CN105762386A - 具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成 - Google Patents
具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成 Download PDFInfo
- Publication number
- CN105762386A CN105762386A CN201610075115.6A CN201610075115A CN105762386A CN 105762386 A CN105762386 A CN 105762386A CN 201610075115 A CN201610075115 A CN 201610075115A CN 105762386 A CN105762386 A CN 105762386A
- Authority
- CN
- China
- Prior art keywords
- fuel
- fuel cell
- gas
- steam
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0618—Reforming processes, e.g. autothermal, partial oxidation or steam reforming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J7/00—Apparatus for generating gases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/061—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of metal oxides with water
- C01B3/063—Cyclic methods
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/344—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using non-catalytic solid particles
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/725—Redox processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
- C10K3/02—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
- C10K3/026—Increasing the carbon monoxide content, e.g. reverse water-gas shift [RWGS]
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0643—Gasification of solid fuel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1007—Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M8/144—Fuel cells with fused electrolytes characterised by the electrolyte material
- H01M8/145—Fuel cells with fused electrolytes characterised by the electrolyte material comprising carbonates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0211—Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
- C01B2203/0216—Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0211—Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
- C01B2203/0222—Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic carbon dioxide reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0238—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/06—Integration with other chemical processes
- C01B2203/066—Integration with other chemical processes with fuel cells
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/08—Methods of heating or cooling
- C01B2203/0805—Methods of heating the process for making hydrogen or synthesis gas
- C01B2203/0811—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
- C01B2203/0827—Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel at least part of the fuel being a recycle stream
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/14—Details of the flowsheet
- C01B2203/148—Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0916—Biomass
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/093—Coal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0959—Oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0983—Additives
- C10J2300/0993—Inert particles, e.g. as heat exchange medium in a fluidized or moving bed, heat carriers, sand
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1603—Integration of gasification processes with another plant or parts within the plant with gas treatment
- C10J2300/1612—CO2-separation and sequestration, i.e. long time storage
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/164—Integration of gasification processes with another plant or parts within the plant with conversion of synthesis gas
- C10J2300/1643—Conversion of synthesis gas to energy
- C10J2300/1646—Conversion of synthesis gas to energy integrated with a fuel cell
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1678—Integration of gasification processes with another plant or parts within the plant with air separation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/18—Details of the gasification process, e.g. loops, autothermal operation
- C10J2300/1807—Recycle loops, e.g. gas, solids, heating medium, water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/002—Removal of contaminants
- C10K1/003—Removal of contaminants of acid contaminants, e.g. acid gas removal
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/02—Dust removal
- C10K1/024—Dust removal by filtration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M2008/147—Fuel cells with molten carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0048—Molten electrolytes used at high temperature
- H01M2300/0051—Carbonates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/16—Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
- Y02E20/18—Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Electrochemistry (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Fuel Cell (AREA)
Abstract
一种具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成。提供基本零CO2排放的高效发电方法和系统。形成了在产生气态燃料(H2、CO等)的单元与燃料电池阳极侧之间的闭合回路。在某些实施方案中,对于气态燃料产生也利用来自燃料电池阴极侧的热和含氧排出气体。该用于转化燃料的系统可包括配置用于实施氧化-还原反应的反应器。所得发电效率由于在燃料电池阳极回路中用于气态燃料生产的最小化蒸汽消耗以及战略性质量和能量集成方案而改进。
Description
本申请是基于申请号为201080048130.2、申请日为2010年9月8日、发明名称为“具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成”的中国专利申请的分案申请。
本发明通常涉及在原位CO2捕集下发电的系统和方法。在某些实施方案中,利用使用一种或多种化学中间体的氧化还原(redox)系统以在CO2捕集下转化碳质燃料。这后面是与电化学转化装置的战略性集成以产生电力。在其他实施方案中,水裂解系统与电化系统集成。通过工艺集成,工艺辅助动力消耗和/或水利用和用于产生蒸汽的能量被最小化。
包括原油、天然气和煤炭的化石燃料代表着全世界现今能量供应的大多数。然而,化石燃料的使用需要将它们转变成载体,诸如热、电力、液体燃料或通过化学转化过程转变为化学品。在日益增加的能量需要和对于来自化石燃料应用的碳排放的伴随担忧之下,广泛的工作已经调整向发展可持续的碳中性的、有效且经济的能量系统。从使用化石燃料到使用核和诸如太阳能和生物质的可再生资源的转换因此代表着这类工作的自然进展。
现有发电技术具有一个或多个以下局限性/缺点:1)高成本(例如,光伏、气化、超超临界粉煤燃烧);2)低效率(例如,亚临界粉煤燃烧);3)环境问题(例如,化石燃料发电站);和4)安全问题(例如,核动力)。
关于常规热电站的常见问题之一在于在冷却和重新加热蒸汽期间的大量能量损失。因此需要使蒸汽产生的需求最小化的系统和方法。
在碳质燃料和空气/蒸汽/CO2之间在反应介质辅助下的化学反应可代表使燃料转化过程中的能量损失最小化的有效方式。已经提出了许多技术来使用金属氧化物转化碳质燃料。例如,Watkins的美国专利3,027,238号描述了一种生产氢气的方法,其包括在还原区中还原金属氧化物和在氧化区中用蒸汽氧化还原了的金属以产生氢气。然而,该技术限于气态燃料转化。此外,该气态燃料仅通过金属氧化物部分转化。Thomas的美国专利7,767,191号、Fan的PCT申请WO2007082089号和Fan的PCT申请WO2010037011号描述了通过以下来生产氢气的方法:在基于碳的燃料和金属氧化物之间的还原反应中还原金属氧化物以提供具有较低氧化态的被还原的金属或金属氧化物,和氧化被还原的金属或金属氧化物以产生氢气和具有较高氧化态的金属氧化物。
氢气也可以经光电解、热解和热化学路径由水裂解产生。
为了产生电力,上述方法教导了氢气产物在燃气涡轮机、燃气发动机和/或燃料电池中的进一步转化。然而,大量蒸汽用于这些工艺中以便产生氢气。氢气在常规氢燃料发电装置中的简单转化将导致大量蒸汽/水的冷却和重新加热,产生发电系统的极大不可逆性。
在对电力的需要日益增加的情况下,这要求在效率较高和污染物较少的情况下产生电力的改进的方法、系统和在其中的系统组件。
本发明的实施方案通常涉及在基本零CO2排放的情况下的高效发电方法和系统。形成了在产生气态燃料(H2、CO等)的单元与燃料电池阳极侧之间的闭合回路。在某些实施方案中,对于气态燃料产生也利用来自燃料电池阴极侧的热和含氧排出气体。本文公开的系统的发电效率显著大于目前技术水平方法,这归因于气态燃料生产的最小化的蒸汽消耗、燃料电池阳极回路以及战略性质量和能量集成方案。
鉴于以下附图和详述将更全面地理解由本发明的实施方案提供的其它特征和优势。
当结合以下附图阅读时,可更好地理解本发明的说明性实施方案的以下详述,其中类似结构用类似参考数字表示且其中:
图1为根据一个实施方案在最小蒸汽消耗下产生电力的方法的一般示意图,其中燃料电池与重整或水裂解系统集成以使在该方法中的蒸汽产生需求最小化。
图2为用于在最小蒸汽需求下发电的燃料电池与基于氧化还原的重整/水裂解区块的集成的实施方案的一般示意图。
图3进一步说明基于铁氧化物的氧化还原的重整/水裂解区块和燃料电池系统的实施方案的集成。
