CN106249600A - The model reference adaptive position control method of supersonic motor and system - Google Patents
The model reference adaptive position control method of supersonic motor and system Download PDFInfo
- Publication number
- CN106249600A CN106249600A CN201610863442.8A CN201610863442A CN106249600A CN 106249600 A CN106249600 A CN 106249600A CN 201610863442 A CN201610863442 A CN 201610863442A CN 106249600 A CN106249600 A CN 106249600A
- Authority
- CN
- China
- Prior art keywords
- speed
- value
- supersonic motor
- model
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 44
- 230000004044 response Effects 0.000 claims description 32
- 230000000630 rising effect Effects 0.000 claims description 8
- 230000007423 decrease Effects 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 5
- 230000033228 biological regulation Effects 0.000 claims 2
- 230000014509 gene expression Effects 0.000 claims 2
- 230000001105 regulatory effect Effects 0.000 claims 2
- 230000008569 process Effects 0.000 abstract description 7
- 230000010355 oscillation Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 5
- 238000004088 simulation Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000011217 control strategy Methods 0.000 description 3
- 238000004590 computer program Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
本发明涉及超声波电机的模型参考自适应位置控制方法及系统,属于超声波电机的控制技术领域。该方法包括:根据位置指令yr输出一个实际位置值yp;根据位置指令yr输出一个位置参考值ym;根据实际位置值yp和位置参考值ym,输出一个参考误差e1;根据参考误差e1调节实际位置值yp;根据位置参考值ym,作微分求得位置参考值ym对应的转速参考值nm;当转速参考值nm大于超声波电机最大转速N时,将位置参考值ym以转速参考值nm不大于N时对应的位置参考值ym代替。采用本发明的方法与系统,参考模型能够与存在最大转速限制的超声波电机之间更好匹配,在根本上限制了模型参考自适应位置输出大幅度饱和所导致的位置控制超调和振荡过程,改善了控制性能。
The invention relates to a model reference adaptive position control method and system of an ultrasonic motor, belonging to the technical field of ultrasonic motor control. The method includes: outputting an actual position value y p according to the position command y r ; outputting a position reference value y m according to the position command y r ; outputting a reference error e 1 according to the actual position value y p and the position reference value y m ; Adjust the actual position value y p according to the reference error e 1 ; according to the position reference value y m , make a differential to obtain the speed reference value n m corresponding to the position reference value y m ; when the speed reference value n m is greater than the maximum speed N of the ultrasonic motor, The position reference value y m is replaced by the corresponding position reference value y m when the rotational speed reference value n m is not greater than N. By adopting the method and system of the present invention, the reference model can be better matched with the ultrasonic motor with a maximum speed limit, which fundamentally limits the position control overshoot and oscillation process caused by the large saturation of the model reference adaptive position output, and improves the control performance.
Description
技术领域technical field
本发明涉及超声波电机的模型参考自适应位置控制方法及系统,属于超声波电机的控制技术领域。The invention relates to a model reference adaptive position control method and system of an ultrasonic motor, belonging to the technical field of ultrasonic motor control.
背景技术Background technique
超声波电机在汽车电子、精密仪器、机器人、航空航天以及武器装备等领域有着广阔的应用前景。但是由于超声波电机内部压电材料、定转子间机械能摩擦传递等方面的非线性,使超声波电机具有比传统电磁电机更强的时变非线性运行特性。同时,超声波电机驱动电路工作在开关状态,其控制关系也有着非线性的特征,使得超声波电机系统的时变非线性更加明显,不易获得良好的运动控制性能。为改善其控制性能,通常应采用具有自适应特点的控制策略,实时调整控制器参数或结构。Ultrasonic motors have broad application prospects in the fields of automotive electronics, precision instruments, robots, aerospace, and weaponry. However, due to the nonlinearity of the piezoelectric material inside the ultrasonic motor and the frictional transmission of mechanical energy between the stator and rotor, the ultrasonic motor has stronger time-varying nonlinear operating characteristics than the traditional electromagnetic motor. At the same time, the ultrasonic motor drive circuit works in the switch state, and its control relationship also has nonlinear characteristics, which makes the time-varying nonlinearity of the ultrasonic motor system more obvious, and it is difficult to obtain good motion control performance. In order to improve its control performance, a control strategy with adaptive characteristics should be adopted to adjust the controller parameters or structure in real time.
