[go: up one dir, main page]

CN106575556A - RFeB系烧结磁体 - Google Patents

RFeB系烧结磁体 Download PDF

Info

Publication number
CN106575556A
CN106575556A CN201580044078.6A CN201580044078A CN106575556A CN 106575556 A CN106575556 A CN 106575556A CN 201580044078 A CN201580044078 A CN 201580044078A CN 106575556 A CN106575556 A CN 106575556A
Authority
CN
China
Prior art keywords
rfeb
based sintered
sintered magnets
value
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580044078.6A
Other languages
English (en)
Inventor
宇根康裕
久保博
久保博一
佐川真人
杉本谕
松浦昌志
中村通秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inta Metal K K
Intermetallics Co Ltd
Original Assignee
Inta Metal K K
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inta Metal K K filed Critical Inta Metal K K
Publication of CN106575556A publication Critical patent/CN106575556A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/023Hydrogen absorption
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/042Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling using a particular milling fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/044Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by jet milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • B22F2301/355Rare Earth - Fe intermetallic alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明的课题在于,提供:实质上不含有重稀土元素RH(Dy、Tb和Ho)、且适于使用中温度上升的用途的RFeB系烧结磁体。本发明的RFeB系烧结磁体除了含有Fe和B以外,还含有作为稀土元素R的Nd和Pr中的至少1种,而不含有Dy、Tb和Ho,使用温度为23℃时的矫顽力的值Hcj(23)和温度为100℃时的矫顽力的值Hcj(100),定义成FF的温度特性值t(100‑23)为0.58<t(100‑23)<0。

