[go: up one dir, main page]

CN105997104A - In-vivo real-time noninvasive physiological parameter collecting method and device based on multiple optical fiber bundles - Google Patents

In-vivo real-time noninvasive physiological parameter collecting method and device based on multiple optical fiber bundles Download PDF

Info

Publication number
CN105997104A
CN105997104A CN201610416345.4A CN201610416345A CN105997104A CN 105997104 A CN105997104 A CN 105997104A CN 201610416345 A CN201610416345 A CN 201610416345A CN 105997104 A CN105997104 A CN 105997104A
Authority
CN
China
Prior art keywords
unit
physiological parameter
light intensity
value
sigma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610416345.4A
Other languages
Chinese (zh)
Other versions
CN105997104B (en
Inventor
陈龙聪
王洪雷
邓世雄
熊兴良
刘改琴
张应举
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Medical University
Original Assignee
Chongqing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Medical University filed Critical Chongqing Medical University
Priority to CN201610416345.4A priority Critical patent/CN105997104B/en
Publication of CN105997104A publication Critical patent/CN105997104A/en
Application granted granted Critical
Publication of CN105997104B publication Critical patent/CN105997104B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Psychiatry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明提供一种基于多光纤束的在体实时无创生理参数采集方法和装置,包括光学模块和电学模块,光学模块主要由光纤束组、单色光源组、光电传感器及起固定作用的机械结构组成。光纤束组获取生理参数的反射和透射光强。电学模块包括双道前置放大单元、双道滤波单元、双道数控放大单元、处理器单元、显示及输入单元、电压跟随单元、模拟选择单元、电压电流转换单元。处理器单元计算生理参数测量波长的个数及透射和反射光强比值随时间的变化信号中提取特征参数值,确定获取的特征参数值的总个数,根据偏最小二乘法和高精度参考电压单元,计算生理参数的表达式,本发明能有效地提高人体生理参数的测量精度,且是对人体无创检测,测量精度高,使用方便。

The invention provides a real-time non-invasive physiological parameter acquisition method and device based on multi-fiber bundles, including an optical module and an electrical module, the optical module mainly consists of a fiber bundle group, a monochromatic light source group, a photoelectric sensor and a mechanical structure that plays a fixed role composition. The optical fiber bundle group acquires reflected and transmitted light intensity for physiological parameters. The electrical module includes a dual-channel preamplifier unit, a dual-channel filter unit, a dual-channel numerical control amplifier unit, a processor unit, a display and input unit, a voltage follower unit, an analog selection unit, and a voltage-current conversion unit. The processor unit calculates the number of physiological parameters to measure the wavelength and the ratio of transmitted and reflected light intensity over time to extract the characteristic parameter value from the signal, determine the total number of obtained characteristic parameter values, according to the partial least square method and high-precision reference voltage The unit calculates the expression of the physiological parameter, and the invention can effectively improve the measurement accuracy of the physiological parameter of the human body, and is a non-invasive detection of the human body, with high measurement accuracy and convenient use.

Description

一种基于多光纤束的在体实时无创生理参数采集方法及装置A method and device for in vivo real-time non-invasive physiological parameter acquisition based on multi-fiber bundles

技术领域technical field

本发明专利涉及生物医学信号处理领域,具体地说是涉及一种基于多光纤束的在体实时无创生理参数采集方法及装置。The patent of the present invention relates to the field of biomedical signal processing, in particular to an in vivo real-time non-invasive physiological parameter acquisition method and device based on multi-fiber bundles.

背景技术Background technique

目前,已出现许多利用光学方法实现无创采集生理参数的仪器或设备。如,血氧饱和度测量仪利用波长分别为940nm和660nm的两个单波长的光轮流照射指尖,通过检测透射后光强的变化情况计算出相应的血氧饱和度值,但其两个照射波长通过手指的光路不一样,因此测量的精度会受到影响;另外,还有该方法不能测试反射光强的大小,若能测反射光强会尽一步增加测量的精度。还有如光电容积波的测量,一般是通过红外光照射,保证照射光光强基本不变,测量通过手指或耳垂的后的光强,同样若能测量反射光,可以借助反射光可以消除一部分入射光不稳定对容积波的影响。因而,本发明提出一种基于多光纤束的在体实时无创生理参数采集方法及装置,可以很好地克服上述的不足。At present, there have been many instruments or devices that use optical methods to achieve non-invasive acquisition of physiological parameters. For example, the blood oxygen saturation measuring instrument uses two single-wavelength lights with wavelengths of 940nm and 660nm to irradiate the fingertips in turn, and calculates the corresponding blood oxygen saturation value by detecting the change of light intensity after transmission, but the two The optical path of the irradiation wavelength through the finger is different, so the accuracy of the measurement will be affected; in addition, this method cannot test the magnitude of the reflected light intensity. If the reflected light intensity can be measured, the measurement accuracy will be further increased. There is also the measurement of photoelectric volumetric wave, which is generally irradiated by infrared light to ensure that the intensity of the irradiated light is basically unchanged, and the light intensity after passing through the finger or earlobe is measured. Similarly, if the reflected light can be measured, a part of the incident light can be eliminated by means of the reflected light. The effect of photoinstability on volumetric waves. Therefore, the present invention proposes an in vivo real-time non-invasive physiological parameter acquisition method and device based on multi-fiber bundles, which can well overcome the above-mentioned shortcomings.

发明内容Contents of the invention

本发明提出一种基于多光纤束的在体实时无创生理参数采集方法,包括以下几个步骤:The present invention proposes an in vivo real-time non-invasive physiological parameter acquisition method based on multi-fiber bundles, which includes the following steps:

第一步:确定各项生理参数的检测波的波长和个数;Step 1: Determine the wavelength and number of detection waves of various physiological parameters;

第二步:多次测量人体某一部位,通过温度传感器测量被测人的体温,通过其他设备测量出相应生理参数的值,根据第一步确定的检测波的波长和个数,针对同一参数,在不同波长的情况下,获取透射光强与反射光强的比值及时间的变化,并记录实际测量所用波长的总个数N;The second step: measure a certain part of the human body multiple times, measure the body temperature of the measured person through a temperature sensor, and measure the value of the corresponding physiological parameter through other equipment. According to the wavelength and number of detection waves determined in the first step, for the same parameter , in the case of different wavelengths, obtain the ratio of the transmitted light intensity to the reflected light intensity and the time change, and record the total number N of wavelengths used in the actual measurement;

第三步:利用上述透射光强与反射光强的比值及随时间的变化情况,计算出透射和反射光强比值在设定的脉动周期内的最大值的平均值、最小值的平均值,并从透射和反射光强比值随时间的变化信号中提取特征参数值,确定获取的特征参数值的总个数M;Step 3: Using the above-mentioned ratio of transmitted light intensity to reflected light intensity and the change over time, calculate the average value of the maximum value and the average value of the minimum value of the ratio of transmitted and reflected light intensity within the set pulsation period, And extract the characteristic parameter value from the time-varying signal of the ratio of transmitted and reflected light intensity, and determine the total number M of the obtained characteristic parameter values;

