CN105997104B - It is a kind of based on multi fiber beam in body noninvasive physiological parameter acquisition method and device in real time - Google Patents
It is a kind of based on multi fiber beam in body noninvasive physiological parameter acquisition method and device in real time Download PDFInfo
- Publication number
- CN105997104B CN105997104B CN201610416345.4A CN201610416345A CN105997104B CN 105997104 B CN105997104 B CN 105997104B CN 201610416345 A CN201610416345 A CN 201610416345A CN 105997104 B CN105997104 B CN 105997104B
- Authority
- CN
- China
- Prior art keywords
- unit
- light intensity
- physiological parameter
- voltage
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 30
- 239000000835 fiber Substances 0.000 title claims abstract description 19
- 238000005259 measurement Methods 0.000 claims abstract description 25
- 230000003287 optical effect Effects 0.000 claims abstract description 20
- 238000006243 chemical reaction Methods 0.000 claims abstract description 17
- 238000001727 in vivo Methods 0.000 claims abstract description 14
- 230000036760 body temperature Effects 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 8
- 239000013307 optical fiber Substances 0.000 claims description 7
- 239000008280 blood Substances 0.000 claims description 6
- 210000004369 blood Anatomy 0.000 claims description 6
- 230000010349 pulsation Effects 0.000 claims description 6
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 4
- 125000000524 functional group Chemical group 0.000 claims description 3
- 238000005286 illumination Methods 0.000 claims description 3
- 230000003321 amplification Effects 0.000 claims description 2
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 210000000624 ear auricle Anatomy 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001392 ultraviolet--visible--near infrared spectroscopy Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Signal Processing (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physiology (AREA)
- Psychiatry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明提供一种一种基于多光纤束的在体实时无创生理参数采集方法和装置,包括光学模块和电学模块,光学模块主要由光纤束组、单色光源组、光电传感器及起固定作用的机械结构组成。光纤束组获取生理参数的反射和透射光强。电学模块包括双道前置放大单元、双道滤波单元、双道数控放大单元、处理器单元、显示及输入单元、电压跟随单元、模拟选择单元、电压电流转换单元。处理器单元计算生理参数测量波长的个数及透射和反射光强比值随时间的变化信号中提取特征参数值,确定获取的特征参数值的总个数,根据偏最小二乘法和高精度参考电压单元,计算生理参数的表达式,本发明能有效地提高人体生理参数的测量精度,且是对人体无创检测,测量精度高,使用方便。
The present invention provides an in-vivo real-time non-invasive physiological parameter acquisition method and device based on multi-fiber bundles, including an optical module and an electrical module. Mechanical structure composition. Fiber optic bundles capture reflected and transmitted light intensity for physiological parameters. The electrical module includes a dual-channel preamplifier unit, a dual-channel filter unit, a dual-channel numerical control amplifying unit, a processor unit, a display and input unit, a voltage follower unit, an analog selection unit, and a voltage-current conversion unit. The processor unit calculates the number of physiological parameter measurement wavelengths and the change of the ratio of transmitted and reflected light intensity over time to extract characteristic parameter values from the signal, and determines the total number of acquired characteristic parameter values. According to the partial least squares method and the high-precision reference voltage The unit calculates the expression of the physiological parameter, the present invention can effectively improve the measurement accuracy of the physiological parameter of the human body, and is non-invasive to the human body, with high measurement accuracy and convenient use.
Description
技术领域technical field
本发明专利涉及生物医学信号处理领域,具体地说是涉及一种基于多光纤束的在体实时无创生理参数采集方法及装置。The patent of the present invention relates to the field of biomedical signal processing, in particular to a method and device for in-vivo real-time non-invasive physiological parameter acquisition based on multi-fiber bundles.
背景技术Background technique
目前,已出现许多利用光学方法实现无创采集生理参数的仪器或设备。如,血氧饱和度测量仪利用波长分别为940nm和660nm的两个单波长的光轮流照射指尖,通过检测透射后光强的变化情况计算出相应的血氧饱和度值,但其两个照射波长通过手指的光路不一样,因此测量的精度会受到影响;另外,还有该方法不能测试反射光强的大小,若能测反射光强会尽一步增加测量的精度。还有如光电容积波的测量,一般是通过红外光照射,保证照射光光强基本不变,测量通过手指或耳垂的后的光强,同样若能测量反射光,可以借助反射光可以消除一部分入射光不稳定对容积波的影响。因而,本发明提出一种基于多光纤束的在体实时无创生理参数采集方法及装置,可以很好地克服上述的不足。At present, there have been many instruments or devices that use optical methods to achieve non-invasive acquisition of physiological parameters. For example, the blood oxygen saturation meter uses two single-wavelength lights with wavelengths of 940nm and 660nm to irradiate the fingertips in turn, and calculates the corresponding blood oxygen saturation value by detecting the change of light intensity after transmission, but the two The light path of the irradiation wavelength through the finger is different, so the measurement accuracy will be affected; in addition, this method cannot measure the reflected light intensity. If the reflected light intensity can be measured, the measurement accuracy will be increased. There is also the measurement of photoelectric volume wave, which is generally irradiated by infrared light to ensure that the light intensity of the irradiation light is basically unchanged, and the light intensity after passing through the finger or earlobe is measured. Similarly, if the reflected light can be measured, a part of the incident light can be eliminated by means of the reflected light. The effect of optical instability on volumetric waves. Therefore, the present invention proposes an in-vivo real-time non-invasive physiological parameter acquisition method and device based on a multi-fiber bundle, which can well overcome the above shortcomings.
