CN104834220A - Adaptive error symbol integration robust repetitive control method for electromechanical servo system - Google Patents
Adaptive error symbol integration robust repetitive control method for electromechanical servo system Download PDFInfo
- Publication number
- CN104834220A CN104834220A CN201510261456.8A CN201510261456A CN104834220A CN 104834220 A CN104834220 A CN 104834220A CN 201510261456 A CN201510261456 A CN 201510261456A CN 104834220 A CN104834220 A CN 104834220A
- Authority
- CN
- China
- Prior art keywords
- formula
- controller
- design
- electromechanical servo
- robust
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 33
- 230000003252 repetitive effect Effects 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000010354 integration Effects 0.000 title claims 10
- 238000013178 mathematical model Methods 0.000 claims abstract description 5
- 230000000737 periodic effect Effects 0.000 claims description 15
- 239000011159 matrix material Substances 0.000 claims description 5
- 230000001133 acceleration Effects 0.000 claims description 2
- 238000012938 design process Methods 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims 1
- 125000002015 acyclic group Chemical group 0.000 claims 1
- 238000012512 characterization method Methods 0.000 claims 1
- 238000011960 computer-aided design Methods 0.000 claims 1
- 230000035935 pregnancy Effects 0.000 claims 1
- 230000006641 stabilisation Effects 0.000 claims 1
- 230000009897 systematic effect Effects 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 abstract description 4
- 230000006870 function Effects 0.000 description 16
- 230000009471 action Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 5
- 238000005094 computer simulation Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Landscapes
- Feedback Control In General (AREA)
Abstract
本发明公开了一种机电伺服系统的自适应误差符号积分鲁棒重复控制方法,包括以下步骤:建立机电伺服系统的数学模型;构建系统设计模型;设计自适应误差符号积分鲁棒重复控制器;自适应误差符号积分鲁棒重复控制器的性能定理及稳定性证明。本发明的控制方法可使机电伺服系统获得半全局渐近跟踪性能,而且与传统的基于内模原理的线性重复控制方法相比,还能有效地降低重复控制器对噪声的敏感性以及规避控制器的高内存需求。
The invention discloses an adaptive error sign integral robust repetitive control method of an electromechanical servo system, comprising the following steps: establishing a mathematical model of the electromechanical servo system; constructing a system design model; designing an adaptive error sign integral robust repetitive controller; Performance theorems and stability proofs for adaptive error sign-integral robust repetitive controllers. The control method of the present invention can enable the electromechanical servo system to obtain semi-global asymptotic tracking performance, and compared with the traditional linear repetitive control method based on the internal model principle, it can also effectively reduce the sensitivity of the repetitive controller to noise and avoid control high memory requirements of the server.
Description
技术领域technical field
本发明涉及机电伺服控制技术领域,主要涉及一种机电伺服系统的自适应误差符号积分鲁棒重复控制方法。The invention relates to the technical field of electromechanical servo control, and mainly relates to an adaptive error sign integral robust repetitive control method of an electromechanical servo system.
背景技术Background technique
机电伺服系统具有响应快、传动效率高及能源获取方便等突出优点,广泛应用于众多重要领域。但是随着工业技术水平的提高,对于机电伺服系统的性能要求也越来愈高。机电伺服系统的跟踪性能依赖于控制器的设计,然而系统存在的诸多建模不确定性使得高性能控制器的设计变得困难。在实际工程中,绝大多数机电伺服系统都是在周而复始的执行任务,例如电脑磁盘驱动器、旋转式车床及机械手等。针对执行周期性任务的机电伺服系统的控制问题,传统基于内模原理的线性重复控制是一种易于执行且不依赖于系统动态模型信息的方法,且在只存在周期性建模不确定性的情况下可获得渐近跟踪的性能。传统的重复控制的核心思想是通过基于上一个周期的跟踪误差调整系统控制输入的值以实现逐个周期地提升跟踪性能。但是传统的重复控制存在以下问题:首先,传统的重复控制等价于在一个周期内自动更新周期性建模不确定性的所有值,相当于有无限多个数值需要更新,这就要求控制律的带宽很高,从而也就对实施该控制律的微处理器的内存提出了非常高的要求;其次,由于在传统重复控制律执行的时候,一个周期内的建模不确定性的每个值都是相互独立的,这与离散的随机噪声类似,因此传统的重复控制方法对噪声非常敏感,进而会影响系统的跟踪性能。而误差符号积分鲁棒(RISE)控制方法可以处理任意二阶连续可微的建模不确定性,且基于建模不确定性各阶导数的界已知的假设,可获得渐近跟踪的性能。