第四步:对每一测量的生理参数采用个性化拟合,设拟合的某一需测生理参数值为y*,则其表达式表示为:Step 4: Use personalized fitting for each measured physiological parameter, assuming that the value of a certain physiological parameter to be measured is y*, then its expression is expressed as:

ythe y ** == cc 00 ++ ΣΣ ii == 11 Mm cc 22 ii -- 11 PP ii ++ ΣΣ ii == 11 Mm cc 22 ii PP ii 22 ++ ΣΣ ii == 11 Mm kk 22 ii -- 11 RR maxmax ii ++ ΣΣ ii == 11 NN kk 22 ii RR maxmax ii 22 ++ ΣΣ ii == 11 NN ll 22 ii -- 11 RR minmin ii ++ ΣΣ ii == 11 NN ll 22 ii RR minmin ii 22 ++ cc TT bb TT bb ++ cc TT ′′ TT bb 22 -- -- -- (( 11 ))

公式(1)中,M为获取的特征参数值的总个数,N为实际测量所用波长的总个数,c0表示拟合计算系数,c2i-1表示第i个特征参数的计算系数,Pi表示第i个特征参数的值,Rmax i、Rmin i分别表示第i种波长透射光和反射光比值在脉动周期的最大值的平均值、最小值平均值的常用对数值,k2i-1、k2i、l2i-1、l2i分别代表Rmax i、Rmin i的一次方、二次方的计算系数,Tb表示测量时的体温,cTb表示对上述体温Tb的一次方的计算系数,cTb'表示对上述体温Tb的二次方的计算系数,上述各系数可通过偏最小二乘法求得。In formula (1), M is the total number of acquired characteristic parameter values, N is the total number of wavelengths used in actual measurement, c 0 represents the fitting calculation coefficient, and c 2i-1 represents the calculation coefficient of the i-th characteristic parameter , P i represents the value of the i-th characteristic parameter, R max i and R min i represent the average value of the maximum value and the average value of the minimum value of the ratio of the i-th wavelength of transmitted light and reflected light in the pulsation cycle, respectively, k 2i-1 , k 2i , l 2i-1 , and l 2i represent the calculation coefficients of the first power and the second power of R max i and R min i respectively, T b represents the body temperature at the time of measurement, and c Tb represents the response to the above body temperature T The calculation coefficient of the first power of b , c Tb ' represents the calculation coefficient of the second power of the above-mentioned body temperature T b , and the above-mentioned coefficients can be obtained by the partial least square method.

进一步的,所述步骤第一步还包括,采用紫外-可见-近红外分光光度计对人体全血进行扫描,根据化学中各基团、功能团或分子等的吸收峰,可确定需测量生理参数相关及不相关的波长或波长范围;对上述两类波长或波长范围,分别选取1到4种,确定检测波长的个数。Further, the first step of the step also includes scanning human whole blood with an ultraviolet-visible-near-infrared spectrophotometer, and according to the absorption peaks of various groups, functional groups or molecules in chemistry, it can be determined that the physiological Parameter-related and irrelevant wavelengths or wavelength ranges; for the above two types of wavelengths or wavelength ranges, select 1 to 4 types respectively to determine the number of detection wavelengths.

进一步的,所述步骤第四步,采用偏最小二乘法求取需测生理参数值为y*表达式的各项系数,具体方法为:令x0=1,x2i-1=Ri,x2i=(Ri)2,x2i-1+2M=Rmax i,x2i+2M=Rmax i 2,x2i-1+2(M+N)=Rmin i,x2i+2(M+N)=Rmin i 2,x2(M+2N)+1=Tb,x2(M+2N)+2=Tb 2,其前对应的系数依次用ai表示,则公式(1)可替换为:Further, in the fourth step of the step, the partial least square method is used to obtain the coefficients of the physiological parameter values to be measured in the expression y*, and the specific method is: set x 0 =1, x 2i-1 =R i , x 2i =(R i ) 2 , x 2i-1+2M =R max i , x 2i+2M =R max i 2 , x 2i-1+2(M+N) =R min i , x 2i+2 (M+N) =R min i 2 , x 2(M+2N)+1 =T b , x 2(M+2N)+2 =T b 2 , the previous corresponding coefficients are represented by a i in turn, then Formula (1) can be replaced by:

ythe y ** == aa 00 xx 00 ++ aa 11 xx 11 ++ aa 22 xx 22 ++ ΛΛ ++ aa 22 (( Mm ++ 22 NN )) Xx 22 (( Mm ++ 22 NN )) ++ ΣΣ ii == 00 22 (( Mm ++ 22 NN )) aa ii xx ii -- -- -- (( 22 ))

令L=2(M+2N),则公式(2)可进一步简写为:设其他设备或方法测量出相应生理参数值用y表示,共对同一个人测量了K次,且K>L,用ym表示其他设备或方法测量出相应参数的第m个值,ym*表示第m个数据拟合的值,则其差δm=|ym-ym*|,根据公式(3),ym*可表示为:Let L=2(M+2N), then formula (2) can be further abbreviated as: Assume that the value of the corresponding physiological parameter measured by other equipment or methods is represented by y, and the same person has been measured K times in total, and K>L, and y m represents the mth value of the corresponding parameter measured by other equipment or methods, y m * represents the fitting value of the mth data, then its difference δ m =|y m -y m *|, according to formula (3), y m * can be expressed as:

ythe y mm ** == ΣΣ ii == 00 LL aa ii xx ii mm -- -- -- (( 44 ))

根据偏最小二乘法的原理,要使得最小,即According to the principle of partial least squares method, to make minimum, ie

最小。则有: minimum. Then there are:

∂∂ [[ ΣΣ mm == 11 NN (( ythe y mm -- ΣΣ ii == 00 LL aa ii xx ii mm )) 22 ]] ∂∂ aa kk == 00 ,, (( kk == 00 ,, ΛΛ ,, LL )) -- -- -- (( 55 ))

整理公式(5),可得:根据公式(6),可解公式(2)中,各项系数ai,将ai带入公式(1)中,可得需测生理参数值为y*的完整表达式。Arranging formula (5), we can get: According to the formula (6), the various coefficients a i in the formula (2) can be solved, and a i can be brought into the formula (1), and the complete expression of the physiological parameter value to be measured can be obtained as y*.

一种基于多光纤束的在体实时无创生理参数采集装置,包括光学模块和电学模块,所述光学模块包括光纤束组、为测量提供相应光波长及所需照射光强的单色光源组、将变化的光信号转换为电信号的光电传感器,所述光纤束组将各种单色光聚集在一个小范围内、以及从一个小范围内获取反射和透射光并经所述光电传感器将光转换为电信号送给所述电学模块处理;所述电学模块包括将所述光电传感器获取的透射光强和反射光强的变化转换为与各自光强成比例的电压的双道前置放大单元,将透射光强和反射光强变化转换的电压转换为对应数字值、向外提供一个高精度参考电压、以及对本装置其他单元起控制作用的处理器单元,将所述高精度电压转化为电流输入到所述单色光源组的电压电流转换单元。An in vivo real-time non-invasive physiological parameter acquisition device based on multi-fiber bundles, including an optical module and an electrical module, the optical module includes a fiber bundle group, a monochromatic light source group that provides corresponding light wavelengths and required irradiation light intensity for measurement, A photoelectric sensor that converts changing optical signals into electrical signals. The optical fiber bundle group gathers various monochromatic lights in a small range, and obtains reflected and transmitted light from a small range and passes the light through the photoelectric sensor. It is converted into an electrical signal and sent to the electrical module for processing; the electrical module includes a dual-channel preamplifier unit that converts the changes in the transmitted light intensity and reflected light intensity obtained by the photoelectric sensor into a voltage proportional to the respective light intensity , convert the voltage converted by the change of transmitted light intensity and reflected light intensity into a corresponding digital value, provide a high-precision reference voltage to the outside, and a processor unit that controls other units of the device, and convert the high-precision voltage into a current input to the voltage-current conversion unit of the monochromatic light source group.

进一步的,所述光学模块还包括将上述的光纤束组、单色光源组、光电传感器固定于一体的机械结构。Further, the optical module also includes a mechanical structure for fixing the above-mentioned optical fiber bundle group, monochromatic light source group, and photoelectric sensor together.

进一步的,所述单色光源组由各种单色波长的LED构成。Further, the monochromatic light source group is composed of LEDs with various monochromatic wavelengths.

进一步的,所述电学单元还包括位于双道前置放大单元与处理器单元间,设置有将透射光强和反射光强变化转换的电压信号进行滤波的双道滤波单元,以及选择合适倍数进行放大的双道数控放大单元;位于所述电压电流转换单元与处理器单元间,由所述处理器单元控制的、可选择相应通道输出的模拟选择单元,所述模拟选择单元与所述处理器单元间设置有电压跟随单元;所述电学单元还包括显示及输入单元。Further, the electrical unit also includes a dual-channel filter unit located between the dual-channel preamplifier unit and the processor unit, and is provided with a dual-channel filter unit for filtering voltage signals converted from changes in transmitted light intensity and reflected light intensity, and selecting an appropriate multiple to perform An amplified dual-channel numerical control amplifying unit; located between the voltage-current conversion unit and the processor unit, an analog selection unit controlled by the processor unit and capable of selecting the output of the corresponding channel, the analog selection unit and the processor A voltage follower unit is arranged between the units; the electrical unit also includes a display and input unit.

进一步的,所述双道前置放大单元、双道滤波单元、双道数控放大单元、处理器单元、显示及输入单元、电压跟随单元、模拟选择单元、电压电流转换单元由DC-DC电压转换单元供电。Further, the dual-channel pre-amplification unit, dual-channel filter unit, dual-channel numerical control amplification unit, processor unit, display and input unit, voltage follower unit, analog selection unit, and voltage-current conversion unit are converted by DC-DC voltage unit powered.

进一步的,所述处理器单元内含D/A转换以及A/D转换;所述处理器单元设定有不同放大倍数下的基准值和线性修正值。Further, the processor unit includes D/A conversion and A/D conversion; the processor unit is set with reference values and linear correction values under different magnifications.

有效增益:本发明提出一种新的可同时检测反射光强和透射光强的光路结构,能有效地提高人体生理参数的测量精度,且是对人体无创检测,测量精度高,使用方便,本发明的光学模块设计有光纤束组,能有效地减小杂散光的影响,并且装配方便。Effective gain: The present invention proposes a new optical path structure that can detect reflected light intensity and transmitted light intensity at the same time, which can effectively improve the measurement accuracy of human physiological parameters, and is non-invasive detection of human body, with high measurement accuracy and convenient use. The optical module of the invention is designed with an optical fiber bundle group, which can effectively reduce the influence of stray light and is convenient for assembly.

附图说明:Description of drawings:

图1是本发明的硬件原理框图;Fig. 1 is a hardware principle block diagram of the present invention;

图2是光学模块实时数据采集示意图。Figure 2 is a schematic diagram of real-time data acquisition by the optical module.

具体实施方式detailed description

下面结合附图及具体实施方式来对本发明进行进一步的说明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.

本发明提出一种基于多光纤束的在体实时无创生理参数采集方法,包括以下几个步骤:The present invention proposes an in vivo real-time non-invasive physiological parameter acquisition method based on multi-fiber bundles, which includes the following steps:

第一步:确定各项生理参数的检测波的波长和个数Step 1: Determine the wavelength and number of detection waves of various physiological parameters

利用紫外-可见-近红外分光光度计在185nm-3300nm范围内对人体全血进行扫描,分析出的全血的吸收峰和吸收比较平坦的波长,并对比分析化学中各基团、功能团或分子等的吸收峰进行分析,从中分析出各吸收峰出现的原因,确定出于需测量生理参数关系紧密的波长或波长范围,同时确定出与需测量生理参数变化不大或无变化波长或波长范围。本实施例中,与需测波长或波长范围相关性小于5%,视为与需测量生理参数变化不大的波长或者波长范围。Use the UV-Vis-NIR spectrophotometer to scan human whole blood in the range of 185nm-3300nm, analyze the absorption peak and relatively flat wavelength of the whole blood, and compare and analyze various groups, functional groups or Analyze the absorption peaks of molecules, etc., analyze the reasons for the appearance of each absorption peak, determine the wavelength or wavelength range that is closely related to the physiological parameters to be measured, and determine the wavelength or wavelength that has little or no change with the physiological parameters to be measured scope. In this embodiment, if the correlation with the wavelength or wavelength range to be measured is less than 5%, it is regarded as a wavelength or wavelength range with little change with the physiological parameter to be measured.

根据获取的数据和需测量生理参数的个数确定测量波长的个数。具体原则是:保证从每一个需测量生理参数关系紧密的波长或波长范围中选出1到4种波长,从与每一个需测量生理参数变化不大或无变化波长或波长范围选择1到4种波长,对于不同生理参数尽量能选取相同波长,以减少总的选择波长个数。The number of measurement wavelengths is determined according to the acquired data and the number of physiological parameters to be measured. The specific principle is: ensure that 1 to 4 wavelengths are selected from the wavelengths or wavelength ranges closely related to each physiological parameter to be measured, and 1 to 4 are selected from wavelengths or wavelength ranges that have little or no change with each physiological parameter to be measured For different physiological parameters, the same wavelength can be selected as much as possible to reduce the total number of selected wavelengths.

第二步,多次测量人体某一部位,通过温度传感器测量被测人的体温,通过其他设备测量出相应生理参数的值,根据第一步确定的检测波的波长和个数,针对同一参数,在不同波长的情况下,获取透射光强与反射光强的比值及时间的变化,并确定实际测量所用波长的总个数N,确定的原则是在保证每一需测量生理参数的测量精度前提下,尽量用少的波长个数。The second step is to measure a certain part of the human body multiple times, measure the body temperature of the measured person through a temperature sensor, and measure the value of the corresponding physiological parameter through other equipment. According to the wavelength and number of detection waves determined in the first step, for the same parameter , in the case of different wavelengths, obtain the ratio of transmitted light intensity to reflected light intensity and the time change, and determine the total number N of wavelengths used for actual measurement. The principle of determination is to ensure the measurement accuracy of each physiological parameter to be measured Under the premise, try to use as few wavelengths as possible.

第三步:利用上述透射光强与反射光强的比值及随时间的变化情况,计算出透射和反射光强比值在设定的脉动周期内的最大值的平均值、最小值的平均值,并从透射和反射光强比值随时间的变化信号中提取特征参数值,确定获取的特征参数值的总个数M,本实施方案中,设定的脉动周期可选择2到100个。Step 3: Using the above-mentioned ratio of transmitted light intensity to reflected light intensity and the change over time, calculate the average value of the maximum value and the average value of the minimum value of the ratio of transmitted and reflected light intensity within the set pulsation period, The characteristic parameter values are extracted from the time-varying signal of the ratio of transmitted and reflected light intensity, and the total number M of acquired characteristic parameter values is determined. In this embodiment, the set pulsation period can be selected from 2 to 100.

第四步:对每一测量的生理参数采用个性化拟合,利用上述获取的数据和偏最小二乘法进行数据拟合。具体方法为:Step 4: Individualized fitting is used for each measured physiological parameter, and data fitting is performed using the data obtained above and the partial least square method. The specific method is:

设拟合的某一需测生理参数值为y*,则其表达式表示为:Assuming that the value of a certain physiological parameter to be measured is y*, its expression is expressed as:

ythe y ** == cc 00 ++ ΣΣ ii == 11 Mm cc 22 ii -- 11 PP ii ++ ΣΣ ii == 11 Mm cc 22 ii PP ii 22 ++ ΣΣ ii == 11 Mm kk 22 ii -- 11 RR maxmax ii ++ ΣΣ ii == 11 NN kk 22 ii RR maxmax ii 22 ++ ΣΣ ii == 11 NN ll 22 ii -- 11 RR minmin ii ++ ΣΣ ii == 11 NN ll 22 ii RR minmin ii 22 ++ cc TT bb TT bb ++ cc TT ′′ TT bb 22 -- -- -- (( 11 ))

公式(1)中,M为获取的特征参数值的总个数,N为实际测量所用波长的总个数,c0表示拟合计算系数,c2i-1表示第i个特征参数的计算系数,Pi表示第i个特征参数的值,Rmax i、Rmin i分别表示第i种波长透射光和反射光比值在脉动周期的最大值的平均值、最小值平均值的常用对数值,k2i-1、k2i、l2i-1、l2i分别代表Rmax i、Rmin i的一次方、二次方的计算系数,Tb表示测量时的体温,cTb表示对上述体温Tb的一次方的计算系数,cTb'表示对上述体温Tb的二次方的计算系数。In formula (1), M is the total number of acquired characteristic parameter values, N is the total number of wavelengths used in actual measurement, c 0 represents the fitting calculation coefficient, and c 2i-1 represents the calculation coefficient of the i-th characteristic parameter , P i represents the value of the i-th characteristic parameter, R max i and R min i represent the average value of the maximum value and the average value of the minimum value of the ratio of the i-th wavelength of transmitted light and reflected light in the pulsation cycle, respectively, k 2i-1 , k 2i , l 2i-1 , and l 2i represent the calculation coefficients of the first power and the second power of R max i and R min i respectively, T b represents the body temperature at the time of measurement, and c Tb represents the response to the above body temperature T The calculation coefficient of the first power of b , c Tb ' represents the calculation coefficient of the second power of the above-mentioned body temperature T b .

采用偏最小二乘法求取需测生理参数值y*的表达式的各项系数,具体方法为:令x0=1,x2i-1=Ri,x2i=(Ri)2,x2i-1+2M=Rmax i,x2i+2M=Rmax i 2,x2i-1+2(M+N)=Rmin i,x2i+2(M+N)=Rmin i 2,x2(M+2N)+1=Tb,x2(M+2N)+2=Tb 2,其前对应的系数依次用ai表示,则公式(1)可替换为:Use the partial least square method to obtain the coefficients of the expression of the physiological parameter value y* to be measured. The specific method is: set x 0 =1, x 2i-1 =R i , x 2i =(R i ) 2 , x 2i-1+2M = R max i , x 2i+2M = R max i 2 , x 2i-1+2(M+N) = R min i , x 2i+2(M+N) = R min i 2 , x 2(M+2N)+1 =T b , x 2(M+2N)+2 =T b 2 , the corresponding coefficients before it are represented by a i in turn, then the formula (1) can be replaced by:

ythe y ** == aa 00 xx 00 ++ aa 11 xx 11 ++ aa 22 xx 22 ++ ΛΛ ++ aa 22 (( Mm ++ 22 NN )) Xx 22 (( Mm ++ 22 NN )) ++ ΣΣ ii == 00 22 (( Mm ++ 22 NN )) aa ii xx ii -- -- -- (( 22 ))

令L=2(M+2N),则公式(2)可进一步简写为: Let L=2(M+2N), then formula (2) can be further abbreviated as:

设其他设备或方法测量出相应生理参数值用y表示,共对同一个人测量了K次,且K>L,用ym表示其他设备或方法测量出相应参数的第m个值,ym*表示第m个数据拟合的值,则其差δm=|ym-ym*|,根据公式(3),ym*可表示为:Assume that the value of the corresponding physiological parameter measured by other equipment or methods is represented by y, and the same person has been measured K times in total, and K>L, and y m represents the mth value of the corresponding parameter measured by other equipment or methods, y m * represents the fitting value of the mth data, then its difference δ m =|y m -y m *|, according to formula (3), y m * can be expressed as:

ythe y mm ** == ΣΣ ii == 00 LL aa ii xx ii mm -- -- -- (( 44 ))

根据偏最小二乘法的原理,要使得最小,即According to the principle of partial least squares method, to make minimum, ie

最小。则有: minimum. Then there are:

∂∂ [[ ΣΣ mm == 11 NN (( ythe y mm -- ΣΣ ii == 00 LL aa ii xx ii mm )) 22 ]] ∂∂ aa kk == 00 ,, (( kk == 00 ,, ΛΛ ,, LL )) -- -- -- (( 55 ))

整理公式(5),可得: Arranging formula (5), we can get:

整理公式(6)后有:After rearranging formula (6), we have:

其中(k=0,Λ,L)(7) where (k=0,Λ,L)(7)

因为所以公式(7)可整理为:because So formula (7) can be organized as:

ΣΣ ii == 00 LL aa ii (( ΣΣ mm == 11 NN xx ii mm xx kk mm )) == ΣΣ mm == 11 NN ythe y mm xx kk mm -- -- -- (( 88 ))

其中(k=0,Λ,L)公式(8)也可写成:Among them (k=0, Λ, L) formula (8) can also be written as:

ΣΣ mm == 11 NN xx 00 mm xx 00 mm aa 00 ++ ΣΣ mm == 11 NN xx 11 mm xx 00 mm aa 11 ++ ΣΣ mm == 11 NN xx 22 mm xx 00 mm aa 22 ++ ΛΛ ++ ΣΣ mm == 11 NN xx LL mm xx 00 mm aa LL == ΣΣ mm == 11 NN ythe y mm xx 00 mm ΣΣ mm == 11 NN xx 00 mm xx 11 mm aa 00 ++ ΣΣ mm == 11 NN xx 11 mm xx 11 mm aa 11 ++ ΣΣ mm == 11 NN xx 22 mm xx 11 mm aa 22 ++ ΛΛ ++ ΣΣ mm == 11 NN xx LL mm xx 11 mm aa LL == ΣΣ mm == 11 NN ythe y mm xx 11 mm ...... ΣΣ mm == 11 NN xx 00 mm xx LL mm aa 00 ++ ΣΣ mm == 11 NN xx 11 mm xx LL mm aa 11 ++ ΣΣ mm == 11 NN xx 22 mm xx LL )) mm aa 22 ++ ΛΛ ++ ΣΣ mm == 11 NN xx LL mm xx LL mm aa LL == ΣΣ mm == 11 NN ythe y mm xx LL mm -- -- -- (( 99 ))

将测得的N个其他设备测得同一生理参数数据,以及本发明所述方法中测得的表达式y*的各项数据,带入公式(9)中的L+1个方程,解出a0,a1,…,aL,则可得完整的多变量拟合函数公式(3),由上述令的x0=1,x2i-1=Ri,x2i=(Ri)2,x2i-1+2M=Rmax i,x2i+2M=Rmax i 2,x2i-1+2(M+N)=Rmin i,x2i+2(M+N)=Rmin i 2,x2(M+2N)+1=Tb,x2(M+2N)+2=Tb 2,带入公式(1)便可得到完整的y*表达式。The same physiological parameter data measured by N other devices measured, and the data of the expression y* measured in the method of the present invention, are brought into the L+1 equations in the formula (9), and solved a 0 ,a 1 ,…,a L , then the complete multivariate fitting function formula (3) can be obtained, from the above-mentioned x 0 =1, x 2i-1 =R i , x 2i =(R i ) 2 , x 2i-1+2M =R max i , x 2i+2M =R max i 2 , x 2i-1+2(M+N) =R min i , x 2i+2(M+N) =R min i 2 , x 2(M+2N)+1 =T b , x 2(M+2N)+2 =T b 2 , put into formula (1) to get the complete expression of y*.

一种基于多光纤束的在体实时无创生理参数采集装置,如图1所示,包括光学模块和电学模块。其中电学模块的核心部位为处理器单元,本实施例中处理器单元为32位。电学模块一方面是通过32位处理器单元内带的D/A转换向外提供一个高精度参考电压,并经电压跟随单元后,在32位处理器单元的控制下,通过模拟选择单元选择相应的通道输出,经后继电压电流转换单元转换为高精度的电流输入到光学模块中的单色光源组,这样,电学模块就可以实现对构成单色光源组的LED亮度的高精度控制;另一方面是利用双道前置放大单元实现将光学模块中的光电传感器获取的透射光强和反射光强的变化转换为与各自光强成比例的电压,通过双道滤波单元滤除各种干扰信号后,再在32位微处理器单元的控制下,通过双道数控放大单元选择各自合适的放大倍数后送入32位微处理器单元内带的12位A/D转换,实现将其电压转换为对应的数字值,同时利用外部高精度参考电压单元提供的电压经A/D转换的值、32为微处理器单元设定的不同放大倍数下的基准值和线性修正值,进一步提高电压的测量精度,即提高透射光强和反射光强的精度,同时通过相应的计算的得出所需测量生理参数的相应值,通过显示及输入单元显示出来。DC-DC电压转换单元主要为该装置各单元提供所学的电源。An in vivo real-time non-invasive physiological parameter acquisition device based on multi-fiber bundles, as shown in Figure 1, includes an optical module and an electrical module. The core part of the electrical module is a processor unit, and the processor unit in this embodiment is 32 bits. On the one hand, the electrical module provides a high-precision reference voltage through the D/A conversion inside the 32-bit processor unit, and after the voltage follower unit, under the control of the 32-bit processor unit, selects the corresponding voltage through the analog selection unit. The output of the channel is converted into a high-precision current by the subsequent voltage-current conversion unit and input to the monochromatic light source group in the optical module. In this way, the electrical module can realize high-precision control of the brightness of the LEDs that constitute the monochromatic light source group; the other On the one hand, the dual-channel pre-amplification unit is used to convert the changes in the transmitted light intensity and reflected light intensity obtained by the photoelectric sensor in the optical module into voltages proportional to their respective light intensities, and various interference signals are filtered out through the dual-channel filter unit Finally, under the control of the 32-bit microprocessor unit, select the appropriate magnification through the dual-channel numerical control amplifier unit and send it to the 12-bit A/D conversion in the 32-bit microprocessor unit to realize its voltage conversion For the corresponding digital value, at the same time, use the A/D converted value of the voltage provided by the external high-precision reference voltage unit, and the reference value and linear correction value under different magnifications set by the microprocessor unit to further improve the voltage. Measurement accuracy, that is, to improve the accuracy of the transmitted light intensity and reflected light intensity, and at the same time obtain the corresponding values of the physiological parameters required to be measured through corresponding calculations, and display them through the display and input unit. The DC-DC voltage conversion unit mainly provides the learned power for each unit of the device.

光学模块主要由光纤束组、单色光源组、光电传感器及机械结构组成。光学模块实时数据采集时,如图2所示,将手指或耳垂置于光学模块上。其中的光纤束组,将各种单色光聚集在一个小范围,以及从一个小范围获取反射和透射光并经光电传感器将光转换为电信号送给电学模块处理,同时使得各单色光能均匀地照射到测量的相应部位以提高整体的测量精度。实用光纤束组还可有效地减小杂散光的影响,并且装配方便。单色光源组主要由各种单色波长的LED构成,为测量提供相应的光波长及所需的照射光强。光电传感器主要是实现将变化的光信号转换为电信号,传送给电学模块。机械结构主要将上述的光纤束组、单色光源组、光电传感器固定于一体,以方便测量人体生理参数。The optical module is mainly composed of optical fiber bundle group, monochromatic light source group, photoelectric sensor and mechanical structure. When the optical module collects real-time data, as shown in Figure 2, put your finger or earlobe on the optical module. Among them, the optical fiber bundle group gathers various monochromatic lights in a small area, and obtains reflected and transmitted light from a small area, converts the light into electrical signals through photoelectric sensors and sends them to the electrical module for processing, and at the same time makes each monochromatic light It can evenly irradiate the corresponding parts of the measurement to improve the overall measurement accuracy. The practical fiber bundle group can also effectively reduce the influence of stray light, and it is easy to assemble. The monochromatic light source group is mainly composed of LEDs with various monochromatic wavelengths, which provide corresponding light wavelengths and required irradiation light intensity for measurement. The photoelectric sensor is mainly to convert the changing optical signal into an electrical signal and transmit it to the electrical module. The mechanical structure mainly fixes the above-mentioned optical fiber bundle group, monochromatic light source group, and photoelectric sensor in one body to facilitate the measurement of human physiological parameters.

以上对发明实施例所提供的技术方案进行了详细介绍,本文中应用了具体个例对本发明实施例的原理以及实施方式进行了阐述,以上实施例的说明只适用于帮助理解本发明实施例的原理;同时,对于本领域的一般技术人员,依据本发明实施例,在具体实施方式以及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。The technical solutions provided by the embodiments of the invention have been introduced in detail above, and specific examples have been used in this paper to illustrate the principles and implementation methods of the embodiments of the present invention. The descriptions of the above embodiments are only applicable to help understand the embodiments of the present invention At the same time, for those of ordinary skill in the art, according to the embodiment of the present invention, there will be changes in the specific implementation and application scope. In summary, the content of this specification should not be construed as limiting the present invention.

Claims (9)

1.一种基于多光纤束的在体实时无创生理参数采集方法,其特征在于,包括以下几个步骤:1. A real-time non-invasive physiological parameter acquisition method in vivo based on multi-fiber bundle, is characterized in that, comprises the following steps: 第一步:确定各项生理参数的检测波的波长和个数;Step 1: Determine the wavelength and number of detection waves of various physiological parameters; 第二步:多次测量人体某一部位,通过温度传感器测量被测人的体温,通过其他设备测量出相应生理参数的值,根据第一步确定的检测波的波长和个数,针对同一参数,在不同波长的情况下,获取透射光强与反射光强的比值及时间的变化,并记录实际测量所用波长的总个数N;The second step: measure a certain part of the human body multiple times, measure the body temperature of the measured person through a temperature sensor, and measure the value of the corresponding physiological parameter through other equipment. According to the wavelength and number of detection waves determined in the first step, for the same parameter , in the case of different wavelengths, obtain the ratio of the transmitted light intensity to the reflected light intensity and the time change, and record the total number N of wavelengths used in the actual measurement; 第三步:利用上述透射光强与反射光强的比值及随时间的变化情况,计算出透射和反射光强比值在设定的脉动周期内的最大值的平均值、最小值的平均值,并从透射和反射光强比值随时间的变化信号中提取特征参数值,确定获取的特征参数值的总个数M;Step 3: Using the above-mentioned ratio of transmitted light intensity to reflected light intensity and the change over time, calculate the average value of the maximum value and the average value of the minimum value of the ratio of transmitted and reflected light intensity within the set pulsation period, And extract the characteristic parameter value from the time-varying signal of the ratio of transmitted and reflected light intensity, and determine the total number M of the obtained characteristic parameter values; 第四步:对每一测量的生理参数采用个性化拟合,设拟合的某一需测生理参数值为y*,则其表达式表示为:Step 4: Use personalized fitting for each measured physiological parameter, assuming that the value of a certain physiological parameter to be measured is y*, then its expression is expressed as: ythe y ** == cc 00 ++ ΣΣ ii == 11 Mm cc 22 ii -- 11 PP ii ++ ΣΣ ii == 11 Mm cc 22 ii PP ii 22 ++ ΣΣ ii == 11 NN kk 22 ii -- 11 RR maxmax ii ++ ΣΣ ii == 11 NN kk 22 ii RR maxmax ii 22 ++ ΣΣ ii == 11 NN ll 22 ii -- 11 RR minmin ii ++ ΣΣ ii == 11 NN ll 22 ii RR minmin ii 22 ++ cc TT bb TT bb ++ cc TT ′′ TT bb 22 -- -- -- (( 11 )) 公式(1)中,M为获取的特征参数值的总个数,N为实际测量所用波长的总个数,c0表示拟合计算系数,c2i-1表示第i个特征参数的计算系数,Pi表示第i个特征参数的值,Rmaxi、Rmini分别表示第i种波长透射光和反射光比值在脉动周期的最大值的平均值、最小值平均值的常用对数值,k2i-1、k2i、l2i-1、l2i分别代表Rmaxi、Rmini的一次方、二次方的计算系数,Tb表示测量时的体温,cTb表示对上述体温Tb的一次方的计算系数,cTb'表示对上述体温Tb的二次方的计算系数,上述各系数可通过偏最小二乘法求得。In formula (1), M is the total number of acquired characteristic parameter values, N is the total number of wavelengths used in actual measurement, c 0 represents the fitting calculation coefficient, and c 2i-1 represents the calculation coefficient of the i-th characteristic parameter , P i represents the value of the i-th characteristic parameter, R maxi and R mini represent the average value of the maximum value and the average value of the minimum value of the ratio of transmitted light and reflected light at the i-th wavelength in the pulsation cycle, respectively, k 2i -1 , k 2i , l 2i-1 , and l 2i respectively represent the calculation coefficients of the first power and the second power of R maxi and R mini , T b represents the body temperature at the time of measurement, and c Tb represents the first power of the above body temperature T b The calculation coefficient of c Tb ' represents the calculation coefficient of the square of the above-mentioned body temperature T b , and the above-mentioned coefficients can be obtained by the partial least square method. 2.根据权利要求1所述的一种基于多光纤束的在体实时无创生理参数采集方法,其特征在于,所述步骤第一步还包括,采用紫外-可见-近红外分光光度计对人体全血进行扫描,根据化学中各基团、功能团或分子的吸收峰,确定需测量生理参数相关及不相关的波长或波长范围;对上述两类波长或波长范围,分别选取1到4种,确定检测波长的个数。2. a kind of in vivo real-time non-invasive physiological parameter collection method based on multi-fiber bundle according to claim 1, is characterized in that, described step the first step also comprises, adopts ultraviolet-visible-near-infrared spectrophotometer to human body Whole blood is scanned, and according to the absorption peaks of various groups, functional groups or molecules in chemistry, determine the relevant and irrelevant wavelengths or wavelength ranges that need to be measured for physiological parameters; for the above two types of wavelengths or wavelength ranges, select 1 to 4 kinds respectively , to determine the number of detection wavelengths. 3.根据权利要求1所述的一种基于多光纤束的在体实时无创生理参数采集方法,其特征在于,所述步骤第四步,采用偏最小二乘法求取需测生理参数值为y*表达式的各项系数,具体方法为:令x0=1,x2i-1=Ri,x2i=(Ri)2,x2i-1+2M=Rmaxi,x2i+2M=Rmaxi 2,x2i-1+2(M+N)=Rmini,x2i+2(M+N)=Rmini 2,x2(M+2N)+1=Tb,x2(M+2N)+2=Tb 2,其对应的系数依次用ai表示,则公式(1)可替换为:3. a kind of in vivo real-time non-invasive physiological parameter collection method based on multi-fiber bundle according to claim 1, is characterized in that, described step 4th step, adopts partial least squares method to obtain the physiological parameter value that needs to measure y *The various coefficients of the expression, the specific method is: set x 0 =1, x 2i-1 =R i , x 2i =(R i ) 2 , x 2i-1+2M =R maxi , x 2i+2M = R maxi 2 , x 2i-1+2(M+N) =R mini , x 2i+2(M+N) =R mini 2 , x 2(M+2N)+1 =T b , x 2(M +2N)+2 =T b 2 , and its corresponding coefficients are represented by a i in turn, then the formula (1) can be replaced as: ythe y ** == aa 00 xx 00 ++ aa 11 xx 11 ++ aa 22 xx 22 ++ ΛΛ ++ aa 22 (( Mm ++ 22 NN )) xx 22 (( Mm ++ 22 NN )) == ΣΣ ii == 00 22 (( Mm ++ 22 NN )) aa ii xx ii -- -- -- (( 22 )) L=2(M+2N),则公式(2)可进一步简写为:设其他设备或方法测量出相应生理参数值用y表示,共对同一个人测量了K次,且K>L,用ym表示其他设备或方法测量出相应参数的第m个值,ym*表示第m个数据拟合的值,则其差δm=|ym-ym*|,根据公式(3),ym*可表示为:Let L=2(M+2N) , then formula (2) can be further abbreviated as: Assume that the value of the corresponding physiological parameter measured by other equipment or methods is represented by y, and the same person has been measured K times in total, and K>L, and y m represents the mth value of the corresponding parameter measured by other equipment or methods, y m * represents the fitting value of the mth data, then its difference δ m =|y m -y m *|, according to formula (3), y m * can be expressed as: ythe y mm ** == ΣΣ ii == 00 LL aa ii xx ii mm -- -- -- (( 44 )) 根据偏最小二乘法的原理,要使得最小,即According to the principle of partial least squares method, to make minimum, ie 最小。则有: minimum. Then there are: ∂∂ [[ ΣΣ mm == 11 NN (( ythe y mm -- ΣΣ ii == 00 LL aa ii xx ii mm )) 22 ]] ∂∂ aa kk == 00 ,, (( kk == 00 ,, ΛΛ ,, LL )) -- -- -- (( 55 )) 整理公式(5),可得:根据公式(6),可解公式(2)中,各项系数ai,将ai带入公式(1)中,可得需测生理参数值为y*的完整表达式。Arranging formula (5), we can get: According to the formula (6), the various coefficients a i in the formula (2) can be solved, and a i can be brought into the formula (1), and the complete expression of the physiological parameter value to be measured can be obtained as y*. 4.一种基于多光纤束的在体实时无创生理参数采集装置,其特征在于,包括光学模块和电学模块,所述光学模块包括光纤束组、为测量提供相应光波长及所需照射光强的单色光源组、将变化的光信号转换为电信号的光电传感器,所述光纤束组将各种单色光聚集在一个小范围内、以及从一个小范围内获取反射和透射光并经所述光电传感器将光转换为电信号送给所述电学模块处理;所述电学模块包括将所述光电传感器获取的透射光强和反射光强的变化转换为与各自光强成比例的电压的双道前置放大单元,将透射光强和反射光强变化转换的电压转换为对应数字值、向外提供一个高精度参考电压、以及对本装置其他单元起控制作用的处理器单元,将所述高精度电压转化为电流输入到所述单色光源组的电压电流转换单元。4. An in vivo real-time non-invasive physiological parameter acquisition device based on multi-fiber bundles, characterized in that it includes an optical module and an electrical module, the optical module includes an optical fiber bundle group, provides corresponding light wavelengths and required irradiation light intensity for measurement The monochromatic light source group, the photoelectric sensor that converts the changing optical signal into an electrical signal, the optical fiber bundle group gathers various monochromatic light in a small range, and obtains reflected and transmitted light from a small range and passes through The photoelectric sensor converts light into an electrical signal and sends it to the electrical module for processing; the electrical module includes a circuit that converts the changes in the transmitted light intensity and reflected light intensity obtained by the photoelectric sensor into voltages proportional to the respective light intensities. The double-channel preamplifier unit converts the voltage converted by the change of the transmitted light intensity and reflected light intensity into a corresponding digital value, provides a high-precision reference voltage to the outside, and a processor unit that controls other units of the device. The high-precision voltage is converted into a current input to the voltage-current conversion unit of the monochromatic light source group. 5.根据权利要求4所述的一种基于多光纤束的在体实时无创生理参数采集装置,其特征在于,所述光学模块还包括将上述的光纤束组、单色光源组、光电传感器固定于一体的机械结构。5. A kind of in vivo real-time noninvasive physiological parameter acquisition device based on multi-fiber bundles according to claim 4, characterized in that, the optical module also includes fixing the above-mentioned fiber bundle group, monochromatic light source group, photoelectric sensor In one mechanical structure. 6.根据权利要求4所述的一种基于多光纤束的在体实时无创生理参数采集装置,其特征在于,所述单色光源组由各种单色波长的LED构成。6 . The in vivo real-time non-invasive physiological parameter acquisition device based on multi-fiber bundles according to claim 4 , wherein the monochromatic light source group is composed of LEDs of various monochromatic wavelengths. 7 . 7.根据权利要求4所述的一种基于多光纤束的在体实时无创生理参数采集装置,其特征在于,所述电学单元还包括位于双道前置放大单元与处理器单元间,设置有将透射光强和反射光强变化转换的电压信号进行滤波的双道滤波单元,以及选择合适倍数进行放大的双道数控放大单元;位于所述电压电流转换单元与处理器单元间,由所述处理器单元控制的、可选择相应通道输出的模拟选择单元,所述模拟选择单元与所述处理器单元间设置有电压跟随单元;所述电学单元还包括显示及输入单元。7. A kind of in vivo real-time non-invasive physiological parameter acquisition device based on multi-fiber bundles according to claim 4, characterized in that, the electrical unit also includes a dual-channel preamplifier unit and a processor unit, and is provided with A dual-channel filter unit that filters the voltage signal converted from changes in transmitted light intensity and reflected light intensity, and a dual-channel digitally controlled amplifier unit that selects an appropriate multiple for amplification; located between the voltage-current conversion unit and the processor unit, the An analog selection unit controlled by the processor unit and capable of selecting the output of the corresponding channel, a voltage follower unit is arranged between the analog selection unit and the processor unit; the electrical unit also includes a display and input unit. 8.根据权利要求7所述的一种基于多光纤束的在体实时无创生理参数采集装置,其特征在于,所述双道前置放大单元、双道滤波单元、双道数控放大单元、处理器单元、显示及输入单元、电压跟随单元、模拟选择单元、电压电流转换单元由DC-DC电压转换单元供电。8. A kind of in vivo real-time non-invasive physiological parameter acquisition device based on multi-fiber bundles according to claim 7, characterized in that, said dual-channel preamplifier unit, dual-channel filter unit, dual-channel numerically controlled amplification unit, processing The controller unit, display and input unit, voltage follower unit, analog selection unit, and voltage-current conversion unit are powered by the DC-DC voltage conversion unit. 9.根据权利要求7所述的一种基于多光纤束的在体实时无创生理参数采集装置,其特征在于,所述处理器单元内含D/A转换以及A/D转换;所述处理器单元设定有不同放大倍数下的基准值和线性修正值。9. A kind of in vivo real-time non-invasive physiological parameter acquisition device based on multi-fiber bundles according to claim 7, characterized in that, the processor unit contains D/A conversion and A/D conversion; The unit is set with reference values and linear correction values at different magnifications.
CN201610416345.4A 2016-06-14 2016-06-14 It is a kind of based on multi fiber beam in body noninvasive physiological parameter acquisition method and device in real time Expired - Fee Related CN105997104B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610416345.4A CN105997104B (en) 2016-06-14 2016-06-14 It is a kind of based on multi fiber beam in body noninvasive physiological parameter acquisition method and device in real time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610416345.4A CN105997104B (en) 2016-06-14 2016-06-14 It is a kind of based on multi fiber beam in body noninvasive physiological parameter acquisition method and device in real time

