the doped region 230 is formed, the isolation structure 202 is subsequently etched using the doped region 230 as a mask. The etching rate of the doped region 230 is relatively slow, and the isolation structure 202 that is not ion-implanted is not etched. The etching rate is faster. Under the same etching conditions, the etching rates of the two are different, resulting in a deeper depth of the isolation structure 202 that is not ion implanted, thereby forming the first groove 204, which is the subsequent source and drain doping layer. Form provides space.

所述注入离子为第一离子,所述第一离子包括碳离子。The implanted ions are first ions, and the first ions include carbon ions.

本实施例中,所述第一离子为碳离子,所述离子注入的参数包括:能量范围为5KeV~30KeV,剂量范围为1.0E14atom/cm2~1.0E16atom/cm2In this embodiment, the first ions are carbon ions, and the parameters of the ion implantation include: an energy range of 5KeV to 30KeV, and a dose range of 1.0E14atom/cm 2 to 1.0E16atom/cm 2 .

本实施例中,离子注入后,对所述隔离结构202进行退火处理,所述退火处理的温度范围为800摄氏度~1100摄氏度,所述退火处理的时间为5秒~100秒,所述退火处理利用的气体为氮气,所述氮气的流量范围为10sccm ~1000sccm。In this embodiment, after the ion implantation, the isolation structure 202 is annealed. The temperature of the annealing treatment is 800 degrees Celsius to 1100 degrees Celsius, and the annealing treatment time is 5 seconds to 100 seconds. The gas used is nitrogen, and the flow rate of the nitrogen ranges from 10 sccm to 1000 sccm.

所述掺杂区230的深度需大于1nm以保证后续刻蚀时能起到很好的阻挡作用。The depth of the doped region 230 needs to be greater than 1 nm to ensure a good blocking effect during subsequent etching.

其他实施例中,离子注入后,不对所述隔离结构202进行退火处理。In other embodiments, the isolation structure 202 is not annealed after the ion implantation.

请参考图6,退火处理后,去除鳍部210侧壁的牺牲层220,暴露出鳍部 210的侧壁表面和顶部表面。Referring to FIG. 6 , after the annealing process, the sacrificial layer 220 on the sidewalls of the fins 210 is removed to expose the sidewall surfaces and the top surfaces of the fins 210 .

所述牺牲层220的材料为氮化硅,所述衬底掩膜层203的材料也为氮化硅,去除所述牺牲层220的过程中,也同时去除了鳍部210顶部的衬垫掩膜层203,从而暴露出鳍部210侧壁表面和顶部表面。The material of the sacrificial layer 220 is silicon nitride, and the material of the substrate mask layer 203 is also silicon nitride. During the process of removing the sacrificial layer 220, the liner mask on the top of the fins 210 is also removed. film layer 203 , thereby exposing sidewall surfaces and top surfaces of the fins 210 .

本实施例中,去除牺牲层220的工艺为各向同性的湿法刻蚀工艺,所述湿法刻蚀一般采用磷酸与去离子水的混合物形成的磷酸刻蚀液,其中,磷酸的体积百分比浓度为80%~90%,如86%~87%,工艺温度在90摄氏度-180摄氏度范围内,如160摄氏度。In this embodiment, the process of removing the sacrificial layer 220 is an isotropic wet etching process, and the wet etching generally adopts a phosphoric acid etching solution formed by a mixture of phosphoric acid and deionized water, wherein the volume percentage of phosphoric acid is The concentration is 80% to 90%, such as 86% to 87%, and the process temperature is in the range of 90 degrees Celsius to 180 degrees Celsius, such as 160 degrees Celsius.

牺牲层220的材料为氮化硅,隔离结构202的材料为氧化硅,磷酸对氧化硅和氮化硅具有很好的刻蚀选择比,能保证在去除牺牲层220的同时,减小对隔离结构202的损伤。The material of the sacrificial layer 220 is silicon nitride, the material of the isolation structure 202 is silicon oxide, and phosphoric acid has a good etching selectivity ratio of silicon oxide and silicon nitride, which can ensure that the sacrificial layer 220 is removed while reducing the impact on isolation. Damage to structure 202.

其他实施例中,采用干法刻蚀工艺去除牺牲层220。In other embodiments, the sacrificial layer 220 is removed by a dry etching process.

请参考图7,去除牺牲层220后,以所述掺杂区230为掩膜,刻蚀所述隔离结构202,形成第一凹槽204。Referring to FIG. 7 , after removing the sacrificial layer 220 , the isolation structure 202 is etched by using the doped region 230 as a mask to form a first groove 204 .

对牺牲层220暴露出的隔离结构202进行离子注入,在隔离结构202内形成掺杂区230,所述掺杂区230的刻蚀速率较慢,未被离子注入部分的隔离结构202刻蚀速率较快,同样的刻蚀条件下,二者的刻蚀速率差,导致位于牺牲层220下方的未被离子注入部分的隔离结构202的刻蚀深度较深,从而形成第一凹槽204,为后续源漏掺杂层251形成提供空间。Ion implantation is performed on the isolation structure 202 exposed by the sacrificial layer 220, and a doped region 230 is formed in the isolation structure 202. The etching rate of the doped region 230 is relatively slow, and the etching rate of the isolation structure 202 in the portion that is not ion-implanted Faster, under the same etching conditions, the etching rates of the two are different, resulting in a deeper etching depth of the isolation structure 202 located under the sacrificial layer 220 that is not ion-implanted, thereby forming the first groove 204, which is The subsequent source and drain doped layers 251 are formed to provide space.

刻蚀所述隔离结构202的工艺包括:各向同性的干法刻蚀工艺或者各向同性的湿法刻蚀工艺。The process of etching the isolation structure 202 includes: an isotropic dry etching process or an isotropic wet etching process.

本实施例中,刻蚀所述隔离结构202的工艺为干法刻蚀工艺,所述干法刻蚀参数包括:采用的气体包括NH3气体、NF3气体和He,NH3气体的流量为100sccm~500sccm,NF3气体的流量为20sccm~2000sccm,He的流量为 500sccm~2000sccm,压强为2torr~10torr,时间为20秒~100秒。In this embodiment, the process of etching the isolation structure 202 is a dry etching process, and the dry etching parameters include: the gas used includes NH 3 gas, NF 3 gas and He, and the flow rate of the NH 3 gas is 100sccm~500sccm, the flow rate of NF 3 gas is 20sccm~2000sccm, the flow rate of He is 500sccm~2000sccm, the pressure is 2torr~10torr, and the time is 20s~100s.