图4为使用来源于诸如煤炭或生物质的固体燃料作为原料的合成气的基于铁氧化物的氧化还原方法的实施方案的示意图。
图5为使用固体燃料诸如煤炭、生物质和/或固体废物直接作为原料的基于铁氧化物的氧化还原方法的实施方案及其与燃料电池的集成的示意图。
图6为与燃料电池集成的基于钙的重整/水裂解区块的实施方案的示意图。
图7为用于发电的与燃料电池集成的膜强化的重整/水裂解区块的实施方案的示意图。
图8为使用太阳能或核热能的基于锌的水裂解区块的实施方案及其与使用太阳能或核能的燃料电池的集成的示意图。
图9为说明使用氧化还原反应和固体氧化物燃料电池(SOFC)的集成的煤变电系统的实施方案的更详细示意图。
图10说明以下实施方案,其中来自基于氧化还原的重整/水裂解区块的还原器的未转化的燃料通过辅助燃料电池转化,接着进行氧精加工步骤(polishingstep)。在氧化器与燃料电池区块之间的工作流体保持闭合回路。
通常参看图1,本发明的实施方案涉及在最小蒸汽消耗和/或辅助发电及低至零的碳排放下使热和化学能源转化为电力的系统和方法。除非另作说明或上下文另外要求,否则所有百分数都以重量%报道。
在一个实施方案中,系统被分成两个区块或子系统,即重整/水裂解区块和燃料电池区块。所述重整/水裂解区块由蒸汽/CO2和诸如太阳能、核和碳质燃料的能源产生诸如氢气、合成气和/或轻质烃的气态燃料。所述燃料电池区块使来自重整/水裂解区块的气态燃料转化为电力,同时产生含有未转化的燃料和蒸汽和/或CO2的排出物流用于重整/水裂解区块。
燃料电池区块的蒸汽/CO2排出物,其可能含有未转化的燃料,被再循环到重整/水裂解区块以产生气态燃料。在某些情况下,需要排出物的较低程度重新加热和重新加压。在所有情况下,蒸汽冷凝和重新加热是最小的。
为了保持重整/水裂解区块和燃料电池区块两者的操作压力,从主气态物流中分离出排出物和/或气态燃料的流股(bleed)并重新加压。同时,将重新加压的补充物流与主气态物流合并。因为CO2/蒸汽与CO/H2燃料一起在重整/水裂解区块和燃料电池区块之间循环,蒸汽/CO2充当工作流体用于发电。涡轮机(蒸汽涡轮机和燃气涡轮机两者)的使用在该方案中最少化,因为来自燃料电池的部分转化的气态燃料几乎完全再循环到燃料生产阶段。在重整/水裂解区块和燃料电池区块之间形成工作流体的闭合回路。通过使蒸汽冷凝和重新加热最少化且使燃料电池中的燃料转化率最大化,使该工艺的不可逆性被最小化。
在使用诸如固体氧化物燃料电池(SOFC)的高温燃料电池的情况下,耐硫水平比较高。因此,诸如氧化钙吸着剂床的简单热气清除单元可与工作流体回路集成。
重整/水裂解区块的操作压力可与燃料电池区块相当。两个区块都在1.01×105Pa至8.11×106Pa(1atm至80atm)之间的压力下操作。各单元的温度介于300℃至1300℃之间。来自系统的高温高压废物流可用于预热进料物流,产生动力并重新加压补充物流。
用于重整/水裂解区块的能源可为碳质燃料或来自诸如太阳能或核的其他来源的热能。所述碳质燃料可包括煤炭、甲烷、生物质、合成气、石油焦、超稠油、蜡和油页岩。
在使用碳质燃料的情况下,使用载氧体或CO2吸着剂将燃料重整/气化为氢气和/或CO。在使用来自太阳能或核的热能的情况下,使用热化学水裂解方案来将热能转化为氢气和氧气。
图2说明一般工艺构造,其中使用基于金属氧化物的载氧粒子用蒸汽/CO2间接重整或气化碳质燃料。在还原阶段中的反应为
MeOx+燃料=MeOy+CO2+H2O。
在大多数情况下,选择金属氧化物、反应器设计和操作模式以使得至少80%的燃料转化为CO2和蒸汽。在一些情况下,氧精加工步骤用以将未转化的燃料(<20%)完全燃烧成可封存的CO2和H2O。在优选的实施方案中,至少95%的燃料转化为CO2和蒸汽。来自还原步骤的排出气体物流因此为可封存的。
在图2的氧化阶段中的反应为
MeOy+(x-y)H2O/CO2=MeOx+(x-y)H2/CO
从燃料电池阳极侧的排出物中直接取出的用于氧化阶段的进料(在某些情况下进行较低程度的重新压缩)含有燃料,诸如H2/CO。在燃料电池排出物/氧化进料中的燃料浓度通常为0-60%。在进料物流中的H2O/CO2被至少部分地转化为H2/CO,因此在该气态物流中的燃料浓度增加。在氧化阶段的产物物流中的H2/CO浓度通常为30%-99%且比在燃料电池阳极的排出物流中的H2/CO浓度高至少5%。来自氧化阶段的富燃料物流随后被直接引导回到燃料电池以便发电。
图3说明具体工艺构造,其中碳质燃料用作燃料且铁氧化物用作载氧体。在该实施方案中,使用三个反应器氧化还原系统以与在Thomas的美国专利7,767,191号、Fan的PCT申请WO2007082089号和Fan的PCT申请WO2010037011号中所公开的方式类似的方式转化燃料。第一反应器,还原器,被构造以将碳质燃料氧化成CO2和蒸汽,同时还原基于金属氧化物的载氧体。在该还原器中需要或产生的热由载氧体粒子提供或除去。第二反应器,氧化器,被构造以用蒸汽或CO2(部分)氧化被还原的载氧体的一部分。第三反应器,燃烧器,使用空气来燃烧氧化器中的被部分氧化的载氧体和来自还原器的被还原的载氧体的剩余部分。
氧化器的进料为来自燃料电池阳极侧的排出物且氧化器的产物直接用作燃料电池阳极的进料。氧化器在工作流体(CO/H2/CO2/H2O)物流中富集燃料含量。在优选的实施方案中,燃料电池阳极侧和氧化器的气态物流形成闭合回路,其中气态物流的加入和排放最低。为了保持工作流体的压力,在主回路或分流回路(splitloop)内进行流体的重新加压。在某些实施方案中,高温吸着剂床,诸如使用基于氧化钙的吸着剂的高温吸着剂床,被集成到回路中以防止诸如H2S的污染物的积聚。在其他情况下,仅对排放物流进行硫处理,不处理主工作流体物流。
载氧体包括具有布置在载体上的至少一种金属氧化物的多个陶瓷复合粒子。陶瓷复合粒子描述在Thomas的美国专利7,767,191号、Fan的PCT申请WO2007082089号和Fan的PCT申请WO2010037011号中。
回头参看在图3的第一反应器(即,还原器)中的还原反应,该还原器利用诸如合成气、甲烷和轻质烃、煤炭、焦油、油页岩、油砂、沥青砂、生物质、蜡和焦炭的各种碳质燃料来还原含铁氧化物的陶瓷复合材料,以产生被还原的金属和/或金属氧化物的混合物。可能的还原反应包括:
FeOx+燃料→FeOy+CO2+H2O
燃料+CO2→CO+H2
燃料+H2O→CO+H2
FeOx+CO/H2→FeOy+CO2/H2O。
具体地讲,在还原器中形成金属铁(Fe)。同时,自该还原器产生含有至少60%CO2(干基)的排出物流。在优选的方案中,CO2浓度超过95%且可直接封存。
还原器的优选设计包括具有一级或多级的移动床反应器、多级流化床反应器、阶梯式反应器、旋转窑炉或本领域的普通技术人员已知提供逆流气固接触模式的任何合适的反应器或容器。在固体和气体之间的逆流模式用以强化气体和固体的转化。逆流流动模式使固体和气体两者的反混都最少化。此外,其保持反应器的固体出口处于更具还原性的环境下,同时反应器的气体出口保持在更具氧化性的环境下。因此,气体转化和固体转化二者都被强化。
回头参看在图3中的第二反应器(即,氧化器)中的氧化反应,该氧化器使用富含CO2和/或蒸汽的来自燃料电池阳极的排出气体物流将来自还原器的含铁载氧粒子转化到较高氧化态。在该物流中存在的未转化燃料不会参与该反应。可能的反应包括:
Fe+CO2/H2O=FeO+CO/H2
3FeO+CO2/H2O=Fe3O4+CO/H2
在某些实施方案中,将仅一部分的来自还原器的被还原的载氧体引入氧化器中,其余部分绕过氧化器且直接送到燃烧器中。通过这样做,从氧化还原区块产生更多的热以补偿在还原器中需要的反应热。或者,将亚化学计量之量的燃料电池阳极排出气体送到氧化器中以使得在随后的燃烧器中产生更多热。
虽然未转化的燃料可能存在于燃料电池阳极排出物流中,在该气体物流中的燃料含量显著富集,引起在铁/铁氧化物和H2O/CO2之间的反应。
氧化器的优选设计也包括移动床反应器和提供逆流气固接触模式的其他反应器设计。优选逆流模式,以便获得蒸汽到氢气的高转化和CO2到CO的高转化。
回头参看在图3中的第三反应器(即,燃烧器)中的氧化反应,含氧气体诸如空气和/或来自燃料电池阴极侧的部分转化的空气至少部分地用以将在自氧化器产生的载氧体中的铁氧化为Fe2O3。在燃烧器中的反应包括:
4FeO+O2=2Fe2O3
4Fe3O4+O2=6Fe2O3。
燃烧器的优选反应器设计包括快速流化床反应器、夹带床反应器、输送床反应器或机械输送系统。燃烧器的功能包括:将载氧体氧化到较高氧化态;和使载氧体重复循环到还原器的入口用于另一氧化还原循环。
图4说明转化气态燃料的重整/水裂解区块的一个实施方案的示意流程图。在该实施方案中,使用气化系统以将诸如煤炭、生物质、石油焦和蜡的固体燃料转化为气态燃料。使用诸如含有氧化钙、氧化锌等高温吸着剂的高温吸着剂除去气态燃料中的硫。在气态燃料中需要的硫水平为<500ppm。在优选的方案中,在气态燃料中的硫水平降低到<20ppm。
燃料气体随后作为燃料引入在图4中的还原器中用于氧化还原循环。作为来自气化器的气态燃料的替代品,也可将来自重整器或热解器的燃料用于氧化还原系统中。诸如甲烷和轻质烃的气态燃料也可作为燃料直接引入氧化还原系统中。
在Fan的PCT申请WO2010037011号和本发明的实施方案中描述的方法和系统之间的一个差异在于第二反应器(即氧化器)的气态进料除了H2O和CO2以外含有诸如H2和CO的燃料气体。在某些实施方案中,用于燃烧器的含氧气体包括来自阴极的排出气体的至少一部分。
所述燃烧器为高度放热的。在燃烧器中产生的热可用以补偿在还原器中需要的热。该热也可用以预热进料流且产生用于附加能量消耗的动力。从系统中排出的高压气态物流可用以驱动膨胀机用于气体压缩。
表1说明在所述方法的一个实施方案中主要物流的质量流量。表2说明所述系统的一个实施方案的能量平衡。在这种情况下,甲烷用作燃料。H2O/H2用作工作流体。利用SOFC系统的燃料电池区块将富燃料(H2)气体物流转化为与H2平衡的70%蒸汽。工艺的HHV效率,定义为在电力产品中的能量除以甲烷进料的较高热值,大于60%。在这种情况下,基本所有产生的CO2被压缩到1.52×107Pa(2200psi)且以备封存。
表1.使用甲烷作为燃料的用于发电的集成的重整-燃料电池的质量平衡
*所述CO2物流含有小于0.5%的杂质,诸如未转化的燃料
+来自氧化器的排出物含有70%的H2和30%的蒸汽
表2.使用甲烷作为燃料的用于发电的集成的重整-燃料电池的能量平衡
甲烷(MWth) | 附加动力(MWe) | 动力生产(MWe) | 净动力(M)We |
1000 | 80 | 700 | 620 |
在使用煤炭和煤炭气化器的情况下,工艺效率根据煤炭和煤炭气化器的类型而在38%和60%之间变化(HHV,具有CO2捕集)。当将生物质气化并用于氧化还原系统时,效率比其煤炭对应物低1-10%。因为在生物质中的所有CO2都被捕集,所以从生命周期分析观点来看,来自系统的净CO2排放为负。
参看在图5中说明的实施方案,诸如煤炭、生物质、蜡、重质残渣、石油焦和沥青砂的固体燃料在不需要气化器/热解器/重整器的情况下在氧化还原系统中直接转化。该实施方案描绘与如本文中例示的固体氧化物燃料电池(SOFC)集成的直接煤炭氧化还原系统。
由于在约800℃至1000℃之间的在SOFC系统中的高操作温度,释放大量热且需要将其回收以强化工艺效率。当前工艺设计通常组合了SOFC和燃气涡轮机-蒸汽涡轮机系统以便将燃料完全转化为电力。在SOFC中首先转化了约60%-90%的燃料,且剩余部分将在燃气涡轮机系统连同基础兰金循环(bottomingRankinecycle)中完全转化。然而,该系统的成本高,因为所有三个组件(即,氢气生产系统、燃料电池和涡轮机系统)为资本密集型的。用于发电的常规IGCC-SOFC路径可达到至多55%的效率。
在Fan的PCT申请WO2010037011号中描述的直接化学回路(DCL)方法将固体燃料转化为氢气。在该DCL系统内,基于铁氧化物的载氧体在三种反应器之中循环,所述三种反应器为还原器、氧化器和燃烧器。在该还原器中,煤炭和/或生物质由含Fe2O3的粒子气化为CO2和H2O,所述含Fe2O3的粒子被还原为Fe和FeO。被还原粒子的一部分与蒸汽在氧化器中反应以产生氢气,同时剩余的被还原的粒子连同来自氧化器的被部分氧化的粒子一起进料到燃烧器中。最后,含Fe2O3的粒子通过用诸如被压缩的空气的含氧气体燃烧而再生并再循环回去。在燃烧器中释放且由铁氧化物载送到还原器的热可完全补偿在系统中的任何热量亏损。通过该DCL系统,氢气和二氧化碳在不同反应器中产生,其通过消除对于产物分离的需要而节约大量能量。并且,其节约CO2去除和空气分离单元的设备投资成本。该DCL系统可从煤炭以70-85%的效率和从生物质以60-75%的效率产生氢气。
在该实施方案中,我们集成了DCL系统和SOFC系统以便自煤炭高效率发电。DCL-SOFC方法和系统具有在高压或低压下的多种构造。具体地讲,我们描述了以下实施方案,其中氧化器和阳极集成在如图5和图9中所示的氢气和蒸汽的闭合回路内。
考虑1000MW的热输入,且相应地在DCL-SOFC系统中加工131.8吨/小时的烟煤。首先将煤炭粉碎成恰当大小的粒子,且随后通过烟气由7.23%湿度干燥到5%湿度。在该DCL系统中,还原器和氧化器两者都采用移动床设计。将含有45.6重量%的Fe2O3和54.4重量%的Al2O3(作为惰性物质)的约3549.5吨/小时的载氧体进料到还原器的顶部,且将煤炭从还原器的中部注入。在移动床还原器中,固体向下流动,而气体向上上升。逆流设计可在900℃、1.01×105Pa(1atm)下将煤炭完全转化为CO2和H2O。将铁氧化物还原成Fe、FeO和痕量FeS的形式。将71.5%被还原的铁粒子用于在氧化器中的氢气产生,且其他28.5%在燃烧器中燃烧。氧化器在850℃下操作,将90.4%摩尔H2O和9.6%摩尔H2的气态混合物转化为35.9%H2O和64.1%H2和ppm水平的H2S的混合物。该气态混合物随后进料到耐硫SOFC的阳极以便发电。同时,Fe和FeO将被氧化成Fe3O4,其流向燃烧器中以便Fe2O3再生。
鼓风器驱动1992吨/小时的空气以进料DCL-SOFC系统。该空气在HRSG段中预热到900℃,且随后行进到SOFC装置的阴极。在于900℃下操作的SOFC中消耗30%的氧气和85%的氢气。废空气用于燃烧器中以使Fe2O3在1280℃下再生。随后将废氢气/蒸汽混合物冷却到约240℃用于随后的脱硫单元。在氢气/蒸汽混合物再循环回到氧化器中之前,仅将少量蒸汽补充到该氢气/蒸汽混合物中。
在DCL-SOFC工艺期间,通过简单冷凝接着压缩到1.37×107Pa(>135atm)来获得纯度>99%的CO2以便温室气体控制。压缩步骤消耗约35.8MW的功。诸如Cl、S和Hg的其他污染物可与CO2共封存或通过传统技术除去。可由布置在还原器之前的旋风分离器从载氧体中除去灰分。
表3汇总主工艺物流的流量。由于DCL和SOFC的集成,可由DCL-SOFC系统产生535MW的电力,且可通过回收低位热由蒸汽涡轮机系统产生96MW的电力。总工艺可在CO2压缩的情况下产生640MW的电力,这等于64%的煤炭到动力的效率(HHV)。可进一步优化所说明的实施例以获得大于70%的效率。
DCL-SOFC系统可以高效率将煤炭和生物质的广泛组合转化为电力。可能的设计也包括工作流体(氢气和蒸汽的混合物)的低压和低温操作。也可在SOFC之前用热气清除单元除去在氢气/蒸汽混合物中的H2S。应注意到,当用诸如生物质的低硫燃料(约小于0.2重量%)进料系统时,不需要脱硫单元。