Publications (2)

Publication Number Publication Date
CN105997104A true CN105997104A (en) 2016-10-12
CN105997104B CN105997104B (en) 2019-07-05

Family

ID=57087432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610416345.4A Expired - Fee Related CN105997104B (en) 2016-06-14 2016-06-14 It is a kind of based on multi fiber beam in body noninvasive physiological parameter acquisition method and device in real time

Country Status (1)

Country Link
CN (1) CN105997104B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109846462A (en) * 2019-04-03 2019-06-07 小甑科技(深圳)有限公司 A kind of method and system measuring blood glucose

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355880A (en) * 1992-07-06 1994-10-18 Sandia Corporation Reliable noninvasive measurement of blood gases
JPH09308623A (en) * 1996-05-24 1997-12-02 Hitachi Ltd Non-invasive biochemical measurement device
CN1095080C (en) * 1996-11-26 2002-11-27 松下电工株式会社 Device for non-invasive determination of glucose concn. in blood of subject
CN103249362A (en) * 2010-10-08 2013-08-14 爱德华兹生命科学公司 System, method and computer program product for optical measurement of blood parameters
CN103429153A (en) * 2010-11-03 2013-12-04 华盛顿大学商业中心 Determination of tissue oxygenation in vivo
WO2015174499A1 (en) * 2014-05-14 2015-11-19 国立大学法人信州大学 Blood pressure estimation method and blood pressure measurement device
CN105212915A (en) * 2015-11-06 2016-01-06 重庆医科大学 Personalized at the real-time non-invasive detection methods of body blood pressure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355880A (en) * 1992-07-06 1994-10-18 Sandia Corporation Reliable noninvasive measurement of blood gases
JPH09308623A (en) * 1996-05-24 1997-12-02 Hitachi Ltd Non-invasive biochemical measurement device
CN1095080C (en) * 1996-11-26 2002-11-27 松下电工株式会社 Device for non-invasive determination of glucose concn. in blood of subject
CN103249362A (en) * 2010-10-08 2013-08-14 爱德华兹生命科学公司 System, method and computer program product for optical measurement of blood parameters
CN103429153A (en) * 2010-11-03 2013-12-04 华盛顿大学商业中心 Determination of tissue oxygenation in vivo
WO2015174499A1 (en) * 2014-05-14 2015-11-19 国立大学法人信州大学 Blood pressure estimation method and blood pressure measurement device
CN105212915A (en) * 2015-11-06 2016-01-06 重庆医科大学 Personalized at the real-time non-invasive detection methods of body blood pressure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109846462A (en) * 2019-04-03 2019-06-07 小甑科技(深圳)有限公司 A kind of method and system measuring blood glucose

Also Published As

Publication number Publication date
CN105997104B (en) 2019-07-05

Similar Documents

Publication Publication Date Title
Reddy et al. A novel calibration-free method of measurement of oxygen saturation in arterial blood
Kuang et al. Low-cost plastic optical fiber integrated with smartphone for human physiological monitoring
Dunaev et al. Substantiation of medical and technical requirements for noninvasive spectrophotometric diagnostic devices
JP3928051B2 (en) Psychological state evaluation device
US10765352B2 (en) Multi-sensor non-invasive blood glucose monitoring instrument based on impedance spectroscopy-optical method
CN103327886A (en) Optical measurement device and a method for an optical measurement
CN102198004A (en) Noninvasive near-infrared electronic blood-glucose meter
CN105212915B (en) Non-invasive blood pressure detection device
CN103027691B (en) Digital Physiological And Biochemical Parameters measuring device and measuring method
CN108324286B (en) Infrared noninvasive blood glucose detection device based on PCA-NARX correction algorithm
CN111513728A (en) A multi-technology fusion non-invasive blood glucose detection device and measurement method
Son et al. Design an IoT wrist-device for SpO2 measurement
CN107242855A (en) A kind of biological tissue's dynamic modulation spectral measurement device and method
CN108634964A (en) A kind of non-invasive blood sugar instrument based on spectrum
CN106264555B (en) Blood sugar detector
CN104622479A (en) Noninvasive blood oxygen saturation detector
CN105997104B (en) It is a kind of based on multi fiber beam in body noninvasive physiological parameter acquisition method and device in real time
ITBS20070161A1 (en) METHOD AND INSTRUMENT FOR THE NON-INVASIVE MEASUREMENT OF OXYGENATION / SATURATION OF A BIOLOGICAL FABRIC
CN104224198A (en) Multi-function portable noninvasive medical treatment detection device and method based on Raman scattering
CN104729994B (en) For enhancing the method and apparatus of Raman spectrometer signal-to-noise ratio
Liu et al. Wearable monitoring system with multiple physiological parameters
CN114081483A (en) A Tissue Blood Flow and Blood Oxygen Saturation Measurement Method Based on Deep Learning Diffusion Correlation Spectroscopy
CN105092497B (en) The data processing method of individuation blood sugar concentration detection means
Muthmainnah et al. Development of optical sensor technology for non-invasive hemoglobin measurement
CN208031214U (en) The measuring device of Non-invasive detection hemoglobin level

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190705

Termination date: 20200614

CF01 Termination of patent right due to non-payment of annual fee