CN106655938A - Permanent magnet synchronous machine control system and permanent magnet synchronous machine control method based on high-order sliding mode method - Google Patents
Permanent magnet synchronous machine control system and permanent magnet synchronous machine control method based on high-order sliding mode method Download PDFInfo
- Publication number
- CN106655938A CN106655938A CN201710019290.8A CN201710019290A CN106655938A CN 106655938 A CN106655938 A CN 106655938A CN 201710019290 A CN201710019290 A CN 201710019290A CN 106655938 A CN106655938 A CN 106655938A
- Authority
- CN
- China
- Prior art keywords
- permanent magnet
- magnet synchronous
- synchronous motor
- sliding mode
- order
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 217
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000009466 transformation Effects 0.000 claims abstract description 60
- 230000004044 response Effects 0.000 claims abstract description 11
- 238000013016 damping Methods 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 230000004907 flux Effects 0.000 claims description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000004088 simulation Methods 0.000 description 5
- 238000009795 derivation Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 244000145845 chattering Species 0.000 description 3
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
- H02P21/0007—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using sliding mode control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/13—Observer control, e.g. using Luenberger observers or Kalman filters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P2207/00—Indexing scheme relating to controlling arrangements characterised by the type of motor
- H02P2207/05—Synchronous machines, e.g. with permanent magnets or DC excitation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
本发明涉及一种基于高阶滑模方法的永磁同步电机控制系统,其特征在于,它包括Cark变换模块、Park变换模块、旋转变压器、高阶滑模观测器、二阶超螺旋滑模控制器、第一比较器、第二比较器、永磁同步电机d轴电流环比例积分控制器、永磁同步电机q轴电流环比例积分控制器、Park逆变换模块、脉冲宽度调制模块和逆变器;本发明能在受到干扰的情况下快速有效地调节永磁同步电机的各项输入和输出参数,动态响应速度快,鲁棒性高,提高了永磁同步电机的控制精度及其运行的可靠性。
The invention relates to a permanent magnet synchronous motor control system based on a high-order sliding mode method, which is characterized in that it includes a Cark transformation module, a Park transformation module, a rotary transformer, a high-order sliding mode observer, and a second-order superhelical sliding mode control device, first comparator, second comparator, permanent magnet synchronous motor d-axis current loop proportional-integral controller, permanent magnet synchronous motor q-axis current loop proportional-integral controller, Park inverse transformation module, pulse width modulation module and inverter device; the invention can quickly and effectively adjust various input and output parameters of the permanent magnet synchronous motor under the condition of being disturbed, the dynamic response speed is fast, the robustness is high, and the control accuracy and operation efficiency of the permanent magnet synchronous motor are improved. reliability.
Description
技术领域technical field
本发明涉及永磁同步电机技术领域,具体涉及一种基于高阶滑模方法的永磁同步电机控制系统及控制方法。The invention relates to the technical field of permanent magnet synchronous motors, in particular to a permanent magnet synchronous motor control system and control method based on a high-order sliding mode method.
背景技术Background technique
近几年,随着稀土永磁材料和电力功率器件的发展,永磁同步电机(PermanentMagnet Synchronous Motor,PMSM)以其高性能、高转矩惯量比和高能量密度得到了广泛的关注,特别是永磁材料价格的下降及磁性能的提高,极大地推动了永磁同步电机的发展和应用。近年来,在高精度、宽调速范围的伺服系统中,永磁同步电机系统正发挥着越来越重要的作用。永磁同步电机是一个多变量、强耦合的非线性系统,它的应用环境一般较为复杂且常常存在各种干扰,同时存在着参数摄动、负载扰动等不确定性。In recent years, with the development of rare earth permanent magnet materials and power devices, permanent magnet synchronous motors (Permanent Magnet Synchronous Motor, PMSM) have received extensive attention for their high performance, high torque inertia ratio and high energy density, especially The decline in the price of permanent magnet materials and the improvement of magnetic properties have greatly promoted the development and application of permanent magnet synchronous motors. In recent years, the permanent magnet synchronous motor system is playing an increasingly important role in the servo system with high precision and wide speed range. Permanent magnet synchronous motor is a multivariable, strongly coupled nonlinear system. Its application environment is generally complex and often has various disturbances, and there are uncertainties such as parameter perturbation and load disturbance.
现有的电机控制技术中,矢量控制应用最为广泛。永磁同步电机矢量控制采用速度外环和电流内环的双闭环结构,其中,电流环往往需要先将三相电流经过同步旋转坐标变换(Direct-quadrature axis transformation,简称dq变换),然后分别进行PI(Proportional-Integral,PI)调节,将PI调节的结果作为PWM(Pulse Width Modulation,脉冲宽度调制)的调制输入量,经PWM算法输出控制信号,完成对电机的控制。速度环一般加入一些控制策略,近年来随着现代控制理论、电力功率器件和电力电子技术以及其它相关科学的进一步发展,许多关于永磁同步电机速度环的调速策略纷纷被提出,如预测控制、自适应控制、神经网络控制、模糊控制等。尽管如此,传统的矢量控制电机动态响应较慢,且在运行过程中电机参数会随着工况负荷等发生变化,即负载扰动等,进而会影响电机的控制精度。Among the existing motor control technologies, vector control is the most widely used. The permanent magnet synchronous motor vector control adopts a double closed-loop structure of the speed outer loop and the current inner loop. Among them, the current loop often needs to firstly transform the three-phase current through synchronous rotation coordinate transformation (Direct-quadrature axis transformation, dq transformation for short), and then perform PI (Proportional-Integral, PI) adjustment, the result of PI adjustment is used as the modulation input of PWM (Pulse Width Modulation, pulse width modulation), and the control signal is output through the PWM algorithm to complete the control of the motor. The speed loop generally adds some control strategies. In recent years, with the further development of modern control theory, power devices, power electronics technology and other related sciences, many speed regulation strategies for the speed loop of permanent magnet synchronous motors have been proposed, such as predictive control , adaptive control, neural network control, fuzzy control, etc. However, the dynamic response of the traditional vector control motor is slow, and the motor parameters will change with the load during operation, that is, load disturbance, etc., which will affect the control accuracy of the motor.
发明内容Contents of the invention
本发明的目的在于提供一种基于高阶滑模方法的永磁同步电机控制系统及控制方法,该系统和方法能在受到干扰的情况下快速有效地调节永磁同步电机的各项输入和输出参数,动态响应速度快,鲁棒性高,提高了永磁同步电机的控制精度及其运行的可靠性。The object of the present invention is to provide a permanent magnet synchronous motor control system and control method based on a high-order sliding mode method, the system and method can quickly and effectively adjust the various inputs and outputs of the permanent magnet synchronous motor in the case of interference parameters, fast dynamic response and high robustness, which improves the control accuracy and operation reliability of the permanent magnet synchronous motor.