Description

RFeB系烧结磁体
技术领域
本发明涉及以R(稀土元素)、Fe(铁)和B(硼)作为主要成分的RFeB系磁体。本发明特别涉及含有Nd(钕)和Pr(镨)中的至少1种作为主要稀土元素R、且实质上不含有Tb(铽)、Dy(镝)和Ho(钬)(以下,将它们统称为“重稀土元素RH”)的RFeB系烧结磁体。
背景技术
RFeB系烧结磁体是通过使RFeB系合金的粉末取向并烧结而制造的永久磁体。该RFeB系烧结磁体是1982年佐川真人等发现的,具有如下优点:具有远远凌驾于迄当时为止的永久磁体的高的磁特性,可以由稀土、铁和硼之类较丰富且廉价的原料制造。
预想:对于RFeB系烧结磁体,今后在空调等的家电用电动机、混合动力汽车、电动汽车的汽车用电动机的永久磁体等方面的需求会逐步扩大。这些家电用电动机、汽车用电动机在使用中会变为高温,因此,根据后述的理由,谋求具有高的矫顽力Hcj的RFeB系烧结磁体。矫顽力Hcj是表示对磁体施加与磁化的方向为相反方向的磁场时磁化变为0的磁场强度的指标。矫顽力Hcj的值越大,对反磁场的耐性越高。
作为RFeB系烧结磁体中提高矫顽力Hcj的方法,已知有以下方法。第1种方法为增多RFeB系烧结磁体中的重稀土元素RH的含量的方法(例如专利文献1)。第2种方法为减小RFeB系烧结磁体的原料合金粉末的粒径,由此减小得到的RFeB系烧结磁体中的晶粒的方法(例如非专利文献1)。非专利文献1中,不使用重稀土元素RH
现有技术文献
专利文献
专利文献1:国际公开WO2013/100010号
专利文献2:国际公开WO2006/004014号
非专利文献
非专利文献1:Togo Fukada等6人,“Evaluation of the MicrostructuralContribution to the Coercivity of Fine-Grained NdFeB Sintered Magnets”(微细粒NdFeB烧结磁体中的微细结构对矫顽力的贡献的评价),Materials Transactions,日本金属学会,第53卷,第11号,第1967~1971页,2012年10月25日发行
发明内容
发明要解决的问题
对于家电用、汽车用等的电动机,使用中RFeB系烧结磁体的温度发生变动,上升至100~180℃左右。因此,对使用时跨越的温度范围的整体,为了提高对反磁场的耐性,需要具有高的矫顽力Hcj。然而,RFeB系烧结磁体的矫顽力Hcj伴随着温度的上升而减少,因此重要的是,尽量减小其减少的比例。对于前述的通过添加重稀土元素RH而提高了矫顽力的RFeB系烧结磁体,在不仅室温下的矫顽力高,而且温度上升所导致的矫顽力减少的比例也小的方面具有优异的特性。然而,添加重稀土元素RH时,会产生如下问题:剩余磁通密度Br、最大能量积(BH)max等除了矫顽力Hcj以外的磁特性会降低,而且重稀土元素RH昂贵且稀少,因此RFeB系烧结磁体的价格上升,且难以稳定地供给。
本发明要解决的课题在于,提供:实质上不含有重稀土元素RH、且具有伴随着温度上升的矫顽力Hcj减少的比例小这样良好的温度特性的RFeB系烧结磁体。
用于解决问题的方案
非专利文献1中,RFeB系烧结磁体的晶粒大小不同的3种试样中,晶粒越小,各温度下的矫顽力Hcj的值变得越大,但是对于伴随着温度上升的矫顽力Hcj减少的比例,未观察到由晶粒的大小所带来的显著差异。与此相对,本发明人根据实验(后述)发现:通过进一步减小RFeB系烧结磁体的晶粒,从而可以减小伴随着温度上升的矫顽力Hcj减少的比例,至此完成了本发明。
为了解决上述课题而完成的本发明的特征在于,其除了含有Fe和B以外,还含有作为稀土元素R的Nd和Pr中的至少1种,而不含有Dy、Tb和Ho,
所述RFeB系烧结磁体的温度特性值t(100-23)为-0.58<t(100-23)<0,该温度特性值是使用温度为23℃时的矫顽力的值Hcj(23)和温度为100℃时的矫顽力的值Hcj(100)如下定义的。
本发明中“不含有Dy、Tb和Ho”是指,不以有技术意义的量含有Dy、Tb和Ho、即重稀土元素RH(实质上不含有),包括如下情况:以不可避免的杂质的形式仅含有R整体的0.1原子%以下的量的重稀土元素RH
对于温度特性值t(100-23),是指其值越大(绝对值为越小),伴随着温度上升的矫顽力Hcj减少的比例越小这样的本发明的目的中更理想的特性。本发明中,温度特性值t(100-23)使用23℃和100℃这样的2个温度下的矫顽力Hcj的值来限定,这些温度中“23℃”为室温的平均值,“100℃”是由以下的理由确定的值。
汽车用等的电动机中,如上述那样,由于使用中温度能够上升至180℃左右,因此也考虑使用180℃下的矫顽力的值Hcj(180)。然而,根据本发明人的实验,使用T℃时的矫顽力的值Hcj(T),求出定义成如下的温度特性值t(T-23)时,
每个试样的温度特性值的优劣在100℃≤T≤180℃的范围内未观察到差异。即,与其他试样相比,T=100℃下的温度特性值t(100-23)良好的试样遍及100℃≤T≤180℃的范围整体,各温度下的温度特性值t(T-23)与其他试样相比良好。因此,如果求出温度特性值t(100-23),则可以获知100℃≤T≤180℃的范围中的温度特性的优劣。而且,T=100℃下的矫顽力的值Hcj(100)在前述温度范围内值最大,因此,通过使用该温度下的值,可以减小矫顽力的值Hcj(T)的误差,进而可以减小温度特性值的误差。