表3.DCL-SOFC工艺的工艺流程图
表4.煤变电工艺构造和工艺效率
虽然在该实施方案中例示的DCL-SOFC系统和方法对于工作流体组成、重整/水裂解区块的类型和燃料电池区块具有特殊性,但上述参数的选择具有极大自由度。例如,CO和CO2可代替H2/H2O作为工作流体使用。在Fan的PCT申请WO2010037011号中描述的各种构造可用于重整/水裂解区块。诸如熔融碳酸盐燃料电池(MCFC)的其他燃料电池也可以与DCL系统集成。在这种情况下,将由DCL还原器产生的CO2的一部分注入MCFC的阴极侧以促进转化。另外,DCL系统可被构造以使得来自还原器的排出物不完全转化。在这种情况下,未转化的燃料在获得浓缩的CO2物流之前被送到另一燃料电池和/或氧精加工步骤(参见图10)。当所有被还原的载氧体粒子都用于氢气生产时,即,直接燃烧的分流比为0,且假设在来自燃烧器的烟气中的高位热可用于加热还原器,发电效率可在CO2压缩的情况下达到70%。表4显示数种构造和相应发电效率。
图6说明以下实施方案,其中钙吸着剂强化重整过程且用作重整/水裂解区块。在这种情况下,燃料在CaO/Ca(OH)2吸着剂和蒸汽/来自燃料电池阳极的富蒸汽排出气体存在下重整/转变成H2:
CaO+CxHy+H2O→CaCO3+H2。
废吸着剂随后在高温下使用来自系统的废热在煅烧炉中再生:
CaCO3=CaO+CO2。
任选增加水合步骤以使吸着剂再活化。随后压缩并封存来自煅烧炉的浓缩的CO2。在这种情况下,可使一部分工作流体分流以避免工作流体积聚。
图7说明使用膜强化的重整器/水煤气变换反应器作为重整/水裂解区块的选择。在该实施方案中,燃料在重整器中重整/转变,且从膜中同时除去CO2。重整器的保留侧富集具有重整燃料的工作流体,而渗透侧产生浓缩的CO2。
图8说明显示氧化锌水裂解循环和燃料电池的集成的实施方案。在该实施方案中,使用来自太阳能或核能源的热能促进基于氧化锌的水裂解循环。使用从水裂解中获得的氢气来富集包含H2O和H2的工作流体。
本领域技术人员将显而易见的是,可在不偏离本发明的范围的情况下进行各种变化,且所述变化不被视为受说明书和附图中描述的特殊实施方案限制,而是仅受随附权利要求书的范围限制。
Claims (7)
1.一种将碳质燃料或热能转化为电力的系统,其包括:
重整/水裂解区块,用于将富蒸汽和/或CO2气体物流和碳质燃料和/或热能转化为H2和/或CO的富燃料气体物流和排出气体物流;
燃料电池区块,分别用于由阳极和阴极将所述富燃料气体物流和含氧气体物流转化为贫燃料气体物流和废含氧气体物流;和
在所述重整/水裂解区块和所述燃料电池区块之间的工作流体物流的闭合回路,
其中排放小于10%的所述富燃料或富蒸汽/CO2气体物流。
2.根据权利要求1所述的系统,其中所述燃料电池区块包括固体氧化物燃料电池或熔融碳酸盐燃料电池。
3.根据权利要求1所述的系统,其中所述碳质燃料包括合成气、一氧化碳、富甲烷气体、轻质烃、液体碳质燃料、煤炭、生物质、沥青砂、油页岩、石油焦、重质液体烃、蜡以及它们的混合物。
4.根据权利要求1所述的系统,其中所述热能包括太阳能或核能。
5.根据权利要求1所述的系统,其中所述富燃料物流通过水裂解、电解、吸着剂或膜强化的重整和/或水煤气变换反应或蒸汽-铁反应产生。
6.根据权利要求1所述的系统,其中使用金属氧化物粒子的氧化还原性质来辅助所述碳质燃料转化。
7.根据权利要求1所述的系统,其中使用氧化钙吸着剂来强化所述碳质燃料转化。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US24050809P | 2009-09-08 | 2009-09-08 | |
US61/240,508 | 2009-09-08 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080048130.2A Division CN102695670B (zh) | 2009-09-08 | 2010-09-08 | 具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105762386A true CN105762386A (zh) | 2016-07-13 |
Family
ID=43128273
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080048130.2A Expired - Fee Related CN102695670B (zh) | 2009-09-08 | 2010-09-08 | 具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成 |
CN201610075115.6A Pending CN105762386A (zh) | 2009-09-08 | 2010-09-08 | 具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201080048130.2A Expired - Fee Related CN102695670B (zh) | 2009-09-08 | 2010-09-08 | 具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成 |
Country Status (7)
Country | Link |
---|---|
US (2) | US9371227B2 (zh) |
EP (1) | EP2475613B1 (zh) |
CN (2) | CN102695670B (zh) |
AU (1) | AU2010292313B2 (zh) |
CA (1) | CA2773458C (zh) |
ES (1) | ES2630217T3 (zh) |
WO (1) | WO2011031755A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107221695A (zh) * | 2017-06-30 | 2017-09-29 | 北京理工大学 | 一种以生物质气化制氢的燃料电池系统及其发电方法 |
CN109478665A (zh) * | 2016-07-13 | 2019-03-15 | Lg燃料电池系统有限公司 | 用于堆内燃料电池重整的蒸汽重整器 |
CN112448413A (zh) * | 2020-11-16 | 2021-03-05 | 成都精智艺科技有限责任公司 | 一种近零碳排放的分布式能源供给系统及方法 |
Families Citing this family (65)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3666858A3 (en) | 2008-09-26 | 2020-08-19 | The Ohio State University | A method of preparing ceramic composite particles |
CN102695670B (zh) | 2009-09-08 | 2016-02-24 | 俄亥俄州立大学研究基金会 | 具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成 |
CN102597173A (zh) | 2009-09-08 | 2012-07-18 | 俄亥俄州立大学研究基金会 | 具有原位co2捕集的合成燃料和化学品生产 |
NO332984B1 (no) * | 2009-12-22 | 2013-02-11 | Zeg Power As | Fremgangsmåte og anordning for samtidig produksjon av energi i form av elektrisitet, varme og hydrogengass |
FR2955854B1 (fr) | 2010-02-01 | 2014-08-08 | Cotaver | Procede et systeme de production d'hydrogene a partir de matiere premiere carbonee |
FR2955865B1 (fr) * | 2010-02-01 | 2012-03-16 | Cotaver | Procede de recyclage du dioxyde de carbone (co2) |
FR2955866B1 (fr) | 2010-02-01 | 2013-03-22 | Cotaver | Procede et systeme d'approvisionnement en energie thermique d'un systeme de traitement thermique et installation mettant en oeuvre un tel systeme |
FR2955918B1 (fr) | 2010-02-01 | 2012-08-03 | Cotaver | Procede et systeme de production d'une source d'energie thermodynamique par la conversion de co2 sur des matieres premieres carbonees |
US10010847B2 (en) | 2010-11-08 | 2018-07-03 | Ohio State Innovation Foundation | Circulating fluidized bed with moving bed downcomers and gas sealing between reactors |
EP2707350A4 (en) | 2011-05-11 | 2015-12-23 | Ohio State Innovation Foundation | SYSTEMS FOR CONVERTING A FUEL |
AU2012253332B2 (en) | 2011-05-11 | 2017-05-11 | Ohio State Innovation Foundation | Oxygen carrying materials |
WO2013119303A2 (en) * | 2011-11-21 | 2013-08-15 | Regents Of The University Of Minnesota | Thermochemical reactor systems and methods |
FR2985517B1 (fr) * | 2012-01-11 | 2018-05-18 | Ifp Energies Now | Procede integre de gazeification et combustion indirecte de charges hydrocarbonees solides en boucle chimique |
US9664385B2 (en) * | 2012-09-17 | 2017-05-30 | Phillips 66 Company | Process for enabling carbon-capture from existing combustion processes |
EP2953892B1 (en) | 2013-02-05 | 2023-04-05 | Ohio State Innovation Foundation | Methods for fuel conversion |
US9616403B2 (en) | 2013-03-14 | 2017-04-11 | Ohio State Innovation Foundation | Systems and methods for converting carbonaceous fuels |
JP6604937B2 (ja) | 2013-03-15 | 2019-11-13 | エクソンモービル リサーチ アンド エンジニアリング カンパニー | 燃料電池を使用する集積化された発電および炭素捕捉 |
US9077007B2 (en) | 2013-03-15 | 2015-07-07 | Exxonmobil Research And Engineering Company | Integrated power generation and chemical production using fuel cells |
US9481837B2 (en) | 2013-03-15 | 2016-11-01 | The Babcock & Wilcox Company | Chemical looping processes for partial oxidation of carbonaceous fuels |
NO343140B1 (no) * | 2013-06-14 | 2018-11-19 | Zeg Power As | Fremgangsmåte for bærekraftig energiproduksjon i et kraftverk som omfatter en fastoksid brenselcelle |
GB2518352A (en) * | 2013-07-30 | 2015-03-25 | Cogent Heat Energy Storage Systems Ltd | Energy generation process |
GB2518351B (en) * | 2013-07-30 | 2017-05-24 | Origen Power Ltd | Energy generation process |
US9819042B2 (en) | 2013-09-30 | 2017-11-14 | Exxonmobil Research And Engineering Company | Fuel cell integration within a heat recovery steam generator |
US9755258B2 (en) | 2013-09-30 | 2017-09-05 | Exxonmobil Research And Engineering Company | Integrated power generation and chemical production using solid oxide fuel cells |
US9556753B2 (en) | 2013-09-30 | 2017-01-31 | Exxonmobil Research And Engineering Company | Power generation and CO2 capture with turbines in series |
US9470111B2 (en) * | 2014-02-14 | 2016-10-18 | Serdar Firkan | Air independent propulsion and power generation system based on exothermic reaction sourced thermal cycle |