The electromechanical servo system has outstanding advantages such as fast response, high transmission efficiency and convenient energy acquisition, and is widely used in many important fields. However, with the improvement of the industrial technology level, the performance requirements of the electromechanical servo system are also getting higher and higher. The tracking performance of the electromechanical servo system depends on the design of the controller, however, many modeling uncertainties in the system make it difficult to design a high-performance controller. In actual engineering, most electromechanical servo systems perform tasks repeatedly, such as computer disk drives, rotary lathes, and manipulators. For the control problems of electromechanical servo systems that perform periodic tasks, the traditional linear repetitive control based on the internal model principle is a method that is easy to implement and does not depend on the information of the system dynamic model. Asymptotic tracking performance can be obtained in this case. The core idea of traditional repetitive control is to improve the tracking performance cycle by cycle by adjusting the value of the system control input based on the tracking error of the previous cycle. But the traditional repetitive control has the following problems: First, the traditional repetitive control is equivalent to automatically updating all the values of the periodic modeling uncertainty in one period, which is equivalent to infinitely many values need to be updated, which requires the control law The bandwidth of the control law is very high, so it puts forward very high requirements on the memory of the microprocessor implementing the control law; secondly, when the traditional repetitive control law is executed, each of the modeling uncertainties in one cycle The values are independent of each other, which is similar to discrete random noise, so the traditional repetitive control method is very sensitive to noise, which will affect the tracking performance of the system. The error-sign-integral robust (RISE) control method can deal with any second-order continuous differentiable modeling uncertainty, and based on the assumption that the bounds of each order derivative of the modeling uncertainty are known, the asymptotic tracking performance can be obtained .
发明内容Contents of the invention
本发明的目的在于提供一种噪声敏感性弱、内存需求低及跟踪性能高的机电伺服系统的自适应误差符号积分鲁棒重复控制方法。The object of the present invention is to provide an adaptive error sign integral robust repetitive control method for an electromechanical servo system with weak noise sensitivity, low memory requirement and high tracking performance.
实现本发明目的的技术解决方案为:一种机电伺服系统的自适应误差符号积分鲁棒重复控制方法,包括以下步骤:The technical solution to realize the object of the present invention is: a kind of adaptive error sign integral robust repetitive control method of electromechanical servo system, comprising the following steps:
步骤1,建立机电伺服系统的数学模型;Step 1, establishing a mathematical model of the electromechanical servo system;
步骤2,构建系统设计模型;Step 2, build the system design model;
步骤3,设计自适应误差符号积分鲁棒重复控制器。Step 3, design an adaptive error sign-integral robust repetitive controller.
本发明与现有技术相比,其显著优点是:有效地降低传统基于内模原理的重复控制器对噪声的敏感性以及规避控制器的高内存需求,并获得半全局渐近跟踪的优异性能。仿真结果验证了其有效性。Compared with the prior art, the present invention has the remarkable advantages of effectively reducing the sensitivity of the traditional repetitive controller based on the internal model principle to noise and avoiding the high memory requirement of the controller, and obtaining excellent performance of semi-global asymptotic tracking . Simulation results verify its effectiveness.
附图说明Description of drawings
图1是本发明机电伺服系统的原理图;Fig. 1 is the schematic diagram of electromechanical servo system of the present invention;
图2是机电伺服系统自适应误差符号积分鲁棒重复控制(ARIPC)方法原理示意图;Fig. 2 is a schematic diagram of the principle of the adaptive error sign integral robust repetitive control (ARIPC) method of the electromechanical servo system;
图3是ARIPC控制器作用下系统实际输出对期望指令的跟踪过程;Figure 3 is the tracking process of the actual output of the system to the expected command under the action of the ARIPC controller;
图4是ARIPC控制器作用下系统的跟踪误差随时间变化的曲线;Fig. 4 is the curve of the system tracking error changing with time under the action of ARIPC controller;
图5是反馈线性化控制器(FLC)控制器、误差符号积分鲁棒控制器(RISE)和自适应误差符号积分鲁棒重复控制器(ARIPC)三种控制器分别作用下系统的跟踪误差对比曲线;Fig. 5 is a comparison of the tracking error of the system under the action of the feedback linearization controller (FLC) controller, error sign integral robust controller (RISE) and adaptive error sign integral robust repetitive controller (ARIPC) respectively curve;
图6是ARIPC控制器作用下参数估计随时间变化的曲线;Fig. 6 is the curve of parameter estimation changing with time under the action of ARIPC controller;
图7是ARIPC控制器作用下系统的控制输入随时间变化的曲线。Figure 7 is the curve of the control input of the system changing with time under the action of the ARIPC controller.