为解决上述技术问题,本发明公开的一种基于高阶滑模方法的永磁同步电机控制系统,其特征在于,它包括Cark变换模块、Park变换模块、旋转变压器、高阶滑模观测器、二阶超螺旋滑模控制器、第一比较器、第二比较器、永磁同步电机d轴电流环比例积分控制器、永磁同步电机q轴电流环比例积分控制器、Park逆变换模块、脉冲宽度调制模块和逆变器;In order to solve the above technical problems, the present invention discloses a permanent magnet synchronous motor control system based on a high-order sliding mode method, which is characterized in that it includes a Cark transformation module, a Park transformation module, a resolver, a high-order sliding mode observer, Second-order super-helical sliding mode controller, first comparator, second comparator, permanent magnet synchronous motor d-axis current loop proportional-integral controller, permanent magnet synchronous motor q-axis current loop proportional-integral controller, Park inverse transformation module, Pulse width modulation module and inverter;
其中,旋转变压器的输入端连接永磁同步电机的转子参数输出端,旋转变压器的转子位置输出端连接Park变换模块的转子位置数据输入端;旋转变压器的转子角速度数据输出端连接高阶滑模观测器的转子角速度数据输入端,高阶滑模观测器的观测干扰值输出端连接二阶超螺旋滑模控制器的观测干扰值输入端;旋转变压器的转子角速度数据输出端还连接二阶超螺旋滑模控制器的转子角速度输入端;二阶超螺旋滑模控制器的参考数据输入端用于接收预设的永磁同步电机给定转速;二阶超螺旋滑模控制器的输出端连接第二比较器的参考数据输入端,二阶超螺旋滑模控制器的输出端还连接高阶滑模观测器的观测数据输入端;Among them, the input terminal of the resolver is connected to the rotor parameter output terminal of the permanent magnet synchronous motor, the rotor position output terminal of the resolver is connected to the rotor position data input terminal of the Park transformation module; the rotor angular velocity data output terminal of the resolver is connected to the high-order sliding mode observation The input end of the rotor angular velocity data of the resolver, the output end of the observed disturbance value of the high-order sliding mode observer is connected to the input end of the observed disturbance value of the second-order superhelix sliding mode controller; the output end of the rotor angular velocity data of the resolver is also connected to the second-order superhelix The rotor angular velocity input terminal of the sliding mode controller; the reference data input terminal of the second-order superhelical sliding mode controller is used to receive the preset given speed of the permanent magnet synchronous motor; the output terminal of the second-order superhelical sliding mode controller is connected to the first The reference data input end of the second comparator, the output end of the second-order super-helical sliding mode controller is also connected to the observation data input end of the high-order sliding mode observer;
所述Cark变换模块的输入端连接永磁同步电机的电流输出端,所述Cark变换模块的输出端连接Park变换模块的输入端;The input end of the Cark transformation module is connected to the current output end of the permanent magnet synchronous motor, and the output end of the Cark transformation module is connected to the input end of the Park transformation module;
Park变换模块的永磁同步电机d轴电流输出端连接第一比较器的反馈输入端,第一比较器的输入端用于输入永磁同步电机d轴参考电流,第一比较器的输出端通过永磁同步电机d轴电流环比例积分控制器连接Park逆变换模块的永磁同步电机d轴电压输入端;The d-axis current output terminal of the permanent magnet synchronous motor of the Park transformation module is connected to the feedback input terminal of the first comparator, the input terminal of the first comparator is used to input the d-axis reference current of the permanent magnet synchronous motor, and the output terminal of the first comparator is passed through The permanent magnet synchronous motor d-axis current loop proportional integral controller is connected to the permanent magnet synchronous motor d-axis voltage input terminal of the Park inverse conversion module;
Park变换模块的永磁同步电机q轴电流输出端连接第二比较器的反馈输入端,第二比较器的输出端通过永磁同步电机q轴电流环比例积分控制器连接Park逆变换模块的永磁同步电机q轴电压输入端;The q-axis current output terminal of the permanent magnet synchronous motor of the Park transformation module is connected to the feedback input terminal of the second comparator, and the output terminal of the second comparator is connected to the permanent magnet synchronous motor q-axis current loop proportional integral controller of the Park inverse transformation module. Magnetic synchronous motor q-axis voltage input terminal;
Park逆变换模块的输出端连接脉冲宽度调制模块的输入端,脉冲宽度调制模块的输出端连接逆变器的输入端,逆变器的输出端连接永磁同步电机的三相电压输入端。The output end of the Park inverse transformation module is connected to the input end of the pulse width modulation module, the output end of the pulse width modulation module is connected to the input end of the inverter, and the output end of the inverter is connected to the three-phase voltage input end of the permanent magnet synchronous motor.
一种利用上述系统的永磁同步电机控制方法,其特征在于,它包括如下步骤:A kind of permanent magnet synchronous motor control method utilizing above-mentioned system, it is characterized in that, it comprises the steps:
步骤1:采集永磁同步电机的转子位置θ、转子机械角速度ωm和三相电流ia、ib和ic,对永磁同步电机的三相电流ia、ib和ic依次进行Clark变换和Park变换,得到永磁同步电机在dq轴坐标系下的等效电流id和iq,(如图1所示,沿永磁磁链矢量及其垂直方向定义的一种随电机同步旋转的坐标系);Step 1: Collect the rotor position θ of the permanent magnet synchronous motor, the rotor mechanical angular velocity ω m and the three-phase currents i a , i b and i c . Clark transform and Park transform to obtain the equivalent current i d and i q of the permanent magnet synchronous motor in the dq-axis coordinate system, (as shown in Figure 1, a motor along the permanent magnet flux vector and its vertical direction defined synchronously rotating coordinate system);
步骤2:将采集的永磁同步电机的转子机械角速度ωm和预设的永磁同步电机给定转速带入二阶超螺旋滑模控制器得到控制器输出值为:Step 2: The collected permanent magnet synchronous motor rotor mechanical angular velocity ω m and the preset permanent magnet synchronous motor given speed Bringing in the second-order super-helical sliding mode controller, the output value of the controller is:
其中,ωm为实际的转子机械角速度,为给定转子机械角速度,为ωm的一阶导数,为的一阶导数,为的导数,c为滑模控制设计参数,B为永磁同步电机摩擦阻尼系数,J为永磁同步电机的转动惯量,kp为永磁同步电机q轴电流环比例积分(Proportional-Integral,PI)控制器比例系数,ki为永磁同步电机q轴电流环比例积分控制器积分系数,λ1,λ2为与系统动态响应能力和干扰大小相关的超螺旋滑模参数,σ为根据转速误差及其导数设计的滑模变量,sgn()为符号函数,u为二阶超螺旋滑模控制器的控制器输出值,τ为积分时间变量;Among them, ω m is the actual rotor mechanical angular velocity, For a given rotor mechanical angular velocity, is the first derivative of ω m , for The first derivative of , for , c is the sliding mode control design parameter, B is the friction damping coefficient of the permanent magnet synchronous motor, J is the moment of inertia of the permanent magnet synchronous motor, k p is the proportional integral of the q-axis current loop of the permanent magnet synchronous motor (Proportional-Integral, PI ) controller proportional coefficient, ki is the integral coefficient of the permanent magnet synchronous motor q-axis current loop proportional-integral controller, λ 1 , λ 2 are the superhelical sliding mode parameters related to the system dynamic response capability and the magnitude of the disturbance, σ is the speed according to The sliding mode variable of the error and its derivative design, sgn() is a sign function, u is the controller output value of the second-order superhelical sliding mode controller, τ is the integral time variable;
步骤3:将采集的永磁同步电机的转子机械角速度ωm和步骤2得到的二阶超螺旋滑模控制器的控制器输出值u输入到高阶滑模观测器得到干扰观测值:Step 3: Input the collected rotor mechanical angular velocity ω m of the permanent magnet synchronous motor and the controller output value u of the second-order superhelical sliding mode controller obtained in step 2 into the high-order sliding mode observer to obtain the disturbance observation value:
其中,为电机转速ωm的一阶导数,为电机转速ωm的观测值,ωm为实际的转子机械角速度,为的一阶导数,为的导数,为干扰观测值的导数,k1,k2,k3为正的常数,其中k1决定了观测器收敛速度,k2的大小由电机系统最大干扰决定,k3由系统干扰最大变化率决定,为转速误差,B为永磁同步电机摩擦阻尼系数,kp为永磁同步电机q轴电流环比例积分控制器比例系数,J为永磁同步电机的转动惯量,ki为永磁同步电机q轴电流环比例积分控制器积分系数,观测器在稳定时可以得到各物理量精确的观测值;in, is the first derivative of the motor speed ω m , is the observed value of motor speed ω m , ω m is the actual rotor mechanical angular velocity, for The first derivative of , for derivative of is the interference observation k 1 , k 2 , and k 3 are positive constants, among which k 1 determines the convergence speed of the observer, the size of k 2 is determined by the maximum disturbance of the motor system, and k 3 is determined by the maximum change rate of the system disturbance, is the rotational speed error, B is the friction damping coefficient of the permanent magnet synchronous motor, k p is the proportional integral controller proportional coefficient of the q-axis current loop of the permanent magnet synchronous motor, J is the moment of inertia of the permanent magnet synchronous motor, k i is the q of the permanent magnet synchronous motor Shaft current loop proportional integral controller integral coefficient, the observer can obtain accurate observation values of various physical quantities when it is stable;