WO2015131117A1 (en) | 2014-02-27 | 2015-09-03 | Ohio State Innovation Foundation | Systems and methods for partial or complete oxidation of fuels |
US9865894B2 (en) * | 2014-09-02 | 2018-01-09 | The University Of Akron | Solid oxide fuel cells fueled with reducible oxides |
US10782016B2 (en) | 2015-03-12 | 2020-09-22 | General Electric Technology Gmbh | System and method for reducing emissions in a chemical looping combustion system |
WO2016167737A1 (en) * | 2015-04-17 | 2016-10-20 | Vanderpan Peter W | Method of separating and recombining the water molecule |
CN105154907B (zh) * | 2015-09-22 | 2017-12-08 | 中国华能集团清洁能源技术研究院有限公司 | 一种基于固体氧化物电解质的电解水制氧系统与方法 |
TWI557981B (zh) * | 2015-12-08 | 2016-11-11 | 財團法人工業技術研究院 | 整合clp與sofc的發電設備及其操作方法 |
CN109195696B (zh) | 2016-04-12 | 2022-04-26 | 俄亥俄州立创新基金会 | 从含碳燃料化学循环生产合成气 |
CN106190195B (zh) * | 2016-06-29 | 2019-01-25 | 清华大学 | 一种生物质热解-化学链燃烧制备高纯氢气的装置及方法 |
NO345296B1 (en) * | 2016-07-14 | 2020-11-30 | Zeg Power As | Method and power plant comprising a Solid Oxide Fuel Cell (SOFC) for production of electrical energy and H2 gas |
CN106252694B (zh) * | 2016-09-26 | 2019-01-18 | 华南理工大学 | 一种全固态碳-空气电池 |
KR101928002B1 (ko) | 2017-05-25 | 2018-12-12 | 한국과학기술원 | 산소공여입자 및 이산화탄소를 이용한 메탄으로부터 합성가스의 제조방법 |
CA3071395A1 (en) | 2017-07-31 | 2019-02-07 | Ohio State Innovation Foundation | Reactor system with unequal reactor assembly operating pressures |
US10549236B2 (en) | 2018-01-29 | 2020-02-04 | Ohio State Innovation Foundation | Systems, methods and materials for NOx decomposition with metal oxide materials |
WO2020033500A1 (en) | 2018-08-09 | 2020-02-13 | Ohio State Innovation Foundation | Systems, methods and materials for hydrogen sulfide conversion |
CN109215809B (zh) * | 2018-09-13 | 2022-03-01 | 中国核动力研究设计院 | 一种超临界二氧化碳反应堆微球形燃料组件 |
CN109181779B (zh) * | 2018-09-14 | 2021-07-27 | 东南大学 | 一种化学链油气联产协同二氧化碳还原方法 |
JP7258144B2 (ja) | 2018-11-30 | 2023-04-14 | フュエルセル エナジー, インコーポレイテッド | Co2利用率を向上させて動作させる燃料電池のための改質触媒パターン |
US11888187B2 (en) | 2018-11-30 | 2024-01-30 | ExxonMobil Technology and Engineering Company | Operation of molten carbonate fuel cells with enhanced CO2 utilization |
US11424469B2 (en) | 2018-11-30 | 2022-08-23 | ExxonMobil Technology and Engineering Company | Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization |
WO2020112834A1 (en) | 2018-11-30 | 2020-06-04 | Exxonmobil Research And Engineering Company | Fuel cell staging for molten carbonate fuel cells |
US11695122B2 (en) | 2018-11-30 | 2023-07-04 | ExxonMobil Technology and Engineering Company | Layered cathode for molten carbonate fuel cell |
KR102774870B1 (ko) | 2018-11-30 | 2025-02-27 | 퓨얼셀 에너지, 인크 | 심층 co2 포획을 위한 용융 탄산염 연료전지들의 재생성 |
AU2020208415A1 (en) | 2019-01-17 | 2021-07-22 | Ohio State Innovation Foundation | Systems, methods and materials for stable phase syngas generation |
CN109756184B (zh) * | 2019-01-23 | 2021-09-14 | 东北石油大学 | 一种太阳能电池-太阳能燃料联产循环系统 |
US11453626B2 (en) | 2019-04-09 | 2022-09-27 | Ohio State Innovation Foundation | Alkene generation using metal sulfide particles |
CN110380092A (zh) * | 2019-07-17 | 2019-10-25 | 中国华能集团清洁能源技术研究院有限公司 | 一种熔融碳酸盐燃料电池与钙循环集成系统及方法 |
WO2021046156A1 (en) * | 2019-09-03 | 2021-03-11 | Ohio State Innovation Foundation | Redox reaction facilitated carbon dioxide capture from flue gas and conversion to carbon monoxide |
JP2023503995A (ja) | 2019-11-26 | 2023-02-01 | エクソンモービル・テクノロジー・アンド・エンジニアリング・カンパニー | 燃料電池モジュールのアセンブリおよびそれを使用するシステム |
JP7515584B2 (ja) | 2019-11-26 | 2024-07-12 | エクソンモービル テクノロジー アンド エンジニアリング カンパニー | 高電解質充填レベルでの溶融炭酸塩型燃料電池の作動 |
US20220177295A1 (en) * | 2020-01-10 | 2022-06-09 | Daniel McNicholas | Vapor displacement refueling including refueling in zero gravity |
US11850566B2 (en) | 2020-11-24 | 2023-12-26 | Aircela Inc. | Synthetic fuel production system and related techniques |
US12122671B2 (en) * | 2020-12-09 | 2024-10-22 | Arizona Board Of Regents On Behalf Of Arizona State University | Two-step thermochemical labyrinth reactor and methods |
US20220219976A1 (en) * | 2021-01-14 | 2022-07-14 | United States Department Of Energy | Process for production of hydrogen with transport from chemical looping using mixture of partial oxidation oxygen carriers and combustion oxygen carriers |
US11978931B2 (en) | 2021-02-11 | 2024-05-07 | ExxonMobil Technology and Engineering Company | Flow baffle for molten carbonate fuel cell |
US11555446B2 (en) * | 2021-06-11 | 2023-01-17 | Mitsubishi Power Americas, Inc. | Hybrid power plant with C02 capture |
CN114314508B (zh) * | 2021-11-30 | 2023-07-11 | 西安交通大学 | 一种耦合生物质烘焙和化学链转化的多联产方法及系统 |
WO2023201034A1 (en) * | 2022-04-14 | 2023-10-19 | Ohio State Innovation Foundation | Systems and methods for redox thermal degradation of plastic materials |
CN114725432A (zh) * | 2022-05-05 | 2022-07-08 | 成都岷山绿氢能源有限公司 | 一种固体氧化物燃料电池零碳发电系统及发电工艺 |
CN115466637B (zh) * | 2022-09-15 | 2024-03-22 | 西安交通大学 | 一种耦合生物质能及太阳能的燃料电池发电系统及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1329761A (zh) * | 1998-11-05 | 2002-01-02 | 特里·R·加洛韦 | 可将碳质原料转化成能量且无温室气体排放的方法和系统 |
CN1501534A (zh) * | 2002-11-11 | 2004-06-02 | �ձ����ŵ绰��ʽ���� | 具有两种不同类型燃料电池的燃料电池发电系统和其控制方法 |
US20050175533A1 (en) * | 2003-12-11 | 2005-08-11 | Thomas Theodore J. | Combustion looping using composite oxygen carriers |
CN1329761C (zh) * | 2003-06-24 | 2007-08-01 | 佳能株式会社 | 透镜镜筒 |
Family Cites Families (177)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1658939A (en) | 1928-02-14 | Chaeles e | ||
US2899374A (en) | 1959-08-11 | Methods and apparatus for handling particulate solids | ||
US971206A (en) | 1908-12-02 | 1910-09-27 | Corp Internationale Wasserstoff Ag | Process of producing hydrogen. |
US1078686A (en) | 1910-07-16 | 1913-11-18 | Int Wasserstoff Ag | Process for the production of hydrogen. |
US2182747A (en) | 1938-04-18 | 1939-12-05 | Kellogg M W Co | Production of hydrogen by the high pressure iron process |
US2198560A (en) | 1938-04-18 | 1940-04-23 | Kellogg M W Co | Method for the production of hydrogen |
US2449635A (en) | 1943-03-19 | 1948-09-21 | Standard Catalytic Co | Production of hydrogen |
US2614067A (en) | 1948-07-02 | 1952-10-14 | Union Oil Co | Refining process and apparatus |
US2694622A (en) | 1948-07-02 | 1954-11-16 | Union Oil Co | Hydrocarbon refining apparatus |
US2635947A (en) | 1948-07-02 | 1953-04-21 | Union Oil Co | Hydrogen process |
US2686819A (en) | 1949-09-01 | 1954-08-17 | Kellogg M W Co | Synthesis of methane |
US2697686A (en) | 1951-04-26 | 1954-12-21 | Universal Oil Prod Co | Method for effecting the conversion of fluid reactant streams by contact with a moving bed of solid particles |
