CN102664569A - Sliding-mode-variable-structure-based control method and device for permanent-magnet synchronous linear motor - Google Patents
Sliding-mode-variable-structure-based control method and device for permanent-magnet synchronous linear motor Download PDFInfo
- Publication number
- CN102664569A CN102664569A CN2012101382305A CN201210138230A CN102664569A CN 102664569 A CN102664569 A CN 102664569A CN 2012101382305 A CN2012101382305 A CN 2012101382305A CN 201210138230 A CN201210138230 A CN 201210138230A CN 102664569 A CN102664569 A CN 102664569A
- Authority
- CN
- China
- Prior art keywords
- linear motor
- sliding mode
- permanent magnet
- magnet synchronous
- variable structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 33
- 238000004088 simulation Methods 0.000 claims abstract description 65
- 230000004907 flux Effects 0.000 claims description 6
- 238000013178 mathematical model Methods 0.000 claims description 6
- 230000004044 response Effects 0.000 abstract description 13
- 230000008569 process Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 18
- 230000005540 biological transmission Effects 0.000 description 3
- 238000011217 control strategy Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
Images
Landscapes
- Control Of Linear Motors (AREA)
Abstract
本发明提供了一种基于滑模变结构的永磁同步直线电机控制方法和装置,通过建立永磁同步直线电机模型,然后建立永磁同步直线电机的整体仿真模块并进行参数调整,接着选取合适的滑模变结构并建立相对应的仿真模块,最终通过滑模变结构控制进行仿真和结果比较,本方案将传统的单一PID控制改为滑模控制,使速度响应更快,超调量更小,且抗干扰能力更强,滑模变结构控制算法简单、鲁棒性好及可靠性高,可以很好的应用于非线性运动控制过程中。
The invention provides a permanent magnet synchronous linear motor control method and device based on sliding mode variable structure. By establishing a permanent magnet synchronous linear motor model, and then establishing an overall simulation module of the permanent magnet synchronous linear motor and adjusting parameters, and then selecting a suitable The sliding mode variable structure and the corresponding simulation module are established, and finally the simulation and result comparison are carried out through the sliding mode variable structure control. This scheme changes the traditional single PID control into sliding mode control, so that the speed response is faster and the overshoot is smaller. Small size, stronger anti-interference ability, simple sliding mode variable structure control algorithm, good robustness and high reliability, can be well applied in the process of nonlinear motion control.
Description
技术领域 technical field
本发明涉及信息控制技术领域,特别涉及一种基于滑模变结构的永磁同步直线电机控制方法及装置。The invention relates to the technical field of information control, in particular to a control method and device for a permanent magnet synchronous linear motor based on a sliding mode variable structure.
背景技术 Background technique
永磁同步直线电机是一种能直接将电能转换为直线运动的传动装置,由于不需要中间传动介质,相对于传统的“旋转电机+滚轴丝杠”的传动方式具有显著的优势如:精度高、速度和加速度大且稳定,推力大等。近年来,直线电机得到了飞速的发展并且广泛应用于各种场合,尤其是以高效率和高精度为基本特征的高速加工领域。直线电机以其快速响应和精度等方面的优势而逐渐取代普通伺服驱动系统,但要使直线电机表现出优良的性能,就对控制系统的要求也越来越高。The permanent magnet synchronous linear motor is a transmission device that can directly convert electrical energy into linear motion. Since it does not require an intermediate transmission medium, it has significant advantages over the traditional "rotary motor + roller screw" transmission method such as: precision High, high speed and acceleration, stable, large thrust, etc. In recent years, linear motors have developed rapidly and are widely used in various occasions, especially in the field of high-speed processing with high efficiency and high precision as the basic characteristics. Linear motors are gradually replacing ordinary servo drive systems due to their advantages in fast response and precision. However, to make linear motors exhibit excellent performance, the requirements for control systems are getting higher and higher.
传统PID控制具有结构简单、输出稳定、易实现等优点而至今被沿用,但在以高速高精、负载扰动大的加工场合,简单PID控制不能达到理想的控制效果。The traditional PID control has the advantages of simple structure, stable output, and easy implementation, and has been used until now. However, in the processing occasions with high speed, high precision and large load disturbance, simple PID control cannot achieve the ideal control effect.
针对现有技术在高速高精、负载扰动大的加工场合下,控制效果不佳的问题,提出一种基于滑模变结构的永磁同步直线电机控制方法和装置是信息控制技术领域目前急待解决的问题之一。Aiming at the problem of poor control effect of the existing technology in high-speed, high-precision, and large load disturbance processing occasions, a permanent magnet synchronous linear motor control method and device based on sliding mode variable structure is proposed, which is an urgent need in the field of information control technology. One of the problems solved.
发明内容 Contents of the invention
有鉴于此,本发明实施例提出了一种基于滑模变结构的永磁同步直线电机控制方法和装置,通过建立永磁同步直线电机模型,然后建立永磁同步直线电机的整体仿真模块并进行参数调整,接着选取合适的滑模变结构并建立相对应的仿真模块,最终通过滑模变结构控制进行仿真和结果比较,本方案将传统的单一PID控制改为滑模控制,使速度响应更快,超调量更小,且抗干扰能力更强,滑模变结构控制算法简单、鲁棒性好及可靠性高,可以很好的应用于非线性运动控制过程中。In view of this, the embodiment of the present invention proposes a permanent magnet synchronous linear motor control method and device based on sliding mode variable structure, by establishing a permanent magnet synchronous linear motor model, and then establishing an overall simulation module of the permanent magnet synchronous linear motor and performing Parameter adjustment, then select the appropriate sliding mode variable structure and establish the corresponding simulation module, and finally simulate and compare the results through the sliding mode variable structure control. This scheme changes the traditional single PID control into sliding mode control to make the speed response more accurate. Faster, smaller overshoot, and stronger anti-interference ability. The sliding mode variable structure control algorithm is simple, robust and reliable, and can be well applied in the process of nonlinear motion control.
为解决上述技术问题,本发明实施例的目的是通过以下技术方案实现的:In order to solve the above technical problems, the purpose of the embodiments of the present invention is achieved through the following technical solutions:
一种基于滑模变结构的永磁同步直线电机控制方法,包括:A control method for a permanent magnet synchronous linear motor based on a sliding mode variable structure, comprising:
步骤一、建立永磁同步直线电机模型;
步骤二、建立永磁同步直线电机的整体仿真模块并进行参数调整;Step 2. Establish the overall simulation module of the permanent magnet synchronous linear motor and adjust the parameters;
步骤三、选取合适的滑模变结构并建立相对应的仿真模块;Step 3: Select a suitable sliding mode variable structure and establish a corresponding simulation module;
步骤四、通过滑模变结构控制进行仿真和结果比较。Step 4: Carry out simulation and result comparison through sliding mode variable structure control.
优选的,上述步骤一中,是根据动力学方程搭建永磁同步直线电机模型。Preferably, in the
优选的,上述永磁同步直线电机的动力学方程为:Preferably, the dynamic equation of the permanent magnet synchronous linear motor is:
其中Ld,Lq为直轴和交轴电感,φf为直线电机永磁体磁链;V为直线电机的速度;m为电机质量。Among them, L d , L q are the inductance of the direct axis and the quadrature axis, φ f is the flux linkage of the permanent magnet of the linear motor; V is the speed of the linear motor; m is the mass of the motor.
优选的,上述步骤一中,进一步包括依据数学模型建立电压和机械模块,根据动力学方程搭建永磁同步直线电机模型。Preferably, the
优选的,上述步骤二中,建立永磁同步直线电机的整体仿真模块,包括但不限于速度和电流环PID控制、SVPWM模块。Preferably, in the above step 2, an overall simulation module of the permanent magnet synchronous linear motor is established, including but not limited to speed and current loop PID control, and SVPWM module.
优选的,上述步骤二中,进行参数调整以获得各PID控制器的初始参数。Preferably, in the second step above, parameter adjustment is performed to obtain the initial parameters of each PID controller.
优选的,上述步骤三中,所述滑模变结构控制方案为:Preferably, in the above step 3, the sliding mode variable structure control scheme is:
u=ueq+usw u=u eq +u sw
其中,ueq=ne,usw=fsign(s),故有 Among them, u eq = ne, u sw = fsign(s), so we have
一种基于滑模变结构的永磁同步直线电机控制装置,包括模型建立单元、参数调整单元、选取单元及比较单元,通过建立永磁同步直线电机模型,然后建立永磁同步直线电机的整体仿真模块并进行参数调整,接着选取合适的滑模变结构并建立相对应的仿真模块,最终通过滑模变结构控制进行仿真和结果比较。A permanent magnet synchronous linear motor control device based on sliding mode variable structure, including a model building unit, a parameter adjustment unit, a selection unit and a comparison unit, by establishing a permanent magnet synchronous linear motor model, and then establishing an overall simulation of the permanent magnet synchronous linear motor Module and parameter adjustment, then select the appropriate sliding mode variable structure and establish the corresponding simulation module, and finally simulate and compare the results through sliding mode variable structure control.
优选的,上述模型建立单元用于建立永磁同步直线电机模型。Preferably, the above-mentioned model building unit is used for building a permanent magnet synchronous linear motor model.
优选的,上述参数调整单元用于建立永磁同步直线电机的整体仿真模块并进行参数调整。Preferably, the above parameter adjustment unit is used to establish an overall simulation module of the permanent magnet synchronous linear motor and perform parameter adjustment.
优选的,上述选取单元用于选取合适的滑模变结构并建立相对应的仿真模块。Preferably, the selection unit is used to select a suitable sliding mode variable structure and establish a corresponding simulation module.
优选的,上述比较单元用于通过滑模变结构控制进行仿真和结果比较。Preferably, the above comparison unit is used for simulation and result comparison through sliding mode variable structure control.