发明内容SUMMARY OF THE INVENTION
本发明提出一种基于多光纤束的在体实时无创生理参数采集方法,包括以下几个步骤:The present invention proposes an in-vivo real-time non-invasive physiological parameter acquisition method based on multi-fiber bundles, comprising the following steps:
第一步:确定各项生理参数的检测波的波长和个数;The first step: determine the wavelength and number of detection waves of various physiological parameters;
第二步:多次测量人体某一部位,通过温度传感器测量被测人的体温,通过其他设备测量出相应生理参数的值,根据第一步确定的检测波的波长和个数,针对同一参数,在不同波长的情况下,获取透射光强与反射光强的比值及时间的变化,并记录实际测量所用波长的总个数N;Step 2: Measure a certain part of the human body for many times, measure the body temperature of the measured person through the temperature sensor, and measure the value of the corresponding physiological parameter through other equipment. According to the wavelength and number of detection waves determined in the first step, for the same parameter , in the case of different wavelengths, obtain the ratio of transmitted light intensity to reflected light intensity and the change of time, and record the total number N of wavelengths used in the actual measurement;
第三步:利用上述透射光强与反射光强的比值及随时间的变化情况,计算出透射和反射光强比值在设定的脉动周期内的最大值的平均值、最小值的平均值,并从透射和反射光强比值随时间的变化信号中提取特征参数值,确定获取的特征参数值的总个数M;The third step: using the above ratio of transmitted light intensity to reflected light intensity and the change with time, calculate the average value of the maximum value and the average value of the minimum value of the ratio of the transmitted and reflected light intensity within the set pulsation period, And extract the characteristic parameter value from the change signal of the ratio of transmitted and reflected light intensity with time, and determine the total number M of characteristic parameter values obtained;
第四步:对每一测量的生理参数采用个性化拟合,设拟合的某一需测生理参数值为y*,则其表达式表示为:Step 4: Use personalized fitting for each measured physiological parameter, and set a certain physiological parameter to be measured as y*, then its expression is expressed as:
公式(1)中,M为获取的特征参数值的总个数,N为实际测量所用波长的总个数,c0表示拟合计算系数,c2i-1表示第i个特征参数的计算系数,Ri表示第i个特征参数的值,Rmaxi、Rmini分别表示第i种波长透射光和反射光比值在脉动周期的最大值的平均值、最小值平均值的常用对数值,k2i-1、k2i、l2i-1、l2i分别代表Rmaxi、Rmini的一次方、二次方的计算系数,Tb表示测量时的体温,cTb表示对上述体温Tb的一次方的计算系数,cTb'表示对上述体温Tb的二次方的计算系数,上述各系数通过偏最小二乘法求得。In formula (1), M is the total number of acquired characteristic parameter values, N is the total number of wavelengths used in actual measurement, c 0 represents the fitting calculation coefficient, and c 2i-1 represents the calculation coefficient of the i-th characteristic parameter , R i represents the value of the ith characteristic parameter, R maxi and R mini represent the average value of the maximum value and the average value of the minimum value of the ratio of transmitted light and reflected light at the ith wavelength in the pulsation period, respectively, k 2i -1 , k 2i , l 2i-1 , and l 2i represent the calculation coefficients of the first power and the second power of R maxi and R mini respectively, T b indicates the body temperature during measurement, c Tb indicates the first power of the above body temperature T b The calculation coefficient of , c Tb ′ represents the calculation coefficient of the quadratic power of the above-mentioned body temperature T b , and each of the above-mentioned coefficients is obtained by the partial least squares method.
进一步的,所述步骤第一步还包括,采用紫外-可见-近红外分光光度计对人体全血进行扫描,根据化学中各基团、功能团或分子等的吸收峰,可确定需测量生理参数相关及不相关的波长或波长范围;对上述波长或波长范围,分别选取1到4种,确定检测波长的个数。Further, the first step of the step also includes: using an ultraviolet-visible-near-infrared spectrophotometer to scan human whole blood, and according to the absorption peaks of each group, functional group or molecule in the chemistry, it can be determined that the physiological needs to be measured are determined. Parameter-related and irrelevant wavelengths or wavelength ranges; for the above wavelengths or wavelength ranges, select 1 to 4, respectively, to determine the number of detection wavelengths.
进一步的,所述步骤第四步,采用偏最小二乘法求取需测生理参数值为y*表达式的各项系数,具体方法为:令x0=1,x2i-1=Ri,x2i=(Ri)2,x2i-1+2M=Rmaxi,x2i+2M=Rmaxi 2,x2i-1+2(M+N)=Rmini,x2i+2(M+N)=Rmini 2,x2(M+2N)+1=Tb,x2(M+2N)+2=Tb 2,其前对应的系数依次用ai表示,则公式(1)可替换为:Further, in the fourth step of the step, the partial least squares method is used to obtain the coefficients of the y* expression of the physiological parameter value to be measured, and the specific method is as follows: let x 0 =1, x 2i-1 =R i , x 2i =(R i ) 2 , x 2i-1+2M =R maxi , x 2i+2M =R maxi 2 , x 2i-1+2(M+N) =R mini , x 2i+2(M+ N) =R mini 2 , x 2(M+2N)+1 =T b , x 2(M+2N)+2 =T b 2 , the former corresponding coefficients are represented by a i in turn, then formula (1) can be replaced with:
令L=2(M+2N),则公式(2)可进一步简写为:利用设备或方法测量出相应生理参数值用y表示,共对同一个人测量了K次,且K>L,用ym表示其他设备或方法测量出相应参数的第m个值,ym*表示第m个数据拟合的值,则其差δm=|ym-ym*|,根据公式(3),ym*可表示为:Let L=2(M+2N) , then formula (2) can be further abbreviated as: The corresponding physiological parameter value measured by equipment or method is represented by y, and the same person has been measured K times, and K>L, and y m is used to represent the mth value of the corresponding parameter measured by other equipment or method, y m * represents The fitted value of the mth data, then its difference δ m = |y m -y m *|, according to formula (3), y m * can be expressed as:
根据偏最小二乘法的原理,要使得最小,即最小。则有:According to the principle of partial least squares, to make minimum, i.e. minimum. Then there are:
整理公式(5),得:根据公式(6),可解公式(2)中,各项系数ai,将ai带入公式(1)中,可得需测生理参数值为y*的完整表达式。Arranging formula (5), we get: According to formula (6), the coefficients a i in formula (2) can be solved, and a i is brought into formula (1) to obtain a complete expression of the physiological parameter value to be measured as y*.
一种基于多光纤束的在体实时无创生理参数采集装置,包括光学模块和电学模块,所述光学模块包括光纤束组、为测量提供相应光波长及所需照射光强的单色光源组、将变化的光信号转换为电信号的光电传感器,所述光纤束组将各种单色光聚集在一个小范围内、以及从一个小范围内获取反射和透射光并经所述光电传感器将光转换为电信号送给所述电学模块处理;所述电学模块包括将所述光电传感器获取的透射光强和反射光强的变化转换为与各自光强成比例的电压的双道前置放大单元,将透射光强和反射光强变化转换的电压转换为对应数字值、向外提供一个高精度参考电压、以及对本装置其他单元起控制作用的处理器单元,将所述高精度电压转化为电流输入到所述单色光源组的电压电流转换单元。An in-vivo real-time non-invasive physiological parameter acquisition device based on multi-fiber bundles, comprising an optical module and an electrical module, the optical module comprising an optical fiber bundle group, a monochromatic light source group that provides corresponding light wavelengths and required illumination light intensity for measurement, A photoelectric sensor that converts the changing optical signal into an electrical signal, the optical fiber bundle group gathers various monochromatic light in a small area, acquires reflected and transmitted light from a small area, and transmits the light through the photoelectric sensor. Converted into electrical signals and sent to the electrical module for processing; the electrical module includes a dual-channel preamplifier unit that converts the changes in the transmitted light intensity and reflected light intensity acquired by the photoelectric sensor into voltages proportional to the respective light intensities , converts the voltage converted from the change of transmitted light intensity and reflected light intensity into corresponding digital values, provides a high-precision reference voltage to the outside, and a processor unit that controls other units of the device, and converts the high-precision voltage into current. input to the voltage-current conversion unit of the monochromatic light source group.
进一步的,所述光学模块还包括将上述的光纤束组、单色光源组、光电传感器固定于一体的机械结构。Further, the optical module further includes a mechanical structure for fixing the above-mentioned optical fiber bundle group, monochromatic light source group, and photoelectric sensor into one body.
进一步的,所述单色光源组由各种单色波长的LED构成。Further, the monochromatic light source group is composed of LEDs with various monochromatic wavelengths.
进一步的,所述电学单元还包括位于双道前置放大单元与处理器单元间,设置有将透射光强和反射光强变化转换的电压信号进行滤波的双道滤波单元,以及选择合适倍数进行放大的双道数控放大单元;位于所述电压电流转换单元与处理器单元间,由所述处理器单元控制的、可选择相应通道输出的模拟选择单元,所述模拟选择单元与所述处理器单元间设置有电压跟随单元;所述电学单元还包括显示及输入单元。Further, the electrical unit also includes a dual-channel filtering unit located between the dual-channel preamplifier unit and the processor unit, and is provided with a dual-channel filtering unit that filters the voltage signal converted from the transmitted light intensity and the reflected light intensity change, and selects an appropriate multiple to perform the filtering. Amplified dual-channel digitally controlled amplifying unit; located between the voltage-current conversion unit and the processor unit, an analog selection unit controlled by the processor unit and capable of selecting the output of the corresponding channel, the analog selection unit and the processor A voltage follower unit is arranged between the units; the electrical unit further includes a display and input unit.
进一步的,所述双道前置放大单元、双道滤波单元、双道数控放大单元、处理器单元、显示及输入单元、电压跟随单元、模拟选择单元、电压电流转换单元由DC-DC电压转换单元供电。Further, the dual-channel preamplifier unit, dual-channel filter unit, dual-channel digitally controlled amplification unit, processor unit, display and input unit, voltage follower unit, analog selection unit, and voltage-current conversion unit are converted by DC-DC voltage. Unit is powered.
进一步的,所述处理器单元内含D/A转换以及A/D转换;所述处理器单元设定有不同放大倍数下的基准值和线性修正值。Further, the processor unit includes D/A conversion and A/D conversion; the processor unit is set with reference values and linear correction values under different magnifications.
有效增益:本发明提出一种新的可同时检测反射光强和透射光强的光路结构,能有效地提高人体生理参数的测量精度,且是对人体无创检测,测量精度高,使用方便,本发明的光学模块设计有光纤束组,能有效地减小杂散光的影响,并且装配方便。Effective gain: The present invention proposes a new optical path structure that can simultaneously detect the reflected light intensity and the transmitted light intensity, which can effectively improve the measurement accuracy of human physiological parameters, and is non-invasive to the human body, with high measurement accuracy and convenient use. The optical module of the invention is designed with an optical fiber bundle group, which can effectively reduce the influence of stray light and is easy to assemble.
附图说明:Description of drawings:
图1是本发明的硬件原理框图;Fig. 1 is the hardware principle block diagram of the present invention;
图2是光学模块实时数据采集示意图。FIG. 2 is a schematic diagram of real-time data acquisition of an optical module.
具体实施方式Detailed ways
下面结合附图及具体实施方式来对本发明进行进一步的说明。The present invention will be further described below with reference to the accompanying drawings and specific embodiments.
本发明提出一种基于多光纤束的在体实时无创生理参数采集方法,包括以下几个步骤:The present invention proposes an in-vivo real-time non-invasive physiological parameter acquisition method based on multi-fiber bundles, comprising the following steps:
第一步:确定各项生理参数的检测波的波长和个数Step 1: Determine the wavelength and number of detection waves for each physiological parameter
利用紫外-可见-近红外分光光度计在185nm-3300nm范围内对人体全血进行扫描,分析出的全血的吸收峰和吸收比较平坦的波长,并对比分析化学中各基团、功能团或分子等的吸收峰进行分析,从中分析出各吸收峰出现的原因,确定出于需测量生理参数关系紧密的波长或波长范围,同时确定出与需测量生理参数变化不大或无变化波长或波长范围。本实施例中,与需测波长或波长范围相关性小于5%,视为与需测量生理参数变化不大的波长或者波长范围。Use UV-Vis-NIR spectrophotometer to scan human whole blood in the range of 185nm-3300nm, and analyze the absorption peaks and relatively flat wavelengths of the whole blood, and compare the various groups, functional groups or Analyze the absorption peaks of molecules, etc., analyze the reasons for the appearance of each absorption peak, determine the wavelength or wavelength range that is closely related to the physiological parameters to be measured, and determine the wavelength or wavelength that does not change much or does not change with the physiological parameters to be measured. scope. In this embodiment, if the correlation with the wavelength or wavelength range to be measured is less than 5%, it is regarded as a wavelength or wavelength range that does not change much from the physiological parameter to be measured.
根据获取的数据和需测量生理参数的个数确定测量波长的个数。具体原则是:保证从每一个需测量生理参数关系紧密的波长或波长范围中选出1到4种波长,从与每一个需测量生理参数变化不大或无变化波长或波长范围选择1到4种波长,对于不同生理参数尽量能选取相同波长,以减少总的选择波长个数。Determine the number of measurement wavelengths according to the acquired data and the number of physiological parameters to be measured. The specific principle is: ensure that 1 to 4 wavelengths are selected from each wavelength or wavelength range that is closely related to each physiological parameter to be measured, and 1 to 4 are selected from the wavelength or wavelength range that has little or no change with each physiological parameter to be measured. The same wavelength can be selected as far as possible for different physiological parameters, so as to reduce the total number of selected wavelengths.
第二步,多次测量人体某一部位,通过温度传感器测量被测人的体温,通过其他设备测量出相应生理参数的值,根据第一步确定的检测波的波长和个数,针对同一参数,在不同波长的情况下,获取透射光强与反射光强的比值及时间的变化,并确定实际测量所用波长的总个数N,确定的原则是在保证每一需测量生理参数的测量精度前提下,尽量用少的波长个数。The second step is to measure a certain part of the human body multiple times, measure the body temperature of the measured person through the temperature sensor, and measure the value of the corresponding physiological parameter through other equipment. According to the wavelength and number of detection waves determined in the first step, for the same parameter , in the case of different wavelengths, obtain the ratio of transmitted light intensity to reflected light intensity and the change of time, and determine the total number N of wavelengths used for actual measurement. The principle of determination is to ensure the measurement accuracy of each physiological parameter to be measured. On the premise, use as few wavelengths as possible.
第三步:利用上述透射光强与反射光强的比值及随时间的变化情况,计算出透射和反射光强比值在设定的脉动周期内的最大值的平均值、最小值的平均值,并从透射和反射光强比值随时间的变化信号中提取特征参数值,确定获取的特征参数值的总个数M,本实施方案中,设定的脉动周期可选择2到100个。The third step: using the above ratio of transmitted light intensity to reflected light intensity and the change with time, calculate the average value of the maximum value and the average value of the minimum value of the ratio of the transmitted and reflected light intensity within the set pulsation period, The characteristic parameter values are extracted from the time-varying signal of the ratio of transmitted and reflected light intensity to determine the total number M of characteristic parameter values obtained. In this embodiment, 2 to 100 pulse periods can be selected.
第四步:对每一测量的生理参数采用个性化拟合,利用上述获取的数据和偏最小二乘法进行数据拟合。具体方法为:Step 4: Use personalized fitting for each measured physiological parameter, and perform data fitting using the data obtained above and the partial least squares method. The specific method is:
设拟合的某一需测生理参数值为y*,则其表达式表示为:Assuming that a certain physiological parameter value to be measured is y*, its expression is expressed as:
公式(1)中,M为获取的特征参数值的总个数,N为实际测量所用波长的总个数,c0表示拟合计算系数,c2i-1表示第i个特征参数的计算系数,Ri表示第i个特征参数的值,Rmaxi、Rmini分别表示第i种波长透射光和反射光比值在脉动周期的最大值的平均值、最小值平均值的常用对数值,k2i-1、k2i、l2i-1、l2i分别代表Rmaxi、Rmini的一次方、二次方的计算系数,Tb表示测量时的体温,cTb表示对上述体温Tb的一次方的计算系数,cTb'表示对上述体温Tb的二次方的计算系数。In formula (1), M is the total number of acquired characteristic parameter values, N is the total number of wavelengths used in actual measurement, c 0 represents the fitting calculation coefficient, and c 2i-1 represents the calculation coefficient of the i-th characteristic parameter , R i represents the value of the ith characteristic parameter, R maxi and R mini represent the average value of the maximum value and the average value of the minimum value of the ratio of transmitted light and reflected light at the ith wavelength in the pulsation period, respectively, k 2i -1 , k 2i , l 2i-1 , and l 2i represent the calculation coefficients of the first power and the second power of R maxi and R mini respectively, T b indicates the body temperature during measurement, c Tb indicates the first power of the above body temperature T b The calculation coefficient of , c Tb ' represents the calculation coefficient of the quadratic power of the above-mentioned body temperature T b .
采用偏最小二乘法求取需测生理参数值y*的表达式的各项系数,具体方法为:令x0=1,x2i-1=Ri,x2i=(Ri)2,x2i-1+2M=Rmaxi,x2i+2M=Rmaxi 2,x2i-1+2(M+N)=Rmini,x2i+2(M+N)=Rmini 2,x2(M+2N)+1=Tb,x2(M+2N)+2=Tb 2,其前对应的系数依次用ai表示,则公式(1)可替换为:The partial least squares method is used to obtain the coefficients of the expression of the physiological parameter value y* to be measured. The specific method is: let x 0 =1, x 2i-1 =R i , x 2i =(R i ) 2 , x 2i-1+2M =R maxi , x 2i+2M =R maxi 2 , x 2i-1+2(M+N) =R mini , x 2i+2(M+N) =R mini 2 , x 2( M+2N)+1 =T b , x 2(M+2N)+2 =T b 2 , the former corresponding coefficients are represented by a i in turn, then formula (1) can be replaced by:
令L=2(M+2N),则公式(2)可进一步简写为:Let L=2(M+2N), then formula (2) can be further abbreviated as:
设其他设备或方法测量出相应生理参数值用y表示,共对同一个人测量了K次,且K>L,用ym表示其他设备或方法测量出相应参数的第m个值,ym*表示第m个数据拟合的值,则其差δm=|ym-ym*|,根据公式(3),ym*可表示为:Assume that the corresponding physiological parameter values measured by other equipment or methods are represented by y, and the same person has been measured K times, and K>L, and y m is used to represent the mth value of the corresponding parameter measured by other equipment or methods, y m * represents the fitted value of the mth data, then its difference δ m = |y m -y m *|, according to formula (3), y m * can be expressed as:
根据偏最小二乘法的原理,要使得最小,即最小。则有:According to the principle of partial least squares, to make minimum, i.e. minimum. Then there are:
整理公式(5),可得: Arranging formula (5), we can get:
整理公式(6)后有:After arranging formula (6), we have:
其中(k=0,…,L) (7) where (k=0,...,L) (7)
因为所以公式(7)可整理为:because So formula (7) can be organized as:
其中(k=0,…,L)公式(8)也可写成:where (k=0,...,L) formula (8) can also be written as:
将测得的N个其他设备测得同一生理参数数据,以及本发明所述方法中测得的表达式y*的各项数据,带入公式(9)中的L+1个方程,解出a0,a1,…,aL,则可得完整的多变量拟合函数公式(3),由上述令的x0=1,x2i-1=Ri,x2i=(Ri)2,x2i-1+2M=Rmaxi,x2i+2M=Rmaxi 2,x2i-1+2(M+N)=Rmini,x2i+2(M+N)=Rmini 2,x2(M+2N)+1=Tb,x2(M+2N)+2=Tb 2,带入公式(1)便可得到完整的y*表达式。The same physiological parameter data measured by N other devices, and the data of the expression y* measured in the method of the present invention, are brought into the L+1 equations in the formula (9) to solve a 0 , a 1 , . _ 2 , x 2i-1+2M =R maxi , x 2i+2M =R maxi 2 , x 2i-1+2(M+N) =R mini , x 2i+2(M+N) =R mini 2 , x 2(M+2N)+1 =T b , x 2(M+2N)+2 =T b 2 , and entering formula (1), a complete y* expression can be obtained.
一种基于多光纤束的在体实时无创生理参数采集装置,如图1所示,包括光学模块和电学模块。其中电学模块的核心部位为处理器单元,本实施例中处理器单元为32位。电学模块一方面是通过32位处理器单元内带的D/A转换向外提供一个高精度参考电压,并经电压跟随单元后,在32位处理器单元的控制下,通过模拟选择单元选择相应的通道输出,经后继电压电流转换单元转换为高精度的电流输入到光学模块中的单色光源组,这样,电学模块就可以实现对构成单色光源组的LED亮度的高精度控制;另一方面是利用双道前置放大单元实现将光学模块中的光电传感器获取的透射光强和反射光强的变化转换为与各自光强成比例的电压,通过双道滤波单元滤除各种干扰信号后,再在32位微处理器单元的控制下,通过双道数控放大单元选择各自合适的放大倍数后送入32位微处理器单元内带的12位A/D转换,实现将其电压转换为对应的数字值,同时利用外部高精度参考电压单元提供的电压经A/D转换的值、32为微处理器单元设定的不同放大倍数下的基准值和线性修正值,进一步提高电压的测量精度,即提高透射光强和反射光强的精度,同时通过相应的计算的得出所需测量生理参数的相应值,通过显示及输入单元显示出来。DC-DC电压转换单元主要为该装置各单元提供所学的电源。An in vivo real-time non-invasive physiological parameter acquisition device based on multi-fiber bundles, as shown in Figure 1, includes an optical module and an electrical module. The core part of the electrical module is a processor unit, and in this embodiment, the processor unit is 32 bits. On the one hand, the electrical module provides a high-precision reference voltage through the D/A conversion in the 32-bit processor unit, and after the voltage follower unit, under the control of the 32-bit processor unit, select the corresponding voltage through the analog selection unit. The output of the channel is converted into a high-precision current by the subsequent voltage-current conversion unit and input to the monochromatic light source group in the optical module, so that the electrical module can realize the high-precision control of the LED brightness that constitutes the monochromatic light source group; another On the one hand, the double-channel pre-amplifier unit is used to convert the changes of the transmitted light intensity and reflected light intensity acquired by the photoelectric sensor in the optical module into a voltage proportional to the respective light intensities, and the double-channel filter unit filters out various interference signals. Then, under the control of the 32-bit microprocessor unit, select the appropriate magnification through the dual-channel numerical control amplifying unit and then send it to the 12-bit A/D conversion in the 32-bit microprocessor unit to realize the voltage conversion. It is the corresponding digital value, and at the same time, the A/D-converted value of the voltage provided by the external high-precision reference voltage unit is used, and 32 is the reference value and linear correction value under different magnifications set by the microprocessor unit to further improve the voltage. The measurement accuracy is to improve the accuracy of the transmitted light intensity and the reflected light intensity, and at the same time, the corresponding values of the physiological parameters to be measured are obtained through corresponding calculations, and displayed through the display and input unit. The DC-DC voltage conversion unit mainly provides the learned power for each unit of the device.
光学模块主要由光纤束组、单色光源组、光电传感器及机械结构组成。光学模块实时数据采集时,如图2所示,将手指或耳垂置于光学模块上。其中的光纤束组,将各种单色光聚集在一个小范围,以及从一个小范围获取反射和透射光并经光电传感器将光转换为电信号送给电学模块处理,同时使得各单色光能均匀地照射到测量的相应部位以提高整体的测量精度。实用光纤束组还可有效地减小杂散光的影响,并且装配方便。单色光源组主要由各种单色波长的LED构成,为测量提供相应的光波长及所需的照射光强。光电传感器主要是实现将变化的光信号转换为电信号,传送给电学模块。机械结构主要将上述的光纤束组、单色光源组、光电传感器固定于一体,以方便测量人体生理参数。The optical module is mainly composed of a fiber bundle group, a monochromatic light source group, a photoelectric sensor and a mechanical structure. When the optical module collects real-time data, as shown in Figure 2, place a finger or earlobe on the optical module. The optical fiber bundle group gathers various monochromatic lights in a small area, and obtains reflected and transmitted light from a small area, and converts the light into electrical signals through the photoelectric sensor and sends it to the electrical module for processing. It can evenly illuminate the corresponding parts of the measurement to improve the overall measurement accuracy. The practical fiber bundle group can also effectively reduce the influence of stray light, and the assembly is convenient. The monochromatic light source group is mainly composed of LEDs with various monochromatic wavelengths, which provide corresponding light wavelengths and required illumination light intensity for measurement. The photoelectric sensor mainly converts the changing optical signal into an electrical signal and transmits it to the electrical module. The mechanical structure mainly fixes the above-mentioned optical fiber bundle group, monochromatic light source group, and photoelectric sensor in one, so as to facilitate the measurement of human physiological parameters.
以上对发明实施例所提供的技术方案进行了详细介绍,本文中应用了具体个例对本发明实施例的原理以及实施方式进行了阐述,以上实施例的说明只适用于帮助理解本发明实施例的原理;同时,对于本领域的一般技术人员,依据本发明实施例,在具体实施方式以及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The technical solutions provided by the embodiments of the present invention are described in detail above, and the principles and implementations of the embodiments of the present invention are described in this paper by using specific examples. At the same time, for those of ordinary skill in the art, according to the embodiments of the present invention, there will be changes in the specific implementation and application scope. To sum up, the content of this specification should not be construed as a limitation of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610416345.4A CN105997104B (en) | 2016-06-14 | 2016-06-14 | It is a kind of based on multi fiber beam in body noninvasive physiological parameter acquisition method and device in real time |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610416345.4A CN105997104B (en) | 2016-06-14 | 2016-06-14 | It is a kind of based on multi fiber beam in body noninvasive physiological parameter acquisition method and device in real time |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105997104A CN105997104A (en) | 2016-10-12 |
CN105997104B true CN105997104B (en) | 2019-07-05 |
Family
ID=57087432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610416345.4A Expired - Fee Related CN105997104B (en) | 2016-06-14 | 2016-06-14 | It is a kind of based on multi fiber beam in body noninvasive physiological parameter acquisition method and device in real time |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105997104B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109846462B (en) * | 2019-04-03 | 2021-07-16 | 小甑科技(深圳)有限公司 | Method and system for measuring blood sugar |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5355880A (en) * | 1992-07-06 | 1994-10-18 | Sandia Corporation | Reliable noninvasive measurement of blood gases |
JPH09308623A (en) * | 1996-05-24 | 1997-12-02 | Hitachi Ltd | Non-invasive biochemical measurement device |
CN1095080C (en) * | 1996-11-26 | 2002-11-27 | 松下电工株式会社 | Device for non-invasive determination of glucose concn. in blood of subject |
CN103249362A (en) * | 2010-10-08 | 2013-08-14 | 爱德华兹生命科学公司 | System, method and computer program product for optical measurement of blood parameters |
CN103429153A (en) * | 2010-11-03 | 2013-12-04 | 华盛顿大学商业中心 | Determination of tissue oxygenation in vivo |