具体实施方式Detailed ways
下面结合附图及具体实施例对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
结合图1~2本发明机电伺服系统的自适应误差符号积分鲁棒重复控制方法,包括以下步骤:In conjunction with Figs. 1-2, the adaptive error sign integral robust repetitive control method of the electromechanical servo system of the present invention comprises the following steps:
步骤1,建立机电伺服系统的数学模型;Step 1, establishing a mathematical model of the electromechanical servo system;
(1.1)本发明所考虑的机电伺服系统是通过配有商业电气驱动器的永磁直流电机直接驱动惯性负载,其原理图如图1所示。考虑到电磁时间常数比机械时间常数小得多,且电流环速度远大于速度环和位置环的响应速度,故可将电流环近似为比例环节。(1.1) The electromechanical servo system considered in the present invention directly drives the inertial load through a permanent magnet DC motor equipped with a commercial electric drive, and its schematic diagram is shown in Fig. 1 . Considering that the electromagnetic time constant is much smaller than the mechanical time constant, and the speed of the current loop is much faster than the response speed of the speed loop and the position loop, the current loop can be approximated as a proportional link.
因此,根据牛顿第二定律,机电伺服系统的运动方程为:Therefore, according to Newton's second law, the equation of motion of the electromechanical servo system is:
式(1)中M为惯性负载参数,B为粘性摩擦系数,Af为库伦摩擦的幅值,为已知的表征库伦摩擦的形状函数,是系统的建模不确定性,包含其他非线性摩擦、外干扰、未建模动态等,y为惯性负载的位移,u为系统的控制输入,t为时间变量。In formula (1), M is the inertial load parameter, B is the viscous friction coefficient, A f is the amplitude of Coulomb friction, is a known shape function characterizing Coulomb friction, is the modeling uncertainty of the system, including other nonlinear frictions, external disturbances, unmodeled dynamics, etc., y is the displacement of the inertial load, u is the control input of the system, and t is the time variable.
(1.2)定义状态变量:则式(1)运动方程可写成状态方程:(1.2) Define state variables: Then equation (1) motion equation can be written as state equation:
式(2)中假设系统总的建模不确定性可分成两部分,即只与系统状态相关的d1(x1,x2)和时变的d2(t)。对于机械系统来说,建模不确定性绝大部分都只与系统状态相关,因此d1(x1,x2)是主要的建模不确定性。In formula (2), it is assumed that the total modeling uncertainty of the system can be divided into two parts, namely d 1 (x 1 , x 2 ) which is only related to the system state and time-varying d 2 (t). For mechanical systems, most of the modeling uncertainties are only related to the system state, so d 1 (x 1 ,x 2 ) is the main modeling uncertainty.
系统控制器的设计目标为:给定系统参考信号yd(t)=x1d(t),设计一个有界的连续的控制输入u使系统输出y=x1尽可能地跟踪系统的参考信号。The design goal of the system controller is: given the system reference signal y d (t) = x 1d (t), design a bounded continuous control input u to make the system output y = x 1 track the system reference signal as much as possible .
步骤2,构建系统设计模型,步骤如下:Step 2, build the system design model, the steps are as follows:
(2.1)尽管建模不确定性d1(x1,x2)是未知的,但是对于执行周期性任务的机电伺服系统,其建模不确定性在一定时间以后也会呈现出相同的周期性,因此可利用重复控制的方法处理此类周期性建模不确定性,而对于非周期性的建模不确定性d2(t)可设计鲁棒控制器以抑制其对跟踪性能的影响。因此式(2)可以写成如下形式(2.1) Although the modeling uncertainty d 1 (x 1 ,x 2 ) is unknown, for an electromechanical servo system performing periodic tasks, its modeling uncertainty will show the same period after a certain time Therefore, the repetitive control method can be used to deal with such periodic modeling uncertainties, and for the non-periodic modeling uncertainty d 2 (t), a robust controller can be designed to suppress its impact on tracking performance . Therefore, formula (2) can be written in the following form
式(3)中
(2.2)由于所考虑的机电伺服系统执行的是周期性的任务,因此期望跟踪的位置指令x1d(t)是周期性的,即(2.2) Since the considered electromechanical servo system performs periodic tasks, it is expected that the tracked position command x 1d (t) is periodic, namely
x1d(t-T)=x1d(t) (4)x 1d (tT) = x 1d (t) (4)
其中T是已知的周期。注意到只与x1d和有关,因此也是周期性的,在如下的设计过程中令因此有where T is a known period. noticed only with x 1d and Related, and therefore periodic, in the following design process let Therefore there are
Dd(t-T)=Dd(t) (5)D d (tT) = D d (t) (5)
对Dd(t)利用傅立叶级数展开得Using Fourier series expansion for D d (t), we get
式(6)中ω=2π/T。考虑到机械系统的传递函数在物理意义上等价为一个具有有限频宽的低通滤波器,因此Dd(t)可以用式(6)中的有限项进行近似,即In formula (6), ω=2π/T. Considering that the transfer function of the mechanical system is physically equivalent to a low-pass filter with finite bandwidth, so D d (t) can be approximated by the finite term in formula (6), namely
(2.3)为简化系统方程,定义未知常值参数矢量(2.3) To simplify the system equation, define the unknown constant parameter vector
θ=[a1,b1,...,am,bm]T (8)θ=[a 1 ,b 1 ,...,a m ,b m ] T (8)
根据式(7)和(8),系统的模型(3)可写成According to equations (7) and (8), the system model (3) can be written as
式(9)中D2(t)=a0/2+d2(t)。且M、B和Af为系统物理参数已知的名义值,可用于控制器的设计,参数名义值与其真值之间的偏差可归并到系统建模不确定性D2(t)中。In formula (9) D 2 (t)=a 0 /2+d 2 (t). And M, B and A f are the known nominal values of the physical parameters of the system, which can be used in the design of the controller, and the deviation between the nominal values of the parameters and their true values can be included in the system modeling uncertainty D 2 (t).