综上所述,本发明提供了一种基于滑模变结构的永磁同步直线电机控制方法和装置,通过建立永磁同步直线电机模型,然后建立永磁同步直线电机的整体仿真模块并进行参数调整,接着选取合适的滑模变结构并建立相对应的仿真模块,最终通过滑模变结构控制进行仿真和结果比较,本方案将传统的单一PID控制改为滑模控制,使速度响应更快,超调量更小,且抗干扰能力更强,滑模变结构控制算法简单、鲁棒性好及可靠性高,可以很好的应用于非线性运动控制过程中。In summary, the present invention provides a permanent magnet synchronous linear motor control method and device based on sliding mode variable structure, by establishing a permanent magnet synchronous linear motor model, and then establishing an overall simulation module of the permanent magnet synchronous linear motor and performing parameter Adjustment, then select the appropriate sliding mode variable structure and establish the corresponding simulation module, and finally simulate and compare the results through sliding mode variable structure control. This program changes the traditional single PID control to sliding mode control to make the speed response faster , the overshoot is smaller, and the anti-interference ability is stronger. The sliding mode variable structure control algorithm is simple, robust and reliable, and can be well applied in the process of nonlinear motion control.
附图说明 Description of drawings
图1为本发明一种基于滑模变结构的永磁同步直线电机控制方法示意图;Fig. 1 is a schematic diagram of a permanent magnet synchronous linear motor control method based on sliding mode variable structure of the present invention;
图2为本发明之滑模控制器的模型示意图;Fig. 2 is the model schematic diagram of sliding mode controller of the present invention;
图3为Simulink下PMLSM滑模控制的整个模型示意图;Figure 3 is a schematic diagram of the entire model of PMLSM sliding mode control under Simulink;
图4为PID控制器速度仿真波形示意图;Figure 4 is a schematic diagram of the PID controller speed simulation waveform;
图5为滑模控制器速度仿真波形示意图;Fig. 5 is a schematic diagram of the velocity simulation waveform of the sliding mode controller;
图6为PID控制器突加扰动时速度仿真波形示意图;Figure 6 is a schematic diagram of the velocity simulation waveform when the PID controller suddenly adds disturbance;
图7为滑模控制器突加扰动时速度仿真波形示意图;Figure 7 is a schematic diagram of the velocity simulation waveform when the sliding mode controller suddenly adds a disturbance;
图8为推力比较波形示意图;Fig. 8 is a schematic diagram of thrust comparison waveform;
图9为本发明一种基于滑模变结构的永磁同步直线电机控制装置示意图。FIG. 9 is a schematic diagram of a permanent magnet synchronous linear motor control device based on a sliding mode variable structure according to the present invention.
具体实施方式 Detailed ways
本发明实施例提供的一种基于滑模变结构的永磁同步直线电机控制方法和装置,通过建立永磁同步直线电机模型,然后建立永磁同步直线电机的整体仿真模块并进行参数调整,接着选取合适的滑模变结构并建立相对应的仿真模块,最终通过滑模变结构控制进行仿真和结果比较,本方案将传统的单一PID控制改为滑模控制,使速度响应更快,超调量更小,且抗干扰能力更强,滑模变结构控制算法简单、鲁棒性好及可靠性高,可以很好的应用于非线性运动控制过程中。The embodiment of the present invention provides a method and device for controlling a permanent magnet synchronous linear motor based on a sliding mode variable structure. By establishing a permanent magnet synchronous linear motor model, and then establishing an overall simulation module of the permanent magnet synchronous linear motor and performing parameter adjustment, and then Select an appropriate sliding mode variable structure and establish a corresponding simulation module, and finally simulate and compare the results through sliding mode variable structure control. This program changes the traditional single PID control to sliding mode control, so that the speed response is faster and the overshoot The amount is smaller, and the anti-interference ability is stronger. The sliding mode variable structure control algorithm is simple, robust and reliable, and can be well applied in the process of nonlinear motion control.
为使本发明的目的、技术方案及优点更加清楚明白,下面参照附图并举实施例,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below with reference to the accompanying drawings and examples.
本方案的主要思路为:将传统PID控制器用滑模变结构控制器取代的控制方法,此方法在直线电机的速度环上做一定的改进,将传统的单一PID控制改为滑模控制,使速度响应更快,超调量更小,且抗干扰能力更强。滑模变结构控制算法简单、鲁棒性好及可靠性高,可以很好的应用于非线性运动控制过程中,本方案提出一种将速度环中的PID控制器用滑模控制器代替的控制方法,实验仿真结果表明,系统在快速性和抗干扰等方面有很好的提高。The main idea of this scheme is: replace the traditional PID controller with the control method of the sliding mode variable structure controller. This method makes certain improvements on the speed loop of the linear motor, and changes the traditional single PID control The speed response is faster, the overshoot is smaller, and the anti-interference ability is stronger. The sliding mode variable structure control algorithm is simple, robust and reliable, and can be well applied in the nonlinear motion control process. This scheme proposes a control that replaces the PID controller in the speed loop with a sliding mode controller method, the experimental simulation results show that the system has a good improvement in the rapidity and anti-jamming.
本发明实施例提供一种基于滑模变结构的永磁同步直线电机控制方法,如图1所示,具体步骤包括:The embodiment of the present invention provides a permanent magnet synchronous linear motor control method based on sliding mode variable structure, as shown in Figure 1, the specific steps include:
步骤一、建立永磁同步直线电机模型;
具体而言,在本发明实施例中,鉴于simulink里面并无直线电机的仿真模型,本方案是依据PMLSM的数学模型建立电压和机械模块,根据动力学方程搭建直线电机的仿真模块即永磁同步直线电机模型。Specifically, in the embodiment of the present invention, in view of the fact that there is no simulation model of the linear motor in simulink, this solution is to establish a voltage and mechanical module based on the mathematical model of PMLSM, and build a simulation module of the linear motor according to the dynamic equation, that is, permanent magnet synchronous Linear motor model.
进一步的,在本方案中直线电机的推力为:Further, the thrust of the linear motor in this scheme is:
式(1) Formula 1)
其中,Ld=Lq=L,且在实际控制策略中,一般使id=0,因此直线电机推力方程可以简化为:Among them, L d =L q =L, and in the actual control strategy, i d =0 is generally used, so the linear motor thrust equation can be simplified as:
式(2) Formula (2)
此外,永磁同步直线电机的动力学方程为:In addition, the dynamic equation of the permanent magnet synchronous linear motor is:
其中Ld,Lq为直轴和交轴电感,φf为直线电机永磁体磁链;V为直线电机的速度;m为电机质量。Among them, L d and L q are the inductance of the direct axis and the quadrature axis, φ f is the flux linkage of the permanent magnet of the linear motor; V is the speed of the linear motor; m is the mass of the motor.
步骤二、建立永磁同步直线电机的整体仿真模块并进行参数调整;Step 2. Establish the overall simulation module of the permanent magnet synchronous linear motor and adjust the parameters;
具体而言,在本发明实施例中,将建立永磁同步直线电机的整体仿真模块,包括但不限于速度和电流环PID控制、SVPWM模块等,并进行参数调整获得各PID控制器的初始参数。Specifically, in the embodiment of the present invention, the overall simulation module of the permanent magnet synchronous linear motor will be established, including but not limited to the speed and current loop PID control, SVPWM module, etc., and the initial parameters of each PID controller will be obtained by parameter adjustment .
在本方案中,直线电机的推力方程为:In this scheme, the thrust equation of the linear motor is:
式(2) Formula (2)
永磁同步直线电机的动力学方程为:The dynamic equation of permanent magnet synchronous linear motor is:
其中Ld,Lq为直轴和交轴电感,φf为直线电机永磁体磁链;V为直线电机的速度;m为电机质量。Among them, L d and L q are the inductance of the direct axis and the quadrature axis, φ f is the flux linkage of the permanent magnet of the linear motor; V is the speed of the linear motor; m is the mass of the motor.
由式(2)和式(3)可以得到From formula (2) and formula (3) can get
写为
其中,定义速度误差为e=v*-v,则in, Define the speed error as e=v*-v, then
为滑模控制器输出。选取积分型滑模面为
步骤三、选取合适的滑模变结构并建立相对应的仿真模块;Step 3: Select a suitable sliding mode variable structure and establish a corresponding simulation module;
具体而言,在本发明实施例中,是依据直线电机的数学模型,选取合适的滑模变结构并建立相对应的simulink仿真模块。Specifically, in the embodiment of the present invention, based on the mathematical model of the linear motor, an appropriate sliding mode variable structure is selected and a corresponding simulink simulation module is established.
进一步的,当系统运动到滑模面时,有s=0和s=0。控制器最终的目标是要是系统在有限的时间内达到滑模面并稳定与滑模面上,本方案选取滑模变结构控制方案为:Further, when the system moves to the sliding mode surface, there are s=0 and s=0. The ultimate goal of the controller is that if the system reaches the sliding mode surface and stabilizes on the sliding mode surface within a limited time, the sliding mode variable structure control scheme selected in this program is:
u=ueq+usw 式(6)u=u eq +u sw formula (6)
其中,ueq=ne,usw=fsign(s),所以式(6)改写为Among them, u eq =ne, u sw =fsign(s), so formula (6) is rewritten as
根据式(7)可以建立滑模控制器的模型如图2所示(即积分型滑模控制器模型)。According to formula (7) the model of the sliding mode controller can be established as shown in Figure 2 (that is, the model of the integral sliding mode controller).
由此可以建立Simulink下PMLSM滑模控制的整个模型,如图3所示。From this, the entire model of PMLSM sliding mode control under Simulink can be established, as shown in Figure 3.
步骤四、通过滑模变结构控制进行仿真和结果比较。Step 4: Carry out simulation and result comparison through sliding mode variable structure control.
具体而言,在本发明实施例中,是将速度环PID控制器代替为滑模变结构控制进行仿真并与PID控制器仿真结果进行比较。Specifically, in the embodiment of the present invention, the speed loop PID controller is replaced by the sliding mode variable structure control for simulation and the simulation results of the PID controller are compared.
进一步的,在本方案中,速度给定1m/s,在无扰动时仿真结果如4和图5所示。其中,图4为PID控制器速度仿真波形示意图;图5为滑模控制器速度仿真波形示意图。Further, in this scheme, the speed is given as 1m/s, and the simulation results are shown in Figure 4 and Figure 5 when there is no disturbance. Among them, Fig. 4 is a schematic diagram of a velocity simulation waveform of a PID controller; Fig. 5 is a schematic diagram of a velocity simulation waveform of a sliding mode controller.
此外,从速度仿真波形可以看出,传统PID的响应时间和超调量分别是0.2S和9.8%,而滑模变结构控制器的响应时间和超调量分别是0.042S和0.6%,系统在超调量很快速性方面都得到了很大的提高。为了检测系统稳定性,在0.5S时突加扰动波形如图6和图7所示。图6为PID控制器突加扰动时速度仿真波形示意图;图7为滑模控制器突加扰动时速度仿真波形示意图。In addition, it can be seen from the velocity simulation waveform that the response time and overshoot of the traditional PID are 0.2S and 9.8% respectively, while the response time and overshoot of the sliding mode variable structure controller are 0.042S and 0.6% respectively. It has been greatly improved in terms of overshoot and rapidity. In order to test the stability of the system, the disturbance waveform is suddenly added at 0.5S as shown in Figure 6 and Figure 7. Figure 6 is a schematic diagram of the velocity simulation waveform when the PID controller is suddenly disturbed; Figure 7 is a schematic diagram of the velocity simulation waveform when the sliding mode controller is suddenly disturbed.
从图中对比可以看出,PID控制在系统突加负载时有较大的扰动,而滑模变结构控制器则能很好的抑制外界干扰对系统的扰动,具有更强的抗干扰性能。推力比较波形如图8所示。滑模变结构控制在推力响应上比PID控制器更快,从而使系统具有更好的控制性能。It can be seen from the comparison in the figure that the PID control has a large disturbance when the system is suddenly loaded, while the sliding mode variable structure controller can well suppress the disturbance of the external disturbance to the system, and has stronger anti-interference performance. The thrust comparison waveform is shown in Fig. 8. The sliding mode variable structure control is faster than the PID controller in thrust response, so that the system has better control performance.
另外,本发明实施例还提供了一种基于滑模变结构的永磁同步直线电机控制装置。如图9所示,为本发明实施例提供的一种基于滑模变结构的永磁同步直线电机控制装置示意图。In addition, the embodiment of the present invention also provides a permanent magnet synchronous linear motor control device based on a sliding mode variable structure. As shown in FIG. 9 , it is a schematic diagram of a permanent magnet synchronous linear motor control device based on a sliding mode variable structure provided by an embodiment of the present invention.
一种基于滑模变结构的永磁同步直线电机控制装置,包括模型建立单元11、参数调整单元22、选取单元33及比较单元44。A permanent magnet synchronous linear motor control device based on sliding mode variable structure, including a
模型建立单元11,用于建立永磁同步直线电机模型;A
具体而言,在本发明实施例中,鉴于simulink里面并无直线电机的仿真模型,本方案是依据PMLSM的数学模型建立电压和机械模块,根据动力学方程搭建直线电机的仿真模块即永磁同步直线电机模型。Specifically, in the embodiment of the present invention, in view of the fact that there is no simulation model of the linear motor in simulink, this solution is to establish a voltage and mechanical module based on the mathematical model of PMLSM, and build a simulation module of the linear motor according to the dynamic equation, that is, permanent magnet synchronous Linear motor model.
进一步的,在本方案中直线电机的推力为:Further, the thrust of the linear motor in this scheme is:
式(1) Formula 1)
其中,Ld=Lq=L,且在实际控制策略中,一般使id=0,因此直线电机推力方程可以简化为:Among them, L d =L q =L, and in the actual control strategy, i d =0 is generally used, so the linear motor thrust equation can be simplified as:
式(2) Formula (2)
此外,永磁同步直线电机的动力学方程为:In addition, the dynamic equation of the permanent magnet synchronous linear motor is:
式(3)Formula (3)
其中Ld,Lq为直轴和交轴电感,φf为直线电机永磁体磁链;V为直线电机的速度;m为电机质量。Among them, L d and L q are the inductance of the direct axis and the quadrature axis, φ f is the flux linkage of the permanent magnet of the linear motor; V is the speed of the linear motor; m is the mass of the motor.
参数调整单元22,用于建立永磁同步直线电机的整体仿真模块并进行参数调整;The
具体而言,在本发明实施例中,将建立永磁同步直线电机的整体仿真模块,包括但不限于速度和电流环PID控制、SVPWM模块等,并进行参数调整获得各PID控制器的初始参数。Specifically, in the embodiment of the present invention, the overall simulation module of the permanent magnet synchronous linear motor will be established, including but not limited to the speed and current loop PID control, SVPWM module, etc., and the initial parameters of each PID controller will be obtained by parameter adjustment .
在本方案中,直线电机的推力方程为:In this scheme, the thrust equation of the linear motor is:
式(2) Formula (2)
永磁同步直线电机的动力学方程为:The dynamic equation of permanent magnet synchronous linear motor is:
其中Ld,Lq为直轴和交轴电感,φf为直线电机永磁体磁链;V为直线电机的速度;m为电机质量。Among them, L d and L q are the inductance of the direct axis and the quadrature axis, φ f is the flux linkage of the permanent magnet of the linear motor; V is the speed of the linear motor; m is the mass of the motor.
由式(2)和式(3)可以得到From formula (2) and formula (3) can get
写为written as
其中,定义速度误差为e=v*-v,则 为滑模控制器输出。选取积分型滑模面为
选取单元33,用于选取合适的滑模变结构并建立相对应的仿真模块;The
具体而言,在本发明实施例中,是依据直线电机的数学模型,选取合适的滑模变结构并建立相对应的simulink仿真模块。Specifically, in the embodiment of the present invention, based on the mathematical model of the linear motor, an appropriate sliding mode variable structure is selected and a corresponding simulink simulation module is established.
进一步的,当系统运动到滑模面时,有s=0和s=0。控制器最终的目标是要是系统在有限的时间内达到滑模面并稳定与滑模面上,本方案选取滑模变结构控制方案为:Further, when the system moves to the sliding surface, there are s=0 and s=0. The ultimate goal of the controller is that if the system reaches the sliding mode surface and stabilizes on the sliding mode surface within a limited time, the sliding mode variable structure control scheme selected in this program is:
u=ueq+usw 式(6)u=u eq +u sw formula (6)
其中,ueq=ne,usw=fsign(s),所以式(6)改写为Among them, u eq =ne, u sw =fsign(s), so formula (6) is rewritten as
根据式(7)可以建立滑模控制器的模型如图2所示(即积分型滑模控制器模型)。According to formula (7) the model of the sliding mode controller can be established as shown in Figure 2 (that is, the model of the integral sliding mode controller).
由此可以建立Simulink下PMLSM滑模控制的整个模型,如图3所示。From this, the entire model of PMLSM sliding mode control under Simulink can be established, as shown in Figure 3.
比较单元44,用于通过滑模变结构控制进行仿真和结果比较。The
具体而言,在本发明实施例中,是将速度环PID控制器代替为滑模变结构控制进行仿真并与PID控制器仿真结果进行比较。Specifically, in the embodiment of the present invention, the speed loop PID controller is replaced by the sliding mode variable structure control for simulation and the simulation results of the PID controller are compared.
进一步的,在本方案中,速度给定1m/s,在无扰动时仿真结果如4和图5所示。其中,图4为PID控制器速度仿真波形示意图;图5为滑模控制器速度仿真波形示意图。Further, in this scheme, the speed is given as 1m/s, and the simulation results are shown in Figure 4 and Figure 5 when there is no disturbance. Among them, Fig. 4 is a schematic diagram of a velocity simulation waveform of a PID controller; Fig. 5 is a schematic diagram of a velocity simulation waveform of a sliding mode controller.
此外,从速度仿真波形可以看出,传统PID的响应时间和超调量分别是0.2s和9.8%,而滑模变结构控制器的响应时间和超调量分别是0.042S和0.6%,系统在超调量很快速性方面都得到了很大的提高。为了检测系统稳定性,在0.5S时突加扰动波形如图6和图7所示。图6为PID控制器突加扰动时速度仿真波形示意图;图7为滑模控制器突加扰动时速度仿真波形示意图。In addition, it can be seen from the velocity simulation waveform that the response time and overshoot of the traditional PID are 0.2s and 9.8% respectively, while the response time and overshoot of the sliding mode variable structure controller are 0.042s and 0.6% respectively. It has been greatly improved in terms of overshoot and rapidity. In order to test the stability of the system, the disturbance waveform is suddenly added at 0.5S as shown in Figure 6 and Figure 7. Figure 6 is a schematic diagram of the velocity simulation waveform when the PID controller is suddenly disturbed; Figure 7 is a schematic diagram of the velocity simulation waveform when the sliding mode controller is suddenly disturbed.
从图中对比可以看出,PID控制在系统突加负载时有较大的扰动,而滑模变结构控制器则能很好的抑制外界干扰对系统的扰动,具有更强的抗干扰性能。推力比较波形如图8所示。滑模变结构控制在推力响应上比PID控制器更快,从而使系统具有更好的控制性能。It can be seen from the comparison in the figure that the PID control has a large disturbance when the system is suddenly loaded, while the sliding mode variable structure controller can well suppress the disturbance of the external disturbance to the system, and has stronger anti-interference performance. The thrust comparison waveform is shown in Fig. 8. The sliding mode variable structure control is faster than the PID controller in thrust response, so that the system has better control performance.
本领域普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。Those of ordinary skill in the art can understand that all or part of the steps carried by the methods of the above embodiments can be completed by instructing related hardware through a program, and the program can be stored in a computer-readable storage medium, and the program can be executed when executed , including one or a combination of the steps of the method embodiment.
另外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing module, each unit may exist separately physically, or two or more units may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. If the integrated modules are realized in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.
综上所述,本文提供了一种基于滑模变结构的永磁同步直线电机控制方法和装置,通过建立永磁同步直线电机模型,然后建立永磁同步直线电机的整体仿真模块并进行参数调整,接着选取合适的滑模变结构并建立相对应的仿真模块,最终通过滑模变结构控制进行仿真和结果比较,本方案将传统的单一PID控制改为滑模控制,使速度响应更快,超调量更小,且抗干扰能力更强,滑模变结构控制算法简单、鲁棒性好及可靠性高,可以很好的应用于非线性运动控制过程中。In summary, this paper provides a permanent magnet synchronous linear motor control method and device based on sliding mode variable structure. By establishing the permanent magnet synchronous linear motor model, and then establishing the overall simulation module of the permanent magnet synchronous linear motor and adjusting the parameters , then select the appropriate sliding mode variable structure and establish the corresponding simulation module, and finally simulate and compare the results through the sliding mode variable structure control. This scheme changes the traditional single PID control into sliding mode control to make the speed response faster. The overshoot is smaller, and the anti-interference ability is stronger. The sliding mode variable structure control algorithm is simple, robust and reliable, and can be well applied in the process of nonlinear motion control.
以上对本发明所提供的一种基于滑模变结构的永磁同步直线电机控制方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方案;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。A kind of permanent magnet synchronous linear motor control method and device based on sliding mode variable structure provided by the present invention has been introduced in detail above. In this paper, specific examples are used to illustrate the principle and implementation of the present invention. The above embodiments The description is only used to help understand the solution of the present invention; at the same time, for those of ordinary skill in the art, according to the idea of the present invention, there will be changes in the specific implementation and application scope. In summary, the content of this specification It should not be construed as limiting the invention.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101382305A CN102664569A (en) | 2012-05-07 | 2012-05-07 | Sliding-mode-variable-structure-based control method and device for permanent-magnet synchronous linear motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012101382305A CN102664569A (en) | 2012-05-07 | 2012-05-07 | Sliding-mode-variable-structure-based control method and device for permanent-magnet synchronous linear motor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN102664569A true CN102664569A (en) | 2012-09-12 |
Family
ID=46774004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012101382305A Pending CN102664569A (en) | 2012-05-07 | 2012-05-07 | Sliding-mode-variable-structure-based control method and device for permanent-magnet synchronous linear motor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102664569A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103248312A (en) * | 2013-04-26 | 2013-08-14 | 杭州中科赛思伺服电机有限公司 | Control method based on linear servo motor |
CN103336483A (en) * | 2013-05-22 | 2013-10-02 | 沈阳工业大学 | Control methods for time-varying sliding mode variable structure and for cross-coupling control magnetic suspension system |
CN103780168A (en) * | 2014-01-16 | 2014-05-07 | 江苏新绿能科技有限公司 | Brushless DC-motor sliding-mode control system used for metro shielding barriers |
CN104682805A (en) * | 2015-01-21 | 2015-06-03 | 浙江工业大学 | Permanent magnet synchronous motor full-order sliding mode variable structure position servo control method based on extended state observer |
CN106841531A (en) * | 2017-03-22 | 2017-06-13 | 吉林大学 | Ammonia coverage rate nonlinear observer design method based on synovial membrane control |
CN106873358A (en) * | 2015-11-19 | 2017-06-20 | 欧姆龙株式会社 | Control Device And Control Method |
CN108021039A (en) * | 2017-12-23 | 2018-05-11 | 西安交通大学 | A kind of Linear motor feeding system electromechanics integrated modelling approach |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11178399A (en) * | 1997-12-10 | 1999-07-02 | Hitachi Ltd | Control method of permanent magnet synchronous motor |
CN101697467A (en) * | 2009-10-28 | 2010-04-21 | 上海电机学院 | Driver of linear motor and driving method thereof |
CN102185558A (en) * | 2011-05-23 | 2011-09-14 | 桂林电子科技大学 | Control method and device for eliminating system buffeting during sliding mode control of linear motor |
-
2012
- 2012-05-07 CN CN2012101382305A patent/CN102664569A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11178399A (en) * | 1997-12-10 | 1999-07-02 | Hitachi Ltd | Control method of permanent magnet synchronous motor |
CN101697467A (en) * | 2009-10-28 | 2010-04-21 | 上海电机学院 | Driver of linear motor and driving method thereof |
CN102185558A (en) * | 2011-05-23 | 2011-09-14 | 桂林电子科技大学 | Control method and device for eliminating system buffeting during sliding mode control of linear motor |
Non-Patent Citations (2)
Title |
---|
孙宜标等: "交流直线伺服系统的模糊滑模变结构控制", 《沈阳工业大学学报》 * |
曹文霞等: "基于RBF神经网络整定PID的PMLSM", 《安徽农业大学学报》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103248312A (en) * | 2013-04-26 | 2013-08-14 | 杭州中科赛思伺服电机有限公司 | Control method based on linear servo motor |
CN103336483A (en) * | 2013-05-22 | 2013-10-02 | 沈阳工业大学 | Control methods for time-varying sliding mode variable structure and for cross-coupling control magnetic suspension system |
CN103336483B (en) * | 2013-05-22 | 2015-11-04 | 沈阳工业大学 | Control method of time-varying sliding mode variable structure and cross-coupling control maglev system |
CN103780168A (en) * | 2014-01-16 | 2014-05-07 | 江苏新绿能科技有限公司 | Brushless DC-motor sliding-mode control system used for metro shielding barriers |
CN104682805A (en) * | 2015-01-21 | 2015-06-03 | 浙江工业大学 | Permanent magnet synchronous motor full-order sliding mode variable structure position servo control method based on extended state observer |
CN104682805B (en) * | 2015-01-21 | 2017-07-25 | 浙江工业大学 | Full-order sliding mode variable structure position servo control method for permanent magnet synchronous motor based on extended state observer |
CN106873358A (en) * | 2015-11-19 | 2017-06-20 | 欧姆龙株式会社 | Control Device And Control Method |
CN106841531A (en) * | 2017-03-22 | 2017-06-13 | 吉林大学 | Ammonia coverage rate nonlinear observer design method based on synovial membrane control |
CN106841531B (en) * | 2017-03-22 | 2019-04-23 | 吉林大学 | Design method of nonlinear observer for ammonia coverage based on synovial film control |
CN108021039A (en) * | 2017-12-23 | 2018-05-11 | 西安交通大学 | A kind of Linear motor feeding system electromechanics integrated modelling approach |
CN108021039B (en) * | 2017-12-23 | 2020-03-17 | 西安交通大学 | Electromechanical integration modeling method for linear motor feeding system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102664569A (en) | Sliding-mode-variable-structure-based control method and device for permanent-magnet synchronous linear motor | |
CN102122916B (en) | Compound control method based on vector control system of permanent magnet synchronous motor | |
CN104639001B (en) | Servo motor control method integrating sliding mode control and fractional order neural network control | |
CN103187919B (en) | A kind of system and method for permagnetic synchronous motor weak-magnetic speed-regulating | |
CN103051274B (en) | Variable damping-based passive control method for two-degree-of-freedom permanent magnetic synchronous motor | |
CN115313524A (en) | A grid-connected control method and system for photovoltaic power generation based on grid-type converters | |
CN110707981A (en) | Permanent magnet synchronous motor speed controller based on novel extended state observer | |
Yan et al. | Study on dynamic characteristic of wind turbine emulator based on PMSM | |
CN102664580B (en) | Mixed smart control method of power system multi-stabilizer | |
CN105262393B (en) | A kind of fault-tolerant magneto method for control speed using novel transition process | |
CN107800343A (en) | The design method of asynchronous machine automatic disturbance rejection controller | |
CN102497148B (en) | High-precision control device for mechanical flywheel | |
CN102969968A (en) | Permanent magnet synchronous motor control method | |
CN104270054A (en) | Anti-rest Windup smooth nonsingular terminal sliding mode control method for permanent magnet synchronous motor based on relative order | |
CN106684925A (en) | A Microgrid Inverter Control Method Based on Virtual Synchronous Generator | |
CN103762921B (en) | A kind of multi objective control method based on DFIG under the unbalanced power grid of particle cluster algorithm | |
CN106655945A (en) | Control method for maximum torque per ampere of PMSM (Permanent Magnet Synchronous Motor) with mechanical elastic energy storage device | |
CN117096941B (en) | Network-structured new energy synchronous stable control method with self-adaptive voltage drop depth | |
CN104980069B (en) | A kind of brshless DC motor double loop speed-regulating system Multipurpose Optimal Method | |
CN105186958B (en) | The five mutually fault-tolerant magneto internal model control methods based on Neural Network Inverse System | |
CN107370181A (en) | Grid-connected control method and system | |
CN103485978A (en) | Control method for compensating electromagnetic torque to realize quick and smooth tracking of maximum wind energy | |
Liu et al. | Sensorless wind energy conversion system maximum power point tracking using Takagi–Sugeno fuzzy cerebellar model articulation control | |
CN104022701B (en) | Mould method for control speed in a kind of permanent magnetic linear synchronous motor Newton method | |
CN106294959A (en) | The modeling and simulating method that model reference self-adapting control combines with double-fed blower fan reduced-order model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20120912 |