US3031287A (en) | 1958-06-23 | 1962-04-24 | Homer E Benson | Process for manufacturing mixtures of hydrogen, carbon monoxide, and methane |
US3027238A (en) | 1959-12-07 | 1962-03-27 | Universal Oil Prod Co | Hydrogen manufacture |
NL293037A (zh) | 1962-05-23 | |||
US3338667A (en) | 1963-12-02 | 1967-08-29 | Johns Manville | Recovery of silica, iron oxide and magnesium carbonate from the treatment of serpentine with ammonium bisulfate |
US3421869A (en) | 1964-06-01 | 1969-01-14 | Con Gas Service Corp | Method for the production of a mixture of hydrogen and steam |
US3442613A (en) | 1965-10-22 | 1969-05-06 | Braun & Co C F | Hydrocarbon reforming for production of a synthesis gas from which ammonia can be prepared |
US3573224A (en) | 1967-11-14 | 1971-03-30 | Chemical Construction Corp | Production of hydrogen-rich synthesis gas |
US3494858A (en) | 1967-11-17 | 1970-02-10 | Exxon Research Engineering Co | Two-stage countercurrent catalyst regenerator |
US3442619A (en) | 1968-03-27 | 1969-05-06 | Consolidation Coal Co | Production of hydrogen via the steam-iron process utilizing dual solids recycle |
US3442620A (en) | 1968-04-18 | 1969-05-06 | Consolidation Coal Co | Production of hydrogen via the steam-iron process |
US3619142A (en) | 1969-02-11 | 1971-11-09 | Consolidation Coal Co | Continuous steam-iron process |
US3726966A (en) | 1970-10-06 | 1973-04-10 | Phillips Petroleum Co | Barium promoted iron oxide for use as a catalyst in steam-iron process for producing hydrogen |
US4017270A (en) | 1974-01-31 | 1977-04-12 | Kamyr, Inc. | Coal gasification process with improved procedures for continuously feeding lump coal under pressure |
US4334959A (en) | 1974-03-07 | 1982-06-15 | Occidental Petroleum Corporation | Mixing method and apparatus |
CA1050736A (en) | 1974-05-24 | 1979-03-20 | Occidental Petroleum Corporation | Mixing of particulate materials |
US4057402A (en) | 1976-06-28 | 1977-11-08 | Institute Of Gas Technology | Coal pretreatment and gasification process |
US4272399A (en) | 1979-09-21 | 1981-06-09 | Monsanto Company | Conversion of carbon-containing materials to synthesis gas |
US4343624A (en) | 1979-12-10 | 1982-08-10 | Caterpillar Tractor Co. | Rotating fluidized bed hydrogen production system |
US4325833A (en) | 1980-06-27 | 1982-04-20 | Chevron Research Company | Three-stage catalyst regeneration |
JPS5836034B2 (ja) | 1980-12-22 | 1983-08-06 | 重質油対策技術研究組合 | 重質油の熱分解と共に還元鉄を製造する方法 |
US4348487A (en) | 1981-11-02 | 1982-09-07 | Exxon Research And Engineering Co. | Production of methanol via catalytic coal gasification |
US4404086A (en) | 1981-12-21 | 1983-09-13 | Standard Oil Company (Indiana) | Radial flow retorting process with trays and downcomers |
NL190510C (nl) | 1983-02-17 | 1994-04-05 | Hoogovens Groep Bv | Gasmenger. |
US4778585A (en) | 1983-07-14 | 1988-10-18 | Research Foundation Of The City Univ. Of Ny | Two-stage pyrolysis of coal for producing liquid hydrocarbon fuels |
US4861165A (en) | 1986-08-20 | 1989-08-29 | Beloit Corporation | Method of and means for hydrodynamic mixing |
US4869207A (en) | 1987-07-13 | 1989-09-26 | A. Ahlstrom Corporation | Circulating fluidized bed reactor |
FR2619023B1 (fr) | 1987-08-07 | 1991-04-12 | Lamort E & M | Injecteur melangeur sous pression |
DE3727119A1 (de) | 1987-08-14 | 1989-02-23 | Didier Werke Ag | Verfahren zur herstellung von katalysatoren fuer die reduzierung von stickoxiden aus abgasen oder fuer chemische luftreinigungsverfahren und nach dem verfahren hergestellte katalysatoren |
US5130106A (en) | 1988-12-28 | 1992-07-14 | Uop | Moving bed radial flow reactor for high gas flow |
AU5635290A (en) | 1989-05-01 | 1990-11-29 | Ky Dangtran | Fluidized bed device for combustion of low-melting fuels |
US4902586A (en) * | 1989-08-28 | 1990-02-20 | International Fuel Cells Corporation | Once through molten carbonate fuel cell system |
JP3038393B2 (ja) * | 1990-05-30 | 2000-05-08 | 石川島播磨重工業株式会社 | Lng冷熱を利用したco▲下2▼分離装置を有する溶融炭酸塩型燃料電池発電装置 |
HU9201539D0 (en) | 1990-09-11 | 1992-08-28 | Kortec Ag | Method and device for gasifying gasifiable materials and/or transforming gas as well as heat exchanger of high temperature for executing said method |
US5578498A (en) | 1991-05-22 | 1996-11-26 | Behringwerke Ag | Metal chelate containing compositions for use in chemiluminescent assays |
US5365560A (en) | 1991-07-29 | 1994-11-15 | General Electric Company | Method and apparatus for acquiring a uniform distribution of radon data sufficiently dense to constitute a complete set for exact image reconstruction of an object irradiated by a cone beam source |
JP3315719B2 (ja) | 1992-06-03 | 2002-08-19 | 東京電力株式会社 | 化学ループ燃焼方式発電プラントシステム |
NZ248813A (en) | 1992-11-25 | 1995-06-27 | Eastman Kodak Co | Polymeric grinding media used in grinding pharmaceutical substances |
US5509362A (en) | 1992-12-11 | 1996-04-23 | Energy And Environmental Research Corporation | Method and apparatus for unmixed combustion as an alternative to fire |
US5827496A (en) | 1992-12-11 | 1998-10-27 | Energy And Environmental Research Corp. | Methods and systems for heat transfer by unmixed combustion |
US5529599A (en) | 1995-01-20 | 1996-06-25 | Calderon; Albert | Method for co-producing fuel and iron |
JPH09272815A (ja) | 1996-04-02 | 1997-10-21 | Merck Japan Kk | 金属酸化物複合微粒子及びその製造方法 |
TW406055B (en) | 1996-04-08 | 2000-09-21 | Air Prod & Chem | Integrated steam methane reforming process for producing carbon monoxide and hydrogen |
US6007699A (en) | 1996-08-21 | 1999-12-28 | Energy And Environmental Research Corporation | Autothermal methods and systems for fuels conversion |
JP3094093B2 (ja) | 1997-03-11 | 2000-10-03 | 科学技術庁無機材質研究所長 | アルカリ土類珪酸塩によるco2の固定化方法 |
US6025403A (en) | 1997-07-07 | 2000-02-15 | Mobil Oil Corporation | Process for heat integration of an autothermal reformer and cogeneration power plant |
WO1999017875A1 (fr) | 1997-10-07 | 1999-04-15 | Nkk Corporation | Catalyseur pour la production d'hydrogene ou de gaz de synthese et procede de production correspondant |
WO2000022690A1 (en) | 1998-10-14 | 2000-04-20 | Northwest Power Systems, Llc | Fuel processing system |
US5958222A (en) | 1997-11-17 | 1999-09-28 | Uop Llc | Standpipe distributor for short time contact of hydrocarbon compounds with particles |
US6348278B1 (en) * | 1998-06-09 | 2002-02-19 | Mobil Oil Corporation | Method and system for supplying hydrogen for use in fuel cells |
US6334895B1 (en) | 1998-07-20 | 2002-01-01 | The University Of Wyoming Research Corporation | System for producing manufactured materials from coal combustion ash |
AU4835800A (en) | 1999-05-07 | 2000-11-21 | Rentech, Inc. | Convertible methanol/fischer-tropsch plant and method |
FI107758B (fi) | 1999-11-10 | 2001-09-28 | Foster Wheeler Energia Oy | Kiertoleijureaktori |
US6790430B1 (en) * | 1999-12-09 | 2004-09-14 | The Regents Of The University Of California | Hydrogen production from carbonaceous material |
CA2340822C (en) | 2000-03-17 | 2010-08-03 | Snamprogetti S.P.A. | Process for the production of hydrogen |
JP2001299744A (ja) | 2000-04-18 | 2001-10-30 | Hitachi Medical Corp | 医用x線装置 |
US6742593B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation |
US7247279B2 (en) | 2000-08-01 | 2007-07-24 | Enviroscrub Technologies Corporation | System for removal of pollutants from a gas stream |
US6509000B1 (en) | 2000-08-31 | 2003-01-21 | Council Of Scientific And Industrial Research | Low temperature process for the production of hydrogen |
DE10047642A1 (de) | 2000-09-26 | 2002-04-11 | Basf Ag | Verfahren zur Dehydrierung von Kohlenwasserstoffen |
WO2002058557A2 (en) | 2000-10-24 | 2002-08-01 | The Johns Hopkins University | Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning |
US6412559B1 (en) | 2000-11-24 | 2002-07-02 | Alberta Research Council Inc. | Process for recovering methane and/or sequestering fluids |
DE10063862A1 (de) | 2000-12-21 | 2002-07-11 | Solarworld Ag | Verfahren zur Herstellung von hochreinem, granularen Silizium |
US6663681B2 (en) | 2001-03-06 | 2003-12-16 | Alchemix Corporation | Method for the production of hydrogen and applications thereof |
US6685754B2 (en) | 2001-03-06 | 2004-02-03 | Alchemix Corporation | Method for the production of hydrogen-containing gaseous mixtures |
US6682714B2 (en) | 2001-03-06 | 2004-01-27 | Alchemix Corporation | Method for the production of hydrogen gas |
US20040131531A1 (en) | 2001-04-20 | 2004-07-08 | Geerlings Jacobus Johannes Cornelis | Process for mineral carbonation with carbon dioxide |
EP1262235A3 (en) | 2001-05-23 | 2003-04-16 | Rohm And Haas Company | Mixed-metal oxide catalysts containing molybdenum and vanadium and processes for preparing the same |
US6568206B2 (en) | 2001-07-18 | 2003-05-27 | Air Products And Chemicals, Inc. | Cryogenic hydrogen and carbon monoxide production with membrane permeate expander |
US6669917B2 (en) | 2001-07-31 | 2003-12-30 | General Electric Co. | Process for converting coal into fuel cell quality hydrogen and sequestration-ready carbon dioxide |
US6494153B1 (en) | 2001-07-31 | 2002-12-17 | General Electric Co. | Unmixed combustion of coal with sulfur recycle |
US6834623B2 (en) | 2001-08-07 | 2004-12-28 | Christopher T. Cheng | Portable hydrogen generation using metal emulsions |
US6667022B2 (en) | 2001-08-14 | 2003-12-23 | General Electric Co. | Process for separating synthesis gas into fuel cell quality hydrogen and sequestration ready carbon dioxide |
WO2003029390A1 (fr) | 2001-09-28 | 2003-04-10 | Ebara Corporation | Procede de modification de gaz inflammable, appareil de modification de gaz inflammable et appareil de gazeification |
US6797253B2 (en) | 2001-11-26 | 2004-09-28 | General Electric Co. | Conversion of static sour natural gas to fuels and chemicals |
FR2833005B1 (fr) | 2001-11-30 | 2004-01-23 | Atofina | Procede de fabrication d'acide acrylique a partir de propane et en l'absence d'oxygene moleculaire |
US6703343B2 (en) | 2001-12-18 | 2004-03-09 | Caterpillar Inc | Method of preparing doped oxide catalysts for lean NOx exhaust |
US20030119658A1 (en) | 2001-12-21 | 2003-06-26 | Conocophillips Company | Recovery of rhenium from a spent catalyst via sublimation |
US20080031809A1 (en) | 2006-07-18 | 2008-02-07 | Norbeck Joseph M | Controlling the synthesis gas composition of a steam methane reformer |
US20030162846A1 (en) | 2002-02-25 | 2003-08-28 | Wang Shoou-L | Process and apparatus for the production of synthesis gas |
EP1487740A1 (en) | 2002-03-13 | 2004-12-22 | Conocophillips Company | Controlled-pore catalyst structures and process for producing synthesis gas |
US7244399B2 (en) | 2002-04-26 | 2007-07-17 | Foster Wheeler Energia Oy | Grid construction for a fluidized bed reactor |
US20050255037A1 (en) | 2002-06-26 | 2005-11-17 | Kiyoshi Otsuka | Method for producing hydrogen and apparatus for supplying hydrogen |
RU2005115080A (ru) | 2002-10-16 | 2005-10-27 | КонокоФиллипс Кампэни (US) | Способ получения гидротермально стабильных катализаторов конверсии синтез-газа в углеводороды, способ получения углеводородов и катализатор с повышенной гидротермальной стабильностью |
EP1551531A1 (en) | 2002-10-17 | 2005-07-13 | Mykrolis Corporation | Method for purifying carbon dioxide |
US20040126293A1 (en) | 2002-10-23 | 2004-07-01 | Geerlings Jacobus Johannes Cornelis | Process for removal of carbon dioxide from flue gases |
WO2004043852A1 (en) | 2002-11-11 | 2004-05-27 | Conocophillips Company | Stabilized alumina supports, catalysts made therefrom, and their use in partial oxidation |
US7945021B2 (en) | 2002-12-18 | 2011-05-17 | Varian Medical Systems, Inc. | Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager |
ITMI20030192A1 (it) | 2003-02-05 | 2004-08-06 | Eni Spa | Sistema catalitico e procedimento per la produzione |
WO2004076017A2 (en) * | 2003-02-26 | 2004-09-10 | Questair Technologies Inc. | Hydrogen recycle for high temperature fuel cells |
US20040213705A1 (en) | 2003-04-23 | 2004-10-28 | Blencoe James G. | Carbonation of metal silicates for long-term CO2 sequestration |
US7604787B2 (en) | 2003-05-02 | 2009-10-20 | The Penn State Research Foundation | Process for sequestering carbon dioxide and sulfur dioxide |
US7075532B2 (en) | 2003-05-23 | 2006-07-11 | International Business Machines Corporation | Robust tetrahedralization and triangulation method with applications in VLSI layout design and manufacturability |
US7255840B2 (en) | 2003-06-26 | 2007-08-14 | Praxair Technology, Inc. | Autothermal reactor and method for production of synthesis gas |
TW200519072A (en) | 2003-08-21 | 2005-06-16 | Pearson Technologies Inc | Process and apparatus for the production of useful products from carbonaceous feedstock |
WO2005019779A1 (es) | 2003-08-22 | 2005-03-03 | Instituto Mexicano Del Petróleo | Método de visualización de flujos multifásicos usando tomografía de capacitancia eléctrica |
WO2005077818A1 (en) | 2004-02-06 | 2005-08-25 | David Tsay | Single stage membrane reactor for high purity hydrogen production |
ITMI20040555A1 (it) | 2004-03-23 | 2004-06-23 | Eni Spa | Procedimento per la produzione di idrogeno e la co-produzione di anidride carbonica |
US20050274648A1 (en) | 2004-04-21 | 2005-12-15 | Goldstein Stuart S | Method for revamping fixed-bed catalytic reformers |