对于非专利文献1中记载的RFeB系烧结磁体,温度特性值t(100-23)最大为-0.58(同一文献的第4(b)图,试样A的值)。与此相对,对于本申请发明人通过后述的方法而制作的RFeB系烧结磁体,温度特性值t(100-23)大于非专利文献1中的最大值即0.58(绝对值为小于0.58)。另一方面,RFeB系烧结磁体中,温度越高矫顽力Hcj越降低,因此温度特性值t(100-23)变得小于0。
对于温度特性值t(100-23),通过与以往相比进一步减小构成RFeB系烧结磁体的晶粒的粒径,从而可以比-0.58大。越减小晶粒的粒径,可以越提高温度特性值t(100-23),但在实用性上,温度特性值t(100-23)可以容易提高至-0.53、进而提高至-0.48(即在-0.58<t(100-23)≤-0.48的范围内)。
具体而言,使由RFeB系烧结磁体的截面的显微镜图像求出的、基于晶粒的圆当量直径D的面积基准平均粒径Dave S为1μm以下。此处“圆当量直径D”是指,对于通过电子显微镜等显微镜得到的图像(显微镜图像)中的合金粉末的各主相晶粒,相当于通过图像解析求出的截面积值S的圆的直径(即D=2×(S/π)0.5)。“面积基准平均粒径Dave S”是指,与烧结磁体的取向轴垂直的面的显微镜图像中,将各颗粒的截面积相对于全部晶粒的截面积的总计所占的比例从小的颗粒累积、达到50%时的截面积所求出的圆当量直径。需要说明的是,非专利文献1中,使用的是,从截面积小的颗粒排列时,相当于全部晶粒的个数的50%的晶粒的截面的圆当量直径所求出的个数平均粒径。个数平均粒径与面积基准平均粒径Dave S相比,面积小的晶粒的权重变强,因此值变小。因此,非专利文献1中,个数平均粒径最小设为1μm,但是该值在面积基准平均粒径Dave S中可以说大于1μm。与个数平均粒径相比,面积基准平均粒径Dave S对磁特性的影响大的大面积的晶粒进行加权(weighting),因此可以进行更准确的评价。
晶粒的面积基准平均粒径Dave S为1μm以下的RFeB系烧结磁体可以如下制作:
使用面积基准平均粒径Dave S为0.7μm以下、优选为0.6μm以下的RFeB系合金粉末,制作通过磁场使其取向的有形体,将该有形体进行烧结,从而制作。
这样的RFeB系合金粉末可以如下得到:对原料合金的粗粉实施HDDR(Hydrogenation Decomposition Disproportionation Recombination,晶粒微细化处理)法,从而制作晶粒微细化粗粉粒,将该晶粒微细化粗粉粒通过氢破碎法破碎后,通过使用氦气的喷射式粉碎机法进行粉碎,由此得到。HDDR法是指,将原料合金的粗粉在700~900℃的氢气气氛中进行加热(氢化(Hydrogenation)),从而将该RFeB系合金分解(Decomposition)为RH2(R的氢化物)、Fe2B、Fe这3相,维持该温度不变地,将气氛从氢气切换为真空,从而使氢从RH2相释放(Desorption),由此,使原料合金粗粉的各粒内的各相中产生再结合反应(Recombination)。
另外,“制作有形体”是指,使用RFeB系合金粉末,制作与最终产品具有相同或相近的形状的物质(将其称为“有形体”)。该有形体可以为将RFeB系合金粉末压制成型为与最终产品相同或相近的形状的成型体,也可以为在具有与最终产品相同或相近的形状的模腔的容器(模具)中填充RFeB系合金粉末(不进行压制成型)而成的物质(专利文献2)。有形体为在模具中填充RFeB系合金粉末而不进行压制成型而成的物质的情况下,理想的是,对有形体(即,模具内的RFeB系合金粉末)进行烧结而不施加机械压力。如此,有形体的制作和烧结的过程中,通过不对RFeB系合金粉末施加机械压力,在具有高的矫顽力、且可以容易处理粒径小的RFeB系合金粉末的方面可以得到具有高的矫顽力的RFeB系烧结磁体(参照专利文献2)。
发明的效果
根据本发明,可以得到实质上不含有重稀土元素RH、且具有伴随着温度上升的矫顽力Hcj减少的比例小这样良好的温度特性的RFeB系烧结磁体。因此,本发明的RFeB系烧结磁体适于在使用中温度上升的用途。
附图说明
图1为说明制造本发明的RFeB系烧结磁体的方法的一例的图。
图2为示出对于实施例1和比较例1、2的RFeB系烧结磁体,基于与取向轴垂直的面的显微镜图像,由晶粒的截面积的圆当量直径求出的粒度分布的图。
图3为示出对于实施例1和比较例1、2的RFeB系烧结磁体,求出温度特性值t(T-23)(t(100-23):包括T=100℃)的结果的图。
图4为示出对于实施例2和比较例3~5的RFeB系烧结磁体,求出温度特性值t(T-23)(t(100-23):包括T=100℃)的结果的图。
具体实施方式
使用图1~图4,说明本发明的RFeB系烧结磁体的实施例。
实施例