目前,模型参考自适应控制(MRAC)、模糊控制、神经网络控制等控制策略都已被用于超声波电机的运动控制研究。如按照传统设计方法设计超声波电机模型参考自适应(MRAC)位置控制系统,如图1所示。图中,yr为电机旋转角度(即位置的给定值),位置模型参考自适应位置控制器给出电机转速给定值nr。因实际使用的电机都会有允许的最大转速值(例如,所用实验电机的最大转速值为120r/min),而nr可能超出这一限值,所以在位置控制器之后设置“转速给定值限幅”环节,将nr值限制在电机允许的最大转速值之下。Wp(s)为包含超声波电机在内的转速控制内环的传递函数,其输出为电机实际转速np,电机转速经积分环节1/s得到电机旋转角度即实际位置值yp。图中,Wm(s)为参考模型,其输出为电机位置参考值ym。ym与yp做差,得到参考误差e1,e1用来在线调节模型参考自适应位置控制器中的可调参数,以实现自适应控制。At present, control strategies such as model reference adaptive control (MRAC), fuzzy control, and neural network control have been used in the motion control research of ultrasonic motors. For example, the ultrasonic motor model reference adaptive (MRAC) position control system is designed according to the traditional design method, as shown in Figure 1. In the figure, y r is the rotation angle of the motor (that is, the given value of the position), and the position model refers to the given value of the motor speed n r by the adaptive position controller. Because the motors actually used will have a maximum allowable speed value (for example, the maximum speed value of the experimental motor used is 120r/min), and n r may exceed this limit, so set the "speed given value" after the position controller "Limiting" link, which limits the value of n r below the maximum speed value allowed by the motor. W p (s) is the transfer function of the speed control inner loop including the ultrasonic motor, and its output is the actual speed n p of the motor, and the motor speed is passed through the integration link 1/s to obtain the rotation angle of the motor, that is, the actual position value y p . In the figure, W m (s) is a reference model, and its output is a motor position reference value y m . The difference between y m and y p is obtained to obtain the reference error e 1 , which is used to adjust the adjustable parameters in the model reference adaptive position controller online to realize adaptive control.
以Shinsei USR60型两相行波超声波电机为控制对象,编程实现所设计的MRAC位置控制策略,研究其控制性能。Taking the Shinsei USR60 two-phase traveling wave ultrasonic motor as the control object, the designed MRAC position control strategy is programmed to study its control performance.
图2给出了当位置阶跃给定值为360°,参考模型的传递函数分别为响应速度较慢的Wm1和响应速度较快的Wm2时的位置输出响应曲线。由图2中实线可以看出参考模型选为Wm1时,实际位置值能够很好地跟踪参考模型输出,且输出无超调,但响应速度缓慢,调节时间约为3.575s,不符合超声波电机的短时、快速工作特点;当参考模型选为Wm2时,图2中的虚线表明位置输出有较大超调,但调节时间仅为0.936s。产生超调是由于所选参考模型的性能过高,可调系统在试图跟踪参考模型变化的过程中,会使位置MRAC控制器的作用过于强烈。由于位置MRAC控制器的输出是参考转速,而超声波电机转速限幅为120r/min,控制系统仅对控制器输出转速限幅而对控制量计算过程并没有限幅作用,从而导致位置输出产生较大超调。Figure 2 shows the position output response curves when the given value of the position step is 360°, and the transfer functions of the reference model are respectively W m1 with a slower response speed and W m2 with a faster response speed. It can be seen from the solid line in Figure 2 that when the reference model is selected as W m1 , the actual position value can track the output of the reference model well, and the output has no overshoot, but the response speed is slow, and the adjustment time is about 3.575s, which does not conform to the ultrasonic The short-term and fast working characteristics of the motor; when the reference model is selected as W m2 , the dotted line in Figure 2 indicates that the position output has a large overshoot, but the adjustment time is only 0.936s. Overshoot occurs because the performance of the selected reference model is too high, and the adjustable system will make the position MRAC controller too strong in the process of trying to track the change of the reference model. Since the output of the position MRAC controller is the reference speed, and the speed limit of the ultrasonic motor is 120r/min, the control system only limits the output speed of the controller but has no effect on the calculation process of the control amount, resulting in relatively large position output. Big overshoot.
发明内容Contents of the invention
本发明的目的在于提供超声波电机的模型参考自适应位置控制方法及系统,以解决超声波电机转速限幅导致的位置输出超调和振荡问题。The purpose of the present invention is to provide a model reference adaptive position control method and system for an ultrasonic motor to solve the problems of position output overshoot and oscillation caused by the speed limit of the ultrasonic motor.
为了实现上述目的,本发明的超声波电机的模型参考自适应位置控制方法,包括:根据超声波电机的位置指令yr输出一个实际位置值yp;根据超声波电机的位置指令yr输出一个位置参考值ym;根据实际位置值yp和位置参考值ym,输出一个参考误差e1,参考误差e1为位置参考值ym与实际位置值yp之差;根据参考误差e1调节实际位置值yp;还包括根据位置参考值ym,作微分求得位置参考值ym对应的转速参考值nm;当转速参考值nm大于超声波电机的实际最大转速N时,将位置参考值ym以转速参考值nm不大于超声波电机的实际最大转速N时对应的位置参考值ym代替。In order to achieve the above object, the model reference adaptive position control method of the ultrasonic motor of the present invention includes: outputting an actual position value yp according to the position command yr of the ultrasonic motor ; outputting a position reference value according to the position command yr of the ultrasonic motor y m ; output a reference error e 1 according to the actual position value y p and the position reference value y m , the reference error e 1 is the difference between the position reference value y m and the actual position value y p ; adjust the actual position according to the reference error e 1 value y p ; it also includes differentially obtaining the speed reference value n m corresponding to the position reference value y m according to the position reference value y m ; when the speed reference value n m is greater than the actual maximum speed N of the ultrasonic motor, the position reference value y m is replaced by the corresponding position reference value y m when the speed reference value n m is not greater than the actual maximum speed N of the ultrasonic motor.
进一步地,超声波电机的模型参考自适应位置输出的阶跃响应曲线依次包括三个区域,分别为启动低速区、转速上升区和转速下降区,其中启动低速区和转速下降区的转速参考值nm不大于超声波电机实际最大转速N,转速上升区转速参考值nm大于超声波电机的实际最大转速N。Furthermore, the step response curve of the model reference adaptive position output of the ultrasonic motor includes three areas in turn, which are the start-up low-speed area, the speed-up area, and the speed-down area, wherein the speed reference value n of the start-up low-speed area and the speed drop area m is not greater than the actual maximum rotational speed N of the ultrasonic motor, and the rotational speed reference value n m in the rotational speed rising zone is greater than the actual maximum rotational speed N of the ultrasonic motor.
进一步地,还包括在转速下降区对位置参考值ym进行线性插值:Further, it also includes performing linear interpolation on the position reference value y m in the speed drop zone:
设插值区间为[k1,N],采样时间为Ts,y(k)和y(k+1)分别表示k时刻和k+1时刻参考模型输出的位置参考值,T(k)和T(k+1)分别表示k时刻和k+1时刻的时间点,插值点用(x,y)表示,且有x=T(k)+a*Ts,a为插值间隔,则插值计算式可表示为:Suppose the interpolation interval is [k1, N], the sampling time is Ts, y(k) and y(k+1) represent the position reference value output by the reference model at time k and k+1 respectively, T(k) and T( k+1) represent the time points of time k and k+1 respectively, the interpolation point is represented by (x, y), and x=T(k)+a*Ts, a is the interpolation interval, then the interpolation calculation formula can be Expressed as:
式中,当yr<360°时,0<a<1;yr=360°时,a=1;当yr>360°时,a>1。In the formula, when y r <360°, 0<a<1; when y r =360°, a=1; when y r >360°, a>1.
进一步地,采用超声波电机驱动电压频率为调节变量。Further, the driving voltage frequency of the ultrasonic motor is used as the adjustment variable.
本发明的超声波电机的模型参考自适应位置控制系统,包括:用于根据超声波电机的位置指令yr输出一个实际位置值yp的单元;用于根据超声波电机的位置指令yr输出一个位置参考值ym的单元;用于根据实际位置值yp和位置参考值ym,输出一个参考误差e1的单元,参考误差e1为位置参考值ym与实际位置值yp之差;用于根据参考误差e1调节实际位置值yp的单元;还包括用于根据位置参考值ym,作微分求得位置参考值ym对应的转速参考值nm的单元;用于当转速参考值nm大于超声波电机的实际最大转速N时,将位置参考值ym以转速参考值nm不大于超声波电机的实际最大转速N时对应的位置参考值ym代替的单元。The model reference adaptive position control system of the ultrasonic motor of the present invention includes: a unit for outputting an actual position value yp according to the position command yr of the ultrasonic motor; for outputting a position reference according to the position command yr of the ultrasonic motor The unit of value y m ; used to output a unit of reference error e 1 according to the actual position value y p and the position reference value y m , the reference error e 1 is the difference between the position reference value y m and the actual position value y p ; use It is a unit for adjusting the actual position value y p according to the reference error e 1 ; it also includes a unit for differentially obtaining the speed reference value n m corresponding to the position reference value y m according to the position reference value y m ; it is used when the speed reference When the value n m is greater than the actual maximum speed N of the ultrasonic motor, the position reference value y m is replaced by the corresponding position reference value y m when the speed reference value n m is not greater than the actual maximum speed N of the ultrasonic motor.
进一步地,超声波电机的模型参考自适应位置输出的阶跃响应曲线依次包括三个区域,分别为启动低速区、转速上升区和转速下降区,其中启动低速区和转速下降区的转速参考值nm不大于超声波电机实际最大转速N,转速上升区的转速参考值nm大于超声波电机的实际最大转速N。Furthermore, the step response curve of the model reference adaptive position output of the ultrasonic motor includes three areas in turn, which are the start-up low-speed area, the speed-up area, and the speed-down area, wherein the speed reference value n of the start-up low-speed area and the speed drop area m is not greater than the actual maximum rotational speed N of the ultrasonic motor, and the rotational speed reference value n m in the rotational speed rising zone is greater than the actual maximum rotational speed N of the ultrasonic motor.
进一步地,还包括用于在转速下降区对位置参考值ym进行线性插值的单元:Further, it also includes a unit for performing linear interpolation on the position reference value y m in the rotational speed drop zone:
设插值区间为[k1,N],采样时间为Ts,y(k)和y(k+1)分别表示k时刻和k+1时刻参考模型输出的位置参考值,T(k)和T(k+1)分别表示k时刻和k+1时刻的时间点,插值点用(x,y)表示,且有x=T(k)+a*Ts,a为插值间隔,则插值计算式可表示为:Suppose the interpolation interval is [k1, N], the sampling time is Ts, y(k) and y(k+1) represent the position reference value output by the reference model at time k and k+1 respectively, T(k) and T( k+1) represent the time points of time k and k+1 respectively, the interpolation point is represented by (x, y), and x=T(k)+a*Ts, a is the interpolation interval, then the interpolation calculation formula can be Expressed as:
式中,当yr<360°时,0<a<1;yr=360°时,a=1;当yr>360°时,a>1。In the formula, when y r <360°, 0<a<1; when y r =360°, a=1; when y r >360°, a>1.
进一步地,采用超声波电机驱动电压频率为调节变量。Further, the driving voltage frequency of the ultrasonic motor is used as the adjustment variable.
本发明的有益效果是:采用本发明的超声波电机的模型参考自适应位置控制方法及系统,使得参考模型能够在反映控制期望的同时,与存在最大转速限制的电机之间更好匹配,从而在根本上限制了模型参考自适应位置控制器输出大幅度饱和所导致的位置控制超调和振荡过程,改善了控制性能。The beneficial effects of the present invention are: adopting the model reference adaptive position control method and system of the ultrasonic motor of the present invention enables the reference model to better match with the motor with the maximum rotational speed limit while reflecting the control expectation, thereby in The position control overshoot and oscillation process caused by the large saturation of the output of the model reference adaptive position controller are fundamentally limited, and the control performance is improved.
由于本发明采用电机驱动电压频率为调节变量,避免了采用驱动电压相位差作为调节变量时引起的超声波电机系统的运行效率和电机旋转位置的不平稳问题,从而提高了电机位置控制性能。Since the present invention adopts the motor drive voltage frequency as the adjustment variable, the operation efficiency of the ultrasonic motor system and the instability of the motor rotation position caused when the drive voltage phase difference is used as the adjustment variable are avoided, thereby improving the position control performance of the motor.
附图说明Description of drawings
图1是传统的超声波电机位置控制系统结构框图;Figure 1 is a structural block diagram of a traditional ultrasonic motor position control system;
图2是传统的超声波电机位置控制系统对应的位置阶跃响应曲线;Figure 2 is the corresponding position step response curve of the traditional ultrasonic motor position control system;
图3是超声波电机的模型参考自适应位置控制方法实施例1的位置控制系统结构框图;Fig. 3 is the structural block diagram of the position control system of embodiment 1 of the model reference adaptive position control method of the ultrasonic motor;
图4是超声波电机的模型参考自适应位置控制方法实施例1的参考模型的位置阶跃响应曲线;Fig. 4 is the position step response curve of the reference model of the model reference adaptive position control method embodiment 1 of the ultrasonic motor;
图5是超声波电机的模型参考自适应位置控制方法实施例1的参考模型的转速输出曲线;Fig. 5 is the rotational speed output curve of the reference model of the model reference adaptive position control method embodiment 1 of the ultrasonic motor;
图6是超声波电机的模型参考自适应位置控制方法实施例1的位置阶跃响应曲线;Fig. 6 is the position step response curve of the model reference adaptive position control method embodiment 1 of the ultrasonic motor;
图7是超声波电机的模型参考自适应位置控制方法实施例1的多位置阶跃响应曲线;Fig. 7 is the multi-position step response curve of the model reference adaptive position control method embodiment 1 of the ultrasonic motor;
图8是超声波电机的模型参考自适应位置控制方法实施例2的多位置阶跃响应曲线。Fig. 8 is a multi-position step response curve of Embodiment 2 of the model reference adaptive position control method of an ultrasonic motor.
具体实施方式detailed description
下面结合附图对本发明作进一步说明。The present invention will be further described below in conjunction with accompanying drawing.
超声波电机的模型参考自适应位置控制方法实施例1Example 1 of a model reference adaptive position control method for an ultrasonic motor
本实施例1的超声波电机的模型参考自适应位置控制方法,如图3所示,根据超声波电机的位置指令yr输出一个实际位置值yp;根据超声波电机的位置指令yr输出一个位置参考值ym;根据实际位置值yp和位置参考值ym,输出一个参考误差e1,参考误差e1为位置参考值ym与实际位置值yp之差;根据参考误差e1调节实际位置值yp;还包括根据位置参考值ym,作微分求得位置参考值ym对应的转速参考值nm;当转速参考值nm大于超声波电机的实际最大转速N时,将位置参考值ym以转速参考值nm不大于超声波电机的实际最大转速N时对应的位置参考值ym代替。The model reference adaptive position control method of the ultrasonic motor of the present embodiment 1, as shown in Figure 3, outputs an actual position value y p according to the position command y r of the ultrasonic motor; outputs a position reference according to the position command y r of the ultrasonic motor value y m ; according to the actual position value y p and the position reference value y m , output a reference error e 1 , the reference error e 1 is the difference between the position reference value y m and the actual position value y p ; adjust the actual position according to the reference error e 1 position value y p ; it also includes differentially obtaining the speed reference value n m corresponding to the position reference value y m according to the position reference value y m ; when the speed reference value n m is greater than the actual maximum speed N of the ultrasonic motor, the position reference The value y m is replaced by the corresponding position reference value y m when the speed reference value n m is not greater than the actual maximum speed N of the ultrasonic motor.
为了便于分析参考模型对控制性能的影响,图4给出了参考模型在360°给定下的阶跃响应仿真曲线,图5给出了对应的转速输出曲线。图4中实线是采用本实施例1的阶跃响应仿真曲线,虚线代表参考模型为Wm2时的阶跃响应仿真曲线,点画线表示参考模型为Wm1时的阶跃响应仿真曲线。以参考模型转速最高为120r/min为界,可以将参考模型为Wm2时的阶跃响应曲线分为三个区域,即电机启动时的低速区(图4中的OA区域)、转速上升区(图4中的AB区域)和电机要达到稳态位置时的转速下降区(图4中的BE区域)。参看图5,OA区域是位置阶跃响应的初始段,转速输出低于120r/min,AB区域是位置响应的上升段,期间的转速输出高于120r/min,BE区域表示位置输出接近给定位置,参考模型的转速降至小于120r/min的范围内。In order to facilitate the analysis of the influence of the reference model on the control performance, Figure 4 shows the simulation curve of the step response of the reference model at a given 360°, and Figure 5 shows the corresponding speed output curve. The solid line in Fig. 4 is the step response simulation curve of the present embodiment 1, the dotted line represents the step response simulation curve when the reference model is Wm2 , and the dotted line represents the step response simulation curve when the reference model is Wm1 . Taking the maximum speed of the reference model as 120r/min as the boundary, the step response curve when the reference model is W m2 can be divided into three areas, namely the low speed area when the motor starts (the OA area in Figure 4), and the speed rising area (Area AB in Figure 4) and the speed drop zone (BE area in Figure 4) when the motor is about to reach a steady state position. Referring to Figure 5, the OA region is the initial stage of the position step response, the speed output is lower than 120r/min, the AB region is the rising stage of the position response, and the speed output during the period is higher than 120r/min, and the BE region indicates that the position output is close to the given position, the speed of the reference model is reduced to less than 120r/min.
由于OA区域参考模型的转速输出低于120r/min,在电机可运行范围内,因此本实施例1的参考模型输出的初始阶段仍用OA区域的值。超声波电机模型参考自适应位置控制方法主要是对转速上升的AB区域和转速下降的BE区域进行改进。Since the speed output of the reference model in the OA region is lower than 120r/min, which is within the operable range of the motor, the value of the OA region is still used in the initial stage of the output of the reference model in Embodiment 1. The ultrasonic motor model reference adaptive position control method mainly improves the AB region where the speed increases and the BE region where the speed decreases.
AB区域转速输出高于120r/min,即超出电机允许的最高运行转速,将参考模型中转速输出高于120r/min的部分以等于或略低于120r/min的转速输出代替,图4所示是以120r/min代替AB区域的转速输出,如图4实线曲线上的AC区域所示。显然经此改变之后的转速比较低,位置上升比较慢,相同时间内位置输出仅仅到达C点所对应的位置输出值,还需要一定的时间才能到达B点所对应的位置输出。为了实现位置跟踪,改进的参考模型仍保持匀速运行,直到达到与B点同样高度的位置输出,也即图4实线曲线上的D点所示。位置响应曲线到达D点之后,在DE区域的位置输出已趋近于给定值,电机转速从120r/min缓降至零,转速处于电机允许运行速度范围内。因此,模型参考自适应位置控制方法中DE区域的输出仍沿用原参考模型BE区域的输出。通过对参考模型输出进行这样一种改进,就避免了因参考模型响应速度太快使得控制作用过强导致位置超调现象,这一点也可从图5看出。图5中,虚线代表采用参考模型Wm2时的转速变化过程,转速输出在AB区域内的变化比较大,最高约为700r/min;若采用此参考模型,位置输出必然因控制作用剧烈而导致超调。采用模型参考自适应位置控制方法后的转速输出如图6中实线所示,转速始终处于电机的允许范围内。The speed output in the AB area is higher than 120r/min, that is, it exceeds the maximum operating speed allowed by the motor. The part of the reference model whose speed output is higher than 120r/min is replaced by a speed output equal to or slightly lower than 120r/min, as shown in Figure 4 It is 120r/min instead of the speed output in the AB area, as shown in the AC area on the solid line curve in Figure 4. Obviously, after this change, the speed is relatively low, and the position rises relatively slowly. The position output only reaches the position output value corresponding to point C within the same time period, and it will take a certain amount of time to reach the position output value corresponding to point B. In order to achieve position tracking, the improved reference model still keeps running at a constant speed until it reaches the position output at the same height as point B, which is shown by point D on the solid line curve in Figure 4. After the position response curve reaches point D, the position output in the DE area has approached the given value, the motor speed drops from 120r/min to zero, and the speed is within the allowable operating speed range of the motor. Therefore, the output of the DE region in the model reference adaptive position control method still uses the output of the BE region of the original reference model. By making such an improvement on the output of the reference model, the position overshoot phenomenon caused by the too fast response speed of the reference model and the strong control effect is avoided, which can also be seen from Figure 5. In Fig. 5, the dotted line represents the speed change process when the reference model W m2 is used, and the speed output changes greatly in the AB region, with a maximum of about 700r/min; if this reference model is used, the position output must be caused by severe control effects. overshoot. The speed output after adopting the model reference adaptive position control method is shown by the solid line in Figure 6, and the speed is always within the allowable range of the motor.
超声波电机的模型参考自适应位置控制方法实施例2Example 2 of a model reference adaptive position control method for an ultrasonic motor
本发明超声波电机的模型参考自适应位置控制方法实施例2与超声波电机的模型参考自适应位置控制方法实施例1的不同之处仅在于:还包括在转速下降区对参考模型的输出进行线性插值的单元:在转速下降区对参考模型的输出进行线性插值,具体实现为:The difference between Embodiment 2 of the model reference adaptive position control method for an ultrasonic motor of the present invention and Embodiment 1 of the model reference adaptive position control method for an ultrasonic motor is that it also includes performing linear interpolation on the output of the reference model in the rotational speed drop zone The unit of : perform linear interpolation on the output of the reference model in the speed drop area, and the specific realization is as follows:
设插值区间为[k1,N],采样时间为Ts。y(k)和y(k+1)分别表示k时刻和k+1时刻的参考模型输出,T(k)和T(k+1)分别表示k时刻和k+1时刻的时间点。插值点用(x,y)表示,且有x=T(k)+a*Ts,a为插值间隔。Let the interpolation interval be [k1, N], and the sampling time be Ts. y(k) and y(k+1) represent the reference model output at time k and k+1, respectively, and T(k) and T(k+1) represent the time points at time k and k+1, respectively. The interpolation point is represented by (x, y), and x=T(k)+a*Ts, a is the interpolation interval.
则插值计算式可表示为:Then the interpolation formula can be expressed as:
式中,当yr<360°时,0<a<1;yr=360°时,a=1;当yr>360°时,a>1。In the formula, when y r <360°, 0<a<1; when y r =360°, a=1; when y r >360°, a>1.
超声波电机的模型参考自适应位置控制方法实施例1在其它位置给定值情况下的阶跃响应曲线,如图7所示,表1给出了对应的性能指标参数。从图7可以看出利用模型参考自适应位置控制方法后,能够实现对不同位置的跟踪控制,但在位置给定较小时位置输出有超调,而在位置给定较大时稳态波动较大。The model of the ultrasonic motor refers to the step response curves of Embodiment 1 of the adaptive position control method under other given position values, as shown in FIG. 7 , and Table 1 gives the corresponding performance index parameters. It can be seen from Figure 7 that after using the model reference adaptive position control method, the tracking control of different positions can be realized, but when the position setting is small, the position output has overshoot, and when the position setting is large, the steady-state fluctuation is relatively small. Big.
表1不同阶跃给定下的性能指标(e<5%)Table 1 Performance indicators under different step settings (e<5%)
分析表1数据也可以看出,在位置给定值较小时位置输出容易产生超调,说明位置控制器的控制作用仍然比较强烈;而在位置给定值较大时的位置输出虽无超调,但稳态时位置波动较大,说明控制作用频繁。这是由于整个位置控制范围内,参考模型的转速在低于120r/min时是按照位置给定值为360°时的期望转速输出而选的,对于较小的位置给定值,在接近位置给定值的过程中转速通常比较低,响应速度慢,若参考模型在接近稳态时的响应速度太快,为了跟踪上参考模型的变化,控制器就会产生较大的控制作用,由于电机转速限幅,从而导致位置输出产生超调;而位置给定值较大时,在转速低于120r/min时的响应速度通常比360°给定时的快,若采用原参考模型,则因响应速度慢而使阶跃响应的调节时间变长。Analyzing the data in Table 1, it can also be seen that the position output is prone to overshoot when the position given value is small, indicating that the control effect of the position controller is still relatively strong; while the position output has no overshoot when the position given value is large , but the position fluctuates greatly in steady state, indicating that the control action is frequent. This is because in the entire position control range, when the speed of the reference model is lower than 120r/min, it is selected according to the expected speed output when the position given value is 360°. In the process of setting the value, the speed is usually relatively low and the response speed is slow. If the response speed of the reference model is too fast when it is close to the steady state, in order to track the changes of the reference model, the controller will have a greater control effect. Because the motor The speed is limited, which leads to overshooting of the position output; when the position reference value is large, the response speed when the speed is lower than 120r/min is usually faster than that of 360°. If the original reference model is used, the response will be The slower the speed, the longer the adjustment time of the step response.