US20060042565A1 (en) | 2004-08-26 | 2006-03-02 | Eaton Corporation | Integrated fuel injection system for on-board fuel reformer |
US7223714B2 (en) | 2004-11-04 | 2007-05-29 | Exxonmobil Chemical Patents Inc. | Method of transferring catalyst in a reaction system |
US20110289845A1 (en) | 2005-04-12 | 2011-12-01 | Ze-Gen, Inc. | Method for controlling syngas production in a system with multiple feed materials using a molten metal bath |
FR2889248B1 (fr) | 2005-07-29 | 2007-09-07 | Inst Francais Du Petrole | Nouvelle masse active oxydo-reductrice pour un procede d'oxydo-reduction en boucle |
CN101389734A (zh) | 2006-01-12 | 2009-03-18 | 俄亥俄州立大学 | 转化燃料的体系和方法 |
CA2881661A1 (en) | 2006-01-12 | 2007-07-19 | The Ohio State University | Systems and methods of converting fuel |
DE102006017614A1 (de) | 2006-04-12 | 2007-10-18 | J. Eberspächer GmbH & Co. KG | Brennstoffzellensystem und zugehöriges Betriebsverfahren |
WO2007122498A2 (en) | 2006-04-24 | 2007-11-01 | University Of The Witwatersrand, Johannesburg | Improvement of carbon efficiencies in hydrocarbon production |
NZ573217A (en) | 2006-05-05 | 2011-11-25 | Plascoenergy Ip Holdings S L Bilbao Schaffhausen Branch | A facility for conversion of carbonaceous feedstock into a reformulated syngas containing CO and H2 |
WO2007134075A2 (en) | 2006-05-08 | 2007-11-22 | Alchemix Corporation | Method for the gasification of hydrocarbon feedstocks |
WO2008019079A2 (en) | 2006-08-04 | 2008-02-14 | Zabolotny Ernest R | Gasification process |
US7824574B2 (en) | 2006-09-21 | 2010-11-02 | Eltron Research & Development | Cyclic catalytic upgrading of chemical species using metal oxide materials |
CA2860684C (en) | 2006-09-25 | 2015-12-01 | The Ohio State University | High purity, high pressure hydrogen production with in-situ co2 and sulfur capture in a single stage reactor |
US20080134666A1 (en) | 2006-12-11 | 2008-06-12 | Parag Prakash Kulkarni | Systems and Methods Using an Unmixed Fuel Processor |
WO2008071215A1 (de) | 2006-12-14 | 2008-06-19 | Horst Grochowski | Verfahren und vorrichtung zum reinigen von abgasen eines sinterprozesses von erzen und/oder anderen metallhaltigen materialien in der metallerzeugung |
US7902416B2 (en) | 2006-12-28 | 2011-03-08 | Uop Llc | Fluidized bed reactor with back-mixing for dehydrogenation of light paraffins |
WO2008082312A1 (en) | 2007-01-05 | 2008-07-10 | Sinvent As | Hydrogen production |
NO328522B1 (no) | 2007-03-19 | 2010-03-08 | Statoil Asa | Fremgangsmate for produksjon av hydrogen, hydrogenproduksjonsanlegg, en vann-gassskift-reaktor samt en fremgangsmate for fremstilling av hydrogen fra syngass. |
US7840053B2 (en) | 2007-04-05 | 2010-11-23 | Liao Hstau Y | System and methods for tomography image reconstruction |
DE102007031635A1 (de) | 2007-07-06 | 2009-01-15 | Evonik Degussa Gmbh | Verfahren zur Herstellung von Metalloxidgranulaten |
CA2693680A1 (en) | 2007-07-09 | 2009-01-15 | Range Fuels, Inc. | Methods and apparatus for producing syngas |
WO2009018200A1 (en) | 2007-07-27 | 2009-02-05 | The Trustees Of Columbia University In The City Of New York | Methods and systems for producing synthetic fuel |
US20090042070A1 (en) * | 2007-08-08 | 2009-02-12 | The University Corporation, Inc. At California State University, Northridge | Barometric thermal trap and collection apparatus and method thereof for combining multiple exhaust streams into one |
AT505526B1 (de) | 2007-08-14 | 2010-09-15 | Univ Wien Tech | Wirbelschichtreaktorsystem |
FR2923732B1 (fr) | 2007-11-16 | 2011-03-04 | Nicolas Ugolin | Procede utilisant l'energie thermique solaire couplee a des plasmas pour produire un carburant liquide et du dihydrogene a partir de biomasse ou de charbon fossile (procede p-sl et p-sh) |
FR2924035B1 (fr) | 2007-11-23 | 2010-09-03 | Sebatien Roux | Formulation d'oxydes, son obtention et son utilisation comme porteur d'oxygene dans un procede d'oxydation et/ou de desoxydation d'un flux gazeux |
US7880481B2 (en) | 2007-12-19 | 2011-02-01 | Infineon Technologies Ag | Capacitive sensor and measurement system |
US8160730B2 (en) | 2008-03-03 | 2012-04-17 | Xinsheng Lou | Fuzzy logic control and optimization system |
FR2930733B1 (fr) | 2008-04-30 | 2014-04-11 | Inst Francais Du Petrole | Masse active d'oxydo-reduction et procede de combustion en boucle chimique. |
US8647402B2 (en) | 2008-09-19 | 2014-02-11 | Greatpoint Energy, Inc. | Processes for gasification of a carbonaceous feedstock |
EP3666858A3 (en) | 2008-09-26 | 2020-08-19 | The Ohio State University | A method of preparing ceramic composite particles |
CA2745055C (fr) | 2008-12-02 | 2016-10-04 | Jean-Xavier Morin | Installation a cycle thermochimique pour combustibles reactifs |
US20100187159A1 (en) | 2009-01-28 | 2010-07-29 | Christopher Naunheimer | Moving Bed Hydrocarbon Conversion Process |
EP2379447B1 (en) | 2009-01-21 | 2016-06-08 | Res Usa, Llc | System and method for dual fluidized bed gasification |
JP2010167366A (ja) | 2009-01-22 | 2010-08-05 | Ngk Insulators Ltd | ハニカム触媒体 |
FR2941689B1 (fr) | 2009-01-30 | 2011-02-18 | Inst Francais Du Petrole | Procede integre d'oxydation, reduction et gazeification pour production de gaz de synthese en boucle chimique |
FR2945034B1 (fr) | 2009-04-29 | 2012-06-08 | Inst Francais Du Petrole | Procede integre de production d'energie et/ou de gaz de synthese par production d'oxygene in situ, combustion et gazeification en boucle chimique |
US8500868B2 (en) | 2009-05-01 | 2013-08-06 | Massachusetts Institute Of Technology | Systems and methods for the separation of carbon dioxide and water |
US8762084B2 (en) | 2009-06-30 | 2014-06-24 | The University Of Connecticut | Multiple excitation capacitance polling for enhanced electronic capacitance tomography |
US8202349B2 (en) | 2009-06-30 | 2012-06-19 | General Electric Company | Method and apparatus for removal of carbon dioxide from pre-combustion syngas |
US8303696B2 (en) | 2009-07-10 | 2012-11-06 | Southern Company | Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas |
US8366882B2 (en) | 2009-07-14 | 2013-02-05 | C20 Technologies, Llc | Process for treating agglomerating coal by removing volatile components |
FR2948177B1 (fr) | 2009-07-16 | 2011-08-05 | Inst Francais Du Petrole | Procede de combustion en boucle chimique avec controle independant de la circulation des solides |
WO2011021161A2 (en) | 2009-08-18 | 2011-02-24 | Oron Zachar | Method and system for producing syngas |
CN102695670B (zh) | 2009-09-08 | 2016-02-24 | 俄亥俄州立大学研究基金会 | 具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成 |
CN102597173A (zh) | 2009-09-08 | 2012-07-18 | 俄亥俄州立大学研究基金会 | 具有原位co2捕集的合成燃料和化学品生产 |
US9873840B2 (en) | 2009-09-18 | 2018-01-23 | Wormser Energy Solutions, Inc. | Integrated gasification combined cycle plant with char preparation system |
US20110094226A1 (en) | 2009-10-28 | 2011-04-28 | Mchugh Lawrence F | Process and apparatus for high energy efficiency chemical looping combustion |
US8961629B2 (en) | 2009-12-21 | 2015-02-24 | Southern Company Services, Inc. | Apparatus, components and operating methods for circulating fluidized bed transport gasifiers and reactors |
US8761943B2 (en) | 2010-01-29 | 2014-06-24 | Alstom Technology Ltd | Control and optimization system and method for chemical looping processes |
EP2576041A1 (en) | 2010-05-28 | 2013-04-10 | ExxonMobil Chemical Patents Inc. | Reactor with reactor head and integrated valve |
FR2960940B1 (fr) | 2010-06-02 | 2015-08-07 | Inst Francais Du Petrole | Procede de combustion en boucle chimique avec une zone de reaction integrant une zone de separation gaz-solide et installation utilisant un tel procede |
FR2960869B1 (fr) | 2010-06-02 | 2014-08-08 | Inst Francais Du Petrole | Procede et installation de production d'oxygene par boucle chimique en lit fluidise |
EP2601443A1 (en) | 2010-08-02 | 2013-06-12 | Siemens Aktiengesellschaft | Chemical looping system |
US8508238B2 (en) | 2010-08-12 | 2013-08-13 | General Electric Company | System and method for performing electrical impedance tomography |
CA2754948A1 (en) | 2010-10-13 | 2012-04-13 | Song Sit | Chemical looping combustion |
US10010847B2 (en) | 2010-11-08 | 2018-07-03 | Ohio State Innovation Foundation | Circulating fluidized bed with moving bed downcomers and gas sealing between reactors |
EP2450420A1 (en) | 2010-11-08 | 2012-05-09 | Shell Internationale Research Maatschappij B.V. | Multi stage process for producing hydrocarbons from syngas |
KR20120064030A (ko) | 2010-12-08 | 2012-06-18 | 에스케이이노베이션 주식회사 | 이산화탄소의 배출이 저감된 가스화 방법 |
EP2515038A1 (en) | 2011-04-21 | 2012-10-24 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | Fixed bed chemical looping combustion |
EP2707350A4 (en) | 2011-05-11 | 2015-12-23 | Ohio State Innovation Foundation | SYSTEMS FOR CONVERTING A FUEL |
AU2012253332B2 (en) | 2011-05-11 | 2017-05-11 | Ohio State Innovation Foundation | Oxygen carrying materials |
EP3326966A1 (en) | 2011-09-23 | 2018-05-30 | Newcastle Innovation Limited | Integrated chemical looping air separation in large-scale oxy-fuel plants |
US9259168B2 (en) | 2011-10-04 | 2016-02-16 | The Ohio State University | Adaptive electrical capacitance volume tomography |
US20130255272A1 (en) | 2012-03-30 | 2013-10-03 | Alstom Technology Ltd. | Method for carbon capture in a gas turbine based power plant using chemical looping reactor system |
JP6197044B2 (ja) | 2012-11-30 | 2017-09-13 | サウジ アラビアン オイル カンパニー | 統合された酸素生成による段階的化学ルーピングプロセス |
WO2015131117A1 (en) | 2014-02-27 | 2015-09-03 | Ohio State Innovation Foundation | Systems and methods for partial or complete oxidation of fuels |
-
2010
- 2010-09-08 CN CN201080048130.2A patent/CN102695670B/zh not_active Expired - Fee Related
- 2010-09-08 AU AU2010292313A patent/AU2010292313B2/en not_active Ceased
- 2010-09-08 CN CN201610075115.6A patent/CN105762386A/zh active Pending
- 2010-09-08 CA CA2773458A patent/CA2773458C/en active Active
- 2010-09-08 US US13/394,572 patent/US9371227B2/en active Active
- 2010-09-08 WO PCT/US2010/048125 patent/WO2011031755A1/en active Application Filing
- 2010-09-08 EP EP10760504.0A patent/EP2475613B1/en not_active Not-in-force
- 2010-09-08 ES ES10760504.0T patent/ES2630217T3/es active Active
-
2016
- 2016-05-23 US US15/162,199 patent/US20160268616A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1329761A (zh) * | 1998-11-05 | 2002-01-02 | 特里·R·加洛韦 | 可将碳质原料转化成能量且无温室气体排放的方法和系统 |
CN1501534A (zh) * | 2002-11-11 | 2004-06-02 | �ձ����ŵ绰��ʽ���� | 具有两种不同类型燃料电池的燃料电池发电系统和其控制方法 |
CN1329761C (zh) * | 2003-06-24 | 2007-08-01 | 佳能株式会社 | 透镜镜筒 |
US20050175533A1 (en) * | 2003-12-11 | 2005-08-11 | Thomas Theodore J. | Combustion looping using composite oxygen carriers |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109478665A (zh) * | 2016-07-13 | 2019-03-15 | Lg燃料电池系统有限公司 | 用于堆内燃料电池重整的蒸汽重整器 |
CN107221695A (zh) * | 2017-06-30 | 2017-09-29 | 北京理工大学 | 一种以生物质气化制氢的燃料电池系统及其发电方法 |
CN107221695B (zh) * | 2017-06-30 | 2023-05-30 | 北京理工大学 | 一种以生物质气化制氢的燃料电池系统及其发电方法 |
CN112448413A (zh) * | 2020-11-16 | 2021-03-05 | 成都精智艺科技有限责任公司 | 一种近零碳排放的分布式能源供给系统及方法 |
Also Published As
Publication number | Publication date |
---|---|
CA2773458C (en) | 2018-05-08 |
WO2011031755A1 (en) | 2011-03-17 |
EP2475613A1 (en) | 2012-07-18 |
US20120171588A1 (en) | 2012-07-05 |
CN102695670B (zh) | 2016-02-24 |
CN102695670A (zh) | 2012-09-26 |
EP2475613B1 (en) | 2017-05-03 |
ES2630217T3 (es) | 2017-08-18 |
US20160268616A1 (en) | 2016-09-15 |
US9371227B2 (en) | 2016-06-21 |
AU2010292313A1 (en) | 2012-04-12 |
CA2773458A1 (en) | 2011-03-17 |
AU2010292313B2 (en) | 2015-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105762386A (zh) | 具有集成的碳捕集的重整/水裂解和用于发电的电化学系统的集成 | |
Dermühl et al. | A comparison of the most promising low-carbon hydrogen production technologies | |
Wang et al. | Clean and efficient use of petroleum coke for combustion and power generation | |
Steinberg et al. | Modern and prospective technologies for hydrogen production from fossil fuels | |
KR101939687B1 (ko) | 수소 생성을 위한 개질기-전해조-정제기(rep) 어셈블리, 이를 통합한 시스템들 및 수소를 생성하는 방법 | |
JP6186069B2 (ja) | 製油所配置における溶融炭酸塩形燃料電池の集積化 | |
KR102243776B1 (ko) | 발전 플랜트 연도 가스의 co₂ 메탄화를 포함하는 메탄화 방법 및 발전 플랜트 | |
US8349504B1 (en) | Electricity, heat and fuel generation system using fuel cell, bioreactor and twin-fluid bed steam gasifier | |
US7781695B2 (en) | Inductively coupled plasma/partial oxidation reformation of carbonaceous compounds to produce fuel for energy production | |
Wang et al. | Hydrogen production | |
CN110156047B (zh) | 一种固体氧化物电解/化石燃料合成氨耦合的合成氨方法 | |
KR102421634B1 (ko) | 폐열을 활용한 이산화탄소 공전해 시스템 | |
CA2602783C (en) | Combustion device producing hydrogen with collected co2 reuse | |
US10283793B2 (en) | Combined generation system and method for collecting carbon dioxide for combined generation system | |
KR101441491B1 (ko) | 석탄가스화 복합발전 연계형 연료전지 시스템 및 가스 공급 방법 | |
Palone et al. | Decarbonizing power and fuels production by chemical looping processes: Systematic review and future perspectives | |
KR20210125633A (ko) | 순환유동층보일러 및 신재생에너지를 이용한 에너지 순환 시스템 | |
Li et al. | The effects of gasification technology on IGFC system efficiency | |
CN116025442A (zh) | 一种高效灵活的分布式清洁化氢电联产装置 | |
CN115245729A (zh) | 一种钢铁流程co2转化循环利用的方法及系统 | |
CN113982753A (zh) | 一种将煤气化与sofc-hat集成一体的混合动力发电系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160713 |