为便于控制器设计,假设如下:For the convenience of controller design, the assumptions are as follows:
假设1:系统参考指令信号x1d(t)是二阶连续可微的,且其各阶导数有界。Assumption 1: The system reference command signal x 1d (t) is second-order continuous differentiable, and its derivatives of each order are bounded.
假设2:建模不确定性d1(x1,x2)和D2(t)都是二阶连续可微的,且满足如下条件:Assumption 2: The modeling uncertainties d 1 (x 1 ,x 2 ) and D 2 (t) are both second-order continuous differentiable and satisfy the following conditions:
式(10)和(11)中ε1,ε2,δ0是未知的正数,δ1,δ2是已知正数。In formulas (10) and (11), ε 1 , ε 2 , δ 0 are unknown positive numbers, and δ 1 , δ 2 are known positive numbers.
步骤3,设计自适应误差符号积分鲁棒重复控制器,步骤如下:Step 3, design an adaptive error sign-integral robust repetitive controller, the steps are as follows:
(3.1)定义z1=x1-x1d为系统的跟踪误差,根据式(9)中的第一个方程选取x2为虚拟控制,使方程趋于稳定状态;令x2eq为虚拟控制的期望值,x2eq与真实状态x2的误差为z2=x2-x2eq,对z1求导可得:(3.1) Define z 1 = x 1 -x 1d as the tracking error of the system, according to the first equation in formula (9) Picking x2 as the dummy control makes the equation tends to a stable state; let x 2eq be the expected value of the virtual control, the error between x 2eq and the real state x 2 is z 2 = x 2 -x 2eq , and the derivative of z 1 can be obtained:
设计虚拟控制律:Design a virtual control law:
式中k1>0为可调增益,则Where k 1 >0 is the adjustable gain, then
由于z1(s)=G(s)z2(s),式中G(s)=1/(s+k1)是一个稳定的传递函数,当z2趋于0时,z1也必然趋于0。所以在接下来的设计中,将以使z2趋于0为主要设计目标。Since z 1 (s)=G(s)z 2 (s), where G(s)=1/(s+k 1 ) is a stable transfer function, when z 2 tends to 0, z 1 also must tend to 0. Therefore, in the following design, the main design goal will be to make z 2 tend to 0.
(3.2)为获得一个额外的控制器设计自由度,定义一个辅助的误差信号r(t):(3.2) In order to obtain an additional degree of freedom in controller design, define an auxiliary error signal r(t):
式(15)中k2>0为可调的增益。由于r(t)中含有位置的加速度信号,因此在实际中认为是不可测量的,即r(t)仅为辅助设计所用,并不具体出现在所设计的控制器中。In formula (15), k 2 >0 is an adjustable gain. Because r(t) contains the acceleration signal of the position, it is considered unmeasurable in practice, that is, r(t) is only used for auxiliary design and does not specifically appear in the designed controller.
根据式(9)和(15)可得According to formulas (9) and (15), we can get
基于式(16),可设计控制器如下Based on formula (16), the controller can be designed as follows
式(17)中kr为正的反馈增益。ua为用于提高系统跟踪精度的基于模型的补偿项,us为鲁棒控制律且其中us1为用于稳定系统名义模型的线性鲁棒反馈项,us2为非线性鲁棒项用于克服建模不确定性对系统性能的影响。为参数θ的估计值,定义为参数估计误差。In formula (17), k r is a positive feedback gain. u a is a model-based compensation item used to improve system tracking accuracy, u s is a robust control law and where u s1 is a linear robust feedback item for stabilizing the system nominal model, u s2 is a nonlinear robust item for To overcome the impact of modeling uncertainty on system performance. is the estimated value of the parameter θ, define is the parameter estimation error.