首先,使用图1,说明制造本发明的RFeB系烧结磁体的方法的一例。该制造方法中,进行HDDR工序(步骤S1)、粉碎工序(步骤S2)、填充工序(步骤S3)、取向工序(步骤S4)和烧结工序(步骤S5)这5个工序。原料使用通过薄带铸造(strip casting,SC)法制作的SC合金块。SC合金块通常为1边几mm左右的薄片状。本实施例中,使用组成不同的2种SC合金块1和2。将SC合金块1和2的组成示于表1。SC合金块1和2均不含有重稀土元素RH。
[表1]
表1 SC合金块的组成(单位:质量%)
Nd Pr B Cu Al Co Fe
SC合金块1 27.5 4.15 1.00 0.50 0.23 0.96 余量
SC合金块2 30.51 0.07 0.98 0.10 0.22 0 余量
HDDR工序中,首先,通过将SC合金块在利用氢气的压力下进行热处理(氢化(Hydrogenation)),将SC合金块内的R2Fe14B化合物(主相)分解(Disproportionation)为RH2、Fe2B、Fe这3相。本实施例中,氢气的压力为100kPa,上述热处理的温度(第1热处理温度)设为950℃,进行热处理60分钟。接着,以维持在比第1热处理温度低的第2热处理温度的状态形成真空,从而使氢从RH2相释放(Desorption),与Fe2B相和Fe相一起产生再结合反应(Recombination)。本实施例中,使第2热处理温度为800℃,使真空维持60分钟。由此,可以得到面积基准平均粒径Dave s约为0.6μm的RFeB系多晶体。
粉碎工序中,首先,将RFeB系多晶体在不从外部加热的情况下暴露于氢气中。由此,RFeB系多晶体自然放热,同时吸藏氢而脆化。接着,通过将RFeB系多晶体用机械粉碎机进行粗破碎,得到粗粉。将该粗粉导入至氦气循环式喷射式粉碎机(Nippon PneumaticMfg.Co.,Ltd.制。简称“He喷射式粉碎机”)进行粉碎。对于He喷射式粉碎机,与使用氮气气体的N2喷射式粉碎机相比,可以得到约3倍快的高速气流,因此原料被加速至高速、反复碰撞,由此可以粉碎至利用N2喷射式粉碎机无法实现的、面积基准平均粒径Dave S小于1μm。由此,制作面积基准平均粒径Dave S对于SC合金块1为约0.6μm,对于SC合金块2为约0.67μm这样Dave S为0.7μm以下的RFeB系合金粉末。
填充工序中,在具有与作为最终产品的RFeB系烧结磁体的形状对应的空洞的模具中以规定的填充密度(本实施例中为3.6g/cm3)填充RFeB系合金粉末,接着,取向工序中,对模具内的RFeB系合金粉末施加磁场(本实施例中为5T的直流脉冲磁场),从而使合金粉末取向。烧结工序中,将每个装有取向了的合金粉末的模具收纳于烧结炉,进行真空加热(本实施例中于880℃加热2小时),从而使其烧结。通过这些填充工序、取向工序和烧结工序,对合金粉末不施加用于成型的机械压力。通过经过以上的工序,可以得到本实施例的RFeB系烧结磁体。以下,对于由SC合金块1制作的RFeB系烧结磁体,称为“实施例1”,对于由SC合金块2制作的RFeB系烧结磁体,称为“实施例2”。
作为比较例,利用将与本实施例中使用的同一批次的SC合金块1和SC合金块2粉碎而成的RFeB系合金粉末,制作RFeB系烧结磁体。对于SC合金块的粉碎,对SC合金块1,以面积基准平均粒径Dave S为1.4μm(比较例1)和3.1μm(比较例2)的方式进行粉碎;对SC合金块2,以Dave S为1.32μm(比较例3)、3.30μm(比较例4)和4.10μm(比较例5)的方式进行。这些比较例中,不进行HDDR工序,粉碎工序中通过氢吸藏法使SC合金脆化后进行粗破碎,从而制作粗粉,然后利用He喷射式粉碎机进行粉碎,由此制作合金粉末。填充工序、取向工序和烧结工序通过与实施例1和2同样的方法进行。
图2的图中示出:对于实施例1和比较例1、2的RFeB系烧结磁体,基于与取向轴垂直的面的显微镜图像,由晶粒的截面积的圆当量直径求出的粒度分布。根据该图,求出面积基准平均粒径Dave S时,实施例1中为0.83μm,比较例1中为1.78μm,比较例2中为3.65μm。
对于这些实施例1和比较例1、2,基于得到的矫顽力Hcj的数据,求出T=60℃、100℃、140℃和180℃下的温度特性值t(T-23),将其结果示于图3的图。该图中的位于纵向虚线上的数据为本发明中限定的T=100℃时的温度特性值t(100-23)。对于实施例1和比较例1、2中的数据的大小关系(即优劣),矫顽力Hcj本身根据温度而有差异,但温度特性值t(T-23)却总是相同的且不依赖于T。而且,对于温度特性值t(100-23),实施例1中为-0.53,具有大于比较例1中的-0.66、比较例2中的-0.73和非专利文献1中的最高值即-0.58的值。如此,实施例1的RFeB系烧结磁体与比较例1和2以及非专利文献1中记载的RFeB系烧结磁体相比具有良好的温度特性。
根据同样的方法,将实施例2和比较例3~5的温度特性值t(T-23)的结果示于图4的图中。对于温度特性值t(100-23),实施例2中为-0.48,具有大于比较例3~5中的值(-0.66~-0.60)和非专利文献1中的最高值即-0.58的值。另外,该实施例2的温度特性值t(100-23)的值大于实施例1中的值。这是由于,实施例2中,Pr的含量为0.07质量%,这是低于实施例1(4.15质量%)的值。