WO2015174499A1 (en) * | 2014-05-14 | 2015-11-19 | 国立大学法人信州大学 | Blood pressure estimation method and blood pressure measurement device |
CN105212915A (en) * | 2015-11-06 | 2016-01-06 | 重庆医科大学 | Personalized at the real-time non-invasive detection methods of body blood pressure |
-
2016
- 2016-06-14 CN CN201610416345.4A patent/CN105997104B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5355880A (en) * | 1992-07-06 | 1994-10-18 | Sandia Corporation | Reliable noninvasive measurement of blood gases |
JPH09308623A (en) * | 1996-05-24 | 1997-12-02 | Hitachi Ltd | Non-invasive biochemical measurement device |
CN1095080C (en) * | 1996-11-26 | 2002-11-27 | 松下电工株式会社 | Device for non-invasive determination of glucose concn. in blood of subject |
CN103249362A (en) * | 2010-10-08 | 2013-08-14 | 爱德华兹生命科学公司 | System, method and computer program product for optical measurement of blood parameters |
CN103429153A (en) * | 2010-11-03 | 2013-12-04 | 华盛顿大学商业中心 | Determination of tissue oxygenation in vivo |
WO2015174499A1 (en) * | 2014-05-14 | 2015-11-19 | 国立大学法人信州大学 | Blood pressure estimation method and blood pressure measurement device |
CN105212915A (en) * | 2015-11-06 | 2016-01-06 | 重庆医科大学 | Personalized at the real-time non-invasive detection methods of body blood pressure |
Also Published As
Publication number | Publication date |
---|---|
CN105997104A (en) | 2016-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gao et al. | Single-wavelength blood oxygen saturation sensing with combined optical absorption and scattering | |
JP3928051B2 (en) | Psychological state evaluation device | |
Rodrigues et al. | Experimental low cost reflective type oximeter for wearable health systems | |
CN110063859A (en) | A kind of hyperbaric oxygen chamber equipment operational monitoring method and system | |
CN108324286B (en) | Infrared noninvasive blood glucose detection device based on PCA-NARX correction algorithm | |
CN105212915A (en) | Personalized at the real-time non-invasive detection methods of body blood pressure | |
CN101564290A (en) | Optical multi-parameter physiology monitoring instrument | |
CN103027691A (en) | Digital measuring device and digital measuring method for physiological and biochemical parameters | |
Liu et al. | Development of a miniaturized and modular probe for fNIRS instrument | |
CN108634964A (en) | A kind of non-invasive blood sugar instrument based on spectrum | |
CN105997104B (en) | It is a kind of based on multi fiber beam in body noninvasive physiological parameter acquisition method and device in real time | |
ITBS20070161A1 (en) | METHOD AND INSTRUMENT FOR THE NON-INVASIVE MEASUREMENT OF OXYGENATION / SATURATION OF A BIOLOGICAL FABRIC | |
CN107569215A (en) | A kind of noninvasive liver function multiparameter measuring device and detection method | |
CN105232055A (en) | Noninvasive glucometer | |
Pinto et al. | Improving hemoglobin estimation accuracy through standardizing of light-emitting diode power | |
CN217566042U (en) | Foot artery blood vessel pulse detection system and foot massage equipment | |
CN114081483A (en) | A Tissue Blood Flow and Blood Oxygen Saturation Measurement Method Based on Deep Learning Diffusion Correlation Spectroscopy | |
Biswas et al. | Fast, compact measurement of deep tissue blood flow with integrated diffuse correlation spectroscopy | |
Biswas et al. | Non-invasive low-cost deep tissue blood flow measurement with integrated Diffuse Speckle Contrast Spectroscopy | |
Yan et al. | Illumination adaptation in a multi-wavelength opto-electronic patch sensor | |
CN1299646C (en) | Optical-circuit-variable time-domain light-dividing differential wave length spectrometer for detecting tissue content and detection method thereof | |
CN1579321A (en) | Airspace light-diving differential wavelength spectro meter for detecting artery blood content and detection method thereof | |
CN208031214U (en) | The measuring device of Non-invasive detection hemoglobin level | |
CN105092497B (en) | The data processing method of individuation blood sugar concentration detection means | |
Li et al. | Dynamic spectrum: a brand-new non-invasive blood component measure method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190705 Termination date: 20200614 |