(3.3)设计参数自适应律为:(3.3) The design parameter adaptive law is:
式(18)中Γ为对角正定矩阵,表征参数自适应率。由于式(18)中的参数自适应律含有不可测的信号r(t),因此对其采用分部积分展开如下In formula (18), Γ is a diagonal positive definite matrix, which represents the parameter adaptive rate. Since the parameter adaptive law in formula (18) contains an unmeasurable signal r(t), it is expanded by integral by parts as follows
将式(17)代入式(16)中得:Substitute formula (17) into formula (16):
根据误差符号积分鲁棒控制器设计方法,积分鲁棒项us2可设计为:According to the error sign integral robust controller design method, the integral robust term u s2 can be designed as:
对式(20)求导并结合式(18)和(21)可得Deriving formula (20) and combining formulas (18) and (21), we can get
本例中,还对前述设计的控制器进行性能及稳定性证明,具体如下:In this example, the performance and stability of the previously designed controller are also verified, as follows:
控制器性能:使用参数自适应律(19),控制器反馈增益k1,k2,kr取得足够大以使如下定义的矩阵Λ为正定矩阵:Controller performance: Using the parameter adaptive law (19), the controller feedback gains k 1 , k 2 , k r are made sufficiently large so that the matrix Λ defined as follows is a positive definite matrix:
式(23)中则设计的自适应误差符号积分鲁棒重复控制器可使闭环系统中所有信号均有界,且系统获得半全局渐近输出跟踪性能,即当t→∞时,z1→0。In formula (23) Then the designed adaptive error sign-integral robust repetitive controller can make all signals in the closed-loop system bounded, and the system obtains semi-global asymptotic output tracking performance, that is, when t→∞, z 1 →0.
稳定性证明:Proof of Stability:
在稳定性证明之前,先给出如下两个引理:Before the stability proof, the following two lemmas are given:
引理1:定义辅助函数Lemma 1: Defining helper functions
如果控制器增益β的选取满足如下条件,即If the selection of the controller gain β satisfies the following conditions, namely
则如下定义的函数P(t)恒为非负Then the function P(t) defined as follows is always non-negative
引理1的证明:Proof of Lemma 1:
对式(24)两边积分并运用式(15)得:Integrate both sides of formula (24) and use formula (15) to get:
对式(27)中后两项进行分部积分可得:Integrating the last two terms in formula (27) by parts can get:
故so
从式(29)可以看出,若β的选取满足式(25)所示的条件时,易推断引理1成立。It can be seen from formula (29) that if the selection of β satisfies the conditions shown in formula (25), it is easy to deduce that Lemma 1 holds.
引理2:定义状态空间中的域其中κ∈R是正的常数。并令连续可微的函数V(t,ξ):R+×D→R+满足如下条件:Lemma 2: Defining domains in state space where κ∈R is a positive constant. And let the continuously differentiable function V(t,ξ):R + ×D→R + satisfy the following conditions:
式(30)中,W1(ξ),W2(ξ)∈R为对于任意t≥0及任意ξ∈D都为连续正定的函数,W(ξ)∈R为一致连续正半定函数。In formula (30), W 1 (ξ), W 2 (ξ)∈R are continuous positive definite functions for any t≥0 and any ξ∈D, and W(ξ)∈R is a uniform continuous positive semidefinite function .
若条件(30)满足且ξ(0)∈S,则If condition (30) is satisfied and ξ(0)∈S, then
域S的定义为The domain S is defined as
式中δ∈R是正的常数。where δ∈R is a positive constant.
定义矢量z=[z1,z2,r]T, Define vector z=[z 1 ,z 2 ,r] T ,
选取Lyapunov函数如下Select the Lyapunov function as follows
则函数V满足如下性质:Then the function V satisfies the following properties:
式(34)中
求函数V对时间的微分,并结合式(14)、(15)、(22)和(26)可得Calculate the differential of the function V with respect to time, and combine formulas (14), (15), (22) and (26) to get
式中λmin(Λ)为式(23)中定义的矩阵Λ的最小特征值。where λ min (Λ) is the minimum eigenvalue of the matrix Λ defined in formula (23).
由于
又因为also because
所以式(36)可写成So equation (36) can be written as
由假设2中式(10)可知From Assumption 2, Equation (10), we can know
因此有下式成立Therefore, the following formula holds
式(40)中,ρ1(||z||),ρ2(||z||)和ρ(||z||)都是正的不减函数,且In formula (40), ρ 1 (||z||), ρ 2 (||z||) and ρ(||z||) are all positive non-decreasing functions, and
利用式(41)并结合以下不等式性质Using equation (41) combined with the following inequality properties
则式(35)可以写成Then equation (35) can be written as
因此基于式(43)可以得到,当时,Therefore, based on formula (43), it can be obtained that when hour,
式中γ为正的常数。根据式(44)和(34)可知,函数V定义在如下域内where γ is a positive constant. According to formulas (44) and (34), the function V is defined in the following domain
可以推断,在域D内z,是有界的;由假设1可知系统状态变量x1和x2在域D内是有界的;因为参数θ有界,因此也有界,根据式(17)和(21)可知控制输入u是有界的;基于式(14)、(15)和(22)可知即因此可知W(ξ)是一致连续的函数,则根据引理2可得,若系统初始条件满足ξ(0)∈S时,且S定义为It can be deduced that within the domain D z, is bounded; from assumption 1 we know that the system state variables x 1 and x 2 are bounded in the domain D; because the parameter θ is bounded, so is also bounded, according to formulas (17) and (21), it can be known that the control input u is bounded; based on formulas (14), (15) and (22), it can be seen that Right now Therefore, it can be seen that W(ξ) is a consistent and continuous function. According to Lemma 2, if the initial condition of the system satisfies ξ(0)∈S, and S is defined as
有结论当t→∞,||z||→0成立,即系统获得半全局渐近跟踪的性能。机电伺服系统的自适应误差符号积分鲁棒重复(ARRPC)控制原理示意图如图2所示。It is concluded that when t→∞, ||z||→0 holds true, the system obtains the performance of semi-global asymptotic tracking. The schematic diagram of the adaptive error sign integral robust repetition (ARRPC) control principle of the electromechanical servo system is shown in Fig. 2 .
为验证所设计的控制器性能,在仿真中取如下参数对机电伺服系统进行建模:In order to verify the performance of the designed controller, the following parameters are taken in the simulation to model the electromechanical servo system:
惯性负载参数m=0.01kg·m2;粘性摩擦系数B=0.2N·m·s/rad;库伦摩擦的幅值Af=0.1N·m·s/rad;系统建模不确定性d1(x1,x2)=x1+x2(N·m),d2(t)=0.2sint(N·m)。Inertial load parameter m=0.01kg·m 2 ; viscous friction coefficient B=0.2N·m·s/rad; Coulomb friction amplitude A f =0.1N·m·s/rad; system modeling uncertainty d 1 (x 1 , x 2 )=x 1 +x 2 (N·m), d 2 (t)=0.2 sint(N·m).
给定系统的期望指令为x1d=0.5sin(πt)[1-exp(-0.01t3)](rad)。The desired command for a given system is x 1d =0.5 sin(πt)[1-exp(-0.01t 3 )](rad).
取如下的控制器以作对比:Take the following controller for comparison:
自适应误差符号积分鲁棒重复控制器(ARIPC):取控制器参数k1=250,k2=20,kr=2,β=2,自适应增益Г=diag{100,50,50,50}。Adaptive error sign-integrated robust repetitive controller (ARIPC): take controller parameters k 1 =250, k 2 =20, k r =2, β=2, adaptive gain Г=diag{100,50,50, 50}.
误差符号积分鲁棒控制器(RISE):即所设计的ARIPC控制器中不含自适应模型补偿部分,对比RISE控制器是为了验证ARIPC控制器中自适应模型补偿部分对周期性的建模不确定性的抑制能力。为保证对比公平性,其控制器参数与ARIPC控制器中对应的参数相同。Error Sign Integral Robust Controller (RISE): That is, the designed ARIPC controller does not contain the adaptive model compensation part. The purpose of comparing the RISE controller is to verify that the adaptive model compensation part of the ARIPC controller does not model the periodicity. Deterministic suppression capabilities. To ensure the fairness of the comparison, its controller parameters are the same as those in the ARIPC controller.
反馈线性化控制器(FLC):控制器设计如下Feedback Linearized Controller (FLC): The controller is designed as follows
用以验证ARIPC控制器中自适应模型补偿项和非线性鲁棒项分别对周期性建模不确定性和非周期性建模不确定性的抑制能力。其控制器参数与ARIPC中对应参数相同。It is used to verify the ability of the adaptive model compensation term and the nonlinear robust term in the ARIPC controller to suppress the periodic modeling uncertainty and the non-periodic modeling uncertainty respectively. Its controller parameters are the same as the corresponding parameters in ARIPC.
ARIPC控制器作用下系统输出对期望指令的跟踪、ARIPC控制器跟踪误差、三种控制器分别作用下的跟踪误差对比分别如图3,图4和图5所示。由图4和图5可知,所设计的ARIPC控制器的暂态和稳态跟踪性能都要优于相对比的RISE控制器和FLC控制器,RISE控制器由于缺少自适应补偿,获得较差的跟踪性能,而FLC控制器既没有自适应模型补偿也没有非线性鲁棒反馈则作用,获得最差的跟踪性能。The tracking of the system output to the expected command under the action of the ARIPC controller, the tracking error of the ARIPC controller, and the comparison of the tracking errors under the action of the three controllers are shown in Figure 3, Figure 4 and Figure 5, respectively. It can be seen from Figure 4 and Figure 5 that the transient and steady-state tracking performance of the designed ARIPC controller is better than that of the comparative RISE controller and FLC controller. tracking performance, while the FLC controller has neither adaptive model compensation nor nonlinear robust feedback function, the worst tracking performance is obtained.
图6是ARIPC控制器作用下周期性不确定性按Fourier级数展开后各基函数前常值参数估计随时间变化的曲线。从图中可以看出,尽管存在非周期性建模不确定性,各参数估计仍能很好地收敛真值Fig. 6 is the curve of the constant parameter estimation of each basis function changing with time after the periodic uncertainty is expanded according to the Fourier series under the action of the ARIPC controller. It can be seen from the figure that despite the non-periodic modeling uncertainty, the parameter estimates converge well to the true value
图7是系统在ARIPC控制器作用下系统控制输入随时间变化的曲线图。从图中可以看出,所获得的控制输入是低频连续的信号,更利于在实际应用中的执行。Fig. 7 is a curve diagram of system control input changing with time under the action of ARIPC controller. It can be seen from the figure that the obtained control input is a low-frequency continuous signal, which is more conducive to the implementation in practical applications.
由上可知,本发明提出的机电伺服系统的自适应误差符号积分鲁棒重复控制方法有效地降低传统基于内模原理的重复控制器对噪声的敏感性以及规避控制器的高内存需求,并获得半全局渐近跟踪的优异性能。It can be seen from the above that the adaptive error sign integral robust repetitive control method of the electromechanical servo system proposed by the present invention effectively reduces the sensitivity of the traditional repetitive controller based on the internal model principle to noise and avoids the high memory requirement of the controller, and obtains Excellent performance for semi-global asymptotic tracking.
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Those skilled in the art of the present invention can make various changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the claims.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510261456.8A CN104834220A (en) | 2015-05-20 | 2015-05-20 | Adaptive error symbol integration robust repetitive control method for electromechanical servo system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510261456.8A CN104834220A (en) | 2015-05-20 | 2015-05-20 | Adaptive error symbol integration robust repetitive control method for electromechanical servo system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104834220A true CN104834220A (en) | 2015-08-12 |
Family
ID=53812174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510261456.8A Pending CN104834220A (en) | 2015-05-20 | 2015-05-20 | Adaptive error symbol integration robust repetitive control method for electromechanical servo system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104834220A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107121932A (en) * | 2017-06-12 | 2017-09-01 | 南京理工大学 | Motor servo system error symbol integrates Robust Adaptive Control method |
CN107544244A (en) * | 2017-08-25 | 2018-01-05 | 浙江工业大学 | Discrete repetitive control method for motor servo system based on elliptic attraction law and equivalent disturbance expansion state compensation |
CN108453741A (en) * | 2018-04-13 | 2018-08-28 | 珞石(山东)智能科技有限公司 | A kind of industrial robot flexibility method of servo-controlling |
CN110045604A (en) * | 2019-02-27 | 2019-07-23 | 沈阳工业大学 | Voice coil motor drives Lorentz force type FTS to repeat sliding formwork composite control method |
CN111308889A (en) * | 2020-02-26 | 2020-06-19 | 南京理工大学 | Adaptive integral robust control method of spray rod system |
CN111736472A (en) * | 2020-07-22 | 2020-10-02 | 安徽工业大学 | A RISE-based asymptotic control method for motor adaptive preset performance |
CN111781836A (en) * | 2020-07-22 | 2020-10-16 | 安徽工业大学 | An adaptive asymptotic control method for hydraulic pressure preset performance |
CN112415891A (en) * | 2020-10-20 | 2021-02-26 | 安徽工业大学 | Adaptive output feedback asymptotic control method for electro-hydraulic servo system |
-
2015
- 2015-05-20 CN CN201510261456.8A patent/CN104834220A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107121932B (en) * | 2017-06-12 | 2020-06-19 | 南京理工大学 | A Robust Adaptive Control Method of Error Symbol Integral for Motor Servo System |
CN107121932A (en) * | 2017-06-12 | 2017-09-01 | 南京理工大学 | Motor servo system error symbol integrates Robust Adaptive Control method |
CN107544244A (en) * | 2017-08-25 | 2018-01-05 | 浙江工业大学 | Discrete repetitive control method for motor servo system based on elliptic attraction law and equivalent disturbance expansion state compensation |
CN107544244B (en) * | 2017-08-25 | 2020-08-18 | 浙江工业大学 | Discrete repetitive control method for motor servo system based on elliptic attraction law and equivalent disturbance expansion state compensation |
CN108453741A (en) * | 2018-04-13 | 2018-08-28 | 珞石(山东)智能科技有限公司 | A kind of industrial robot flexibility method of servo-controlling |
CN110045604A (en) * | 2019-02-27 | 2019-07-23 | 沈阳工业大学 | Voice coil motor drives Lorentz force type FTS to repeat sliding formwork composite control method |
CN110045604B (en) * | 2019-02-27 | 2022-03-01 | 沈阳工业大学 | Voice coil motor driven Lorentz force FTS repetitive sliding mode compound control method |
CN111308889A (en) * | 2020-02-26 | 2020-06-19 | 南京理工大学 | Adaptive integral robust control method of spray rod system |
CN111736472A (en) * | 2020-07-22 | 2020-10-02 | 安徽工业大学 | A RISE-based asymptotic control method for motor adaptive preset performance |
CN111781836A (en) * | 2020-07-22 | 2020-10-16 | 安徽工业大学 | An adaptive asymptotic control method for hydraulic pressure preset performance |
CN111781836B (en) * | 2020-07-22 | 2022-05-27 | 安徽工业大学 | An adaptive asymptotic control method for hydraulic pressure preset performance |
CN111736472B (en) * | 2020-07-22 | 2022-05-27 | 安徽工业大学 | A RISE-based asymptotic control method for motor adaptive preset performance |
CN112415891A (en) * | 2020-10-20 | 2021-02-26 | 安徽工业大学 | Adaptive output feedback asymptotic control method for electro-hydraulic servo system |
CN112415891B (en) * | 2020-10-20 | 2022-05-31 | 安徽工业大学 | Adaptive output feedback asymptotic control method for electro-hydraulic servo system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104834220A (en) | Adaptive error symbol integration robust repetitive control method for electromechanical servo system | |
Liang et al. | A novel sliding surface design for predefined-time stabilization of Euler–Lagrange systems | |
CN104238361B (en) | Adaptive robust position control method and system for motor servo system | |
CN108303885B (en) | Self-adaptive control method of motor position servo system based on disturbance observer | |
CN104252134B (en) | Method for controlling position of self-adaptive robust of motor servo system based on extended state observer | |
CN107121932B (en) | A Robust Adaptive Control Method of Error Symbol Integral for Motor Servo System | |
CN104345639B (en) | A kind of electro-hydraulic position servo system Robust Adaptive Control method | |
CN104345638B (en) | A Disturbance Rejection Adaptive Control Method for Hydraulic Motor Position Servo System | |
CN104333280B (en) | Robustness adaptive control (RAC) method of direct driving motor system | |
CN104950678B (en) | A kind of Neural Network Inversion control method of flexible mechanical arm system | |
CN104111607A (en) | Motor position servo system control method taking input time lag into consideration | |
CN110673472B (en) | Adaptive Robust Control Method Based on Neural Network Compensation for Dead Zone Inversion Error | |
CN107703746A (en) | A kind of feedback feedforward controller and design method based on active disturbance rejection | |
CN110928182A (en) | A Robust Adaptive Repetitive Control Method for Hydraulic Servo System Based on State Estimation | |
CN108155833B (en) | Asymptotic Stability Control Method of Motor Servo System Considering Electrical Characteristics | |
CN104267595A (en) | Adaptive robust position control method for motor servo system with time-varying output constraint function | |
CN105629727A (en) | Self-adaptive output feedback robust control method of motor position servo system | |
Alinaghi Hosseinabadi et al. | Fixed‐time sliding mode observer‐based controller for a class of uncertain nonlinear double integrator systems | |
CN104614984A (en) | High-precision control method of motor position servo system | |
CN111740658B (en) | Optimal regulation control method of motor system based on strategy iteration | |
CN108469734B (en) | Motor servo system active disturbance rejection control method considering state constraint | |
Sun et al. | Adaptive event-triggered fast finite-time stabilization of high-order uncertain nonlinear systems and its application in maglev systems | |
Zhou et al. | Adaptive fuzzy control of uncertain robotic manipulator | |
Song et al. | A neural adaptive prescribed performance controller for the chaotic PMSM stochastic system | |
CN108448993A (en) | Multi-motor fixed time self-adaptive sliding mode control method based on adjacent cross coupling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
EXSB | Decision made by sipo to initiate substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20150812 |