其他实施例中,刻蚀所述隔离结构202的工艺为各向同性的湿法刻蚀工艺。In other embodiments, the process of etching the isolation structure 202 is an isotropic wet etching process.

由于刻蚀隔离结构的工艺为各向同性的干法刻蚀工艺,各个方向的刻蚀速率相同,但由于掺杂区230的掺杂离子经过退火后,会往位于牺牲层220 下方的隔离结构202扩散,且随着深度的加深,掺杂离子的浓度下降,而掺杂离子浓度越高,刻蚀速率越慢,因此第一凹槽204的侧壁与底部的夹角呈圆角,且第一凹槽204侧壁为倾斜。Since the process of etching the isolation structure is an isotropic dry etching process, the etching rate in all directions is the same, but since the dopant ions in the doped region 230 are annealed, they will go to the isolation structure located under the sacrificial layer 220. 202 diffuses, and with the deepening of the depth, the concentration of doping ions decreases, and the higher the concentration of doping ions, the slower the etching rate, so the angle between the sidewall and the bottom of the first groove 204 is rounded, and The sidewall of the first groove 204 is inclined.

源漏掺杂层251为外延生长形成,第一凹槽204倾斜的侧壁定义了源漏掺杂层251的生长方向,使得源漏掺杂层251在沿平行于半导体衬底表面水平方向上的生长速率提高,从而源漏掺杂层251在沿半导体衬底平面水平方向长得更宽,使得源漏掺杂层251沿鳍部210高度方向的高度降低,与后续形成的栅极结构之间寄生电容较小,从而提高了器件的性能。The source-drain doped layer 251 is formed by epitaxial growth, and the inclined sidewalls of the first groove 204 define the growth direction of the source-drain doped layer 251, so that the source-drain doped layer 251 is in a horizontal direction parallel to the surface of the semiconductor substrate. The growth rate of the fins increases, so that the source-drain doped layer 251 grows wider in the horizontal direction along the plane of the semiconductor substrate, so that the height of the source-drain doped layer 251 along the height direction of the fins 210 decreases, which is different from the gate structure formed subsequently. The inter-parasitic capacitance is small, thereby improving the performance of the device.

形成第一凹槽204后,在鳍部210上形成横跨鳍部210的伪栅极结构(未图示),所述伪栅极结构覆盖鳍部210的部分顶部表面和部分侧壁表面,所述伪栅介质层205覆盖所述鳍部侧壁。After the first groove 204 is formed, a dummy gate structure (not shown) across the fin 210 is formed on the fin 210 , and the dummy gate structure covers part of the top surface and part of the sidewall surface of the fin 210 , The dummy gate dielectric layer 205 covers the sidewalls of the fins.

请参考图8,在所述隔离结构202和鳍部210上形成伪栅介质层205;在伪栅介质层205上形成伪栅极层(未图示)。Referring to FIG. 8 , a dummy gate dielectric layer 205 is formed on the isolation structure 202 and the fins 210 ; a dummy gate layer (not shown) is formed on the dummy gate dielectric layer 205 .

所述伪栅极层的形成步骤包括:在所述伪栅介质层205上形成伪栅极膜,在所述伪栅极膜表面形成图形化层,所述图形化层覆盖需要形成伪栅极层的位置和形状;以所述图形化层为掩膜,刻蚀所述伪栅极膜,直至暴露出所述伪栅介质层205的表面为止。The steps of forming the dummy gate layer include: forming a dummy gate film on the dummy gate dielectric layer 205, forming a patterned layer on the surface of the dummy gate film, and the patterned layer covers the dummy gate that needs to be formed The position and shape of the layer; using the patterned layer as a mask, the dummy gate film is etched until the surface of the dummy gate dielectric layer 205 is exposed.

所述伪栅极介质层205的材料为氧化硅。The material of the dummy gate dielectric layer 205 is silicon oxide.

在本实施例中,所述伪栅介质层205的形成工艺为原位蒸汽生成工艺。所述原位蒸汽生成工艺形成的伪栅介质层205具有良好的阶梯覆盖能力,能够使所形成的伪栅介质层205紧密地覆盖于所述鳍部210的侧壁表面,且所形成的伪栅介质层205的厚度均匀。In this embodiment, the formation process of the dummy gate dielectric layer 205 is an in-situ vapor generation process. The dummy gate dielectric layer 205 formed by the in-situ vapor generation process has a good step coverage capability, so that the formed dummy gate dielectric layer 205 can closely cover the sidewall surface of the fin 210, and the formed dummy gate dielectric layer 205 can The thickness of the gate dielectric layer 205 is uniform.

在另一实施例中,所述伪栅介质层205的形成工艺为化学氧化工艺;所述化学氧化工艺的步骤包括:采用通入臭氧的水溶液对所述鳍部210暴露出的侧壁和顶部表面进行氧化,形成伪栅介质层205。In another embodiment, the formation process of the dummy gate dielectric layer 205 is a chemical oxidation process; the steps of the chemical oxidation process include: using an ozone-infused aqueous solution to expose sidewalls and tops of the fins 210 The surface is oxidized to form a dummy gate dielectric layer 205 .

在本实施例中,所述伪栅极层位于所述伪栅介质层205上,所述伪栅极层的材料包括硅、非晶硅、多晶硅或掺杂的多晶硅。所述伪栅极膜的形成工艺包括化学气相沉积工艺或者物理气相沉积工艺。In this embodiment, the dummy gate layer is located on the dummy gate dielectric layer 205 , and the material of the dummy gate layer includes silicon, amorphous silicon, polysilicon or doped polysilicon. The formation process of the dummy gate film includes a chemical vapor deposition process or a physical vapor deposition process.

形成伪栅极结构后,在伪栅极结构两侧的鳍部中形成第二凹槽,第二凹槽底部表面低于隔离结构顶部表面;所述第二凹槽的形成步骤包括:形成伪栅极结构后,在鳍部侧壁形成鳍部侧墙,所述鳍部侧墙覆盖鳍部侧壁表面;形成鳍部侧墙之后,在伪栅极结构两侧的鳍部中形成初始第二凹槽,所述初始第二凹槽暴露出鳍部侧墙侧壁;去除初始第二凹槽侧壁的鳍部侧墙,在隔离结构内形成第二凹槽。具体请参考图9至图11。After the dummy gate structure is formed, a second groove is formed in the fins on both sides of the dummy gate structure, and the bottom surface of the second groove is lower than the top surface of the isolation structure; the forming step of the second groove includes: forming a dummy After the gate structure is formed, fin spacers are formed on the sidewalls of the fins, and the fin spacers cover the surface of the fin sidewalls; after the fin spacers are formed, initial first spacers are formed in the fins on both sides of the dummy gate structure. Two grooves, the initial second groove exposes the sidewall of the fin sidewall; the fin sidewall of the sidewall of the initial second groove is removed to form a second groove in the isolation structure. For details, please refer to FIG. 9 to FIG. 11 .

请参考图9,形成伪栅极结构后,在鳍部210侧壁形成鳍部侧墙231,所述鳍部侧墙231覆盖鳍部210侧壁表面。Referring to FIG. 9 , after the dummy gate structure is formed, fin spacers 231 are formed on the sidewalls of the fins 210 , and the fin spacers 231 cover the sidewall surfaces of the fins 210 .

形成所述鳍部侧墙231的步骤包括:形成伪栅极结构后,在所述隔离结构202、鳍部210和伪栅极结构(未图示)上形成侧墙材料层(未图示);回刻蚀所述侧墙材料层,在鳍部210侧壁形成鳍部侧墙231;同时,在伪栅极结构侧壁形成栅极侧墙。The step of forming the fin spacer 231 includes: after forming the dummy gate structure, forming a spacer material layer (not shown) on the isolation structure 202 , the fin 210 and the dummy gate structure (not shown) ; Etch back the spacer material layer to form fin spacers 231 on the sidewalls of the fins 210 ; at the same time, form gate spacers on the sidewalls of the dummy gate structure.

形成所述侧墙材料层的工艺为沉积工艺,包括:等离子体化学气相沉积工艺、原子层沉积工艺或低压化学气相沉积工艺。The process for forming the sidewall material layer is a deposition process, including: a plasma chemical vapor deposition process, an atomic layer deposition process or a low pressure chemical vapor deposition process.

本实施例中,所述侧墙材料层的形成工艺为原子层沉积工艺,所述工艺参数包括:采用的气体为SiH2Cl2和NH3的混合气体,混合气体的流量为 1500sccm~4000sccm,压强为1mtorr~10mtorr,温度为200摄氏度~600摄氏度,沉积次数为30次~100次。In this embodiment, the formation process of the sidewall material layer is an atomic layer deposition process, and the process parameters include: the gas used is a mixed gas of SiH 2 Cl 2 and NH 3 , and the flow rate of the mixed gas is 1500 sccm to 4000 sccm, The pressure is 1 mtorr to 10 mtorr, the temperature is 200 degrees Celsius to 600 degrees Celsius, and the deposition times are 30 to 100 times.

本实施例中,所形成的器件为P型器件,通过回刻蚀所述侧墙材料层形成鳍部侧墙。其他实施例中,所形成的器件为N型器件,通过回刻蚀所述侧墙材料层形成鳍部侧墙。In this embodiment, the formed device is a P-type device, and the fin spacer is formed by etching back the spacer material layer. In other embodiments, the formed device is an N-type device, and the fin spacer is formed by etching back the spacer material layer.

其他实施例中,所形成的器件包括P型器件和N型器件时,形成P型侧墙材料层覆盖P型伪栅极结构和N型栅极结构;去除P型器件伪栅极结构两侧鳍部上方的P型侧墙材料层,暴露出P型器件伪栅极结构两侧鳍部;之后去除P型器件伪栅极结构两侧鳍部形成凹槽;在所述凹槽内形成P型源漏掺杂层;之后在P型器件的伪栅极结构和源漏掺杂层上形成N型侧墙材料层,去除N型器件伪栅极结构两侧的鳍部上方的P型侧墙材料层和N型侧墙材料层,暴露出N型器件伪栅极结构两侧的鳍部;之后去除N型器件伪栅极结构两侧鳍部形成凹槽;在所述凹槽内形成N型源漏掺杂层。In other embodiments, when the formed device includes a P-type device and an N-type device, a P-type spacer material layer is formed to cover the P-type dummy gate structure and the N-type gate structure; the two sides of the P-type device dummy gate structure are removed. The P-type sidewall material layer above the fins exposes the fins on both sides of the dummy gate structure of the P-type device; then the fins on both sides of the dummy gate structure of the P-type device are removed to form grooves; P-type devices are formed in the grooves Type source and drain doped layers; then, an N-type spacer material layer is formed on the dummy gate structure and the source-drain doped layers of the P-type device, and the P-type side above the fins on both sides of the dummy gate structure of the N-type device is removed The wall material layer and the N-type spacer material layer expose the fins on both sides of the dummy gate structure of the N-type device; then remove the fins on both sides of the dummy gate structure of the N-type device to form grooves; form grooves in the grooves N-type source and drain doped layers.

请参考图10,形成鳍部侧墙231之后,在伪栅极结构两侧的鳍部210中形成初始第二凹槽206,初始第二凹槽206暴露出鳍部侧墙231的侧壁。Referring to FIG. 10 , after the fin spacers 231 are formed, initial second grooves 206 are formed in the fins 210 on both sides of the dummy gate structure, and the initial second grooves 206 expose the sidewalls of the fin spacers 231 .

所述初始第二凹槽206的底部表面与第一凹槽204的底部表面齐平,低于隔离结构202的顶部表面。The bottom surface of the initial second groove 206 is flush with the bottom surface of the first groove 204 and lower than the top surface of the isolation structure 202 .

刻蚀去除伪栅极结构两侧的鳍部210的工艺为各项异性的干法刻蚀。所述干法刻蚀的参数包括:刻蚀气体为HBr、O2和Cl2,还向刻蚀腔室内通入 He,刻蚀腔室压强为2毫托至50毫托,刻蚀的源功率为200瓦至2000瓦,刻蚀加偏压功率为10瓦至100瓦,HBr流量为50sccm至500sccm,O2流量为2sccm至20sccm,Cl2流量为10sccm至300sccm,He流量为50sccm至 500sccm。The process of etching and removing the fins 210 on both sides of the dummy gate structure is anisotropic dry etching. The parameters of the dry etching include: the etching gas is HBr, O 2 and Cl 2 , and He is also introduced into the etching chamber, the pressure of the etching chamber is 2 mtorr to 50 mtorr, the source of the etching is Power is 200 watts to 2000 watts, etch plus bias power is 10 watts to 100 watts, HBr flow is 50sccm to 500sccm, O flow is 2sccm to 20sccm, Cl flow is 10sccm to 300sccm , He flow is 50sccm to 500sccm .

请参考图11,去除初始第二凹槽206侧壁的鳍部侧墙231,在伪栅极结构两侧的鳍部210内形成第二凹槽207。Referring to FIG. 11 , the fin spacers 231 on the sidewalls of the initial second grooves 206 are removed, and second grooves 207 are formed in the fins 210 on both sides of the dummy gate structure.

所述第二凹槽207底部表面低于隔离结构202顶部表面。所述第二凹槽 207为后续形成源漏掺杂层251提供空间。第二凹槽207为去除初始第二凹槽206侧壁的鳍部侧墙231而形成,故第二凹槽207的底部表面与第一凹槽204 的底部表面齐平,且低于隔离结构202的顶部表面。形成源漏掺杂层251过程中,源漏掺杂层251会先填充第一凹槽204和位于隔离结构中的第二凹槽 207,再向隔离结构202上方生长,故在体积确定的情况下,形成在隔离结构 202上方的源漏掺杂层251高度相对较低,故源漏掺杂层251顶部相对于鳍部210顶部表面的高度也较低,源漏掺杂层251与后续形成的栅极层的相对面积较小,二者之间的寄生电容相对较小。The bottom surface of the second groove 207 is lower than the top surface of the isolation structure 202 . The second groove 207 provides space for the subsequent formation of the source and drain doped layers 251. The second groove 207 is formed by removing the fin spacers 231 of the sidewalls of the initial second groove 206 , so the bottom surface of the second groove 207 is flush with the bottom surface of the first groove 204 and is lower than the isolation structure 202 on the top surface. In the process of forming the source-drain doped layer 251, the source-drain doped layer 251 will first fill the first groove 204 and the second groove 207 in the isolation structure, and then grow above the isolation structure 202, so the volume is determined. The height of the source-drain doping layer 251 formed above the isolation structure 202 is relatively low, so the height of the top of the source-drain doping layer 251 relative to the top surface of the fin 210 is also relatively low. The relative area of the gate layer is small, and the parasitic capacitance between the two is relatively small.

去除鳍部侧墙231的工艺为各向同性的湿法刻蚀工艺,所述湿法刻蚀一般采用磷酸与去离子水的混合物形成的磷酸刻蚀液,其中,磷酸的体积百分比浓度为80%~90%,如86%~87%,工艺温度在90摄氏度-180摄氏度范围内,如160摄氏度。The process of removing the fin sidewall 231 is an isotropic wet etching process, and the wet etching generally adopts a phosphoric acid etching solution formed by a mixture of phosphoric acid and deionized water, wherein the volume percent concentration of phosphoric acid is 80. % to 90%, such as 86% to 87%, and the process temperature is within the range of 90 degrees Celsius to 180 degrees Celsius, such as 160 degrees Celsius.

鳍部侧墙的材料为氮化硅,隔离结构的材料为氧化硅,热磷酸对氮化硅和氧化硅的刻蚀具有很好的选择比,能够保证在去除鳍部侧墙的同时,尽可能的减少对隔离结构的损伤。The material of the fin sidewall is silicon nitride, and the material of the isolation structure is silicon oxide. Thermal phosphoric acid has a good selectivity ratio for the etching of silicon nitride and silicon oxide, which can ensure that the fin sidewall is removed as much as possible. Possible reduction of damage to isolation structures.

请参考图12,形成第二凹槽207后,在第一凹槽204和第二凹槽207内形成源漏掺杂层251。Referring to FIG. 12 , after the second groove 207 is formed, a source-drain doped layer 251 is formed in the first groove 204 and the second groove 207 .

当所述半导体器件的类型为P型器件时,所述源漏掺杂层251的材料包括:硅、锗或硅锗;所述半导体器件的类型为N型器件时,所述源漏掺杂层251 的材料包括:硅、砷化镓或铟镓砷。When the type of the semiconductor device is a P-type device, the material of the source-drain doping layer 251 includes: silicon, germanium or silicon germanium; when the type of the semiconductor device is an N-type device, the source-drain doping layer 251 is doped The material of the layer 251 includes: silicon, gallium arsenide or indium gallium arsenide.

本实施例中,所述半导体器件为P型器件,所述源漏掺杂层251的材料为硅锗。其他实施例中,所述半导体器件为N型器件,所述源漏掺杂层251 的材料为硅。In this embodiment, the semiconductor device is a P-type device, and the material of the source-drain doping layer 251 is silicon germanium. In other embodiments, the semiconductor device is an N-type device, and the material of the source-drain doping layer 251 is silicon.

第一凹槽204位于隔离结构202内,第二凹槽207部分位于隔离结构202 内,源漏掺杂层251部分位于第一凹槽204和第二凹槽207内,在源漏掺杂层251体积确定的情况下,则高于隔离结构202部分的源漏掺杂层251的体积相对减小,从而使得源漏掺杂层251顶部相对于隔离结构202表面的高度较低。源漏掺杂层251顶部相对于鳍部210顶部表面的高度也较低。后续会在伪栅极结构的位置形成栅极结构,栅极结构与源漏掺杂层251之间通过栅极侧墙隔离,源漏掺杂层251高于鳍部210顶部的部分与栅极结构之间形成寄生电容,源漏掺杂层251高于鳍部210顶部的部分的高度较低,栅极结构与源漏掺杂层251相交的面积较小,二者之间的寄生电容较小,从而提高了器件的性能。The first groove 204 is located in the isolation structure 202, the second groove 207 is partially located in the isolation structure 202, and the source-drain doped layer 251 is partially located in the first groove 204 and the second groove 207. When the volume of 251 is determined, the volume of the source-drain doped layer 251 higher than the part of the isolation structure 202 is relatively reduced, so that the height of the top of the source-drain doped layer 251 relative to the surface of the isolation structure 202 is lower. The height of the top of the source-drain doped layer 251 relative to the top surface of the fins 210 is also low. Next, a gate structure will be formed at the position of the dummy gate structure. The gate structure and the source-drain doped layer 251 are separated by gate spacers. The part of the source-drain doped layer 251 higher than the top of the fin 210 and the gate are separated. A parasitic capacitance is formed between the structures, the height of the part of the source-drain doping layer 251 higher than the top of the fin 210 is relatively low, the area where the gate structure and the source-drain doping layer 251 intersect is small, and the parasitic capacitance between the two is relatively small. small, thereby improving the performance of the device.

第一凹槽251为以掺杂层230为掩膜刻蚀隔离结构202而形成,刻蚀隔离结构202时是利用刻蚀掺杂层230和未被离子注入的隔离结构202的刻蚀速率的差异来形成第一凹槽204,从而使得第一凹槽204侧壁倾斜。源漏掺杂层251为外延生长形成,第一凹槽204倾斜的侧壁定义了源漏掺杂层251的生长方向,使得源漏掺杂层251在沿平行于半导体衬底201表面水平方向的生长速率提高些,从而源漏掺杂层251在沿半导体衬底201平面水平方向长得更宽,使得源漏掺杂层251沿鳍部210高度方向的高度降低,源漏掺杂层 251高于鳍部210顶部的部分的高度较低,与栅极结构的寄生电容较小,从而提高了器件的性能。The first groove 251 is formed by etching the isolation structure 202 by using the doped layer 230 as a mask. When etching the isolation structure 202, the etching rate of the doped layer 230 and the isolation structure 202 that is not ion implanted is used to etch the isolation structure 202. The first groove 204 is formed by the difference, so that the sidewall of the first groove 204 is inclined. The source-drain doped layer 251 is formed by epitaxial growth, and the inclined sidewalls of the first groove 204 define the growth direction of the source-drain doped layer 251 , so that the source-drain doped layer 251 is in a horizontal direction parallel to the surface of the semiconductor substrate 201 . The growth rate of the fins is increased, so that the source-drain doped layer 251 grows wider in the horizontal direction along the plane of the semiconductor substrate 201, so that the height of the source-drain doped layer 251 along the height direction of the fin 210 decreases, and the source-drain doped layer 251 The height of the portion above the top of the fin 210 is lower, and the parasitic capacitance with the gate structure is smaller, thereby improving the performance of the device.

形成源漏掺杂层251后,在半导体衬底201、鳍部210、隔离结构202、伪栅极结构和源漏掺杂层251上形成介质层,所述介质层暴露出伪栅极结构顶部表面;形成介质层251后,去除伪栅极结构,形成栅开口;形成栅开口后,在栅开口内形成栅极结构。After the source-drain doped layer 251 is formed, a dielectric layer is formed on the semiconductor substrate 201, the fins 210, the isolation structure 202, the dummy gate structure and the source-drain doped layer 251, and the dielectric layer exposes the top of the dummy gate structure surface; after the dielectric layer 251 is formed, the dummy gate structure is removed to form a gate opening; after the gate opening is formed, a gate structure is formed in the gate opening.

相应的,本实施例还提供一种半导体器件,请参考图12,包括:半导体衬底201,半导体衬底201上具有鳍部210和隔离结构202,隔离结构202覆盖部分鳍部210的侧壁;位于隔离结构202内的第一凹槽204,所述第一凹槽 204与鳍部210侧壁相邻,第一凹槽204底部表面低于隔离结构202表面;位于所述鳍部210上的栅极结构,所述栅极结构横跨鳍部210,覆盖鳍部210的部分顶部表面和部分侧壁表面;位于所述栅极结构两侧的鳍部210内的源漏掺杂层251,所述源漏掺杂层251还位于第一凹槽204内。Correspondingly, the present embodiment also provides a semiconductor device, please refer to FIG. 12 , including: a semiconductor substrate 201 , the semiconductor substrate 201 has a fin 210 and an isolation structure 202 , and the isolation structure 202 covers part of the sidewall of the fin 210 ; a first groove 204 located in the isolation structure 202, the first groove 204 is adjacent to the sidewall of the fin 210, and the bottom surface of the first groove 204 is lower than the surface of the isolation structure 202; located on the fin 210 The gate structure, the gate structure spans the fin 210 and covers part of the top surface and part of the sidewall surface of the fin 210; the source and drain doped layers 251 in the fin 210 on both sides of the gate structure , the source-drain doped layer 251 is also located in the first groove 204 .

所述半导体器件,第一凹槽侧壁到底部的夹角呈圆角,且第一凹槽侧壁为倾斜。In the semiconductor device, the included angle from the side wall of the first groove to the bottom is rounded, and the side wall of the first groove is inclined.

所述源漏掺杂层251的材料、尺寸和结构均参考前述实施例。The material, size and structure of the source-drain doping layer 251 refer to the foregoing embodiments.

虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be based on the scope defined by the claims.

Claims (20)

1.一种半导体器件的形成方法,其特征在于,包括:1. A method for forming a semiconductor device, comprising: 提供半导体衬底,所述半导体衬底上具有鳍部和隔离结构,隔离结构覆盖部分鳍部的侧壁;A semiconductor substrate is provided, the semiconductor substrate has a fin and an isolation structure, and the isolation structure covers part of the sidewall of the fin; 在隔离结构内形成第一凹槽,所述第一凹槽侧壁暴露出鳍部侧壁;forming a first groove in the isolation structure, and the sidewalls of the first grooves expose the sidewalls of the fins; 形成横跨所述鳍部的伪栅极结构,所述伪栅极结构覆盖鳍部的部分顶部表面和部分侧壁表面;forming a dummy gate structure spanning the fin, the dummy gate structure covering a portion of the top surface and a portion of the sidewall surface of the fin; 形成伪栅极结构后,在伪栅极结构两侧的鳍部中形成第二凹槽,第二凹槽与第一凹槽连通,且第二凹槽底部与第一凹槽底部齐平;After the dummy gate structure is formed, a second groove is formed in the fins on both sides of the dummy gate structure, the second groove is communicated with the first groove, and the bottom of the second groove is flush with the bottom of the first groove; 在第一凹槽和第二凹槽内形成源漏掺杂层。A source-drain doped layer is formed in the first groove and the second groove. 2.如权利要求1所述的半导体器件的形成方法,其特征在于,所述第一凹槽的形成步骤包括:在隔离结构上形成覆盖所述鳍部侧壁的牺牲层;在形成所述牺牲层之后,对牺牲层暴露出的隔离结构进行离子注入,在隔离结构内形成掺杂区;形成掺杂区后,去除所述牺牲层;去除所述牺牲层之后,以所述掺杂区为掩膜,刻蚀所述隔离结构,在隔离结构内形成第一凹槽。2 . The method for forming a semiconductor device according to claim 1 , wherein the step of forming the first groove comprises: forming a sacrificial layer on the isolation structure covering the sidewall of the fin; After the sacrificial layer, ion implantation is performed on the isolation structure exposed by the sacrificial layer, and a doped region is formed in the isolation structure; after the doped region is formed, the sacrificial layer is removed; after the sacrificial layer is removed, the doped region is As a mask, the isolation structure is etched, and a first groove is formed in the isolation structure. 3.如权利要求1所述的半导体器件的形成方法,其特征在于,所述第二凹槽的形成步骤包括:形成伪栅极结构后,在鳍部侧壁表面形成鳍部侧墙;形成鳍部侧墙之后,在伪栅极结构两侧的鳍部中形成初始第二凹槽,所述初始第二凹槽侧壁暴露出鳍部侧墙侧壁;去除初始第二凹槽侧壁的鳍部侧墙,在伪栅极结构两侧的鳍部内形成第二凹槽。3 . The method for forming a semiconductor device according to claim 1 , wherein the forming step of the second groove comprises: after forming the dummy gate structure, forming a fin sidewall spacer on the surface of the sidewall of the fin; forming After the spacers of the fins, initial second grooves are formed in the fins on both sides of the dummy gate structure, and the sidewalls of the initial second grooves expose the sidewalls of the spacers of the fins; the sidewalls of the initial second grooves are removed The fin spacers are formed, and second grooves are formed in the fins on both sides of the dummy gate structure. 4.如权利要求2所述的半导体器件的形成方法,其特征在于,所述牺牲层的形成步骤包括:在所述鳍部表面形成初始牺牲层;回刻蚀所述初始牺牲层,直至暴露出鳍部表面,在所述鳍部侧壁表面形成牺牲层。4 . The method for forming a semiconductor device according to claim 2 , wherein the step of forming the sacrificial layer comprises: forming an initial sacrificial layer on the surface of the fin; and etching back the initial sacrificial layer until exposed. 5 . A sacrificial layer is formed on the surface of the sidewall of the fin. 5.如权利要求2所述的半导体器件的形成方法,其特征在于,所述牺牲层的材料与隔离结构不同。5. The method for forming a semiconductor device according to claim 2, wherein the material of the sacrificial layer is different from that of the isolation structure. 6.如权利要求2所述的半导体器件的形成方法,其特征在于,所述牺牲层的材料包括:氮化硅、氮氧化硅、碳氧化硅、碳氮化硅或碳氮氧化硅。6. The method for forming a semiconductor device according to claim 2, wherein the material of the sacrificial layer comprises: silicon nitride, silicon oxynitride, silicon oxycarbide, silicon carbonitride or silicon oxycarbonitride. 7.如权利要求2所述的半导体器件的形成方法,其特征在于,所述牺牲层的厚度为2纳米~8纳米。7 . The method for forming a semiconductor device according to claim 2 , wherein the sacrificial layer has a thickness of 2 nanometers to 8 nanometers. 8 . 8.如权利要求2所述的半导体器件的形成方法,其特征在于,对所述隔离结构进行离子注入后,回刻蚀隔离结构前,还包括对所述隔离结构进行退火处理;所述退火处理的温度范围为800摄氏度~1100摄氏度,所述退火处理的时间为5秒~100秒,所述退火处理利用的气体为氮气,所述氮气的流量范围为10sccm~1000sccm。8 . The method for forming a semiconductor device according to claim 2 , wherein after ion implanting the isolation structure and before etching the isolation structure back, further comprising annealing the isolation structure; the annealing The temperature range of the treatment is 800 degrees Celsius to 1100 degrees Celsius, the time of the annealing treatment is 5 seconds to 100 seconds, the gas used in the annealing treatment is nitrogen, and the flow rate of the nitrogen gas ranges from 10 sccm to 1000 sccm. 9.如权利要求2所述的半导体器件的形成方法,其特征在于,所述第一离子包括硅离子。9. The method of forming a semiconductor device according to claim 2, wherein the first ions comprise silicon ions. 10.如权利要求9所述的半导体器件的形成方法,其特征在于,所述离子注入的参数包括:能量范围为5KeV~30KeV,剂量范围为1.0E14atom/cm2~1.0E16atom/cm210 . The method for forming a semiconductor device according to claim 9 , wherein the parameters of the ion implantation include: an energy range of 5KeV˜30KeV, and a dose range of 1.0E14atom/cm 2 to 1.0E16atom/cm 2 . 