本实施例2,在转速低于120r/min时对参考模型的输出进行线性插值,即利用线性插值实现对速度下降区间上参考模型输出的放大或缩小。通过对参考模型的离线输出进行这样的改进后,在位置给定值较小时,其接近稳态时的响应速度变慢,以抑制超调;当位置给定值较大时,接近稳态时的响应速度又能加快,提高系统的整体响应速度。In Embodiment 2, linear interpolation is performed on the output of the reference model when the rotational speed is lower than 120 r/min, that is, linear interpolation is used to enlarge or reduce the output of the reference model in the speed drop interval. After such improvement to the offline output of the reference model, when the given position value is small, the response speed becomes slower when it is close to the steady state to suppress overshoot; The response speed can be accelerated, improving the overall response speed of the system.
利用改进后的参考模型在位置给定值不同时的阶跃响应如图8所示,从图中可以看出位置输出均无超调,在位置给定值较大时的稳态输出也无波动。表2给出了对应的性能指标数值,表中数据也验证了此前的分析。Figure 8 shows the step response of the improved reference model when the position reference value is different. It can be seen from the figure that there is no overshoot in the position output, and there is no steady-state output when the position reference value is large. fluctuation. Table 2 gives the corresponding performance index values, and the data in the table also verifies the previous analysis.
表2不同阶跃给定下的性能指标(e<5%)Table 2 Performance indicators under different step settings (e<5%)
超声波电机的模型参考自适应位置控制方法实施例3Embodiment 3 of a model reference adaptive position control method for an ultrasonic motor
本发明超声波电机的模型参考自适应位置控制方法实施例3与超声波电机的模型参考自适应位置控制方法实施例1的不同之处仅在于:采用电机驱动电压频率为位置控制器模块的调节变量。The difference between Embodiment 3 of the model reference adaptive position control method for ultrasonic motors of the present invention and Embodiment 1 of the model reference adaptive position control method for ultrasonic motors is that the motor drive voltage frequency is used as the adjustment variable of the position controller module.
采用电机驱动电压频率为调节变量,避免了采用驱动电压相位差作为调节变量时引起的超声波电机系统的运行效率和电机旋转位置的不平稳问题,从而提高了电机位置控制性能。Using the motor drive voltage frequency as the adjustment variable avoids the problem of the operation efficiency of the ultrasonic motor system and the instability of the motor rotation position caused by using the drive voltage phase difference as the adjustment variable, thereby improving the position control performance of the motor.
超声波电机的模型参考自适应位置控制系统实施例Embodiment of model reference adaptive position control system for ultrasonic motor
本实施例的超声波电机的模型参考自适应位置控制系统,用于根据超声波电机的位置指令yr输出一个实际位置值yp的单元;用于根据超声波电机的位置指令yr输出一个位置参考值ym的单元;用于根据实际位置值yp和位置参考值ym,输出一个参考误差e1的单元,参考误差e1为位置参考值ym与实际位置值yp之差;用于根据参考误差e1调节实际位置值yp的单元;还包括用于根据位置参考值ym,作微分求得位置参考值ym对应的转速参考值nm的单元;用于当转速参考值nm大于超声波电机的实际最大转速N时,将位置参考值ym以转速参考值nm不大于超声波电机的实际最大转速N时对应的位置参考值ym代替的单元。The model reference adaptive position control system of the ultrasonic motor in this embodiment is used to output a unit of actual position value y p according to the position command y r of the ultrasonic motor; it is used to output a position reference value according to the position command y r of the ultrasonic motor The unit of y m ; used to output a unit of reference error e 1 according to the actual position value y p and the position reference value y m , the reference error e 1 is the difference between the position reference value y m and the actual position value y p ; used for A unit for adjusting the actual position value y p according to the reference error e 1 ; it also includes a unit for differentially obtaining the speed reference value n m corresponding to the position reference value y m according to the position reference value y m ; used for when the speed reference value When n m is greater than the actual maximum speed N of the ultrasonic motor, the position reference value y m is replaced by the corresponding position reference value y m when the speed reference value n m is not greater than the actual maximum speed N of the ultrasonic motor.
上述各单元是与上面的方法实施例中各步骤相对应的功能模块。本发明的方法运行于相应的控制系统单元中,方法实施例中的全部或部分流程,是通过计算机程序或者计算机程序配合硬件来完成的。系统实施例即是与方法实施例相对应的一个功能模块构架。Each of the above units is a functional module corresponding to each step in the above method embodiment. The method of the present invention runs in the corresponding control system unit, and all or part of the processes in the method embodiments are completed through computer programs or computer programs in cooperation with hardware. The system embodiment is a functional module framework corresponding to the method embodiment.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610863442.8A CN106249600A (en) | 2016-09-29 | 2016-09-29 | The model reference adaptive position control method of supersonic motor and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610863442.8A CN106249600A (en) | 2016-09-29 | 2016-09-29 | The model reference adaptive position control method of supersonic motor and system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106249600A true CN106249600A (en) | 2016-12-21 |
Family
ID=57611859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610863442.8A Pending CN106249600A (en) | 2016-09-29 | 2016-09-29 | The model reference adaptive position control method of supersonic motor and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106249600A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113049259A (en) * | 2021-03-09 | 2021-06-29 | 中国地质大学(武汉) | Fuzzy control method of rack control system, storage medium and equipment |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4387421A (en) * | 1981-03-06 | 1983-06-07 | General Electric Company | Optimal and adaptive control of variable speed AC motor drives |
US5446360A (en) * | 1992-08-17 | 1995-08-29 | Samsung Electronics Co., Ltd. | Method and apparatus for controlling single phase induction motor |
CN103149843A (en) * | 2013-03-13 | 2013-06-12 | 河南科技大学 | Ultrasonic motor model reference self-adaptation control system based on MIT (Massachu-setts Institute of Technology) |
CN105116733A (en) * | 2015-09-25 | 2015-12-02 | 闽江学院 | Improved particle swarm optimizing neural network ultrasonic motor control system and method thereof |
-
2016
- 2016-09-29 CN CN201610863442.8A patent/CN106249600A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4387421A (en) * | 1981-03-06 | 1983-06-07 | General Electric Company | Optimal and adaptive control of variable speed AC motor drives |
US5446360A (en) * | 1992-08-17 | 1995-08-29 | Samsung Electronics Co., Ltd. | Method and apparatus for controlling single phase induction motor |
CN103149843A (en) * | 2013-03-13 | 2013-06-12 | 河南科技大学 | Ultrasonic motor model reference self-adaptation control system based on MIT (Massachu-setts Institute of Technology) |
CN105116733A (en) * | 2015-09-25 | 2015-12-02 | 闽江学院 | Improved particle swarm optimizing neural network ultrasonic motor control system and method thereof |
Non-Patent Citations (1)
Title |
---|
张亚楠 等: ""采用三段式参考模型的超声波电机模型参考自适应位置控制"", 《微电机》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113049259A (en) * | 2021-03-09 | 2021-06-29 | 中国地质大学(武汉) | Fuzzy control method of rack control system, storage medium and equipment |
CN113049259B (en) * | 2021-03-09 | 2021-12-14 | 中国地质大学(武汉) | Fuzzy control method of rack control system, storage medium and equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104953915B (en) | A kind of permagnetic synchronous motor sliding mode control strategy based on Reaching Law | |
CN104638999B (en) | Dual-servo-motor system control method based on segmentation neutral net friction model | |
CN107800343A (en) | The design method of asynchronous machine automatic disturbance rejection controller | |
CN105827168A (en) | PMSM control method and system based on sliding mode observation | |
CN112532131B (en) | Sliding mode active disturbance rejection control method and system based on simulated annealing particle swarm algorithm | |
CN107370431A (en) | A kind of industrial robot obscures Auto-disturbance-rejection Control with permagnetic synchronous motor | |
CN106655938A (en) | Permanent magnet synchronous machine control system and permanent magnet synchronous machine control method based on high-order sliding mode method | |
CN101977014B (en) | Energy consumption-time optimal control method for linear motor servo system and established system | |
CN111585488B (en) | A speed sensorless control method and system for a permanent magnet motor | |
CN112838797A (en) | A Fuzzy Sliding Mode Control Method for Permanent Magnet Synchronous Motor Based on Improved Exponential Reaching Law | |
CN113922724B (en) | Permanent magnet synchronous motor control method | |
CN108258946A (en) | A kind of Speed Sensorless Control Method of permanent magnetic linear synchronous motor | |
CN105182744B (en) | Anti-interference control method for nanometer positioning system | |
CN110703591A (en) | A control method of an active disturbance rejection controller for a rotary valve drive motor | |
CN108336935A (en) | A kind of linear motor control method of Reverse Step Control collaboration ESO | |
CN113098345A (en) | Permanent magnet motor control method based on sliding mode switching | |
CN103485978B (en) | Control method for compensating electromagnetic torque to realize quick and smooth tracking of maximum wind energy | |
CN115459659A (en) | A sensorless control parameter tuning method and device | |
CN111614294A (en) | A vector control method of permanent magnet synchronous motor based on terminal sliding mode | |
CN115882767A (en) | Linear motor friction compensation method combining model feedforward with observer | |
CN102664569A (en) | Sliding-mode-variable-structure-based control method and device for permanent-magnet synchronous linear motor | |
CN109639200A (en) | A kind of rotary inertia on-line identification method based on electric motor load torque detection | |
CN106249600A (en) | The model reference adaptive position control method of supersonic motor and system | |
CN110829918B (en) | A Constrained Backstep Control Algorithm for Servo System with Variable Constraint Coefficient | |
CN109507873A (en) | A kind of bandwidth parameter DC speed regulation feedback control system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20161221 |