Claims (5)

1.一种RFeB系烧结磁体,其特征在于,其除了含有Fe和B以外,还含有作为稀土元素R的Nd和Pr中的至少1种,而不含有Dy、Tb和Ho,
所述RFeB系烧结磁体的温度特性值t(100-23)为-0.58<t(100-23)<0,该温度特性值是使用温度为23℃时的矫顽力的值Hcj(23)和温度为100℃时的矫顽力的值Hcj(100)如下定义的,
t ( 100 - 23 ) = H c j ( 100 ) - H c j ( 23 ) ( 100 - 23 ) &times; H c j ( 23 ) &times; 100.
2.根据权利要求1所述的RFeB系烧结磁体,其特征在于,温度特性值t(100-23)为-0.58<t(100-23)≤-0.48。
3.根据权利要求1或2所述的RFeB系烧结磁体,由截面的显微镜图像求出的、基于晶粒的圆当量直径的面积基准平均粒径为1μm以下。
4.一种RFeB系烧结磁体的制造方法,其特征在于,该方法为制造权利要求1~3中任一项所述的RFeB系烧结磁体的方法,
使用面积基准平均粒径为0.7μm以下的RFeB系合金粉末,制作通过磁场使其取向的有形体,并将该有形体进行烧结。
5.根据权利要求4所述的RFeB系烧结磁体的制造方法,其特征在于,对原料合金的粗粉实施HDDR法,从而制作晶粒微细化粗粉粒,将该晶粒微细化粗粉粒通过氢破碎法破碎后,通过使用氦气的喷射式粉碎机法进行粉碎,由此制作所述RFeB系合金粉末。
CN201580044078.6A 2014-08-18 2015-08-18 RFeB系烧结磁体 Pending CN106575556A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014-165953 2014-08-18
JP2014165953 2014-08-18
PCT/JP2015/073064 WO2016027791A1 (ja) 2014-08-18 2015-08-18 RFeB系焼結磁石

Publications (1)

Publication Number Publication Date
CN106575556A true CN106575556A (zh) 2017-04-19

Family

ID=55350735

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580044078.6A Pending CN106575556A (zh) 2014-08-18 2015-08-18 RFeB系烧结磁体

Country Status (5)

Country Link
US (1) US20170278604A1 (zh)
EP (1) EP3185252A4 (zh)
JP (1) JPWO2016027791A1 (zh)
CN (1) CN106575556A (zh)
WO (1) WO2016027791A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6848736B2 (ja) * 2016-07-15 2021-03-24 Tdk株式会社 R−t−b系希土類永久磁石
JP6652011B2 (ja) * 2016-08-05 2020-02-19 Tdk株式会社 R−t−b系焼結磁石

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103917A (zh) * 2009-12-22 2011-06-22 北京有色金属研究总院 一种钕铁硼磁体、制备方法及应用该磁体的器件
JP2011216720A (ja) * 2010-03-31 2011-10-27 Nitto Denko Corp 永久磁石及び永久磁石の製造方法
JP2013135142A (ja) * 2011-12-27 2013-07-08 Toyota Motor Corp 希土類磁石用の急冷リボンの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3423965B2 (ja) * 1992-09-02 2003-07-07 住友特殊金属株式会社 永久磁石用異方性希土類合金粉末の製造方法
US8317941B2 (en) * 2008-03-31 2012-11-27 Hitachi Metals, Ltd. R-T-B-type sintered magnet and method for production thereof
JP2010182827A (ja) * 2009-02-04 2010-08-19 Toyota Motor Corp 高保磁力NdFeBGa磁石の製造法
JP2010219499A (ja) * 2009-02-18 2010-09-30 Tdk Corp R−t−b系希土類焼結磁石及びその製造方法
CN102214508B (zh) * 2010-04-02 2014-03-12 烟台首钢磁性材料股份有限公司 R-t-b-m-a系稀土类永磁体以及其制造方法
WO2014142137A1 (ja) * 2013-03-12 2014-09-18 インターメタリックス株式会社 RFeB系焼結磁石の製造方法及びそれにより製造されるRFeB系焼結磁石

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102103917A (zh) * 2009-12-22 2011-06-22 北京有色金属研究总院 一种钕铁硼磁体、制备方法及应用该磁体的器件
JP2011216720A (ja) * 2010-03-31 2011-10-27 Nitto Denko Corp 永久磁石及び永久磁石の製造方法
JP2013135142A (ja) * 2011-12-27 2013-07-08 Toyota Motor Corp 希土類磁石用の急冷リボンの製造方法

Also Published As

Publication number Publication date
JPWO2016027791A1 (ja) 2017-06-22
EP3185252A1 (en) 2017-06-28
EP3185252A4 (en) 2017-08-30
US20170278604A1 (en) 2017-09-28
WO2016027791A1 (ja) 2016-02-25

Similar Documents

Publication Publication Date Title
KR102453981B1 (ko) 희토류 자석 형성용 소결체 및 희토류 소결 자석
CN107134336B (zh) R-t-b系永久磁铁
WO2015198396A1 (ja) 希土類磁石成形体の製造方法
CN105469917B (zh) 高温混合永磁体及其形成方法
CN105190802A (zh) RFeB系烧结磁体的制造方法和利用其制造的RFeB系烧结磁体
JP6780707B2 (ja) 希土類磁石の製造方法
CN104575920A (zh) 稀土永磁体及其制备方法
JP6471669B2 (ja) R−t−b系磁石の製造方法
JP2015220335A (ja) 希土類磁石、及び希土類磁石の製造方法
JP2016082175A (ja) Sm−Fe−N系磁石成形体およびその製造方法
JP6613730B2 (ja) 希土類磁石の製造方法
KR20190085442A (ko) 희토류 자석
JP6691666B2 (ja) R−t−b系磁石の製造方法
KR20190125770A (ko) 희토류 영구자석의 제조방법
CN106575556A (zh) RFeB系烧结磁体
JP2021130840A (ja) 希土類磁石粉末とその製造方法
JP6691667B2 (ja) R−t−b系磁石の製造方法
JP5103428B2 (ja) 希土類焼結磁石製造方法
US20090218012A1 (en) Material for magnetic anisotropic magnet
JP2011210838A (ja) 希土類焼結磁石及びその製造方法、並びに回転機
JP6733507B2 (ja) 希土類磁石の製造方法
WO2017022685A1 (ja) 希土類磁石形成用焼結体及び希土類焼結磁石
JP2018152526A (ja) RFeB系焼結磁石の製造方法
JP3247460B2 (ja) 希土類磁石用原料粉末の製造方法
JP2006258616A (ja) 配向度評価方法、希土類焼結磁石及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170419

WD01 Invention patent application deemed withdrawn after publication