11.如权利要求2所述的半导体器件的形成方法,其特征在于,去除所述牺牲层的工艺包括干法刻蚀工艺或者湿法刻蚀工艺。11. The method for forming a semiconductor device according to claim 2, wherein the process of removing the sacrificial layer comprises a dry etching process or a wet etching process. 12.如权利要求1所述的半导体器件的形成方法,其特征在于,第一凹槽侧壁到底部的夹角呈圆角,且第一凹槽侧壁为倾斜。12 . The method for forming a semiconductor device according to claim 1 , wherein an included angle from the side wall of the first groove to the bottom is rounded, and the side wall of the first groove is inclined. 13 . 13.如权利要求2所述的半导体器件的形成方法,其特征在于,刻蚀所述隔离结构的工艺包括:各向同性的干法刻蚀工艺或者各向同性的湿法刻蚀工艺。13 . The method for forming a semiconductor device according to claim 2 , wherein the process of etching the isolation structure comprises: an isotropic dry etching process or an isotropic wet etching process. 14 . 14.如权利要求13所述的半导体器件的形成方法,其特征在于,干法刻蚀所述隔离结构的工艺参数包括:采用的气体包括NH3气体、NF3气体和He,NH3气体的流量为100sccm~500sccm,NF3气体的流量为20sccm~2000sccm,He的流量为500sccm~2000sccm,压强为2torr~10torr,时间为20秒~100秒。14 . The method for forming a semiconductor device according to claim 13 , wherein the process parameters of dry etching the isolation structure include: the gas used includes NH 3 gas, NF 3 gas and He, NH 3 gas. 15 . The flow rate is 100sccm~500sccm, the flow rate of NF 3 gas is 20sccm~2000sccm, the flow rate of He is 500sccm~2000sccm, the pressure is 2torr~10torr, and the time is 20s~100s. 15.如权利要求3所述的半导体器件的形成方法,其特征在于,形成所述鳍部侧墙的步骤包括:在伪栅极结构形成之后,在所述鳍部和伪栅极结构上形成侧墙材料层;回刻蚀所述侧墙材料层,直至暴露出伪栅极结构顶部表面,在所述鳍部侧壁形成鳍部侧墙,在栅极结构侧壁形成栅极侧墙。15 . The method for forming a semiconductor device according to claim 3 , wherein the step of forming the fin spacer comprises: after the dummy gate structure is formed, forming on the fin and the dummy gate structure. 16 . A spacer material layer; the spacer material layer is etched back until the top surface of the dummy gate structure is exposed, fin spacers are formed on the sidewalls of the fins, and gate spacers are formed on the sidewalls of the gate structure. 16.如权利要求1所述的半导体器件的形成方法,其特征在于,所述源漏掺杂层的形成工艺为外延工艺。16 . The method for forming a semiconductor device according to claim 1 , wherein the formation process of the source and drain doped layers is an epitaxy process. 17 . 17.如权利要求1所述的半导体器件的形成方法,其特征在于,当所述半导体器件的类型为P型器件时,所述源漏掺杂层的材料包括:硅、锗或硅锗;所述半导体器件的类型为N型器件时,所述源漏掺杂层的材料包括:硅、砷化镓或铟镓砷。17. The method for forming a semiconductor device according to claim 1, wherein when the type of the semiconductor device is a P-type device, the material of the source and drain doped layers comprises: silicon, germanium or silicon germanium; When the type of the semiconductor device is an N-type device, the material of the source and drain doped layers includes: silicon, gallium arsenide or indium gallium arsenide. 18.如权利要求1所述的半导体器件的形成方法,其特征在于,还包括:形成源漏掺杂层后,在半导体衬底、伪栅极结构和源漏掺杂层上形成介质层,所述介质层暴露出伪栅极结构顶部表面;形成介质层后,去除伪栅极结构,形成栅开口;形成栅开口后,在栅开口内形成栅极结构。18. The method for forming a semiconductor device according to claim 1, further comprising: forming a dielectric layer on the semiconductor substrate, the dummy gate structure and the source-drain doped layer after forming the source-drain doped layer, The dielectric layer exposes the top surface of the dummy gate structure; after the dielectric layer is formed, the dummy gate structure is removed to form a gate opening; after the gate opening is formed, the gate structure is formed in the gate opening. 19.一种半导体器件,其特征在于,包括:19. A semiconductor device, characterized in that it comprises: 半导体衬底,半导体衬底上具有鳍部和隔离结构,隔离结构覆盖部分鳍部的侧壁;a semiconductor substrate, the semiconductor substrate is provided with a fin and an isolation structure, and the isolation structure covers part of the sidewall of the fin; 位于隔离结构内的第一凹槽,所述第一凹槽侧壁暴露出鳍部侧壁;a first groove in the isolation structure, the sidewalls of the first grooves expose the sidewalls of the fins; 位于所述鳍部上的伪栅极结构,所述伪栅极结构横跨鳍部,覆盖鳍部的部分顶部表面和部分侧壁表面;a dummy gate structure on the fin, the dummy gate structure spanning the fin, covering part of the top surface and part of the sidewall surface of the fin; 位于所述伪栅极结构两侧的鳍部内的源漏掺杂层,所述源漏掺杂层还位于第一凹槽内。The source and drain doped layers are located in the fins on both sides of the dummy gate structure, and the source and drain doped layers are also located in the first grooves. 20.如权利要求19所述的半导体器件,其特征在于,第一凹槽侧壁到底部的夹角呈圆角,且第一凹槽侧壁为倾斜。20 . The semiconductor device of claim 19 , wherein the included angle from the side wall of the first groove to the bottom is rounded, and the side wall of the first groove is inclined. 21 .
CN201711444580.3A 2017-12-27 2017-12-27 Semiconductor device and method of forming the same Active CN109980003B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711444580.3A CN109980003B (en) 2017-12-27 2017-12-27 Semiconductor device and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711444580.3A CN109980003B (en) 2017-12-27 2017-12-27 Semiconductor device and method of forming the same

Publications (2)

Publication Number Publication Date
CN109980003A true CN109980003A (en) 2019-07-05
CN109980003B CN109980003B (en) 2022-02-15

Family

ID=67071103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711444580.3A Active CN109980003B (en) 2017-12-27 2017-12-27 Semiconductor device and method of forming the same

Country Status (1)

Country Link
CN (1) CN109980003B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113497145A (en) * 2020-04-01 2021-10-12 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and method for forming semiconductor structure
CN114446260A (en) * 2022-03-24 2022-05-06 北京京东方显示技术有限公司 Array substrate and display device
CN114551240A (en) * 2020-11-24 2022-05-27 中芯国际集成电路制造(上海)有限公司 Method for forming semiconductor structure
CN114695120A (en) * 2020-12-31 2022-07-01 中芯国际集成电路制造(上海)有限公司 Method of forming a semiconductor structure

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187125A (en) * 1976-12-27 1980-02-05 Raytheon Company Method for manufacturing semiconductor structures by anisotropic and isotropic etching
US4756793A (en) * 1985-10-10 1988-07-12 U.S. Philips Corp. Method of manufacturing a semiconductor device
CN103000528A (en) * 2011-09-16 2013-03-27 中芯国际集成电路制造(上海)有限公司 Semiconductor structure with nickel silicide contact regions and method for forming semiconductor structure
US20130187207A1 (en) * 2011-07-27 2013-07-25 Advanced Ion Beam Technology, Inc. Replacement source/drain finfet fabrication
US20130341596A1 (en) * 2012-06-21 2013-12-26 International Business Machines Corporation Nanowire fet and finfet
CN104810400A (en) * 2014-01-24 2015-07-29 台湾积体电路制造股份有限公司 Embedded source or drain region of transistor with downward tapered region under facet region
CN105225950A (en) * 2014-05-29 2016-01-06 中芯国际集成电路制造(上海)有限公司 The formation method of fin formula field effect transistor, the formation method of MOS transistor
CN105448712A (en) * 2014-09-18 2016-03-30 富士电机株式会社 Method of manufacturing semiconductor device
CN105575806A (en) * 2014-10-08 2016-05-11 中国科学院微电子研究所 Fin field effect transistor and manufacturing method thereof
CN105575807A (en) * 2014-10-08 2016-05-11 中国科学院微电子研究所 Fin field effect transistor and manufacturing method thereof
CN106952819A (en) * 2016-01-06 2017-07-14 中芯国际集成电路制造(上海)有限公司 Method for forming fin field effect transistor
CN106960789A (en) * 2016-01-08 2017-07-18 中芯国际集成电路制造(上海)有限公司 Semiconductor devices and the method for improving performance of semiconductor device
CN107170687A (en) * 2016-03-07 2017-09-15 台湾积体电路制造股份有限公司 Method for forming semiconductor device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4187125A (en) * 1976-12-27 1980-02-05 Raytheon Company Method for manufacturing semiconductor structures by anisotropic and isotropic etching
US4756793A (en) * 1985-10-10 1988-07-12 U.S. Philips Corp. Method of manufacturing a semiconductor device
US20130187207A1 (en) * 2011-07-27 2013-07-25 Advanced Ion Beam Technology, Inc. Replacement source/drain finfet fabrication
CN103000528A (en) * 2011-09-16 2013-03-27 中芯国际集成电路制造(上海)有限公司 Semiconductor structure with nickel silicide contact regions and method for forming semiconductor structure
US20130341596A1 (en) * 2012-06-21 2013-12-26 International Business Machines Corporation Nanowire fet and finfet
CN104810400A (en) * 2014-01-24 2015-07-29 台湾积体电路制造股份有限公司 Embedded source or drain region of transistor with downward tapered region under facet region
CN105225950A (en) * 2014-05-29 2016-01-06 中芯国际集成电路制造(上海)有限公司 The formation method of fin formula field effect transistor, the formation method of MOS transistor
CN105448712A (en) * 2014-09-18 2016-03-30 富士电机株式会社 Method of manufacturing semiconductor device
CN105575806A (en) * 2014-10-08 2016-05-11 中国科学院微电子研究所 Fin field effect transistor and manufacturing method thereof
CN105575807A (en) * 2014-10-08 2016-05-11 中国科学院微电子研究所 Fin field effect transistor and manufacturing method thereof
CN106952819A (en) * 2016-01-06 2017-07-14 中芯国际集成电路制造(上海)有限公司 Method for forming fin field effect transistor
CN106960789A (en) * 2016-01-08 2017-07-18 中芯国际集成电路制造(上海)有限公司 Semiconductor devices and the method for improving performance of semiconductor device
CN107170687A (en) * 2016-03-07 2017-09-15 台湾积体电路制造股份有限公司 Method for forming semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113497145A (en) * 2020-04-01 2021-10-12 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and method for forming semiconductor structure
CN113497145B (en) * 2020-04-01 2024-03-29 中芯国际集成电路制造(上海)有限公司 Semiconductor structures and methods of forming semiconductor structures
CN114551240A (en) * 2020-11-24 2022-05-27 中芯国际集成电路制造(上海)有限公司 Method for forming semiconductor structure
CN114695120A (en) * 2020-12-31 2022-07-01 中芯国际集成电路制造(上海)有限公司 Method of forming a semiconductor structure
CN114446260A (en) * 2022-03-24 2022-05-06 北京京东方显示技术有限公司 Array substrate and display device
CN114446260B (en) * 2022-03-24 2023-08-22 北京京东方显示技术有限公司 Array substrate and display device

Also Published As

Publication number Publication date
CN109980003B (en) 2022-02-15

Similar Documents

Publication Publication Date Title
CN107039272B (en) Method for forming fin type transistor
WO2013152535A1 (en) Preparation method for finfet in large-scale integrated circuit
CN106373924B (en) Method for forming semiconductor structure
US9305802B2 (en) Methods of forming semiconductor devices using hard masks
CN110797262B (en) Semiconductor device and method of forming the same
CN110648915B (en) Semiconductor device and method of forming the same
CN104733314B (en) Semiconductor structure and forming method thereof
CN109950312B (en) Semiconductor device and method of forming the same
CN109994547A (en) Semiconductor device and method of forming the same
CN106952816B (en) Method of forming a fin transistor
CN109980003B (en) Semiconductor device and method of forming the same
US10056465B2 (en) Transistor device and fabrication method
CN109872953B (en) Semiconductor device and method of forming the same
CN109585289B (en) Semiconductor device and method of forming the same
CN106847697B (en) Method for forming fin field effect transistor
CN104183500A (en) Method for forming ion-implantation side wall protection layer on FinFET device
CN106571298B (en) The forming method of semiconductor structure
CN109994548B (en) Semiconductor structure and method of forming the same
CN106328503A (en) Method of forming semiconductor structure
CN107591327B (en) Method for forming fin field effect transistor
CN107170685B (en) Method for forming fin type transistor
CN105990140A (en) Transistor forming method
CN108630610A (en) Fin field effect pipe and forming method thereof
CN106328530B (en) Fin field effect transistor and method of forming the same
CN109979820A (en) The forming method of semiconductor devices

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant