CN107121932B - A Robust Adaptive Control Method of Error Symbol Integral for Motor Servo System - Google Patents
A Robust Adaptive Control Method of Error Symbol Integral for Motor Servo System Download PDFInfo
- Publication number
- CN107121932B CN107121932B CN201710439765.9A CN201710439765A CN107121932B CN 107121932 B CN107121932 B CN 107121932B CN 201710439765 A CN201710439765 A CN 201710439765A CN 107121932 B CN107121932 B CN 107121932B
- Authority
- CN
- China
- Prior art keywords
- error
- servo system
- adaptive
- equation
- motor servo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 17
- 230000006641 stabilisation Effects 0.000 claims abstract 2
- 238000011105 stabilization Methods 0.000 claims abstract 2
- 230000006978 adaptation Effects 0.000 claims description 6
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 238000009795 derivation Methods 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- 238000012795 verification Methods 0.000 claims 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims 1
- 239000011541 reaction mixture Substances 0.000 claims 1
- 230000033764 rhythmic process Effects 0.000 claims 1
- 230000009471 action Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 6
- 230000010354 integration Effects 0.000 description 5
- 238000011217 control strategy Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Steroid Compounds (AREA)
- Feedback Control In General (AREA)
Abstract
Description
技术领域technical field
本发明涉及电机伺服控制技术,具体涉及一种电机伺服系统误差符号积分鲁棒自适应控制方法。The invention relates to a motor servo control technology, in particular to a robust self-adaptive control method of error symbol integration of a motor servo system.
背景技术Background technique
永磁无刷直流电机由于其自身具有响应速度快,能源利用率高,污染小等特点,在工业领域具有广泛的应用。随着近些年工业技术的快速发展,对直流电机的控制技术也提出了更高的要求,如何提高直流单机的运动精度已经成为了直流电机的主要研究方向。在电机伺服系统中,由于工作状况不同和一些结构上的限制,系统在建模时难以完全反映出真实的模型,因此在设计控制器时,这些模型不确定性具有非常重要的作用,尤其是不确定非线性,会严重恶化控制器的控制性能,从而导致低精度,极限环震荡、甚至造成系统的失稳。Permanent magnet brushless DC motor has a wide range of applications in the industrial field due to its own characteristics such as fast response speed, high energy utilization rate, and low pollution. With the rapid development of industrial technology in recent years, higher requirements have also been placed on the control technology of DC motors. How to improve the motion accuracy of DC single machines has become the main research direction of DC motors. In the motor servo system, due to different working conditions and some structural limitations, it is difficult for the system to fully reflect the real model when modeling. Therefore, when designing the controller, the uncertainty of these models plays a very important role, especially Uncertain nonlinearity will seriously deteriorate the control performance of the controller, resulting in low accuracy, limit cycle oscillation, and even system instability.
对于系统中存在的非线性问题,传统的控制方法难以解决其对系统控制精度的影响。近年来,随着控制理论的发展,各种针对不确定性非线性的控制策略相继提出,如滑模变结构控制、鲁棒自适应控制、自适应鲁棒等。但上述控制策略控制器设计均比较复杂,不易于工程实现。For the nonlinear problems existing in the system, the traditional control method is difficult to solve its influence on the control accuracy of the system. In recent years, with the development of control theory, various control strategies for uncertain nonlinearity have been proposed, such as sliding mode variable structure control, robust adaptive control, adaptive robust and so on. However, the design of the above control strategy controller is relatively complicated, and it is not easy to implement engineering.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种电机伺服系统误差符号积分鲁棒自适应控制方法,解决电机位置伺服系统中不确定非线性问题。The purpose of the present invention is to provide a robust self-adaptive control method of error sign integral of the motor servo system, so as to solve the uncertain nonlinear problem in the motor position servo system.
实现本发明目的的技术方案为:一种电机伺服系统误差符号积分鲁棒自适应控制方法,包括以下步骤:The technical scheme for realizing the purpose of the present invention is: a method for robust self-adaptive control method of error symbol integration of motor servo system, comprising the following steps:
步骤1,建立电机位置伺服系统模型;
步骤2,设计误差符号积分鲁棒自适应控制器;
步骤3,根据误差符号积分鲁棒自适应控制器,利用李雅普诺夫稳定性理论对电机伺服系统进行稳定性证明,并运用Barbalat引理得到系统的全局渐进稳定的结果。
与现有技术相比,本发明的显著优点为:Compared with the prior art, the significant advantages of the present invention are:
本发明针对电机伺服系统中存在参数不确定性以及未知的非线性因素(外部扰动)提出了基于参数自适应的误差符号积分鲁棒自适应抗干扰控制器,参数自适应率能够有效估计系统中的未知参数,采用误差符号积分鲁棒项来克服系统中其他的不确定非线性因素,保证了电机伺服系统中的控制精度;仿真的结果验证了所提出的控制策略的有效性。Aiming at the parameter uncertainty and unknown nonlinear factors (external disturbance) in the motor servo system, the present invention proposes an error symbol integral robust adaptive anti-interference controller based on parameter self-adaptation, and the parameter self-adaptation rate can effectively estimate the The unknown parameters of , the error symbol integral robust term is used to overcome other uncertain nonlinear factors in the system, which ensures the control accuracy of the motor servo system. The simulation results verify the effectiveness of the proposed control strategy.
附图说明Description of drawings
图1是电机伺服系统示意图。Figure 1 is a schematic diagram of a motor servo system.
图2是本发明的电机伺服系统误差符号积分鲁棒自适应控制策略图。FIG. 2 is a diagram of a robust self-adaptive control strategy diagram of the error symbol integration of the motor servo system of the present invention.
图3是干扰(1)作用下控制器的系统输出对给定输出的跟踪过程图。Fig. 3 is the tracking process diagram of the system output of the controller to the given output under the action of disturbance (1).
图4是干扰(1)作用下系统的跟踪误差随时间变化的曲线图。FIG. 4 is a graph showing the variation of the tracking error of the system with time under the action of disturbance (1).
图5是干扰(2)作用下PID控制和ARISE控制跟踪精度曲线图。Figure 5 is a graph of the tracking accuracy of PID control and ARISE control under the action of disturbance (2).
图6是干扰(2)控制输入u曲线图。FIG. 6 is a graph of disturbance (2) control input u.
图7是干扰(3)作用下系统的跟踪误差随时间变化的曲线图。FIG. 7 is a graph of the tracking error of the system under the action of disturbance (3) as a function of time.
图8是干扰(3)作用下控制输入v曲线图。FIG. 8 is a graph of the control input v under the action of disturbance (3).
图9是干扰(3)作用下参数自适应曲线图。FIG. 9 is a graph of parameter adaptation under the action of disturbance (3).
具体实施方式Detailed ways
结合图1、图2,一种电机伺服系统误差符号积分鲁棒自适应控制方法,包括以下步骤:With reference to Fig. 1 and Fig. 2, a method for robust adaptive control method of error symbol integration of motor servo system includes the following steps:
步骤1、建立电机位置伺服系统模型;
根据牛顿第二定律,电机惯性负载的动力学模型方程为:According to Newton's second law, the dynamic model equation of the motor inertial load is:
式中,y表示角位移,Jequ表示惯性负载,ku表示扭矩常数,u是系统控制输入,Bequ代表粘性摩擦系数,dn代表系统受到的常值干扰,代表其他未建模干扰,比如输入饱和,外部时变扰动以及未建模动态;where y is the angular displacement, J equ is the inertial load, ku is the torque constant, u is the system control input, B equ is the viscous friction coefficient, dn is the constant disturbance to the system, represents other unmodeled disturbances, such as input saturation, external time-varying disturbances, and unmodeled dynamics;
将(1)式写成状态空间形式,如下:Write equation (1) in state space form, as follows:
其中x=[x1,x2]T表示位置和速度的状态向量;参数集θ=[θ1,θ2,θ3]T,其中θ1=Jequ/ku,θ2=Bequ/ku,θ3=dn/ku,表示系统中其他未建模干扰。由于系统参数Jequ,ku,Bequ,dn未知,系统参数是不确定的,但系统的大致信息是可以知道的。此外,系统的不确定非线性也是不能明确建模的,但系统的未建模动态和干扰总是有界的。因而,以下假设总是成立的:in x=[x 1 , x 2 ] T represents the state vector of position and velocity; parameter set θ=[θ 1 , θ 2 , θ 3 ] T , where θ 1 =Je qu /k u , θ 2 =B equ / k u , θ 3 =d n /k u , Represents other unmodeled disturbances in the system. Since the system parameters J equ , ku , Bequ , and d n are unknown, the system parameters are uncertain, but the general information of the system can be known. Furthermore, the uncertain nonlinearity of the system Nor can it be explicitly modeled, but the unmodeled dynamics and disturbances of the system are always bounded. Thus, the following assumptions always hold:
假设1:参数θ满足:Assumption 1: The parameter θ satisfies:
其中θmin=[θ1min,θ2min,θ3min]T,θmax=[θ1max,θ2max,θ3max]T,它们都是已知的,此外θ1min>0,θ2min>0,θ3min>0;where θ min = [θ 1min , θ 2min , θ 3min ] T , θ max = [θ 1max , θ 2max , θ 3max ] T , they are all known, and θ 1min >0, θ 2min >0, θ 3min >0;
假设2:d(x,t)是有界的且一阶可微的,即Assumption 2: d(x,t) is bounded and first-order differentiable, i.e.
其中δd已知。where δ d is known.
步骤2、设计误差符号积分鲁棒自适应控制器,具体步骤如下:
步骤2-1、定义z1=x1-x1d为系统的角位移跟踪误差,x1d是系统期望跟踪的位置指令且该指令二阶连续可微,根据式(2)中第一个方程选取x2为虚拟控制量,使方程趋于稳定状态;令x2eq为虚拟控制的期望值,x2eq与真实状态x2的误差为z2=x2-x2eq,对z1求导得:Step 2-1. Define z 1 =x 1 -x 1d as the angular displacement tracking error of the system, x1d is the position command that the system expects to track and the command is second-order continuous differentiable, according to the first equation in equation (2) Select x 2 as the virtual control quantity, so that the equation tends to a stable state; let x 2eq be the expected value of virtual control, the error between x 2eq and the real state x 2 is z 2 =x 2 -x 2eq , and derivation for z 1 can be obtained:
设计虚拟控制律:Design a virtual control law:
式(6)中k1>0为可调增益,则In formula (6), k 1 > 0 is an adjustable gain, then
由于z1(s)=G(s)z2(s),式中G(s)=1/(s+k1)是一个稳定的传递函数,当z2趋于0时,z1也必然趋于0。Since z 1 (s)=G(s)z 2 (s), where G(s)=1/(s+k 1 ) is a stable transfer function, when z 2 tends to 0, z 1 also must tend to 0.
步骤2-2、为了更方便的设计控制器,引入一个辅助的误差信号r(t)Step 2-2. In order to design the controller more conveniently, an auxiliary error signal r(t) is introduced
式8中k2>0为可调增益;In
根据式(2)、(7)和(8),有如下r的展开式:According to equations (2), (7) and (8), there are the following expansions of r:
根据式(2)和(9),有如下等式:According to equations (2) and (9), there are the following equations:
根据式(10),设计基于模型的控制器为:According to Equation (10), the model-based controller is designed as:
式(11)代表θ的估计值,为估计的误差β为系统控制增益;kr为正反馈增益;为参数自适应率;Γ>0为可调的正的自调节律增益。Formula (11) represents the estimated value of θ, is the estimated error β is the system control gain; k r is the positive feedback gain; is the parameter self-adaptation rate; Γ>0 is the adjustable positive self-adjustment law gain.
由式(11)中参数自适应率知,虽然r为未知量,但是和其一阶导数是已知的,所以自适应率可以进行积分得到:According to the parameter adaptation rate in equation (11), although r is an unknown quantity, and its first derivative are known, so the adaptation rate can be integrated to get:
将式(11)代入式(10)中计算得到:Substitute equation (11) into equation (10) to calculate:
求导得到:Derive to get:
步骤3、根据误差符号积分鲁棒自适应控制器,利用李雅普诺夫稳定性理论对电机伺服系统进行稳定性证明,并运用Barbalat引理得到系统的全局渐进稳定的结果,具体如下:
引理1:Lemma 1:
定义辅助函数define helper functions
z2(0)、分别表示z2(t)、的初始值。z 2 (0), respectively represent z 2 (t), the initial value of .
当时,则when time, then
P(t)≥0 (19)P(t)≥0 (19)
对该引理的证明:Proof of this lemma:
对式(15)两边同时积分并运用式(7)得:Integrate both sides of equation (15) at the same time and apply equation (7) to get:
对式(20)中后两项进行分步积分可得:Step-by-step integration of the last two items in equation (20) can be obtained:
因此therefore
由式(22)可以看出,若β的取值满足时,有式(17)和(19)成立,引理得证。It can be seen from equation (22) that if the value of β satisfies When , equations (17) and (19) are established, and the lemma is proved.
根据上述引理,定义李雅普诺夫函数如下:According to the above lemma, the Lyapunov function is defined as follows:
为估计的误差,即 is the estimated error, i.e.
运用李雅普诺夫稳定性理论进行稳定性证明,并运用Barbalat引理得到系统的全局渐进稳定的结果,因此调节增益k1、k2、kr以及Γ使系统的跟踪误差在时间区域无穷的条件下趋于零。对式(23)求导并将(7)、(8)、(14)和(16)代入得:Using Lyapunov stability theory to prove the stability, and using Barbalat's lemma to get the result of the global asymptotic stability of the system, so adjust the gains k 1 , k 2 , k r and Γ to make the tracking error of the system infinite in the time domain down to zero. Derivating equation (23) and substituting (7), (8), (14) and (16), we get:
其中 in
定义:definition:
Z=[z1,z2,r] (25)Z=[z 1 ,z 2 ,r] (25)
通过调整参数k1、k2、kr,可以使得对称矩阵Λ为正定矩阵,By adjusting the parameters k 1 , k 2 and k r , the symmetric matrix Λ can be made a positive definite matrix,
则有:Then there are:
式(27)中λmin(Λ)为对称矩阵Λ的最小特征值。In formula (27), λ min (Λ) is the minimum eigenvalue of the symmetric matrix Λ.
由式(27)和李雅普诺夫稳定性定理有结论:针对电机伺服系统存在的不确定非线性设计的积分符号鲁棒自适应控制器可以使系统达到渐进稳定的效果,调节控制器的参数k1、k2、kr可以使跟踪精度不断趋近于零。电机伺服系统的误差符号积分鲁棒自适应控制原理示意图如图2所示。From equation (27) and Lyapunov stability theorem, it is concluded that the integral symbol robust adaptive controller designed for the uncertain nonlinearity of the motor servo system can make the system achieve asymptotic stability, and the parameter k of the controller can be adjusted. 1 , k 2 , and k r can make the tracking accuracy approach zero. The schematic diagram of the error symbol integral robust adaptive control principle of the motor servo system is shown in Figure 2.
下面结合具体实施例和附图对本发明作进一步说明。The present invention will be further described below with reference to specific embodiments and accompanying drawings.
实施例Example
仿真参数:Jequ=0.00138kg·m2,Bequ=0.4N·m/rad,ku=2.36N·m/V。取控制器参数k1=12,k2=1.5,kr=1,θ1n=0.02,θ2n=0.294,所选取的è的名义值远离于参数的真值,以考核自适应控制律的效果。PID控制器参数为kp=90,ki=70,kd=0.3。给定的位置参考输入信号单位rad。Simulation parameters: J equ =0.00138kg·m 2 , Bequ =0.4N·m/rad, ku = 2.36N ·m/V. Take the controller parameters k 1 =12, k 2 =1.5, k r =1, θ 1n =0.02, θ 2n =0.294, the selected nominal value of è is far from the true value of the parameter, so as to evaluate the performance of the adaptive control law. Effect. The PID controller parameters are k p =90, k i =70, k d =0.3. The given position refers to the input signal The unit is rad.
干扰(1)在只存在常值扰动的工况下且dn=0.5N·m。干扰(2)常值扰动和其他未建模干扰并存时,且dn=0.5N·m,干扰(3)常值扰动和其他未建模干扰并存,且输入受限的情况下,dn=0.5N·m,v=u·0.8。Disturbance (1) Under the condition of only constant disturbance and d n =0.5N·m. Disturbance (2) When constant disturbance and other unmodeled disturbances coexist, and d n =0.5N·m, Disturbance (3) Constant disturbance and other unmodeled disturbances coexist, and when the input is limited, d n =0.5N·m, v=u·0.8.
控制律作用效果见图3-图9:The effect of the control law is shown in Figure 3-Figure 9:
图3是干扰(1)作用下控制器的系统输出对给定输出的跟踪过程图。图4是干扰(1)作用下系统的跟踪误差随时间变化的曲线图图。图5是干扰(2)作用下PID控制和ARISE控制跟踪精度曲线图。图6是干扰(2)控制输入u曲线图。图7是干扰(3)作用下系统的跟踪误差随时间变化的曲线图。图8是干扰(3)作用下控制输入v曲线图。图9是干扰(3)作用下参数自适应曲线图。Fig. 3 is the tracking process diagram of the system output of the controller to the given output under the action of disturbance (1). FIG. 4 is a graph showing the variation of the tracking error of the system with time under the action of disturbance (1). Figure 5 is a graph of the tracking accuracy of PID control and ARISE control under the action of disturbance (2). FIG. 6 is a graph of disturbance (2) control input u. FIG. 7 is a graph of the tracking error of the system under the action of disturbance (3) as a function of time. FIG. 8 is a graph of the control input v under the action of disturbance (3). FIG. 9 is a graph of parameter adaptation under the action of disturbance (3).
由上可知,本发明提出的算法在仿真环境下能够比较准确的估计出干扰值,相比于传统PID控制,本发明设计的控制器能够极大的提高存在参数不确定性及大干扰系统的控制精度。研究结果表明在不确定非线性和参数不确定性影响下,本发明提出的方法能够满足性能指标。It can be seen from the above that the algorithm proposed by the present invention can more accurately estimate the interference value in the simulation environment. Compared with the traditional PID control, the controller designed by the present invention can greatly improve the stability of the system with parameter uncertainty and large interference. control precision. The research results show that under the influence of uncertain nonlinearity and parameter uncertainty, the method proposed by the invention can meet the performance index.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710439765.9A CN107121932B (en) | 2017-06-12 | 2017-06-12 | A Robust Adaptive Control Method of Error Symbol Integral for Motor Servo System |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710439765.9A CN107121932B (en) | 2017-06-12 | 2017-06-12 | A Robust Adaptive Control Method of Error Symbol Integral for Motor Servo System |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107121932A CN107121932A (en) | 2017-09-01 |
CN107121932B true CN107121932B (en) | 2020-06-19 |
Family
ID=59730458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710439765.9A Expired - Fee Related CN107121932B (en) | 2017-06-12 | 2017-06-12 | A Robust Adaptive Control Method of Error Symbol Integral for Motor Servo System |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107121932B (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110520803B (en) * | 2018-08-10 | 2022-10-18 | 曾喆昭 | Intelligent PID control method |
CN110888320B (en) * | 2019-09-09 | 2022-06-28 | 南京理工大学 | Adaptive Robust Control Method Based on Synchronous Motion Error Modeling of Double Electric Cylinders |
CN110673472B (en) * | 2019-09-09 | 2022-06-28 | 南京理工大学 | Adaptive Robust Control Method Based on Neural Network Compensation for Dead Zone Inversion Error |
CN110673473B (en) * | 2019-09-09 | 2022-06-28 | 南京理工大学 | Error Sign Integral Robust Adaptive Control Method for Two-Axis Coupled Tank Gun System |
CN110928182B (en) * | 2019-11-05 | 2022-12-13 | 南京理工大学 | Robust Adaptive Repetitive Control Method for Hydraulic Servo System Based on State Estimation |
CN110865540A (en) * | 2019-11-28 | 2020-03-06 | 曾喆昭 | Mutual coupling PI cooperative control theory new method |
CN111708276B (en) * | 2020-04-30 | 2022-12-02 | 南京理工大学 | Adaptive Robust Control Method Based on Observation Error Compensation of Linear State Observer |
CN111913391B (en) * | 2020-08-12 | 2022-05-24 | 深圳职业技术学院 | A Stabilization Method for Discrete-Time Non-Minimum Phase Systems with Adaptive Control |
CN112769364B (en) * | 2020-12-14 | 2022-08-16 | 南京理工大学 | Fast self-adaptive anti-interference control method of direct current motor servo system |
CN114545779B (en) * | 2022-03-08 | 2023-11-03 | 南京理工大学 | A self-adjusting integral robust control method for rapid erection system based on direct drive pump |
CN115047760B (en) * | 2022-05-26 | 2023-10-31 | 南京理工大学 | FTAIRTSM control method for direct current motor servo system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104333280A (en) * | 2014-09-17 | 2015-02-04 | 南京理工大学 | Robustness adaptive control (RAC) method of direct driving motor system |
CN104345639A (en) * | 2014-10-09 | 2015-02-11 | 南京理工大学 | Robust adaptive control (RAC) method of electro-hydraulic position servo control system |
CN104834220A (en) * | 2015-05-20 | 2015-08-12 | 南京理工大学 | Adaptive error symbol integration robust repetitive control method for electromechanical servo system |
CN105867133A (en) * | 2016-04-26 | 2016-08-17 | 南京理工大学 | Method for self-adjustment error symbol integral robust control of electro-hydraulic torque servo system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI407279B (en) * | 2010-03-08 | 2013-09-01 | Univ Ishou | Positioning controller |
JP2012032869A (en) * | 2010-07-28 | 2012-02-16 | Okouchi Kinzoku Co Ltd | Disc cutter feed control method, device and cutting apparatus using the same |
TWI403871B (en) * | 2010-10-25 | 2013-08-01 | Ind Tech Res Inst | Feedback switching device and method for servo motor driving |
CN105700352B (en) * | 2016-01-26 | 2019-02-22 | 南京理工大学 | An error symbol integral robust control method for electro-hydraulic load simulator |
CN105843043B (en) * | 2016-05-17 | 2019-01-04 | 南京理工大学 | A kind of electro-hydraulic load simulator ADAPTIVE ROBUST force control method |
-
2017
- 2017-06-12 CN CN201710439765.9A patent/CN107121932B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104333280A (en) * | 2014-09-17 | 2015-02-04 | 南京理工大学 | Robustness adaptive control (RAC) method of direct driving motor system |
CN104345639A (en) * | 2014-10-09 | 2015-02-11 | 南京理工大学 | Robust adaptive control (RAC) method of electro-hydraulic position servo control system |
CN104834220A (en) * | 2015-05-20 | 2015-08-12 | 南京理工大学 | Adaptive error symbol integration robust repetitive control method for electromechanical servo system |
CN105867133A (en) * | 2016-04-26 | 2016-08-17 | 南京理工大学 | Method for self-adjustment error symbol integral robust control of electro-hydraulic torque servo system |
Non-Patent Citations (1)
Title |
---|
"基于自适应的电液负载模拟器积分鲁棒控制";岳欣等;《液压与气动》;20161231(第12期);正文第25-30页 * |
Also Published As
Publication number | Publication date |
---|---|
CN107121932A (en) | 2017-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107121932B (en) | A Robust Adaptive Control Method of Error Symbol Integral for Motor Servo System | |
CN104252134B (en) | Method for controlling position of self-adaptive robust of motor servo system based on extended state observer | |
CN108303885B (en) | Self-adaptive control method of motor position servo system based on disturbance observer | |
CN104238361B (en) | Adaptive robust position control method and system for motor servo system | |
CN104345639B (en) | A kind of electro-hydraulic position servo system Robust Adaptive Control method | |
CN104065322B (en) | Method for controlling output feedback of motor position servo system | |
CN104317198B (en) | Nonlinear Robust Position Control Method for Electro-hydraulic Servo System with Time-Varying Output Constraints | |
CN110673472B (en) | Adaptive Robust Control Method Based on Neural Network Compensation for Dead Zone Inversion Error | |
CN104345638B (en) | A Disturbance Rejection Adaptive Control Method for Hydraulic Motor Position Servo System | |
CN104111607B (en) | A kind of control method of the electric machine position servo system considering input delay | |
CN107561935A (en) | Motor position servo system friciton compensation control method based on multilayer neural network | |
CN107544256A (en) | Underwater robot sliding-mode control based on adaptive Backstepping | |
CN104267595A (en) | Adaptive robust position control method for motor servo system with time-varying output constraint function | |
CN108155833B (en) | Asymptotic Stability Control Method of Motor Servo System Considering Electrical Characteristics | |
CN110572093A (en) | An ARC Control Method Based on Expected Trajectory and Disturbance Compensation of Motor Position Servo System | |
CN104333280A (en) | Robustness adaptive control (RAC) method of direct driving motor system | |
CN104638999B (en) | Dual-servo-motor system control method based on segmentation neutral net friction model | |
CN104360635A (en) | Anti-interference control method of motor position servo system | |
CN108762088B (en) | A Sliding Mode Control Method for Hysteretic Nonlinear Servo Motor System | |
CN104614984A (en) | High-precision control method of motor position servo system | |
CN108469734B (en) | Motor servo system active disturbance rejection control method considering state constraint | |
CN104345640A (en) | Motor servo system progressive tracking control method and system during input limitation | |
CN106100469B (en) | Implementation method based on adaptive motor servo system robust position controller | |
CN104678763B (en) | Friction compensation and dynamic surface control method based on least squares support vector machine for electromechanical servo system | |
CN113110048A (en) | Nonlinear system output feedback adaptive control system and method adopting HOSM observer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200619 |