步骤4:将步骤(3)中观测到的观测干扰值带入步骤(2)的二阶超螺旋滑模控制器的控制器输出值公式,得到二阶超螺旋滑模控制器的控制器最终输出值U:Step 4: The observed disturbance value observed in step (3) Bringing into the controller output value formula of the second-order superhelical sliding mode controller in step (2), the final output value U of the controller of the second-order superhelical sliding mode controller is obtained:
步骤5:二阶超螺旋滑模控制器的控制器最终输出值U结合永磁同步电机基于转速的二阶模型,得到永磁同步电机的q轴参考电流为:Step 5: The final output value U of the controller of the second-order superhelical sliding mode controller is combined with the second-order model of the permanent magnet synchronous motor based on the speed to obtain the q-axis reference current of the permanent magnet synchronous motor for:
其中,U为二阶超螺旋滑模控制器的控制器最终输出值,kp为永磁同步电机q轴电流环比例积分控制器比例系数,J为永磁同步电机(13)的转动惯量,kf=1.5npψf/J为中间变量,ki为永磁同步电机q轴电流环比例积分控制器积分系数,s为Laplace算子,np表示永磁同步电机的极对数,ψf表示永磁同步电机的转子磁链;Among them, U is the final output value of the controller of the second-order super-helical sliding mode controller, kp is the proportional-integral controller proportional coefficient of the q-axis current loop of the permanent magnet synchronous motor, and J is the moment of inertia of the permanent magnet synchronous motor (13), k f = 1.5n p ψ f /J is the intermediate variable, ki is the integral coefficient of the permanent magnet synchronous motor q-axis current loop proportional-integral controller, s is the Laplace operator, n p is the number of pole pairs of the permanent magnet synchronous motor, ψ f represents the rotor flux linkage of the permanent magnet synchronous motor;
步骤6:将永磁同步电机的d轴参考电流和永磁同步电机的q轴参考电流分别与永磁同步电机dq轴坐标系下的等效电流id和iq作差后,进行比例积分控制得到永磁同步电机在dq轴坐标系下的输入电压ud和uq;Step 6: Set the d-axis reference current of the permanent magnet synchronous motor and the q-axis reference current of the permanent magnet synchronous motor After making difference with the equivalent current i d and i q of the permanent magnet synchronous motor in the dq axis coordinate system respectively, the proportional integral control is performed to obtain the input voltage u d and u q of the permanent magnet synchronous motor in the dq axis coordinate system;
步骤7:对永磁同步电机在dq轴坐标系下的输入电压ud和uq进行Park逆变换,得到永磁同步电机在αβ轴坐标系下的输入电压uα和uβ,将uα和uβ作为载波信号,通过正弦脉冲宽度调制(Sinusoidal Pulse Width Modulation,SPWM)得到逆变器的开关管控制信号,将逆变器的开关管控制信号输入至逆变器控制电路,控制逆变器中的绝缘栅双极型晶体管的导通和关断,进而输出永磁同步电机的三相输入电压,驱动永磁同步电机按给定转子机械角速度运行。Step 7: Perform Park inverse transformation on the input voltage u d and u q of the permanent magnet synchronous motor in the dq axis coordinate system to obtain the input voltage u α and u β of the permanent magnet synchronous motor in the αβ axis coordinate system, and u α and u β as the carrier signal, the switching tube control signal of the inverter is obtained through sinusoidal pulse width modulation (Sinusoidal Pulse Width Modulation, SPWM), and the switching tube control signal of the inverter is input to the inverter control circuit to control the inverter The insulated gate bipolar transistor in the device is turned on and off, and then the three-phase input voltage of the permanent magnet synchronous motor is output to drive the permanent magnet synchronous motor at a given rotor mechanical angular velocity run.
本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:Compared with the prior art, the above technical solution conceived by the present invention has the following beneficial effects:
(1)永磁同步电机二阶模型的推导以及二阶超螺旋滑模控制的采用,极大地增强了永磁同步电机控制系统抗干扰能力,同时明显的降低了抖振。采用二阶或更高阶滑模控制方法时,控制量的不连续部分存在于滑模变量的高阶微分之中,设计的控制律会使得滑模变量及其各微分(高阶微分)量在稳态时全部收敛至零。二阶或高阶滑模控制器的输出量为不连续的高阶微分量的积分或多次积分的结果,因此为连续。同样由于在控制过程中存在积分,那么就可以在系统受到干扰而产生控制误差时快速产生很大的控制输入量,这样系统的抗干扰能力大大增强。(1) The derivation of the second-order model of the permanent magnet synchronous motor and the adoption of the second-order superhelical sliding mode control greatly enhance the anti-interference ability of the permanent magnet synchronous motor control system, and at the same time significantly reduce chattering. When the second-order or higher-order sliding mode control method is used, the discontinuous part of the control variable exists in the high-order differential of the sliding mode variable, and the designed control law will make the sliding mode variable and its differential (higher-order differential) quantities All converge to zero at steady state. The output of the second-order or higher-order sliding mode controller is the result of the integration of discontinuous higher-order differentials or multiple integrations, so it is continuous. Also, because of the integral in the control process, a large control input can be generated quickly when the system is disturbed and a control error occurs, so that the anti-interference ability of the system is greatly enhanced.
(2)高阶滑模干扰观测补偿与二阶超螺旋滑模控制结合,在永磁同步电机矢量控制系统的速度环引入二阶滑模控制方法,并基于高阶滑模观测方法观测出干扰,同时把干扰观测值前馈补偿给二阶滑模控制器,得到了较为稳定的q轴参考电流;根据矢量控制理论,永磁同步电机输出转矩与q轴参考电流成正比例,进而使永磁同步电机的转速等输出量能够在复杂的工况下跟随或保持在设定值,并且其它如转矩、三相输出电流等输出量的响应速度及稳定性明显改善,鲁棒性得到显著提高。(2) Combining high-order sliding mode disturbance observation compensation with second-order superhelical sliding mode control, the second-order sliding mode control method is introduced in the speed loop of the permanent magnet synchronous motor vector control system, and the disturbance is observed based on the high-order sliding mode observation method , at the same time, the disturbance observation value is feed-forward compensated to the second-order sliding mode controller, and a relatively stable q-axis reference current is obtained; according to the vector control theory, the output torque of the permanent magnet synchronous motor is proportional to the q-axis reference current, so that the permanent The output such as the rotational speed of the magnetic synchronous motor can follow or remain at the set value under complex working conditions, and the response speed and stability of other output quantities such as torque and three-phase output current have been significantly improved, and the robustness has been significantly improved improve.
(3)本发明的高阶滑模观测器具有自适应低通滤波器特性,可以随着电机系统的变化自动调节低通滤波器带宽,有效滤除高频抖振,使各个中间物理量更加平滑,有效解决了滑模控制抖振问题,提高了永磁同步电机系统运行的可靠性。(3) The high-order sliding mode observer of the present invention has the characteristics of an adaptive low-pass filter, which can automatically adjust the bandwidth of the low-pass filter with the change of the motor system, effectively filter out high-frequency chattering, and make each intermediate physical quantity smoother , which effectively solves the chattering problem of sliding mode control and improves the reliability of the permanent magnet synchronous motor system operation.
(4)本发明不仅仅包括超螺旋滑模这一种二阶滑模控制方法,其它二阶滑模控制方法如Twisting算法、Sub-optimal算法、Prescribed Convergence算法及Quasi-Continuous Control算法等均可以直接带入本发明的控制设计和公式进行实现。(4) The present invention not only includes a second-order sliding mode control method of superhelical sliding mode, other second-order sliding mode control methods such as Twisting algorithm, Sub-optimal algorithm, Prescribed Convergence algorithm and Quasi-Continuous Control algorithm, etc. The control design and formula directly brought into the present invention are implemented.
附图说明Description of drawings
图1是本发明的结构框图;Fig. 1 is a block diagram of the present invention;
图2是坐标变换示意图;Fig. 2 is a schematic diagram of coordinate transformation;
图3是永磁同步电机的转速波形图;Fig. 3 is the rotating speed waveform figure of permanent magnet synchronous motor;
图4是永磁同步电机的输出转矩图;Fig. 4 is the output torque figure of permanent magnet synchronous motor;
图5是永磁同步电机转速环控制器输出q轴电流参考值意图。Figure 5 is a schematic diagram of the reference value of the q-axis current output by the speed loop controller of the permanent magnet synchronous motor.
