[go: up one dir, main page]

CN104638999B - Dual-servo-motor system control method based on segmentation neutral net friction model - Google Patents

Dual-servo-motor system control method based on segmentation neutral net friction model Download PDF

Info

Publication number
CN104638999B
CN104638999B CN201410425147.5A CN201410425147A CN104638999B CN 104638999 B CN104638999 B CN 104638999B CN 201410425147 A CN201410425147 A CN 201410425147A CN 104638999 B CN104638999 B CN 104638999B
Authority
CN
China
Prior art keywords
msub
mrow
mover
friction
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410425147.5A
Other languages
Chinese (zh)
Other versions
CN104638999A (en
Inventor
任雪梅
张宇
赵威
李冬伍
吕晓华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201410425147.5A priority Critical patent/CN104638999B/en
Publication of CN104638999A publication Critical patent/CN104638999A/en
Application granted granted Critical
Publication of CN104638999B publication Critical patent/CN104638999B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feedback Control In General (AREA)
  • Lubricants (AREA)

Abstract

本发明涉及一种基于分段神经网络摩擦模型的双电机伺服系统控制方法,属于机电控制技术领域。首先对含摩擦的双电机驱动伺服系统进行分析,并按照机理建模方法,根据电机的结构和物理定律,建立含摩擦的双电机驱动伺服系统的数学模型。然后对模型中的摩擦项fi进行分析,并利用分段神经网络建立摩擦非线性fi的摩擦模型。得到的分段神经网络摩擦模型,利用终端滑模控制算法得到电机速度同步控制律,根据控制律完成对双电机伺服系统进行同步跟踪控制。本发明方法能够消除摩擦对双电机系统的影响,能使双电机系统具有较好瞬态性能,有效提高了双电机伺服系统的跟踪响应速度,能够保证双电机系统的快速同步。

The invention relates to a control method for a dual-motor servo system based on a segmented neural network friction model, and belongs to the technical field of electromechanical control. Firstly, the friction-containing dual-motor drive servo system is analyzed, and according to the mechanism modeling method, the mathematical model of the friction-containing dual-motor drive servo system is established according to the structure and physical laws of the motor. Then the friction term f i in the model is analyzed, and the friction model of friction nonlinearity f i is established by using segmental neural network. The segmented neural network friction model is obtained, and the motor speed synchronous control law is obtained by using the terminal sliding mode control algorithm, and the synchronous tracking control of the dual-motor servo system is completed according to the control law. The method of the invention can eliminate the influence of friction on the dual-motor system, enable the dual-motor system to have better transient performance, effectively improve the tracking response speed of the dual-motor servo system, and ensure fast synchronization of the dual-motor system.

Description

基于分段神经网络摩擦模型的双电机伺服系统控制方法Control Method of Dual Motor Servo System Based on Segmented Neural Network Friction Model

技术领域technical field

本发明涉及一种双电机摩擦补偿同步跟踪控制方法,属于机电控制技术领域。The invention relates to a dual-motor friction compensation synchronous tracking control method, which belongs to the technical field of electromechanical control.

背景技术Background technique

随着现代科学技术的飞速发展,单电机伺服系统从功率、性能上越来越难满足大功率系统的需求,采用多台电机联合驱动负载的方法可以很好解决这一问题。在多电机伺服系统中,摩擦非线性导致了许多负面影响,例如,Stribeck效应和速度死区,在低速下严重影响伺服系统的跟踪精度。这使得利用传统的控制器很难保证多电机伺服系统取得良好的控制效果。如何保证多电机伺服系统的高精度跟踪和同步控制已经成为了一个热点问题。With the rapid development of modern science and technology, it is increasingly difficult for single-motor servo systems to meet the needs of high-power systems in terms of power and performance. Using multiple motors to jointly drive loads can solve this problem very well. In multi-motor servo systems, frictional nonlinearity leads to many negative effects, for example, Stribeck effect and speed dead zone, which seriously affects the tracking accuracy of the servo system at low speeds. This makes it difficult to ensure a good control effect for the multi-motor servo system using traditional controllers. How to ensure high-precision tracking and synchronous control of multi-motor servo systems has become a hot issue.

摩擦是电机伺服系统中不可回避的问题。对于高精度伺服跟踪系统,摩擦环节的存在是提高系统性能的障碍。摩擦力对于系统静态性能的影响表现为输出响应有较大静差或稳态极限环震荡,对系统动态性能的影响表现为低速时出现爬行(抖动)现象和速度过零时的波形畸变现象。摩擦严重影响机电伺服系统的低速性能和跟踪精度。为解决摩擦对伺服系统定位及跟踪精度的影响,应对摩擦进行建模及设计相应的动态补偿方案。研究人员先后提出了多种摩擦模型,如经典的库伦摩擦+粘性摩擦模型、Dahl模型、Karnop模型、LuGre模型、Leuven模型、Maxwell-slip模型等。其中,LuGre模型能够准确描述摩擦过程中复杂的动静态特性,如爬行、极限环振荡、滑前变形、摩擦记忆、变静摩擦及Stribeck曲线等,已成为当前基于模型的摩擦补偿时最常采用的一种摩擦模型。Friction is an unavoidable problem in motor servo systems. For high-precision servo tracking systems, the existence of frictional links is an obstacle to improving system performance. The impact of friction on the static performance of the system is manifested by a large static difference in the output response or steady-state limit cycle oscillation, and the impact on the dynamic performance of the system is manifested by crawling (jitter) at low speeds and waveform distortion when the speed crosses zero. Friction severely affects the low-speed performance and tracking accuracy of electromechanical servo systems. In order to solve the impact of friction on the positioning and tracking accuracy of the servo system, the friction should be modeled and the corresponding dynamic compensation scheme should be designed. Researchers have successively proposed a variety of friction models, such as the classic Coulomb friction + viscous friction model, Dahl model, Karnop model, LuGre model, Leuven model, Maxwell-slip model, etc. Among them, the LuGre model can accurately describe the complex dynamic and static characteristics in the friction process, such as crawling, limit cycle oscillation, deformation before sliding, friction memory, variable static friction and Stribeck curve, etc., and has become the most commonly used model-based friction compensation. A friction model.

由于LuGre模型能够很好地描述复杂摩擦现象,许多学者在LuGre模型的摩擦建模和补偿控制方面做了较多研究。例如,肯尼亚的Muvengei博士研究了LuGre摩擦模型以及模型参数的辨识方法。为了更好地克服摩擦影响并提高控制系统的控制精度,日本Hoshino D博士利用观测器进行摩擦补偿控制。国内方面,代表性的有天津理工大学的向红标博士利用反演算法提出了一种基于摩擦模型的自适应补偿控制等方法。Since the LuGre model can well describe complex friction phenomena, many scholars have done more research on the friction modeling and compensation control of the LuGre model. For example, Dr. Muvengei from Kenya studied the LuGre friction model and the identification method of model parameters. In order to better overcome the influence of friction and improve the control accuracy of the control system, Dr. Hoshino D of Japan used the observer for friction compensation control. Domestically, Dr. Xiang Hongbiao of Tianjin University of Technology used the inversion algorithm to propose an adaptive compensation control method based on the friction model.

另外,随着对电机伺服系统控制精度要求的不断提高,伺服系统高精度控制也成为本领域的热点。在此方面,哈尔滨工业大学的王晓静博士提出了一种基于零相位误差的跟踪控制器,有效提高了伺服系统的抗干扰性能以及频域性能;中南大学的刘志基于BP神经网络提出了主动扰动抑制控制方法;香港大学的张震提出一种可以实现多电机速度快速同步的方法。In addition, with the continuous improvement of the control precision of the motor servo system, the high-precision control of the servo system has also become a hot spot in this field. In this regard, Dr. Wang Xiaojing of Harbin Institute of Technology proposed a tracking controller based on zero phase error, which effectively improved the anti-interference performance and frequency domain performance of the servo system; Liu Zhi of Central South University proposed an active disturbance based on BP neural network Inhibition control method; Zhang Zhen of the University of Hong Kong proposed a method that can achieve fast synchronization of multiple motor speeds.

但是,现有的这些方法绝大多数都只单独研究带摩擦补偿的跟踪或多电机同步问题,能够同时解决这两个问题的方法尚未见到有发明提及。However, most of these existing methods only study the tracking with friction compensation or multi-motor synchronization problems alone, and no inventions have been mentioned that can solve these two problems at the same time.

发明内容Contents of the invention

本发明的目的是为了实现双电机伺服系统控制过程中对电机的高精度跟踪和同步控制,提出一种基于分段神经网络摩擦模型的双电机伺服系统控制方法。The purpose of the present invention is to propose a dual-motor servo system control method based on a segmented neural network friction model in order to realize high-precision tracking and synchronous control of the motors during the control process of the dual-motor servo system.

本发明方法的基本原理是:利用基于不连续分段神经网络表达摩擦模型来代替LuGre稳态摩擦模型,从而更好的逼近真实摩擦,实现摩擦补偿。为了使得双电机系统能够快速同步并且可以高精度跟踪控制,在快速终端滑模的方法中提出了表示同步率的可变系数,并基于其进行摩擦补偿控制。The basic principle of the method of the invention is: the friction model expressed based on the discontinuous segmented neural network is used to replace the LuGre steady-state friction model, thereby better approaching real friction and realizing friction compensation. In order to enable the dual-motor system to be synchronized quickly and controlled with high precision, a variable coefficient representing the synchronization rate is proposed in the method of fast terminal sliding mode, and friction compensation control is performed based on it.

为实现上述目的,本发明所采用的技术方案如下:In order to achieve the above object, the technical scheme adopted in the present invention is as follows:

一种基于分段神经网络摩擦模型的双电机伺服系统控制方法,包括以下步骤:A method for controlling a dual-motor servo system based on a segmented neural network friction model, comprising the following steps:

步骤一、对含摩擦的双电机驱动伺服系统进行分析,并按照机理建模方法,根据电机的结构和物理定律,建立含摩擦的双电机驱动伺服系统的数学模型。建立该模型的目的是为了更好理解双电机系统的特性,进而设计同步跟踪控制方法实现快速同步和精确跟踪。具体如下:Step 1: Analyze the friction-containing dual-motor drive servo system, and establish a mathematical model of the friction-containing dual-motor drive servo system according to the mechanism modeling method, according to the structure and physical laws of the motor. The purpose of establishing this model is to better understand the characteristics of the dual-motor system, and then design a synchronous tracking control method to achieve fast synchronization and precise tracking. details as follows:

按照机理建模方法,根据电机的结构和物理定律,建立含摩擦的双电机驱动伺服系统的数学模型,具体如下:According to the mechanism modeling method, according to the structure and physical laws of the motor, the mathematical model of the dual-motor drive servo system with friction is established, as follows:

其中,θi(i=1,2)和θm分别表示驱动端和负载端的转角;分别表示驱动端和负载端的转速;分别表示驱动端和负载端的加速度;J表示驱动电机的转动惯量;Jm表示负载端的转动惯量;bm为连接齿轮的粘性系数;ui表示系统输入转矩;ω表示偏置力矩;τi(t)表示电机和负载之间传输力矩;fi表示驱动电机的摩擦力矩;t表示从信号输入开始的时间;i=1,2表示双电机系统的驱动电机1和驱动电机2。Among them, θ i (i=1,2) and θ m represent the rotation angles of the driving end and the load end respectively; and Respectively represent the rotational speed of the drive end and the load end; and Respectively represent the acceleration of the drive end and the load end; J represents the moment of inertia of the driving motor; J m represents the moment of inertia of the load end; b m represents the viscosity coefficient of the connected gear; u i represents the system input torque; ω represents the bias torque; τ i (t) represents the transmission torque between the motor and the load; f i represents the friction torque of the drive motor; t represents the time from the signal input; i=1, 2 represents the drive motor 1 and drive motor 2 of the dual-motor system.

在式(1)中,设齿隙为2α,则齿轮传动力矩τi(t)可表示为:In formula (1), assuming the backlash is 2α, the gear transmission torque τ i (t) can be expressed as:

其中,k表示齿轮的扭矩系数,c表示齿轮的阻尼系数,f(zi(t))表示含齿隙死区的非线性函数,表示为:Among them, k represents the torque coefficient of the gear, c represents the damping coefficient of the gear, and f(z i (t)) represents a nonlinear function with backlash dead zone, expressed as:

其中,zi(t)=θi(t)-θm(t)是驱动端和负载端的角度差。Wherein, z i (t) = θ i (t) - θ m (t) is the angle difference between the driving end and the load end.

为方便控制器的设计,将非线性函数f(zi(t))改写为连续可微的函数:To facilitate the design of the controller, the nonlinear function f(z i (t)) is rewritten as a continuously differentiable function:

其中,r表示正常数。则齿轮传动力矩τi(t)可表示为可写成:Among them, r represents a normal number. Then the gear transmission torque τ i (t) can be expressed as:

定义如下变量x1,x2,x3i,x4i,从而简化控制算法设计。Define the following variables x 1 , x 2 , x 3i , x 4i to simplify the control algorithm design.

由上述可得,齿轮传动力矩为τi(t)=kx3i+cx4i,于是式(1)由变量x1,x2,x3i,x4i改写为:From the above, it can be obtained that the gear transmission torque is τ i (t)=kx 3i +cx 4i , so formula (1) is rewritten from variables x 1 , x 2 , x 3i , x 4i to:

其中,in,

考虑式(7)中部分,摩擦力fi为系统输入端ui(t)的阻力。Considering that in formula (7) Part, the friction force f i is the resistance of the system input u i (t).

下面讨论如何利用分段神经网络对fi的逼近,产生与摩擦力fi大小相同的力矩,然后利用补偿控制机制使其能跟踪期望信号满足精度要求。The following discusses how to use the segmental neural network to approximate f i to generate a moment of the same magnitude as the friction force f i , and then use the compensation control mechanism to enable it to track the desired signal to meet the accuracy requirements.

步骤二、对步骤一所建立模型中的摩擦项fi进行分析,并利用分段神经网络建立摩擦非线性fi的摩擦模型;Step 2, analyzing the friction item f i in the model established in step 1, and utilizing the segmented neural network to establish a friction model of friction nonlinearity f i ;

摩擦力矩严重影响了伺服系统的跟踪精度和控制效果,为了消除摩擦产生的不利影响,提高系统的跟踪能力和鲁棒性,需要对摩擦现象进行分析并进行建模和特性参数的辨识。摩擦力对系统影响最大的阶段是低速阶段,此时系统由于摩擦的影响可能会呈现抖动或者爬行的状态。在经典PID控制中,通过增大控制系统增益来克服低速阶段摩擦对系统的影响,但是常常又会产生系统不稳定的情况。The friction torque seriously affects the tracking accuracy and control effect of the servo system. In order to eliminate the adverse effects of friction and improve the tracking ability and robustness of the system, it is necessary to analyze the friction phenomenon and carry out modeling and identification of characteristic parameters. The stage where the friction force has the greatest impact on the system is the low-speed stage. At this time, the system may vibrate or crawl due to the influence of friction. In classical PID control, the influence of low-speed friction on the system is overcome by increasing the gain of the control system, but the system is often unstable.

步骤一中全面分析了双电机对象的特性和存在的摩擦非线性,步骤二利用分段神经网络对摩擦非线性fi进行逼近。分段神经网络可以对任意分段连续线性函数进行逼近,可以用线性参数化表达式来表示。不需要对未知函数做任何假设,逼近的精度可以通过对式中几个参数的调节来控制,这是分段神经网络表达式的最大优点。In the first step, the characteristics of the dual-motor object and the existing frictional nonlinearity are comprehensively analyzed, and in the second step, the frictional nonlinearity f i is approximated using a segmented neural network. The piecewise neural network can approximate any piecewise continuous linear function, which can be represented by a linear parameterized expression. There is no need to make any assumptions about the unknown function, and the accuracy of the approximation can be controlled by adjusting several parameters in the formula, which is the biggest advantage of the piecewise neural network expression.

给定任一l维的分段线性函数f(v,w),(v∈Rl-1,w∈R),定义域为则表示成如下形式:Given any l-dimensional piecewise linear function f(v,w), (v∈R l-1 ,w∈R), the domain of definition is Then it is expressed as follows:

将D划分为N个互不重叠的子域DG(G=1,…,N)并且则f(v,w)被表示为:Divide D into N non-overlapping subdomains D G (G=1,...,N) and Then f(v,w) is expressed as:

其中,αG(ν)和βG(ν)分别为第G个子域的关于v∈Rl-1的上界和下界。αG(ν)是相对于定义域D来说,关于v的最小下界。pG是表达式中需要估计的未知系数,σG(0,w-αG(ν),βG(ν)-αG(ν))是基函数,其具体形式为:Among them, α G (ν) and β G (ν) are the upper bound and lower bound of v∈R l-1 of the Gth subfield, respectively. α G (ν) is the minimum lower bound on v relative to domain D. p G is the unknown coefficient to be estimated in the expression, σ G (0,w-α G (ν), β G (ν)-α G (ν)) is the basis function, and its specific form is:

σ(a,b,c)=max(a,min(b,c)) (10)σ(a,b,c)=max(a,min(b,c)) (10)

作为上述理论的特例,一维分段神经网络表达式形式为:As a special case of the above theory, the expression form of a one-dimensional segmented neural network is:

其中,基函数σ(0,h-αGGG)是一个特殊的分段连续线性函数,表示为:σ(0,h-αGGG)=max(0,h-αG)-max(0,h-max(αGG)),αG和βG分别是在第G个子区间上关于h∈R的上界与下界,pG(G=1,...,N)是需要估计得未知系数;而未知系数pG事实上就是局部线性函数σG=h-αG在αG≤h≤βG时的未知斜率,当h<αG时有σG=0;当h≥βG时,σG=βGG。使用式(11)逼近1维分段连续线性函数的充分条件是将自变量h的定义域划分为互不重叠的子区间并且边界点αG和βG满足αGG和βG=αG+1Among them, the basis function σ(0,h-α GGG ) is a special piecewise continuous linear function, expressed as: σ(0,h-α GGG )=max( 0,h-α G )-max(0,h-max(α GG )), α G and β G are the upper bound and lower bound of h∈R on the Gth subinterval respectively, p G ( G=1,...,N) is the unknown coefficient that needs to be estimated; and the unknown coefficient p G is actually the unknown slope of the local linear function σ G =h-α G when α G ≤ h ≤ β G , when h When <α G , σ G =0; when h≥β G , σ GGG . The sufficient condition for using equation (11) to approximate a 1-dimensional piecewise continuous linear function is that the domain of the independent variable h is divided into non-overlapping subintervals and the boundary points α G and β G satisfy α GG and β G = α G+1 .

考虑摩擦的特殊性质,上述分段神经网络表达式建立摩擦模型还需要做以下处理。由于摩擦动态呈现分段特性,式(11)建立摩擦模型的方法仅仅考虑了摩擦力在高速区域近似呈现与速度的线性关系的特点,忽略了低速阶段的影响。考虑在低速阶段,库伦摩擦和Stribeck效应成为主要影响摩擦的因素,具有较强的非光滑非线性特性,尤其是在零速附近时的摩擦在转向时还存在跳变现象。为了解决低速阶段分段神经网络不能很好描述摩擦力的问题,在式(11)中做以下处理:加入跳变项h1(v)和指数项h2(v)。其中,跳变项h1(v)与最大静摩擦力相关,用来解决变向时的摩擦力跳变现象;指数项h2(v)用来解决低速Stribeck效应的逼近。因此,无论在高速段还是低速段分段神经网络可完全逼近摩擦力,表达式(11)可改写为:Considering the special nature of friction, the above segmentation neural network expression to establish a friction model needs to do the following processing. Due to the segmental characteristics of the friction dynamics, the method of establishing the friction model in Eq. (11) only considers that the friction force has an approximate linear relationship with the speed in the high-speed region, and ignores the influence of the low-speed stage. Considering that in the low-speed stage, Coulomb friction and Stribeck effect become the main factors affecting friction, which have strong non-smooth nonlinear characteristics, especially when the friction is near zero speed, there is still a jump phenomenon when turning. In order to solve the problem that the segmented neural network cannot describe the friction force well in the low-speed stage, the following processing is done in formula (11): adding jump term h 1 (v) and exponent term h 2 (v). Among them, the jump term h 1 (v) is related to the maximum static friction force and is used to solve the friction force jump phenomenon when changing directions; the exponential term h 2 (v) is used to solve the approximation of the low-speed Stribeck effect. Therefore, no matter in the high-speed section or the low-speed section, the segmented neural network can completely approximate the friction force, and the expression (11) can be rewritten as:

其中,v和f(v)分别是速度和摩擦力;N(≥2)表示将速度v的变化范围划分所得的数目;αG和βG是第G个子区间的上下界,h1(v)是跳变项,形式为:h2(v)描述Stribeck效应,形式为:其中Fs表示静摩擦力,vc表示摩擦力矩最小时的速度。Among them, v and f(v) are velocity and friction force respectively; N(≥2) represents the number obtained by dividing the variation range of velocity v; α G and β G are the upper and lower bounds of the Gth subinterval, h 1 (v ) is a transition item in the form of: h 2 (v) describes the Stribeck effect in the form: Among them, F s represents the static friction force, and v c represents the speed when the friction torque is minimum.

为了方便处理,将式(12)改写紧凑型表达式:For the convenience of processing, formula (12) is rewritten as a compact expression:

其中,D=[d0,d1,…,N,dN+1]T表示参数向量,表示基函数向量。参数D可以由递归最小二乘法估计方法计算得到。Among them, D=[d 0 ,d 1 ,…,N,d N+1 ] T represents the parameter vector, Represents a vector of basis functions. The parameter D can be calculated by recursive least square estimation method.

为了验证分段神经网络对摩擦非线性这类有跳跃点的不连续函数有很好逼近能力,分段神经网络被用来逼近常用的LuGre模型:In order to verify that the segmented neural network has a good approximation ability for discontinuous functions with jumping points such as friction nonlinearity, the segmented neural network is used to approximate the commonly used LuGre model:

结果如图2。从图中可以得出分段神经网络可以很好逼近摩擦非线性。The result is shown in Figure 2. It can be concluded from the figure that the segmented neural network can approximate the frictional nonlinearity very well.

所述速度区间vc的获取方法为:The acquisition method of the speed interval vc is:

在双电机伺服系统的正反方向各选取不少于10个不同速度值;同时,对电机采用PI控制,使电机运转速度保持恒定;当电机匀速运动时,摩擦力的大小等于电机输出力矩的大小,而电机输出力矩的大小正比于控制器输出控制电压的大小,通过记录控制器输出控制量的大小,即可得到当前速度下电机摩擦力的大小;对每个速度样本点进行不少于3次上述处理,对得到的全部摩擦力结果取平均值,作为当前速度下系统所受实际摩擦力;最终得到正反两个方向至少10个不同速度时摩擦力的大小,再对正反两个方向各组数据采用最小二乘法拟合,即可得到速度区间vcSelect no less than 10 different speed values in the positive and negative directions of the dual-motor servo system; at the same time, use PI control for the motor to keep the motor running speed constant; when the motor moves at a constant speed, the friction force is equal to the output torque of the motor The size of the motor output torque is proportional to the size of the controller output control voltage. By recording the size of the controller output control value, the size of the motor friction force at the current speed can be obtained; each speed sample point is not less than After 3 times of the above processing, take the average value of all the friction results obtained as the actual friction force of the system at the current speed; finally obtain the magnitude of the friction force at least 10 different speeds in the positive and negative directions, and then compare the positive and negative two directions. Each group of data in each direction is fitted by the least square method, and the velocity interval v c can be obtained.

所述最大静摩擦力Fs获取方法为:The acquisition method of the maximum static friction force F s is:

将双电机伺服系统工作在开环环境下,逐渐增加双电机控制电压,直至电机开始转动,此时即为系统的最大静摩擦;重复至少10次操作,取其平均值作为最大静摩擦转矩FsMake the dual-motor servo system work in an open-loop environment, and gradually increase the control voltage of the dual-motor until the motor starts to rotate. At this time, it is the maximum static friction of the system; repeat the operation at least 10 times, and take the average value as the maximum static friction torque F s .

步骤三、根据步骤二得到的分段神经网络摩擦模型,利用终端滑模控制算法,对双电机伺服系统进行同步跟踪控制。Step 3: According to the segmental neural network friction model obtained in Step 2, the terminal sliding mode control algorithm is used to perform synchronous tracking control on the dual-motor servo system.

步骤二将摩擦模型通过分段神经网络模型表示出来,即为将f(v)变为fi,代入算法中进行控制器的设计。下面为本发明利用快速终端滑模算法,设计了基于分段神经网络摩擦补偿的双电机系统的控制算法,从而使得双电机系统既能保证两个电机的速度同步,又能保证负载端有很好跟踪性能。In step 2, the friction model is represented by a segmented neural network model, that is, Change f(v) into f i and substitute it into the algorithm to design the controller. The following uses the fast terminal sliding mode algorithm for the present invention to design a control algorithm for a dual-motor system based on segmental neural network friction compensation, so that the dual-motor system can not only ensure the speed synchronization of the two motors, but also ensure that the load end has a large Good tracking performance.

考虑系统的跟踪性能,设y(t)=θm为系统的输出信号,yd(t)为系统的参考信号,则误差e(t)=y(t)-yd(t),得到误差的微分,二次微分和三次微分分别为:Considering the tracking performance of the system, let y( t )=θm be the output signal of the system, y d (t) be the reference signal of the system, then the error e(t)=y(t)-y d (t), get The differential, quadratic and cubic differentials of the error are:

利用快速终端滑模算法得到:Using the fast terminal sliding mode algorithm to get:

其中,pi(i=0,1)为正奇数且满足pi>qi,并且αi>0,βi>0。Wherein, p i (i=0,1) is a positive odd number and satisfies p i >q i , and α i >0, β i >0.

为了使得双电机系统能够快速同步并且可以实现高精度跟踪控制,在快速终端滑模的方法中提出了表示双电机同步程度的可变系数,并基于其进行摩擦补偿控制,将原有控制律分为保证速度同步usi和保证跟踪uti的两部分。基于分段神经网络摩擦模型,控制律ui表示为In order to enable the dual-motor system to synchronize quickly and achieve high-precision tracking control, a variable coefficient representing the degree of synchronization of the dual-motor is proposed in the method of fast terminal sliding mode, and friction compensation control is performed based on it, and the original control law is divided into In order to ensure the two parts of speed synchronization u si and tracking u ti . Based on the piecewise neural network friction model, the control law u i is expressed as

ui=usi+ψuti (18)u i =u si +ψu ti (18)

其中,in,

其中,保证速度同步的控制律usi中fi为第三步骤中分段神经网络得到的摩擦模型,在输入端ui产生一个可以抵消摩擦力影响的输入量;而b为一个正常数,η为一个可选择的正常数,h1(x3i,x4i)为系统的状态反馈项,为系统的滑模项,分别表示为Among them, f i in the control law u si that guarantees speed synchronization is the friction model obtained by the segmental neural network in the third step, and an input quantity that can offset the influence of friction force is generated at the input end u i ; while b is a normal number, η is an optional constant, h 1 (x 3i , x 4i ) is the state feedback item of the system, is the sliding mode term of the system, expressed as

h1(x3i,x4i)=a2iτi(t)+a2i(-1)iω+ca1ρi1(t)+τ2(t))-kx4i (22)h 1 (x 3i ,x 4i )=a 2i τ i (t)+a 2i (-1) i ω+ca 1 ρ i1 (t)+τ 2 (t))-kx 4i (22)

根据控制律ui,对双电机伺服系统进行同步跟踪控制,由此实现本发明的目的和初衷。According to the control law u i , the dual-motor servo system is synchronously tracked and controlled, thereby realizing the purpose and original intention of the present invention.

有益效果Beneficial effect

本发明所述的控制方法有如下有益效果:Control method of the present invention has following beneficial effect:

1、对于双电机伺服系统,分段神经网络摩擦模型有更好的非线性逼近能力,能以高精度描述摩擦特性,因此本发明设计了基于分段神经网络的摩擦补偿控制器,与摩擦带来的非线性作用相互抵消,最终实现补偿目的,消除摩擦对双电机系统的影响。1. For the dual-motor servo system, the friction model of the segmented neural network has better nonlinear approximation ability, and can describe the friction characteristics with high precision. Therefore, the present invention designs a friction compensation controller based on the segmented neural network, which is compatible with the friction belt The resulting nonlinear effects cancel each other out, and finally achieve the purpose of compensation and eliminate the influence of friction on the dual-motor system.

2、在进行摩擦补偿的同时考虑了含分段神经网络摩擦模型的双电机伺服系统的同步和跟踪控制,利用快速终端滑模算法,既能保证跟踪的快速性,又可以保证系统稳态精度。本发明能使双电机系统具有较好瞬态性能,有效提高了双电机伺服系统的跟踪响应速度。2. While performing friction compensation, the synchronization and tracking control of the dual-motor servo system with a segmented neural network friction model is considered. Using the fast terminal sliding mode algorithm, it can not only ensure the rapidity of tracking, but also ensure the steady-state accuracy of the system . The invention can make the double-motor system have better transient performance, and effectively improve the tracking response speed of the double-motor servo system.

3、本发明针对双电机伺服系统不易同步的特性,基于分段神经网络摩擦补偿设计了快速终端滑模控制器,提出了可变系数来表示同步程度,该方法能保证双电机系统的快速同步,本发明的控制算法具有较强鲁棒性。3. Aiming at the characteristics that the dual-motor servo system is not easy to synchronize, the present invention designs a fast terminal sliding mode controller based on the segmental neural network friction compensation, and proposes a variable coefficient to represent the degree of synchronization. This method can ensure the rapid synchronization of the dual-motor system , the control algorithm of the present invention has strong robustness.

在快速终端滑模算法中设计了一个可变系数ψ,很好地解决双电机同步和跟踪控制的协调问题,通过两个驱动电机的转速差调节可变系数ψ的大小,从而保证双电机的同步和跟踪效果:当两个驱动电机的转速差较大时,可变系数ψ较小,从而保证速度同步控制律usi起主要作用,先使得两个驱动电机尽可能快地速度同步;同步后,两个驱动电机的转速差变小,可变系数ψ接近等于1,保证跟踪控制律uti起主要的作用,使得双电机系统有很高的跟踪精度。因此本发明的控制方案可以保证双电机系统同时达到同步和跟踪的效果。In the fast terminal sliding mode algorithm, a variable coefficient ψ is designed to solve the coordination problem of dual-motor synchronization and tracking control well. The variable coefficient ψ is adjusted by the speed difference of the two drive motors to ensure the dual-motor Synchronization and tracking effect: when the speed difference between the two driving motors is large, the variable coefficient ψ is small, so that the speed synchronization control law u si plays a major role, firstly, the speed of the two driving motors is synchronized as fast as possible; synchronization Finally, the speed difference between the two driving motors becomes smaller, and the variable coefficient ψ is close to 1, which ensures that the tracking control law u ti plays a major role, making the dual-motor system have high tracking accuracy. Therefore, the control scheme of the present invention can ensure that the dual-motor system simultaneously achieves the effects of synchronization and tracking.

附图说明Description of drawings

图1为典型的双电机伺服控制系统结构图;Figure 1 is a typical structural diagram of a dual-motor servo control system;

图2为分段神经网络逼近摩擦模型图;Fig. 2 is a segmental neural network approximation friction model figure;

图3为具体实施方式中的双电机速度-摩擦曲线图;Fig. 3 is the dual motor speed-friction curve figure in the specific embodiment;

图4为具体实施方式中双电机摩擦力测试曲线图;Fig. 4 is a curve diagram of the friction force test of two motors in the specific embodiment;

图5为具体实施方式中在分段神经网络摩擦补偿下利用快速终端滑模控制器的跟踪效果图;Fig. 5 is a tracking effect diagram utilizing a fast terminal sliding mode controller under segmented neural network friction compensation in a specific embodiment;

图6为具体实施方式中分段神经网络摩擦补偿下利用快速终端滑模控制器的跟踪误差图;Fig. 6 is the tracking error diagram utilizing the fast terminal sliding mode controller under the segmented neural network friction compensation in the specific embodiment;

图7为具体实施方式中利用快速终端滑模控制器双电机伺服系统中两个驱动电机的同步效果图;7 is a synchronous effect diagram of two drive motors in a dual-motor servo system using a fast terminal sliding mode controller in a specific embodiment;

图8为具体实施方式中利用快速终端滑模控制器双电机伺服系统中同步误差图。Fig. 8 is a graph of synchronization errors in a dual-motor servo system using a fast terminal sliding mode controller in a specific embodiment.

具体实施方式Detailed ways

下面结合附图和实施例对本发明所述方法进行进一步详细说明。The method of the present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.

一种基于分段神经网络摩擦模型的电机伺服系统控制方法,包括以下步骤:A method for controlling a motor servo system based on a segmented neural network friction model, comprising the following steps:

步骤一、对含摩擦的双电机驱动伺服系统进行分析,并按照机理建模方法,根据电机的结构和物理定律,建立含摩擦的双电机驱动伺服系统的数学模型,具体如下:Step 1. Analyze the friction-containing dual-motor drive servo system, and establish a mathematical model of the friction-containing dual-motor drive servo system according to the mechanism modeling method, according to the structure and physical laws of the motor, as follows:

其中,in,

式(24)、式(25)、式(26)中,θi(i=1,2)和θm分别表示驱动端和负载端的转角;分别表示驱动端和负载端的转速;分别表示驱动端和负载端的加速度;J表示驱动电机的转动惯量;Jm表示负载端的转动惯量;bm为连接齿轮的粘性系数;ui表示系统输入转矩;ω表示偏置力矩;τi(t)表示电机和负载之间传输力矩;fi表示驱动电机的摩擦力矩;t表示从信号输入开始的时间;i=1,2表示双电机系统的驱动电机1和驱动电机2;zi(t)=θi(t)-θm(t)表示驱动端和负载端的角度差;In formula (24), formula (25) and formula (26), θ i (i=1, 2) and θ m represent the rotation angles of the driving end and the load end respectively; and Respectively represent the rotational speed of the drive end and the load end; and Respectively represent the acceleration of the drive end and the load end; J represents the moment of inertia of the driving motor; J m represents the moment of inertia of the load end; b m represents the viscosity coefficient of the connected gear; u i represents the system input torque; ω represents the bias torque; τ i (t) represents the transmission torque between the motor and the load; f i represents the friction torque of the driving motor; t represents the time from the signal input; i=1,2 represents the driving motor 1 and driving motor 2 of the dual-motor system; z i (t)=θ i (t)-θ m (t) represents the angle difference between the drive end and the load end;

步骤二、对步骤一所建立模型中的摩擦项fi进行分析,并利用分段神经网络建立摩擦非线性fi的摩擦模型,具体如下:Step 2. Analyze the friction item f i in the model established in step 1, and use the segmented neural network to establish a friction model of friction nonlinearity f i , as follows:

一维分段神经网络表达式形式为:The expression form of a one-dimensional segmented neural network is:

其中,基函数σ(0,h-αGGG)是一个特殊的分段连续线性函数,表示为:σ(0,h-αGGG)=max(0,h-αG)-max(0,h-max(αGG)),αG和βG分别是在第G个子区间上关于h∈R的上界与下界,pG(G=1,...,N)是需要估计的未知系数;Among them, the basis function σ(0,h-α GGG ) is a special piecewise continuous linear function, expressed as: σ(0,h-α GGG )=max( 0,h-α G )-max(0,h-max(α GG )), α G and β G are the upper bound and lower bound of h∈R on the Gth subinterval respectively, p G ( G=1,...,N) are unknown coefficients that need to be estimated;

使用式(27)逼近一维分段连续线性函数的充分条件是:将自变量h的定义域划分为互不重叠的子区间并且边界点αG和βG满足αGG和βG=αG+1The sufficient condition for using equation (27) to approximate a one-dimensional piecewise continuous linear function is that the domain of the independent variable h is divided into non-overlapping subintervals and the boundary points α G and β G satisfy α G < β G and β G =αG +1 ;

对式(27)进一步做以下处理:Formula (27) is further processed as follows:

在式(27)中加入跳变项h1(v)和指数项h2(v);其中,跳变项h1(v)与最大静摩擦力相关,用来解决变向时的摩擦力跳变现象;指数项h2(v)用来解决低速Stribeck效应的逼近;式(27)变为如下所述:Add jump term h 1 (v) and exponent term h 2 (v) to formula (27); among them, jump term h 1 (v) is related to the maximum static friction force, which is used to solve the friction force jump when changing direction variable phenomenon; the exponential term h 2 (v) is used to solve the approximation of the low-speed Stribeck effect; equation (27) becomes as follows:

其中,v和f(v)分别是速度和摩擦力;N(≥2)表示将速度v的变化范围划分所得的数目;αG和βG是第G个子区间的上下界,h1(v)是跳变项,形式为:h2(v)描述Stribeck效应,形式为:其中Fs表示静摩擦力,vc表示摩擦力矩最小时的速度;Among them, v and f(v) are velocity and friction force respectively; N(≥2) represents the number obtained by dividing the variation range of velocity v; α G and β G are the upper and lower bounds of the Gth subinterval, h 1 (v ) is a transition item in the form of: h 2 (v) describes the Stribeck effect in the form: Among them, F s represents the static friction force, v c represents the speed when the friction torque is minimum;

将式(28)进一步转换如下:The formula (28) is further converted as follows:

其中,D=[d0,d1,…,N,dN+1]T表示参数向量,表示基函数向量;参数D由递归最小二乘法估计方法计算得到;Among them, D=[d 0 ,d 1 ,…,N,d N+1 ] T represents the parameter vector, Indicates the basis function vector; the parameter D is calculated by the recursive least squares estimation method;

所述速度区间vc的获取方法为:The acquisition method of the speed interval vc is:

在双电机伺服系统的正反方向各选取15个不同速度值;同时,对双电机系统采用PI控制,使系统的速度保持恒定;当电机匀速运动时,电机输出力矩的大小即为摩擦力的大小,而电机输出力矩的大小与控制器输出控制电压的大小成正比,通过记录控制器输出控制量的大小,即可得到当前速度下电机摩擦力的大小;对每个速度样本点进行5次上述处理,对得到的全部摩擦力结果取平均值,作为当前速度下系统所受实际摩擦力;最终得到正反两个方向15个不同速度时摩擦力的大小,再对正反两个方向各组数据采用最小二乘法拟合,即可得到速度区间vc。用最小二乘法算法拟合得到的速度-摩擦曲线,如图3。Select 15 different speed values in the positive and negative directions of the dual-motor servo system; at the same time, use PI control for the dual-motor system to keep the speed of the system constant; when the motor moves at a uniform speed, the output torque of the motor is the friction force The size of the motor output torque is proportional to the size of the controller output control voltage. By recording the size of the controller output control amount, the size of the motor friction force at the current speed can be obtained; 5 times for each speed sample point The above processing, take the average value of all the friction results obtained, as the actual friction force of the system at the current speed; finally get the magnitude of the friction force at 15 different speeds in the positive and negative directions, and then compare the positive and negative directions respectively The group data is fitted by the least square method, and the velocity interval v c can be obtained. The velocity-friction curve obtained by fitting the least squares algorithm is shown in Fig. 3.

所述最大静摩擦力Fs获取方法为:The acquisition method of the maximum static friction force F s is:

将双电机伺服系统工作在开环环境下,逐渐增加双电机控制电压,直至电机开始转动,此时即为系统的最大静摩擦;重复10次操作,取其平均值作为最大静摩擦转矩Fs。采集的速度信号与控制器输出电压信号绘制成图,如图4,即可观察得出静摩擦力大小。Make the dual-motor servo system work in an open-loop environment, and gradually increase the control voltage of the dual-motor until the motor starts to rotate, which is the maximum static friction of the system; repeat the operation 10 times, and take the average value as the maximum static friction torque F s . The collected speed signal and the output voltage signal of the controller are drawn into a graph, as shown in Figure 4, and the magnitude of the static friction can be observed.

步骤三、根据步骤二得到的分段神经网络摩擦模型,利用终端滑模控制算法,对双电机伺服系统进行同步跟踪控制,方法如下:Step 3. According to the segmented neural network friction model obtained in Step 2, use the terminal sliding mode control algorithm to perform synchronous tracking control on the dual-motor servo system. The method is as follows:

设y(t)=θm为系统输出信号,yd(t)为系统参考信号,则误差e(t)=y(t)-yd(t),得到误差微分,二次微分和三次微分分别为:Let y(t)=θ m be the system output signal, y d (t) be the system reference signal, then the error e(t)=y(t)-y d (t), get error differential, quadratic differential and cubic The differentials are:

利用快速终端滑模算法得到:Using the fast terminal sliding mode algorithm to get:

其中,pi(i=0,1)为正奇数且满足pi>qi,并且αi>0,βi>0;Wherein, p i (i=0,1) is a positive odd number and satisfies p i >q i , and α i >0, β i >0;

此时,将原有控制律分为保证速度同步usi和保证跟踪uti的两部分,控制律ui表示为At this time, the original control law is divided into two parts that ensure the speed synchronization u si and ensure the tracking u ti , and the control law u i is expressed as

ui=usi+ψuti (34)u i =u si +ψu ti (34)

其中,in,

其中,保证速度同步的控制律usi中fi为步骤二中分段神经网络得到的摩擦模型,在输入端ui产生一个能够抵消摩擦力影响的输入量;b、η均为正数,h1(x3i,x4i)为系统状态反馈项,为系统滑模项,分别表示为Among them, f i in the control law u si that guarantees speed synchronization is the friction model obtained by the segmental neural network in step 2, and an input quantity that can offset the influence of friction force is generated at the input end u i ; both b and η are positive numbers, h 1 (x 3i ,x 4i ) is the system state feedback item, is the sliding mode item of the system, expressed as

h1(x3i,x4i)=a2iτi(t)+a2i(-1)iω+ca1ρi1(t)+τ2(t))-kx4i (38)h 1 (x 3i ,x 4i )=a 2i τ i (t)+a 2i (-1) i ω+ca 1 ρ i1 (t)+τ 2 (t))-kx 4i (38)

根据控制律ui,即可对双电机伺服系统进行同步跟踪控制。According to the control law u i , the dual-motor servo system can be synchronously tracked and controlled.

对上述处理结果进行仿真,得到跟踪效果和同步效果图。从对比的仿真图中可见,分段神经网络摩擦补偿控制器具有很高的输出跟踪精度。在双电机伺服系统分段神经网络补偿同步跟踪仿真实验中,驱动电机、负载以及摩擦的参数如表1所示。The above processing results are simulated, and the tracking effect and synchronization effect diagrams are obtained. It can be seen from the comparison simulation diagram that the segmental neural network friction compensation controller has high output tracking accuracy. In the dual-motor servo system segment neural network compensation synchronous tracking simulation experiment, the parameters of the drive motor, load and friction are shown in Table 1.

表1仿真参数Table 1 Simulation parameters

在以上电机参数下对分段神经网络摩擦补偿算法进行仿真,对正弦输入信号的跟踪效果和跟踪误差如图所示。图5和图6为正弦信号跟踪效果图,图7和图8为双电机同步效果图。由仿真结果可知,本发明的控制算法有很高的跟踪性能和同步性能,可以使双电机系统较快地同步并以高精度跟踪输入信号。Under the above motor parameters, the segmented neural network friction compensation algorithm is simulated, and the tracking effect and tracking error of the sinusoidal input signal are shown in the figure. Figure 5 and Figure 6 are the effect diagrams of sinusoidal signal tracking, and Figure 7 and Figure 8 are the effect diagrams of dual-motor synchronization. It can be seen from the simulation results that the control algorithm of the present invention has high tracking performance and synchronization performance, and can make the double motor system synchronize quickly and track the input signal with high precision.

本发明考虑了含分段神经网络摩擦模型的双电机伺服系统同步和跟踪控制问题。建立分段神经网络摩擦模型,可以很好逼近伺服系统的摩擦非线性,该模型不仅可以描述高速段摩擦特性,而且在低速段也有很好的效果。基于分段神经网络摩擦模型设计控制器,并在快速终端滑模的算法中提出了表示同步程度的可变系数,可以使得双电机系统能够快速同步并且能够实现高精度的跟踪控制。通过仿真实验可看出,本发明方法有很好的控制性能。The invention considers the synchronous and tracking control problems of the dual-motor servo system with a segmented neural network friction model. Establishing a segmented neural network friction model can well approximate the friction nonlinearity of the servo system. This model can not only describe the friction characteristics of the high-speed section, but also has a good effect in the low-speed section. The controller is designed based on the segmental neural network friction model, and the variable coefficient representing the degree of synchronization is proposed in the algorithm of the fast terminal sliding mode, which can make the dual-motor system synchronize quickly and achieve high-precision tracking control. It can be seen from simulation experiments that the method of the invention has good control performance.

Claims (2)

1.基于分段神经网络摩擦模型的双电机伺服系统控制方法,其特征在于,包括以下步骤:1. based on the double-motor servo system control method of subsection neural network friction model, it is characterized in that, comprising the following steps: 步骤一、对含摩擦的双电机驱动伺服系统进行分析,并按照机理建模方法,根据电机的结构和物理定律,建立含摩擦的双电机驱动伺服系统的数学模型,具体如下:Step 1. Analyze the friction-containing dual-motor drive servo system, and establish a mathematical model of the friction-containing dual-motor drive servo system according to the mechanism modeling method, according to the structure and physical laws of the motor, as follows: 其中,in, <mrow> <msub> <mi>&amp;tau;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>k</mi> <mrow> <mo>(</mo> <msub> <mi>z</mi> <mi>i</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>&amp;alpha;</mi> <mo>(</mo> <mrow> <mfrac> <mn>2</mn> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>rz</mi> <mi>i</mi> </msub> </mrow> </msup> </mrow> </mfrac> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>)</mo> <mo>+</mo> <mi>c</mi> <msub> <mover> <mi>z</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mi>&amp;alpha;</mi> <mfrac> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>rz</mi> <mi>i</mi> </msub> </mrow> </msup> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mo>-</mo> <msub> <mi>rz</mi> <mi>i</mi> </msub> </mrow> </msup> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>&amp;tau;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mi>k</mi><mrow><mo>(</mo><msub><mi>z</mi><mi>i</mi></msub><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>-</mo><mi>&amp;alpha;</mi><mo>(</mo><mrow><mfrac><mn>2</mn><mrow><mn>1</mn><mo>+</mo><msup><mi>e</mi><mrow><mo>-</mo><msub><mi>rz</mi><mi>i</mi></msub></mrow></msup></mrow></mfrac><mo>-</mo><mn>1</mn></mrow><mo>)</mo><mo>)</mo><mo>+</mo><mi>c</mi><msub><mover><mi>z</mi><mo>&amp;CenterDot;</mo></mover><mi>i</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mn>2</mn><mi>&amp;alpha;</mi><mfrac><msup><mi>e</mi><mrow><mo>-</mo><msub><mi>rz</mi><mi>i</mi></msub></mrow></msup><msup><mrow><mo>(</mo><mn>1</mn><mo>+</mo><msup><mi>e</mi><mrow><mo>-</mo><msub><mi>rz</mi><mi>i</mi></msub></mrow></msup><mo>)</mo></mrow><mn>2</mn></msup></mfrac><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow> 式(1)、式(2)、式(3)中,θi(i=1,2)和θm分别表示驱动端和负载端的转角;分别表示驱动端和负载端的转速;分别表示驱动端和负载端的加速度;J表示驱动电机的转动惯量;Jm表示负载端的转动惯量;bm为连接齿轮的粘性系数;ui表示系统输入转矩;ω表示偏置力矩;τi(t)表示电机和负载之间传输力矩;fi表示驱动电机的摩擦力矩;t表示从信号输入开始的时间;i=1,2表示双电机系统的驱动电机1和驱动电机2;zi(t)=θi(t)-θm(t)表示驱动端和负载端的角度差;α为电机间齿隙,γ代表正常数;In formula (1), formula (2) and formula (3), θ i (i=1, 2) and θ m represent the rotation angles of the driving end and the load end respectively; and Respectively represent the rotational speed of the drive end and the load end; and Respectively represent the acceleration of the drive end and the load end; J represents the moment of inertia of the driving motor; J m represents the moment of inertia of the load end; b m represents the viscosity coefficient of the connected gear; u i represents the system input torque; ω represents the bias torque; τ i (t) represents the transmission torque between the motor and the load; f i represents the friction torque of the driving motor; t represents the time from the signal input; i=1,2 represents the driving motor 1 and driving motor 2 of the dual-motor system; z i (t)=θ i (t)-θ m (t) represents the angle difference between the drive end and the load end; α is the backlash between the motors, and γ represents a normal number; 步骤二、对步骤一所建立模型中的摩擦项fi进行分析,并利用分段神经网络建立摩擦非线性fi的摩擦模型,具体如下:Step 2. Analyze the friction item f i in the model established in step 1, and use the segmented neural network to establish a friction model of friction nonlinearity f i , as follows: 一维分段神经网络表达式形式为:The expression form of a one-dimensional segmented neural network is: <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>p</mi> <mn>0</mn> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>G</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>p</mi> <mi>G</mi> </msub> <msub> <mi>&amp;sigma;</mi> <mi>G</mi> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>h</mi> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mi>G</mi> </msub> <mo>,</mo> <msub> <mi>&amp;beta;</mi> <mi>G</mi> </msub> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mi>G</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;ForAll;</mo> <mi>h</mi> <mo>&amp;Element;</mo> <mi>R</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>f</mi><mrow><mo>(</mo><mi>h</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>p</mi><mn>0</mn></msub><mo>+</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>G</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>p</mi><mi>G</mi></msub><msub><mi>&amp;sigma;</mi><mi>G</mi></msub><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>h</mi><mo>-</mo><msub><mi>&amp;alpha;</mi><mi>G</mi>mi></msub><mo>,</mo><msub><mi>&amp;beta;</mi><mi>G</mi></msub><mo>-</mo><msub><mi>&amp;alpha;</mi><mi>G</mi></msub><mo>)</mo></mrow><mo>&amp;ForAll;</mo><mi>h</mi><mo>&amp;Element;</mo><mi>R</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow> 其中,基函数σ(0,h-αGGG)是一个特殊的分段连续线性函数,表示为:σ(0,h-αGGG)=max(0,h-αG)-max(0,h-max(αGG)),αG和βG分别是在第G个子区间上关于h∈R的上界与下界,pG(G=1,...,N)是需要估计得未知系数;Among them, the basis function σ(0,h-α GGG ) is a special piecewise continuous linear function, expressed as: σ(0,h-α GGG )=max( 0,h-α G )-max(0,h-max(α GG )), α G and β G are the upper bound and lower bound of h∈R on the Gth subinterval respectively, p G ( G=1,...,N) are unknown coefficients that need to be estimated; 使用式(4)逼近一维分段连续线性函数的充分条件是:将自变量h的定义域划分为互不重叠的子区间并且边界点αG和βG满足αGG和βG=αG+1The sufficient condition for using equation (4) to approximate a one-dimensional piecewise continuous linear function is that the domain of the independent variable h is divided into non-overlapping subintervals and the boundary points α G and β G satisfy α G < β G and β G =αG +1 ; 对式(4)进一步做以下处理:Formula (4) is further processed as follows: 在式(4)中加入跳变项h1(v)和指数项h2(v);其中,跳变项h1(v)与最大静摩擦力相关,用来解决变向时的摩擦力跳变现象;指数项h2(v)用来解决低速Stribeck效应的逼近;式(4)变为如下所述:Add jump term h 1 (v) and exponent term h 2 (v) to formula (4); among them, the jump term h 1 (v) is related to the maximum static friction force, which is used to solve the friction force jump when changing direction. variable phenomenon; the exponent term h 2 (v) is used to solve the approximation of the low-speed Stribeck effect; formula (4) becomes as follows: <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>d</mi> <mn>0</mn> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>G</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mo>&amp;lsqb;</mo> <msub> <mi>d</mi> <mi>G</mi> </msub> <msub> <mi>&amp;rho;</mi> <mi>G</mi> </msub> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mi>v</mi> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mi>G</mi> </msub> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>&amp;beta;</mi> <mi>G</mi> </msub> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&amp;alpha;</mi> <mi>G</mi> </msub> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>)</mo> <mo>+</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>+</mo> <msub> <mi>d</mi> <mrow> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <msub> <mi>h</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>v</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>f</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>=</mo><msub><mi>d</mi><mn>0</mn></msub><mo>+</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>G</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><mo>&amp;lsqb;</mo><msub><mi>d</mi><mi>G</mi></msub><msub><mi>&amp;rho;</mi><mi>G</mi></msub><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>v</mi><mo>-</mo><msub><mi>&amp;alpha;</mi><mi>G</mi></msub><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>,</mo><msub><mi>&amp;beta;</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>-</mo><msub><mi>&amp;alpha;</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>)</mo><mo>+</mo><msub><mi>h</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>&amp;rsqb;</mo><mo>+</mo><msub><mi>d</mi><mrow><mi>N</mi><mo>+</mo><mn>1</mn></mrow></msub><msub><mi>h</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow> 其中,v和f(v)分别是速度和摩擦力;N(≥2)表示将速度v的变化范围划分所得的数目;d0和dG(G=1,…,N)是需要估计得未知系数;αG和βG是第G个子区间的上下界,h1(v)是跳变项,形式为:h2(v)描述Stribeck效应,形式为:其中Fs表示静摩擦力,vc表示摩擦力矩最小时的速度;Among them, v and f(v) are velocity and friction force respectively; N(≥2) represents the number obtained by dividing the variation range of velocity v; d 0 and d G (G=1,…,N) are estimated Unknown coefficients; α G and β G are the upper and lower bounds of the Gth subinterval, h 1 (v) is the jump term, the form is: h 2 (v) describes the Stribeck effect in the form: Among them, F s represents the static friction force, v c represents the speed when the friction torque is minimum; 将式(5)进一步转换如下:The formula (5) is further converted as follows: 其中,D=[d0,d1,…,N,dN+1]T表示参数向量,表示基函数向量;参数D由递归最小二乘法估计方法计算得到;Among them, D=[d 0 ,d 1 ,…,N,d N+1 ] T represents the parameter vector, Indicates the basis function vector; the parameter D is calculated by the recursive least squares estimation method; 步骤三、根据步骤二得到的分段神经网络摩擦模型,利用终端滑模控制算法,对双电机伺服系统进行同步跟踪控制,方法如下:Step 3. According to the segmented neural network friction model obtained in Step 2, use the terminal sliding mode control algorithm to perform synchronous tracking control on the dual-motor servo system. The method is as follows: 设y(t)=θm为系统输出信号,yd(t)为系统参考信号,则误差e(t)=y(t)-yd(t),得到误差微分,二次微分和三次微分分别为:Let y(t)=θ m be the system output signal, y d (t) be the system reference signal, then the error e(t)=y(t)-y d (t), get error differential, quadratic differential and cubic The differentials are: <mrow> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> <mrow><mover><mi>e</mi><mo>&amp;CenterDot;</mo></mover><mo>=</mo><msub><mi>x</mi><mn>2</mn></msub><mo>-</mo><msub><mover><mi>y</mi><mo>&amp;CenterDot;</mo></mover><mi>d</mi></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>7</mo>mn><mo>)</mo></mrow></mrow> <mrow> <mover> <mi>e</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>=</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <msub> <mi>&amp;tau;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msub> <mi>b</mi> <mi>m</mi> </msub> <msub> <mi>&amp;theta;</mi> <mi>m</mi> </msub> <mo>-</mo> <msub> <mover> <mi>y</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mi>d</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> <mrow><mover><mi>e</mi><mo>&amp;CenterDot;&amp;CenterDot;</mo></mover><mo>=</mo><msub><mover><mi>x</mi><mo>&amp;CenterDot;</mo></mover><mn>2</mn></msub><mo>-</mo><msub><mover><mi>y</mi><mo>&amp;CenterDot;&amp;CenterDot;</mo></mover><mi>d</mi></msub><mo>=</mo><msub><mi>a</mi><mn>1</mn></msub><msubsup><mi>&amp;Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mn>2</mn></msubsup><msub><mi>&amp;tau;</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>-</mo><msub><mi>a</mi><mn>1</mn></msub><msub><mi>b</mi><mi>m</mi></msub><msub><mi>&amp;theta;</mi><mi>m</mi></msub><mo>-</mo><msub><mover><mi>y</mi><mo>&amp;CenterDot;&amp;CenterDot;</mo></mover><mi>d</mi></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow></mrow> 其中,k表示齿轮的扭矩系数,c表示齿轮的阻尼系数;Among them, k represents the torque coefficient of the gear, and c represents the damping coefficient of the gear; 利用快速终端滑模算法得到:Using the fast terminal sliding mode algorithm to get: <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>s</mi> <mn>0</mn> </msub> <mo>=</mo> <mi>e</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>=</mo> <msub> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mn>0</mn> </msub> <msub> <mi>s</mi> <mn>0</mn> </msub> <mo>+</mo> <msub> <mi>&amp;beta;</mi> <mn>0</mn> </msub> <msubsup> <mi>s</mi> <mn>0</mn> <mrow> <msub> <mi>q</mi> <mn>0</mn> </msub> <mo>/</mo> <msub> <mi>p</mi> <mn>0</mn> </msub> </mrow> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mo>=</mo> <msub> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <msubsup> <mi>s</mi> <mn>1</mn> <mrow> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>/</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> </mrow> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> <mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>s</mi><mn>0</mn></msub><mo>=</mo><mi>e</mi></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>s</mi><mn>1</mn></msub><mo>=</mo><msub><mover><mi>s</mi><mo>&amp;CenterDot;</mo></mover><mn>0</mn></msub><mo>+</mo><msub><mi>&amp;alpha;</mi><mn>0</mn></msub><msub><mi>s</mi><mn>0</mn></msub><mo>+</mo><msub><mi>&amp;beta;</mi><mn>0</mn></msub><msubsup><mi>s</mi><mn>0</mn><mrow><msub><mi>q</mi><mn>0</mn></msub><mo>/</mo><msub><mi>p</mi><mn>0</mn></msub></mrow></msubsup></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>s</mi><mn>2</mn></msub><mo>=</mo><msub><mover><mi>s</mi><mo>&amp;CenterDot;</mo></mover><mn>1</mn></msub><mo>+</mo><msub><mi>&amp;alpha;</mi><mn>1</mn></msub><msub><mi>s</mi><mn>1</mn></msub><mo>+</mo><msub><mi>&amp;beta;</mi><mn>1</mn></msub><msubsup><mi>s</mi><mn>1</mn><mrow><msub><mi>q</mi><mn>1</mn></msub><mo>/</mo><msub><mi>p</mi><mn>1</mn></msub></mrow></msubsup></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>10</mn><mo>)</mo></mrow></mrow> 其中,e为误差e(t)的简写,pi(i=0,1)为正奇数且满足pi>qi,并且αi>0,βi>0;Among them, e is the abbreviation of error e(t), p i (i=0,1) is a positive odd number and satisfies p i >q i , and α i >0, β i >0; 此时,将原有控制律分为保证速度同步usi和保证跟踪uti的两部分,控制律ui表示为At this time, the original control law is divided into two parts that ensure the speed synchronization u si and ensure the tracking u ti , and the control law u i is expressed as ui=usi+ψuti (11)u i =u si +ψu ti (11) 其中,in, <mrow> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>c&amp;rho;</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mrow> <mn>3</mn> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>x</mi> <mrow> <mn>4</mn> <mi>i</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>c</mi> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <msub> <mi>b</mi> <mi>m</mi> </msub> <msub> <mover> <mi>&amp;theta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>m</mi> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;rho;</mi> <mi>i</mi> </msub> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>u</mi><mrow><mi>s</mi><mi>i</mi></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mrow><msub><mi>a</mi><mn>2</mn></msub><msub><mi>c&amp;rho;</mi><mi>i</mi></msub></mrow></mfrac><mo>&amp;lsqb;</mo><msub><mi>h</mi><mn>1</mn></msub><mrow><mo>(</mo><msub><mi>x</mi><mrow><mn>3</mn><mi>i</mi></mrow></msub><mo>,</mo><msub><mi>x</mi><mrow><mn>4</mn><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>-</mo><mi>c</mi><mrow><mo>(</mo><msub><mi>a</mi><mn>1</mn></msub><msub><mi>b</mi><mi>m</mi></msub><msub><mover><mi>&amp;theta;</mi><mo>&amp;CenterDot;</mo></mover><mi>m</mi></msub><mo>-</mo><msub><mi>a</mi><mn>2</mn></msub><msub><mi>f</mi><mi>i</mi></msub><mo>)</mo></mrow><msub><mi>&amp;rho;</mi><mi>i</mi></msub><mo>&amp;rsqb;</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>12</mn><mo>)</mo></mrow></mrow> <mrow> <mi>&amp;psi;</mi> <mo>=</mo> <mfrac> <mn>1</mn> <msup> <mi>e</mi> <mrow> <mi>&amp;eta;</mi> <mo>|</mo> <msub> <mover> <mi>z</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>-</mo> <msub> <mover> <mi>z</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>|</mo> </mrow> </msup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> <mrow><mi>&amp;psi;</mi><mo>=</mo><mfrac><mn>1</mn><msup><mi>e</mi><mrow><mi>&amp;eta;</mi><mo>|</mo><msub><mover><mi>z</mi><mo>&amp;CenterDot;</mo></mover><mn>1</mn></msub><mo>-</mo><msub><mover><mi>z</mi><mo>&amp;CenterDot;</mo></mover><mn>2</mn></msub><mo>|</mo></mrow></msup></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>14</mn><mo>)</mo></mrow></mrow> 其中,保证速度同步的控制律usi中fi为步骤二中分段神经网络得到的摩擦模型,在输入端ui产生一个能够抵消摩擦力影响的输入量;b、η均为正数,h1(x3i,x4i)为系统状态反馈项,为系统滑模项,分别表示为Among them, f i in the control law u si that guarantees speed synchronization is the friction model obtained by the segmental neural network in step 2, and an input quantity that can offset the influence of friction force is generated at the input end u i ; both b and η are positive numbers, h 1 (x 3i ,x 4i ) is the system state feedback item, is the sliding mode item of the system, expressed as h1(x3i,x4i)=a2iτi(t)+a2i(-1)iω+ca1ρi1(t)+τ2(t))-kx4i (15)h 1 (x 3i ,x 4i )=a 2i τ i (t)+a 2i (-1) i ω+ca 1 ρ i1 (t)+τ 2 (t))-kx 4i (15) <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>h</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <msub> <mi>s</mi> <mn>0</mn> </msub> <mo>,</mo> <msub> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>0</mn> </msub> <mo>,</mo> <msub> <mover> <mi>s</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mn>0</mn> </msub> <mo>,</mo> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;alpha;</mi> <mn>0</mn> </msub> <msub> <mover> <mi>s</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mn>0</mn> </msub> <mo>/</mo> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;beta;</mi> <mn>0</mn> </msub> <msubsup> <mi>s</mi> <mn>0</mn> <mrow> <msub> <mi>q</mi> <mn>0</mn> </msub> <mo>/</mo> <msub> <mi>p</mi> <mn>0</mn> </msub> </mrow> </msubsup> <mo>)</mo> </mrow> <mrow> <mo>&amp;prime;</mo> <mo>&amp;prime;</mo> </mrow> </msup> <mo>/</mo> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;beta;</mi> <mn>1</mn> </msub> <msubsup> <mi>s</mi> <mn>1</mn> <mrow> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>/</mo> <msub> <mi>p</mi> <mn>1</mn> </msub> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>&amp;prime;</mo> </msup> <mo>/</mo> <mrow> <mo>(</mo> <mn>2</mn> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>&amp;alpha;</mi> <mn>1</mn> </msub> <msub> <mover> <mi>s</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>/</mo> <mrow> <mo>(</mo> <mrow> <mn>2</mn> <msub> <mi>a</mi> <mn>1</mn> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> <mrow><mtable><mtr><mtd><mrow><msub><mi>h</mi><mn>2</mn></msub><mrow><mo>(</mo><msub><mi>s</mi><mn>0</mn></msub><mo>,</mo><msub><mover><mi>s</mi><mo>&amp;CenterDot;</mo></mover><mn>0</mn></msub><mo>,</mo><msub><mover><mi>s</mi><mo>&amp;CenterDot;&amp;CenterDot;</mo></mover><mn>0</mn></msub><mo>,</mo><msub><mi>s</mi><mn>1</mn></msub><mo>,</mo><msub><mover><mi>s</mi><mo>&amp;CenterDot;</mo></mover><mn>1</mn></msub><mo>)</mo></mrow><mo>=</mo><msub><mi>&amp;alpha;</mi><mn>0</mn></msub><msub><mover><mi>s</mi><mo>&amp;CenterDot;&amp;CenterDot;</mo></mover><mn>0</mn></msub><mo>/</mo><mrow><mo>(</mo><mn>2</mn><msub><mi>a</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>+</mo><msup><mrow><mo>(</mo><msub><mi>&amp;beta;</mi><mn>0</mn></msub><msubsup><mi>s</mi><mn>0</mn><mrow><msub><mi>q</mi><mn>0</mn></msub><mo>/</mo><msub><mi>p</mi><mn>0</mn></msub></mrow></msubsup><mo>)</mo></mrow><mrow><mo>&amp;prime;</mo><mo>&amp;prime;</mo></mrow></msup><mo>/</mo><mrow><mo>(</mo><mn>2</mn><msub><mi>a</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>+</mo><msup><mrow><mo>(</mo><msub><mi>&amp;beta;</mi><mn>1</mn></msub><msubsup><mi>s</mi><mn>1</mn><mrow><msub><mi>q</mi><mn>1</mn></msub><mo>/</mo><msub><mi>p</mi><mn>1</mn></msub></mrow></msubsup><mo>)</mo></mrow><mo>&amp;prime;</mo></msup><mo>/</mo><mrow><mo>(</mo><mn>2</mn><msub><mi>a</mi><mn>1</mn></msub><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><msub><mi>&amp;alpha;</mi><mn>1</mn></msub><msub><mover><mi>s</mi><mo>&amp;CenterDot;</mo></mover><mn>1</mn></msub><mo>//</mo><mrow><mo>(</mo><mrow><mn>2</mn><msub><mi>a</mi><mn>1</mn></msub></mrow><mo>)</mo></mrow></mrow></mtd></mtr></mtable><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>16</mn><mo>)</mo></mrow></mrow> 根据控制律ui,对双电机伺服系统进行同步跟踪控制。According to the control law u i , the dual-motor servo system is synchronously tracked and controlled. 2.一种如权利要求1所述的基于分段神经网络摩擦模型的双电机伺服系统控制方法,其特征在于,步骤二中速度区间vc的获取方法为:2. a kind of dual-motor servo system control method based on segmental neural network friction model as claimed in claim 1, is characterized in that, the acquisition method of speed interval v in the step 2 is: 在双电机伺服系统的正反方向各选取不少于10个不同速度值;同时,对双电机系统采用PI控制,使系统的速度保持恒定;当电机匀速运动时,电机输出力矩的大小即为摩擦力的大小,而电机输出力矩的大小与控制器输出控制电压的大小成正比,通过记录控制器输出控制量的大小,即可得到当前速度下电机摩擦力的大小;对每个速度样本点进行不少于3次上述处理,对得到的全部摩擦力结果取平均值,作为当前速度下系统所受实际摩擦力;最终得到正反两个方向至少10个不同速度时摩擦力的大小,再对正反两个方向各组数据采用最小二乘法拟合,即可得到摩擦力矩最小时的速度vcSelect no less than 10 different speed values in the positive and negative directions of the dual-motor servo system; at the same time, use PI control for the dual-motor system to keep the speed of the system constant; when the motor moves at a uniform speed, the output torque of the motor is The size of the friction force, and the size of the motor output torque is proportional to the size of the controller output control voltage, by recording the size of the controller output control amount, the size of the motor friction force at the current speed can be obtained; for each speed sample point Carry out the above processing no less than 3 times, and take the average value of all the friction results obtained as the actual friction force of the system at the current speed; finally obtain the friction force at least 10 different speeds in the positive and negative directions, and then The least squares method is used to fit each set of data in the positive and negative directions, and the velocity v c when the friction torque is minimum can be obtained; 所述最大静摩擦力Fs获取方法为:The acquisition method of the maximum static friction force F s is: 将双电机伺服系统工作在开环环境下,逐渐增加双电机控制电压,直至电机开始转动,此时即为系统的最大静摩擦;重复至少10次操作,取其平均值作为最大静摩擦转矩FsMake the dual-motor servo system work in an open-loop environment, and gradually increase the control voltage of the dual-motor until the motor starts to rotate. At this time, it is the maximum static friction of the system; repeat the operation at least 10 times, and take the average value as the maximum static friction torque F s .
CN201410425147.5A 2014-08-27 2014-08-27 Dual-servo-motor system control method based on segmentation neutral net friction model Expired - Fee Related CN104638999B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410425147.5A CN104638999B (en) 2014-08-27 2014-08-27 Dual-servo-motor system control method based on segmentation neutral net friction model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410425147.5A CN104638999B (en) 2014-08-27 2014-08-27 Dual-servo-motor system control method based on segmentation neutral net friction model

Publications (2)

Publication Number Publication Date
CN104638999A CN104638999A (en) 2015-05-20
CN104638999B true CN104638999B (en) 2018-01-19

Family

ID=53217404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410425147.5A Expired - Fee Related CN104638999B (en) 2014-08-27 2014-08-27 Dual-servo-motor system control method based on segmentation neutral net friction model

Country Status (1)

Country Link
CN (1) CN104638999B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105867136A (en) * 2016-05-16 2016-08-17 北京理工大学 Parameter identification based multi-motor servo system synchronization and tracking control method
CN106569487B (en) * 2016-11-16 2019-02-26 北京理工大学 A fault detection method for servo system based on observer
CN108333928B (en) * 2018-01-23 2020-10-20 南京理工大学 A Position Coordinated Control Method for Multiple DC Brushless Motors Based on Dynamic Surfaces
WO2020133270A1 (en) * 2018-12-28 2020-07-02 深圳配天智能技术研究院有限公司 Dynamic parameter identification method for robot, robot and storage device
CN109660154B (en) * 2019-02-01 2020-11-03 东南大学 Novel speed control method for servo flexible load
CN110995094B (en) * 2019-12-09 2021-04-13 哈尔滨工业大学 A Position and Velocity Estimation Method for Permanent Magnet Synchronous Motors under Low Carrier Ratio Control
CN111639749A (en) * 2020-05-25 2020-09-08 上海智殷自动化科技有限公司 Industrial robot friction force identification method based on deep learning
CN112799304B (en) * 2021-01-06 2022-06-14 武汉理工大学 A dual-motor synchronous control method and device based on time-varying friction compensation
CN116276922B (en) * 2023-05-22 2023-07-25 佛山科学技术学院 Friction force identification method for five-axis parallel device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3652202B2 (en) * 2000-02-10 2005-05-25 多摩川精機株式会社 Position control method and position control apparatus
CN102843088A (en) * 2012-08-29 2012-12-26 曹秉刚 Fuzzy sliding mode and neural network based composite control system of permanent synchronous motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3652202B2 (en) * 2000-02-10 2005-05-25 多摩川精機株式会社 Position control method and position control apparatus
CN102843088A (en) * 2012-08-29 2012-12-26 曹秉刚 Fuzzy sliding mode and neural network based composite control system of permanent synchronous motor

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
伺服系统在摩擦条件下的模拟复合正交神经网络控制;叶军;《中国电机工程学报》;20050930;第25卷(第17期);第127-130页 *
含摩擦的双电机伺服系统快速终端滑模控制;赵威等;《哈尔滨工业大学学报》;20140331;第46卷(第3期);第119-123页 *
基于神经网络的电机摩擦力混合模型研究;徐小平等;《计算机仿真》;20120531;第29卷(第5期);第178-182页 *

Also Published As

Publication number Publication date
CN104638999A (en) 2015-05-20

Similar Documents

Publication Publication Date Title
CN104638999B (en) Dual-servo-motor system control method based on segmentation neutral net friction model
CN104238361B (en) Adaptive robust position control method and system for motor servo system
CN104252134B (en) Method for controlling position of self-adaptive robust of motor servo system based on extended state observer
CN106067747B (en) A kind of design method of sliding formwork disturbance observer for servo system control
CN103197562B (en) Rotary-table servo system neural network control method
CN107121932B (en) A Robust Adaptive Control Method of Error Symbol Integral for Motor Servo System
CN104065322B (en) Method for controlling output feedback of motor position servo system
CN104111607B (en) A kind of control method of the electric machine position servo system considering input delay
CN104218853B (en) Sliding-mode synchronization control method of double-permanent-magnet synchronous motor chaos system
CN104950678B (en) A kind of Neural Network Inversion control method of flexible mechanical arm system
CN101369133B (en) Low speed friction servo system sliding-mode variable structure control method based on grey prediction device
CN103926875B (en) A kind of Ball-screw Drive Systems friction compensation method
CN102385342B (en) Self-adaptation dynamic sliding mode controlling method controlled by virtual axis lathe parallel connection mechanism motion
CN106802660A (en) One kind is combined strong anti-interference attitude control method
CN113325805B (en) A kind of active disturbance rejection controller and its design method
CN105515492B (en) Motor servo system progressive tracking control method when a kind of input-bound
CN104360596B (en) Limited time friction parameter identification and adaptive sliding mode control method for electromechanical servo system
CN108390597A (en) Permanent magnet synchronous motor nonlinear predictive controller design with disturbance observer
CN106100469B (en) Implementation method based on adaptive motor servo system robust position controller
CN104678763B (en) Friction compensation and dynamic surface control method based on least squares support vector machine for electromechanical servo system
CN104460704A (en) Tracking control method for pitching position of electric rotary table based on perturbation upper bound estimation
CN105790668A (en) Double ring auto-disturbances rejection controller capable of overcoming transmission clearance nonlinearity
CN105867118A (en) Improved motor position servo system adaptive robustness control method
CN104570733A (en) Method for tracking control of preset performance in magnetic hysteresis compensation-containing motor servo system
CN111046510B (en) Vibration suppression method of flexible mechanical arm based on track segmentation optimization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180119