其中,1—Cark变换模块、2—Park变换模块、3—旋转变压器、4—高阶滑模观测器、5—二阶超螺旋滑模控制器、6—第一比较器、7—第二比较器、8—永磁同步电机d轴电流环比例积分控制器、9—永磁同步电机q轴电流环比例积分控制器、10—Park逆变换模块、11—脉冲宽度调制模块、12—逆变器、13—永磁同步电机。Among them, 1—Cark transformation module, 2—Park transformation module, 3—resolver, 4—high-order sliding mode observer, 5—second-order superhelical sliding mode controller, 6—first comparator, 7—second Comparator, 8—permanent magnet synchronous motor d-axis current loop proportional integral controller, 9—permanent magnet synchronous motor q axis current loop proportional integral controller, 10—Park inverse transformation module, 11—pulse width modulation module, 12—inverse Transformer, 13—permanent magnet synchronous motor.
具体实施方式detailed description
以下结合附图和具体实施例对本发明作进一步的详细说明:Below in conjunction with accompanying drawing and specific embodiment the present invention is described in further detail:
本发明的一种基于高阶滑模方法的永磁同步电机控制系统,它包括Cark变换模块1、Park变换模块2、旋转变压器3、高阶滑模观测器4、二阶超螺旋滑模控制器5、第一比较器6、第二比较器7、永磁同步电机d轴电流环比例积分控制器8、永磁同步电机q轴电流环比例积分控制器9、Park逆变换模块10、脉冲宽度调制模块11和逆变器12;A permanent magnet synchronous motor control system based on a high-order sliding mode method of the present invention, which includes a Cark transformation module 1, a Park transformation module 2, a rotary transformer 3, a high-order sliding mode observer 4, and a second-order superhelical sliding mode control 5, first comparator 6, second comparator 7, permanent magnet synchronous motor d-axis current loop proportional-integral controller 8, permanent magnet synchronous motor q-axis current loop proportional-integral controller 9, Park inverse transformation module 10, pulse Width modulation module 11 and inverter 12;
其中,旋转变压器3的输入端连接永磁同步电机13的转子参数输出端,旋转变压器3的转子位置输出端连接Park变换模块2的转子位置数据输入端;旋转变压器3的转子角速度数据输出端连接高阶滑模观测器4的转子角速度数据输入端,高阶滑模观测器4的观测干扰值输出端连接二阶超螺旋滑模控制器5的观测干扰值输入端;旋转变压器3的转子角速度数据输出端还连接二阶超螺旋滑模控制器5的转子角速度输入端;二阶超螺旋滑模控制器5的参考数据输入端用于接收预设的永磁同步电机给定转速;二阶超螺旋滑模控制器5的输出端连接第二比较器7的参考数据输入端,二阶超螺旋滑模控制器5的输出端还连接高阶滑模观测器4的观测数据输入端;Wherein, the input end of resolver 3 is connected to the rotor parameter output end of permanent magnet synchronous motor 13, the rotor position output end of resolver 3 is connected to the rotor position data input end of Park transformation module 2; the rotor angular velocity data output end of resolver 3 is connected to The rotor angular velocity data input terminal of the high-order sliding mode observer 4, the observed disturbance value output terminal of the high-order sliding mode observer 4 is connected to the observed disturbance value input terminal of the second-order super-helical sliding mode controller 5; the rotor angular velocity of the resolver 3 The data output end is also connected to the rotor angular velocity input end of the second-order super-helical sliding mode controller 5; the reference data input end of the second-order super-helical sliding mode controller 5 is used to receive the preset given speed of the permanent magnet synchronous motor; the second-order The output end of the super-helix sliding mode controller 5 is connected to the reference data input end of the second comparator 7, and the output end of the second-order super-helix sliding mode controller 5 is also connected to the observation data input end of the high-order sliding mode observer 4;
所述Cark变换模块1的输入端连接永磁同步电机13的电流输出端,所述Cark变换模块1的输出端连接Park变换模块2的输入端;The input end of the Cark transformation module 1 is connected to the current output end of the permanent magnet synchronous motor 13, and the output end of the Cark transformation module 1 is connected to the input end of the Park transformation module 2;
Park变换模块2的永磁同步电机d轴电流输出端连接第一比较器6的反馈输入端,第一比较器6的输入端用于输入永磁同步电机d轴参考电流,第一比较器6的输出端通过永磁同步电机d轴电流环比例积分控制器8连接Park逆变换模块10的永磁同步电机d轴电压输入端;The d-axis current output end of the permanent magnet synchronous motor of the Park transformation module 2 is connected to the feedback input end of the first comparator 6, and the input end of the first comparator 6 is used to input the d-axis reference current of the permanent magnet synchronous motor. The first comparator 6 The output end of the permanent magnet synchronous motor is connected to the d-axis voltage input end of the permanent magnet synchronous motor of the Park inverse conversion module 10 through the d-axis current loop proportional integral controller 8 of the permanent magnet synchronous motor;
Park变换模块2的永磁同步电机q轴电流输出端连接第二比较器7的反馈输入端,第二比较器7的输出端通过永磁同步电机q轴电流环比例积分控制器9连接Park逆变换模块10的永磁同步电机q轴电压输入端;The q-axis current output end of the permanent magnet synchronous motor of the Park transformation module 2 is connected to the feedback input end of the second comparator 7, and the output end of the second comparator 7 is connected to the Park inverter through the q-axis current loop proportional-integral controller 9 of the permanent magnet synchronous motor. The permanent magnet synchronous motor q-axis voltage input terminal of the transformation module 10;
Park逆变换模块10的输出端连接脉冲宽度调制模块11的输入端,脉冲宽度调制模块11的输出端连接逆变器12的输入端,逆变器12的输出端连接永磁同步电机13的三相电压输入端。The output end of the Park inverse conversion module 10 is connected to the input end of the pulse width modulation module 11, the output end of the pulse width modulation module 11 is connected to the input end of the inverter 12, and the output end of the inverter 12 is connected to three terminals of the permanent magnet synchronous motor 13. phase voltage input.
上述基于高阶滑模方法的永磁同步电机控制系统的工作过程为:采集永磁同步电机的转子位置θ、转子角速度ωm和三相电流ia、ib和ic(旋转变压器3采集到永磁同步电机的转子位置θ、转子角速度ωm,Cark变换模块1采集三相电流ia、ib和ic),Cark变换模块1和Park变换模块2对永磁同步电机13的三相电流ia、ib和ic进行Clark变换和Park变换,得到永磁同步电机13在dq轴坐标系下的等效电流id和iq;二阶超螺旋滑模控制器5利用采集的永磁同步电机13的转子机械角速度ωm和给定参考速度得出q轴给定参考电流高阶滑模观测器4利用采集的永磁同步电机13的转子机械角速度ωm和二阶超螺旋滑模控制器5输出,得到永磁同步电机控制系统的干扰d(t);利用观测到的干扰对二阶超螺旋滑模控制器5进行补偿,进而利用二阶模型得到永磁同步电机的q轴参考电流第一比较器6和第二比较器7将预设的永磁同步电机的d轴参考电流和永磁同步电机的q轴参考电流分别与永磁同步电机在dq轴坐标系下的等效电流id和iq作差,差值经过永磁同步电机d轴电流环比例积分控制器8、永磁同步电机q轴电流环比例积分控制器9进行比例积分(PI)控制得到永磁同步电机13在dq轴坐标系下的输入电压ud和uq;Park逆变换模块10对ud和uq进行Park逆变换后依次输出给脉冲宽度调制模块11和逆变器12,得到永磁同步电机13的三相输入电压,驱动永磁同步电机13运行。The working process of the above-mentioned permanent magnet synchronous motor control system based on the high-order sliding mode method is: to collect the rotor position θ, the rotor angular velocity ω m and the three-phase currents i a , i b and ic of the permanent magnet synchronous motor (resolver 3 collects To the rotor position θ and rotor angular velocity ω m of the permanent magnet synchronous motor, the Cark transformation module 1 collects the three-phase currents i a , i b and i c ), the Cark transformation module 1 and the Park transformation module 2 pair the three-phase currents of the permanent magnet synchronous motor 13 The phase currents i a , i b and i c are subjected to Clark transformation and Park transformation to obtain the equivalent currents i d and i q of the permanent magnet synchronous motor 13 in the dq-axis coordinate system; The rotor mechanical angular velocity ω m of the permanent magnet synchronous motor 13 and the given reference speed Get the q-axis given reference current The high-order sliding mode observer 4 uses the collected rotor mechanical angular velocity ω m of the permanent magnet synchronous motor 13 and the output of the second-order superhelical sliding mode controller 5 to obtain the disturbance d(t) of the permanent magnet synchronous motor control system; The interference of the second-order super-helical sliding mode controller 5 is compensated, and then the q-axis reference current of the permanent magnet synchronous motor is obtained by using the second-order model The first comparator 6 and the second comparator 7 will preset the d-axis reference current of the permanent magnet synchronous motor and the q-axis reference current of the permanent magnet synchronous motor The difference is made with the equivalent current i d and i q of the permanent magnet synchronous motor in the dq-axis coordinate system, and the difference is passed through the permanent magnet synchronous motor d-axis current loop proportional integral controller 8, the permanent magnet synchronous motor q-axis current loop ratio The integral controller 9 performs proportional-integral (PI) control to obtain the input voltage u d and u q of the permanent magnet synchronous motor 13 in the dq-axis coordinate system; the Park inverse transformation module 10 performs Park inverse transformation on u d and u q and outputs them sequentially The three-phase input voltage of the permanent magnet synchronous motor 13 is obtained from the pulse width modulation module 11 and the inverter 12 to drive the permanent magnet synchronous motor 13 to run.
本发明基于MATLAB软件搭建仿真模型,将上述永磁同步电机的控制方法与基于传统终端滑模控制(Terminal Sliding Mode Control,TSMC)的控制方法进行比较。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。The present invention builds a simulation model based on MATLAB software, and compares the above-mentioned control method of the permanent magnet synchronous motor with a control method based on a traditional terminal sliding mode control (Terminal Sliding Mode Control, TSMC). It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
采用的永磁同步电机的参数如下:极对数np=3,额定功率P=3kW,额定电流IN=6.8A,定子电阻Rs=0.8Ω,交轴电感Lq和直轴电感Ld为:Lq=Ld=0.016H,阻尼系数B=7.403×10-5N·m·s/rad,转矩惯量J=3.78×10-4kg·m2,转子磁链ψf=0.35wb。图3为永磁同步电机的转速波形图,图4为永磁同步电机的输出转矩示意图,图5为永磁同步电机转速环控制器输出q轴电流参考值示意图。其中,黑实线表示采用基于滑模观测的控制方法的仿真结果,灰断续线表示采用TSMC方法的仿真结果。The parameters of the permanent magnet synchronous motor used are as follows: number of pole pairs n p = 3, rated power P = 3kW, rated current I N = 6.8A, stator resistance R s = 0.8Ω, quadrature axis inductance L q and direct axis inductance L d is: L q = L d = 0.016H, damping coefficient B = 7.403×10 -5 N·m·s/rad, torque inertia J=3.78×10 -4 kg·m 2 , rotor flux linkage ψ f = 0.35wb. Fig. 3 is a speed waveform diagram of a permanent magnet synchronous motor, Fig. 4 is a schematic diagram of an output torque of a permanent magnet synchronous motor, and Fig. 5 is a schematic diagram of a q-axis current reference value output by a speed loop controller of a permanent magnet synchronous motor. Among them, the black solid line represents the simulation result using the control method based on sliding mode observation, and the gray intermittent line represents the simulation result using the TSMC method.
可以看出,高阶滑模观测结合二阶滑模控制的方法的仿真结果相对TSMC方法的仿真结果明显平滑,速度和转矩响应速度快,超调量小,能够较快趋于稳定。在0.15s和0.3s突然加入和卸去负载转矩时,高阶滑模观测结合二阶滑模控制能够快速响应,输出需要的转矩,转速很快跟随参考转速,而传统滑模控制的波动较大。因此,本发明的控制方法能够使永磁同步电机的运行特性明显改善。It can be seen that the simulation results of the high-order sliding mode observation combined with the second-order sliding mode control method are significantly smoother than the simulation results of the TSMC method, the speed and torque response speed is fast, the overshoot is small, and it can stabilize quickly. When the load torque is suddenly added and removed at 0.15s and 0.3s, the high-order sliding mode observation combined with the second-order sliding mode control can respond quickly, output the required torque, and the speed quickly follows the reference speed, while the traditional sliding mode control Large fluctuations. Therefore, the control method of the present invention can significantly improve the operating characteristics of the permanent magnet synchronous motor.
一种利用上述系统的永磁同步电机控制方法,它包括如下步骤:A kind of permanent magnet synchronous motor control method utilizing above-mentioned system, it comprises the steps:
步骤1:采集永磁同步电机13的转子位置θ、转子机械角速度ωm和三相电流ia、ib和ic,对永磁同步电机13的三相电流ia、ib和ic利用Cark变换模块1和Park变换模块2依次进行Clark变换和Park变换,得到永磁同步电机13在dq坐标系下的等效电流id和iq;Step 1: Collect the rotor position θ of the permanent magnet synchronous motor 13, the rotor mechanical angular velocity ω m and the three-phase currents i a , i b and i c , and the three-phase currents i a , i b and i c of the permanent magnet synchronous motor 13 Carry out Clark transformation and Park transformation sequentially by using the Cark transformation module 1 and the Park transformation module 2 to obtain the equivalent current i d and i q of the permanent magnet synchronous motor 13 in the dq coordinate system;
根据矢量控制理论,永磁同步电机的各个物理量都需要经过坐标变换,最终在dq坐标系下进行控制,坐标变换如图2所示。According to the vector control theory, each physical quantity of the permanent magnet synchronous motor needs to undergo coordinate transformation, and finally be controlled in the dq coordinate system. The coordinate transformation is shown in Figure 2.
Clark变换:Clark transform:
Park变换:Park transformation:
Park逆变换:Park inverse transformation:
其中,iα和iβ均为两相静止坐标系(简称αβ坐标系)下的等效电流,ia、ib和ic为永磁同步电机13的三相电流,id和iq为永磁同步电机13在dq轴坐标系下的等效电流,θ为永磁同步电机13的转子位置;Among them, i α and i β are the equivalent currents in the two-phase stationary coordinate system (αβ coordinate system for short), i a , i b and i c are the three-phase currents of the permanent magnet synchronous motor 13, i d and i q is the equivalent current of the permanent magnet synchronous motor 13 in the dq axis coordinate system, and θ is the rotor position of the permanent magnet synchronous motor 13;
设定永磁同步电机13的参考转子机械角速度和d轴参考电流其中,给定转子角速度可以为常数,也可以随时间变化;Set the reference rotor mechanical angular velocity of the permanent magnet synchronous motor 13 and d-axis reference current in, given rotor angular velocity Can be constant or change with time;
步骤2:将采集的永磁同步电机13的转子机械角速度ωm和预设的永磁同步电机给定转速带入二阶超螺旋滑模控制器5得到控制器输出值为:Step 2: The rotor mechanical angular velocity ω m of the collected permanent magnet synchronous motor 13 and the preset given rotational speed of the permanent magnet synchronous motor Bring in the second-order super-helical sliding mode controller 5 to get the output value of the controller:
其中,ωm为实际的转子机械角速度,为给定转子机械角速度,为ωm的一阶导数,为的一阶导数,为的导数,c为滑模控制设计参数,B为永磁同步电机摩擦阻尼系数,J为永磁同步电机的转动惯量,kp为永磁同步电机q轴电流环比例积分(Proportional-Integral,PI)控制器比例系数,ki为永磁同步电机q轴电流环比例积分控制器积分系数,λ1,λ2为与系统动态响应能力和干扰大小相关的超螺旋滑模参数,σ为根据转速误差及其导数设计的滑模变量,sgn()为符号函数,u为二阶超螺旋滑模控制器的控制器输出值,τ为积分时间变量;Among them, ω m is the actual rotor mechanical angular velocity, For a given rotor mechanical angular velocity, is the first derivative of ω m , for The first derivative of , for , c is the sliding mode control design parameter, B is the friction damping coefficient of the permanent magnet synchronous motor, J is the moment of inertia of the permanent magnet synchronous motor, k p is the proportional integral of the q-axis current loop of the permanent magnet synchronous motor (Proportional-Integral, PI ) controller proportional coefficient, ki is the integral coefficient of the permanent magnet synchronous motor q-axis current loop proportional-integral controller, λ 1 , λ 2 are the superhelical sliding mode parameters related to the system dynamic response capability and the magnitude of the disturbance, σ is the speed according to The sliding mode variable of the error and its derivative design, sgn() is a sign function, u is the controller output value of the second-order superhelical sliding mode controller, τ is the integral time variable;
步骤3:将采集的永磁同步电机13的转子机械角速度ωm和步骤2得到的二阶超螺旋滑模控制器5的控制器输出值u输入到高阶滑模观测器4得到干扰观测值:Step 3: Input the rotor mechanical angular velocity ω m of the collected permanent magnet synchronous motor 13 and the controller output value u of the second-order super-helical sliding mode controller 5 obtained in step 2 into the high-order sliding mode observer 4 to obtain the disturbance observation value :
其中,为电机转速ωm的一阶导数,为电机转速ωm的观测值,ωm为实际的转子机械角速度,为的一阶导数,为的导数,为干扰观测值的导数,k1,k2,k3为正的常数,其中k1决定了观测器收敛速度,k2的大小由电机系统最大干扰决定,k3由系统干扰最大变化率决定,为转速误差,B为永磁同步电机摩擦阻尼系数,kp为永磁同步电机q轴电流环比例积分控制器比例系数,J为永磁同步电机的转动惯量,ki为永磁同步电机q轴电流环比例积分控制器积分系数,观测器在稳定时可以得到各物理量精确的观测值;in, is the first derivative of the motor speed ω m , is the observed value of motor speed ω m , ω m is the actual rotor mechanical angular velocity, for The first derivative of , for derivative of is the interference observation k 1 , k 2 , and k 3 are positive constants, among which k 1 determines the convergence speed of the observer, the size of k 2 is determined by the maximum disturbance of the motor system, and k 3 is determined by the maximum change rate of the system disturbance, is the rotational speed error, B is the friction damping coefficient of the permanent magnet synchronous motor, k p is the proportional integral controller proportional coefficient of the q-axis current loop of the permanent magnet synchronous motor, J is the moment of inertia of the permanent magnet synchronous motor, k i is the q of the permanent magnet synchronous motor Shaft current loop proportional integral controller integral coefficient, the observer can obtain accurate observation values of various physical quantities when it is stable;
步骤4:将步骤3中观测到的观测干扰值带入步骤2的二阶超螺旋滑模控制器5的控制器输出值公式,得到二阶超螺旋滑模控制器5的控制器最终输出值U:Step 4: The observed disturbance value observed in step 3 Bringing in the controller output value formula of the second-order superhelical sliding mode controller 5 in step 2, the final output value U of the controller of the second-order superhelical sliding mode controller 5 is obtained:
步骤5:二阶超螺旋滑模控制器5的控制器最终输出值U结合永磁同步电机基于转速的二阶模型,得到永磁同步电机的q轴参考电流为:Step 5: The final output value U of the controller of the second-order superhelical sliding mode controller 5 is combined with the second-order model of the permanent magnet synchronous motor based on the speed to obtain the q-axis reference current of the permanent magnet synchronous motor for:
其中,U为二阶超螺旋滑模控制器5的控制器最终输出值,kp为永磁同步电机q轴电流环比例积分控制器比例系数,J为永磁同步电机13的转动惯量,kf=1.5npψf/J为中间变量,ki为永磁同步电机q轴电流环比例积分控制器积分系数,s为Laplace算子,np为永磁同步电机的极对数,ψf为永磁同步电机的永磁磁链;Among them, U is the final output value of the controller of the second-order super-helical sliding mode controller 5, k p is the proportional coefficient of the proportional-integral controller of the q-axis current loop of the permanent magnet synchronous motor, J is the moment of inertia of the permanent magnet synchronous motor 13, k f = 1.5n p ψ f /J is the intermediate variable, ki is the integral coefficient of the permanent magnet synchronous motor q-axis current loop proportional-integral controller, s is the Laplace operator, n p is the pole pair number of the permanent magnet synchronous motor, ψ f is the permanent magnet flux linkage of the permanent magnet synchronous motor;
步骤6:将永磁同步电机的d轴参考电流和永磁同步电机的q轴参考电流分别与永磁同步电机dq轴坐标系下的等效电流id和iq作差后,进行比例积分控制得到永磁同步电机13在dq轴坐标系下的输入电压ud和uq;Step 6: Set the d-axis reference current of the permanent magnet synchronous motor After the difference between the q-axis reference current of the permanent magnet synchronous motor and the equivalent current i d and i q in the dq axis coordinate system of the permanent magnet synchronous motor, proportional integral control is performed to obtain the permanent magnet synchronous motor 13 in the dq axis coordinate system The input voltage u d and u q ;
步骤7:对永磁同步电机13在dq轴坐标系下的输入电压ud和uq进行Park逆变换,得到永磁同步电机13在αβ轴坐标系下的输入电压uα和uβ,将uα和uβ作为载波信号,通过正弦脉冲宽度调制(Sinusoidal Pulse Width Modulation,SPWM)得到逆变器12的开关管控制信号,将逆变器12的开关管控制信号输入至逆变器12控制电路,控制逆变器12中的开关器件的导通和关断,进而输出永磁同步电机13的三相输入电压,驱动永磁同步电机13按给定转子机械角速度运行。Step 7: Perform Park inverse transformation on the input voltage u d and u q of the permanent magnet synchronous motor 13 in the dq-axis coordinate system to obtain the input voltage u α and u β of the permanent magnet synchronous motor 13 in the αβ-axis coordinate system. U α and u β are used as carrier signals, and the switching tube control signal of the inverter 12 is obtained through sinusoidal pulse width modulation (Sinusoidal Pulse Width Modulation, SPWM), and the switching tube control signal of the inverter 12 is input to the inverter 12 to control The circuit controls the on and off of the switching device in the inverter 12, and then outputs the three-phase input voltage of the permanent magnet synchronous motor 13, and drives the permanent magnet synchronous motor 13 at a given rotor mechanical angular velocity run.
由于永磁同步电机系统采样频率很高(104数量级),为了满足系统动态性能的要求,兼顾干扰及其变化率,在上述技术方案中,所述的λ1取值数量级为103~106之间,λ2取值数量级为10-2~101之间;所述kp、ki的取值数量级为10-4~10-1之间。Since the sampling frequency of the permanent magnet synchronous motor system is very high (on the order of 10 4 ), in order to meet the requirements of the dynamic performance of the system and take into account the disturbance and its change rate, in the above technical solution, the value of λ 1 is on the order of 10 3 to 10 6 , and the order of magnitude of λ 2 is between 10 -2 and 10 1 ; the order of magnitude of the values of k p and ki is between 10 -4 and 10 -1 .
上述技术方案中,二阶超螺旋滑模控制器具体推导过程如下:In the above technical solution, the specific derivation process of the second-order superhelical sliding mode controller is as follows:
永磁同步电机dq轴系下的状态方程The state equation of permanent magnet synchronous motor under dq axis system
其中,Rs为永磁同步电机13的定子电阻,Ld为永磁同步电机13的直轴电感,Lq为永磁同步电机13的交轴电感,ud和uq为永磁同步电机13的d轴和q轴定子电压,TL为永磁同步电机13的负载转矩,B为永磁同步电机13固有的摩擦阻尼系数,和分别为id和iq的一阶导数,np表示永磁同步电机的极对数,ψf表示永磁同步电机的转子磁链,J为永磁同步电机13固有的转动惯量;Among them, R s is the stator resistance of the permanent magnet synchronous motor 13, L d is the direct axis inductance of the permanent magnet synchronous motor 13, L q is the quadrature axis inductance of the permanent magnet synchronous motor 13, u d and u q are the permanent magnet synchronous motor 13 d-axis and q-axis stator voltage, T L is the load torque of the permanent magnet synchronous motor 13, B is the inherent frictional damping coefficient of the permanent magnet synchronous motor 13, with are respectively the first derivatives of i d and i q , n p represents the number of pole pairs of the permanent magnet synchronous motor, ψ f represents the rotor flux linkage of the permanent magnet synchronous motor, and J is the inherent moment of inertia of the permanent magnet synchronous motor 13;
对永磁同步电机dq轴系下的状态方程中第三个方程进行Laplace变换:Perform Laplace transformation on the third equation in the state equation of the permanent magnet synchronous motor under the dq shaft system:
其中,iq(s)由与uq(s)表示并带入公式(3)得:where i q (s) is given by Expressed with u q (s) and brought into formula (3) to get:
其中,s为Laplace算子;Among them, s is the Laplace operator;
上式两边同时乘以即:Multiply both sides of the above formula by which is:
对上式进行反Laplace变换:Perform an inverse Laplace transform on the above formula:
令得:make have to:
最终二阶系统:The final second-order system:
令make
可得这样永磁同步电机推导为二阶系统,f(t)为系统函数部分,d(t)为干扰项,定义永磁同步电机二阶调速系统状态变量x1,x2为:Available In this way, the permanent magnet synchronous motor is deduced as a second-order system, f(t) is the system function part, d(t) is the interference item, and the state variables x 1 and x 2 of the second-order speed regulation system of the permanent magnet synchronous motor are defined as:
即为永磁同步电机二阶状态方程。设计滑模变量为:This is the second-order state equation of the permanent magnet synchronous motor. The design sliding mode variables are:
对滑模变量进行求导可得:Derivation of the sliding mode variable can be obtained:
二阶超螺旋滑模控制算法形式为:The form of the second-order superhelical sliding mode control algorithm is:
超螺旋算法结合滑模设计方法,则二阶滑模控制律为:The super-helix algorithm is combined with the sliding mode design method, and the second-order sliding mode control law is:
结合永磁同步电机二阶状态方程,可得:Combined with the second-order state equation of the permanent magnet synchronous motor, it can be obtained:
这样基于超螺旋算法的二阶滑模控制器设计为:Such a second-order sliding mode controller based on the superhelical algorithm is designed as:
d(t)为干扰,将会在下一步用高阶滑模观测器进行观测,并对滑模控制器进行反馈补偿。d(t) is the disturbance, which will be observed with a high-order sliding mode observer in the next step, and feedback compensation will be performed on the sliding mode controller.
上述技术方案中,高阶滑模观测器推导过程如下:In the above technical solution, the derivation process of the high-order sliding mode observer is as follows:
假定一个最常见的带干扰二阶双积分系统:Assume the most common second-order double-integral system with disturbances:
y=x1 (17)y=x 1 (17)
其中x1,x2为上述假设系统状态变量,y为输出,ρ1为干扰。为了观测这个系统各状态量,高阶滑模观测器可以写为:Among them, x 1 and x 2 are the state variables of the above-mentioned hypothetical system, y is the output, and ρ 1 is the disturbance. In order to observe the state quantities of this system, the high-order sliding mode observer can be written as:
其中z1,z2,z3为纠正项。定义误差变量纠正项数学表达式为:Among them z 1 , z 2 , z 3 are correction items. Define the error variable The mathematical expression of the correction item is:
z3=k3sign(e1) (19)z 3 =k 3 sign(e 1 ) (19)
其中k1、k2、k3符号为正的常数。结合公式(17)、(18)和(19)可得系统观测误差方程:Among them, the signs of k 1 , k 2 , and k 3 are positive constants. Combining formulas (17), (18) and (19), the system observation error equation can be obtained:
现在重新定义新的变量同时假定系统干扰ρ1满足利普希茨条件,并且Δ1为正的常数。观测器可进一步推广为:Now redefine the new variable Also assume that the system disturbance ρ 1 satisfies the Lipschitz condition, and Δ1 is a positive constant. The observer can be further generalized as:
定义变量分别观测ωm,d(t),结合永磁同步电机二阶系统,可得永磁同步电机高阶滑模观测器:define variable Observing ω m , respectively d(t), combined with the second-order system of the permanent magnet synchronous motor, the high-order sliding mode observer of the permanent magnet synchronous motor can be obtained:
带入各物理量,最终永磁同步电机的高阶滑模观测器为:Bringing in various physical quantities, the final high-order sliding mode observer of the permanent magnet synchronous motor is:
根据前文,为转速观测值的一阶导数,为的导数,为观测干扰的导数,它们分别对应 According to the previous text, is the rotational speed observation value The first derivative of , for derivative of interference for observation Derivatives of , which correspond to
本发明能克服永磁同步电机13在复杂工况下面临的各种干扰,导致其控制动态响应慢、控制效果差的缺陷,提供了一种动态响应速度快、抗干扰能力强、控制精度高的永磁同步电机控制方法。该方法不仅能够实现永磁同步电机的精确控制,而且能够在变速、变载时实现永磁同步电机的快速响应。The present invention can overcome the various disturbances faced by the permanent magnet synchronous motor 13 under complex working conditions, resulting in the defects of slow dynamic control response and poor control effect, and provides a fast dynamic response speed, strong anti-interference ability and high control precision. control method of permanent magnet synchronous motor. This method can not only realize the precise control of the permanent magnet synchronous motor, but also realize the fast response of the permanent magnet synchronous motor when the speed and load are changed.
本说明书未作详细描述的内容属于本领域专业技术人员公知的现有技术。The content not described in detail in this specification belongs to the prior art known to those skilled in the art.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710019290.8A CN106655938B (en) | 2017-01-11 | 2017-01-11 | Control system for permanent-magnet synchronous motor and control method based on High-Order Sliding Mode method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710019290.8A CN106655938B (en) | 2017-01-11 | 2017-01-11 | Control system for permanent-magnet synchronous motor and control method based on High-Order Sliding Mode method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106655938A true CN106655938A (en) | 2017-05-10 |
CN106655938B CN106655938B (en) | 2018-11-30 |
Family
ID=58843841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710019290.8A Active CN106655938B (en) | 2017-01-11 | 2017-01-11 | Control system for permanent-magnet synchronous motor and control method based on High-Order Sliding Mode method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106655938B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108631674A (en) * | 2018-05-11 | 2018-10-09 | 浙江理工大学 | Permanent magnet linear motor positional servosystem based on High-Order Sliding Mode algorithm |
CN109217746A (en) * | 2018-09-11 | 2019-01-15 | 重庆邮电大学 | Permanent-magnet brushless DC electric machine governor system control method based on time-varying AF panel |
CN109495048A (en) * | 2018-11-26 | 2019-03-19 | 天津大学 | Permanent magnet synchronous motor Speed Sensorless Control Method based on MRAC observer |
CN109560736A (en) * | 2018-12-18 | 2019-04-02 | 东南大学 | Method for controlling permanent magnet synchronous motor based on second-order terminal sliding formwork |
CN109617482A (en) * | 2018-12-31 | 2019-04-12 | 西安科技大学 | L2 sliding mode control method of permanent magnet synchronous motor |
CN110557070A (en) * | 2019-09-30 | 2019-12-10 | 山东深川变频科技股份有限公司 | permanent magnet synchronous motor parameter identification method based on second-order sliding-mode observer |
CN110620528A (en) * | 2019-09-20 | 2019-12-27 | 电子科技大学 | Multichannel direct current motor system control method based on second-order supercoiled sliding mode |
CN113489400A (en) * | 2021-05-25 | 2021-10-08 | 中国民航大学 | System and method for controlling electric load of permanent magnet synchronous motor in airplane steering engine |
CN114710079A (en) * | 2022-03-31 | 2022-07-05 | 南京航空航天大学 | A voltage regulation control method for high-speed permanent magnet synchronous power generation system based on adaptive high-order sliding mode |
CN114771269A (en) * | 2022-04-20 | 2022-07-22 | 上海申传电气股份有限公司 | FOFSMC-based energy feedback system and method for mining electric locomotive |
CN114942585A (en) * | 2022-06-24 | 2022-08-26 | 成都乐创自动化技术股份有限公司 | Method for setting composite control system based on time-lag filter and PID controller |
CN116345942A (en) * | 2023-06-01 | 2023-06-27 | 华中科技大学 | A method for controlling a grid-connected inverter and its application |
CN117039977A (en) * | 2023-06-21 | 2023-11-10 | 淮阴工学院 | Fuzzy supercoiled sliding mode observer inductance identification method based on predictive control condition |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103236814A (en) * | 2013-04-27 | 2013-08-07 | 南京工程学院 | Fractional integral sliding mode-based speed control method and device for permanent magnet synchronous motor |
CN103997272A (en) * | 2014-06-09 | 2014-08-20 | 浙江理工大学 | Load disturbance compensation device and method of permanent magnet synchronous motor |
CN105262395A (en) * | 2015-10-29 | 2016-01-20 | 华中科技大学 | Method and system for controlling permanent magnet synchronous motor based on sliding mode control theory |
CN105337546A (en) * | 2015-12-09 | 2016-02-17 | 南京工程学院 | Permanent magnet synchronous motor control device and method based on variable-order fractional-order sliding mold |
CN105827168A (en) * | 2016-05-10 | 2016-08-03 | 华中科技大学 | PMSM control method and system based on sliding mode observation |
-
2017
- 2017-01-11 CN CN201710019290.8A patent/CN106655938B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103236814A (en) * | 2013-04-27 | 2013-08-07 | 南京工程学院 | Fractional integral sliding mode-based speed control method and device for permanent magnet synchronous motor |
CN103997272A (en) * | 2014-06-09 | 2014-08-20 | 浙江理工大学 | Load disturbance compensation device and method of permanent magnet synchronous motor |
CN105262395A (en) * | 2015-10-29 | 2016-01-20 | 华中科技大学 | Method and system for controlling permanent magnet synchronous motor based on sliding mode control theory |
CN105337546A (en) * | 2015-12-09 | 2016-02-17 | 南京工程学院 | Permanent magnet synchronous motor control device and method based on variable-order fractional-order sliding mold |
CN105827168A (en) * | 2016-05-10 | 2016-08-03 | 华中科技大学 | PMSM control method and system based on sliding mode observation |
Non-Patent Citations (3)
Title |
---|
CHAOXU MU: "Adaptive sliding mode control for the speed regulation of PMSMs with load change", 《2014 17TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS)》 * |
WEI XU: "Novel Composite Sliding Mode Control for PMSM Drive System Based on Disturbance Observer", 《IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY ( VOLUME: 26, ISSUE: 7, OCT. 2016 )》 * |
YAJIE JIANG: "Robust Sliding Mode Speed Control with Adaptive Torque Observer for High Performance PMSM", 《2016 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC)》 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108631674A (en) * | 2018-05-11 | 2018-10-09 | 浙江理工大学 | Permanent magnet linear motor positional servosystem based on High-Order Sliding Mode algorithm |
CN108631674B (en) * | 2018-05-11 | 2021-09-10 | 浙江理工大学 | Linear permanent magnet motor position servo system based on high-order sliding mode algorithm |
CN109217746B (en) * | 2018-09-11 | 2021-11-16 | 重庆邮电大学 | Control method of permanent magnet brushless direct current motor speed regulation system based on time-varying interference suppression |
CN109217746A (en) * | 2018-09-11 | 2019-01-15 | 重庆邮电大学 | Permanent-magnet brushless DC electric machine governor system control method based on time-varying AF panel |
CN109495048A (en) * | 2018-11-26 | 2019-03-19 | 天津大学 | Permanent magnet synchronous motor Speed Sensorless Control Method based on MRAC observer |
CN109560736A (en) * | 2018-12-18 | 2019-04-02 | 东南大学 | Method for controlling permanent magnet synchronous motor based on second-order terminal sliding formwork |
CN109617482A (en) * | 2018-12-31 | 2019-04-12 | 西安科技大学 | L2 sliding mode control method of permanent magnet synchronous motor |
CN109617482B (en) * | 2018-12-31 | 2022-07-08 | 重庆虬龙科技有限公司 | L2 sliding mode control method of permanent magnet synchronous motor |
CN110620528A (en) * | 2019-09-20 | 2019-12-27 | 电子科技大学 | Multichannel direct current motor system control method based on second-order supercoiled sliding mode |
CN110620528B (en) * | 2019-09-20 | 2021-07-13 | 电子科技大学 | A control method of multi-channel DC motor system based on second-order superhelical sliding mode |
CN110557070A (en) * | 2019-09-30 | 2019-12-10 | 山东深川变频科技股份有限公司 | permanent magnet synchronous motor parameter identification method based on second-order sliding-mode observer |
CN113489400A (en) * | 2021-05-25 | 2021-10-08 | 中国民航大学 | System and method for controlling electric load of permanent magnet synchronous motor in airplane steering engine |
CN114710079A (en) * | 2022-03-31 | 2022-07-05 | 南京航空航天大学 | A voltage regulation control method for high-speed permanent magnet synchronous power generation system based on adaptive high-order sliding mode |
CN114710079B (en) * | 2022-03-31 | 2024-08-27 | 南京航空航天大学 | Voltage stabilizing control method of high-speed permanent magnet synchronous power generation system based on self-adaptive high-order sliding mode |
CN114771269A (en) * | 2022-04-20 | 2022-07-22 | 上海申传电气股份有限公司 | FOFSMC-based energy feedback system and method for mining electric locomotive |
CN114771269B (en) * | 2022-04-20 | 2024-09-20 | 上海申传电气股份有限公司 | Mining electric locomotive energy feedback system and method based on fractional order fuzzy sliding mode controller FOFSMC |
CN114942585A (en) * | 2022-06-24 | 2022-08-26 | 成都乐创自动化技术股份有限公司 | Method for setting composite control system based on time-lag filter and PID controller |
CN116345942A (en) * | 2023-06-01 | 2023-06-27 | 华中科技大学 | A method for controlling a grid-connected inverter and its application |
CN116345942B (en) * | 2023-06-01 | 2023-08-25 | 华中科技大学 | A method for controlling a grid-connected inverter and its application |
CN117039977A (en) * | 2023-06-21 | 2023-11-10 | 淮阴工学院 | Fuzzy supercoiled sliding mode observer inductance identification method based on predictive control condition |
CN117039977B (en) * | 2023-06-21 | 2024-06-11 | 淮阴工学院 | An inductance identification method for fuzzy super-helical sliding mode observer based on predictive control |
Also Published As
Publication number | Publication date |
---|---|
CN106655938B (en) | 2018-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106655938B (en) | Control system for permanent-magnet synchronous motor and control method based on High-Order Sliding Mode method | |
CN105827168B (en) | Method for controlling permanent magnet synchronous motor and system based on sliding formwork observation | |
CN103647490B (en) | A kind of sliding mode control strategy of magneto | |
CN104953915B (en) | A kind of permagnetic synchronous motor sliding mode control strategy based on Reaching Law | |
CN110429881A (en) | A kind of Auto-disturbance-rejection Control of permanent magnet synchronous motor | |
CN103051274B (en) | Variable damping-based passive control method for two-degree-of-freedom permanent magnetic synchronous motor | |
CN105262395A (en) | Method and system for controlling permanent magnet synchronous motor based on sliding mode control theory | |
CN107302330B (en) | A minimal loss control method for surface-mounted permanent magnet synchronous motor | |
CN105262393B (en) | A kind of fault-tolerant magneto method for control speed using novel transition process | |
CN105790660A (en) | Rotary speed adaptive robust control system and method for ultra-high-speed permanent magnet synchronous motor | |
CN108336935B (en) | Linear motor control method with cooperation of backstepping control and ESO | |
CN107370431A (en) | A kind of industrial robot obscures Auto-disturbance-rejection Control with permagnetic synchronous motor | |
CN112187130B (en) | Method and system for controlling a permanent magnet synchronous machine | |
CN106788054A (en) | A kind of Speed Sensorless Control Method based on rotation high-frequency signal injection and fuzzy PI hybrid control | |
Zhao et al. | Effective position error compensation in sensorless control based on unified model of SPMSM and IPMSM | |
CN110165953B (en) | PMSM speed regulation control method based on approximation law | |
CN112953335A (en) | Finite time self-adaptive composite control method and system for permanent magnet synchronous motor | |
CN108649850B (en) | Current control method of built-in permanent magnet synchronous motor of UDE | |
CN106549609A (en) | Method for controlling permanent magnet synchronous motor based on integral form high order termination sliding Mode Algorithm | |
CN107834933A (en) | A Direct Torque Control Method for Permanent Magnet Synchronous Motor Based on Torque Loop Active Disturbance Rejection Technology | |
CN110011583B (en) | Permanent magnet synchronous motor sliding mode control system based on singular perturbation theory and modeling method | |
Kadum | New adaptive hysteresis band width control for direct torque control of induction machine drives | |
CN117544045A (en) | Method and system for controlling ultra-high-speed permanent magnet synchronous motor without position sensor | |
CN105207561B (en) | A kind of Flux Observation Method and equipment for motor | |
Moussa et al. | Robust WTE sensorless design based on soft-VSI structure for three-phase IM drive using sliding mode observer controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |