[go: up one dir, main page]

CN109195696B - 从含碳燃料化学循环生产合成气 - Google Patents

从含碳燃料化学循环生产合成气 Download PDF

Info

Publication number
CN109195696B
CN109195696B CN201780023280.XA CN201780023280A CN109195696B CN 109195696 B CN109195696 B CN 109195696B CN 201780023280 A CN201780023280 A CN 201780023280A CN 109195696 B CN109195696 B CN 109195696B
Authority
CN
China
Prior art keywords
metal oxide
moving bed
syngas
oxide particles
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780023280.XA
Other languages
English (en)
Other versions
CN109195696A (zh
Inventor
良-希赫·范
阿比·埃普菲尔德
芒达尔·卡特
查尔斯·弗赖尔
埃琳娜·布莱尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohio State Innovation Foundation
Original Assignee
Ohio State Innovation Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohio State Innovation Foundation filed Critical Ohio State Innovation Foundation
Publication of CN109195696A publication Critical patent/CN109195696A/zh
Application granted granted Critical
Publication of CN109195696B publication Critical patent/CN109195696B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/42Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts using moving solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1812Tubular reactors
    • B01J19/1837Loop-type reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/08Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles
    • B01J8/12Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with moving particles moved by gravity in a downward flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/32Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with introduction into the fluidised bed of more than one kind of moving particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/24Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique
    • B01J8/38Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it
    • B01J8/384Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only
    • B01J8/388Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles according to "fluidised-bed" technique with fluidised bed containing a rotatable device or being subject to rotation or to a circulatory movement, i.e. leaving a vessel and subsequently re-entering it being subject to a circulatory movement only externally, i.e. the particles leaving the vessel and subsequently re-entering it
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/344Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using non-catalytic solid particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/22Arrangements or dispositions of valves or flues
    • C10J3/24Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed
    • C10J3/26Arrangements or dispositions of valves or flues to permit flow of gases or vapours other than upwardly through the fuel bed downwardly
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/57Gasification using molten salts or metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/721Multistage gasification, e.g. plural parallel or serial gasification stages
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/725Redox processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00327Controlling the temperature by direct heat exchange
    • B01J2208/00336Controlling the temperature by direct heat exchange adding a temperature modifying medium to the reactants
    • B01J2208/0038Solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0216Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0222Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0255Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a non-catalytic partial oxidation step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/141At least two reforming, decomposition or partial oxidation steps in parallel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/148Details of the flowsheet involving a recycle stream to the feed of the process for making hydrogen or synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1628Controlling the pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1612CO2-separation and sequestration, i.e. long time storage
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • C10J2300/1815Recycle loops, e.g. gas, solids, heating medium, water for carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1807Recycle loops, e.g. gas, solids, heating medium, water
    • C10J2300/1823Recycle loops, e.g. gas, solids, heating medium, water for synthesis gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提出了一种用于将气体、液体或固体燃料选择性转化成在H2/CO比率方面灵活的合成气规格的反应器配置。这种反应器和系统配置可以配合特定的氧载体与烃类燃料的摩尔比、特定的运行温度和压力范围和同向流向下的移动床系统使用。对移动床还原器来说,对与所述特定运行参数相配合注入CO2料流的概念提出了权利要求,其中对于水蒸气和CO2两者来说在所述反应器系统中的注入位置是灵活的,以便使所述系统的碳效率最大化。

Description

从含碳燃料化学循环生产合成气
与相关申请的交叉引用
本申请要求2016年4月12日提交的美国临时申请号62/321,607的优先权,所述临时申请的全部内容通过参考并入本文。
背景技术
在美国,天然气可获得性的提高为降低对外国石油(其占总消费量的27%1)的依赖性提供了机会,并使能量消费需求的供应多样化。石油市场的扰动被视为气变油(GTL)技术进步的驱动力。预计液体燃料在供应人类能量需求中仍然是必要组成部分2。钻井技术的进步驱动了页岩气生产的繁荣,导致天然气对能量需求的贡献增大。开发高效GTL设施的另一个驱动力是被燃烧掉的标准天然气的百分率,这是因为气体燃料的运输成本过高,使得运输它们并不经济。在2011年5.3×1012立方英尺的石油伴生气被烧掉,相当于美国每年天然气消费量的约25%3。以当前天然气的市场价格($2/MMBtu)4计,所述烧掉的天然气的名义市值为138亿美元。GTL是把标准天然气换成金钱的有效方式。然而,GTL过程的普及应用,由于与基于GTL的项目相关的成本逐步上升的高风险而受到阻碍。合成气生产装置占总基建投资的30-50%5
在本文中,碳效率被定义为天然气进料中被转化成CO并进而转化成液体燃料的碳的百分率。这个数字随着向CO2的净转化减少而增大。所述碳效率通过与在使用基于自热重整的系统的常规天然气合成方法中所使用的相比,总天然气消耗量的降低来定性度量。本公开的益处通过考察50,000bpd GTL工厂的案例研究得以证实。该GTL工厂的设计H2/CO比率为2.19,并且它使用1.58的(H2-CO2)/(CO+CO2)比率得以实现。
对于现代化学工程师来说,碳捕获利用和封存(CCUS)也是一个巨大挑战。许多新的技术努力实现CO2捕获或CO2利用,当这两个过程韩少被认为是相互包含的。为了获得对CO2排放减少有意义的影响,最重要的是相互配合地开发CO2捕获和利用或封存。
发明概述
本公开涉及使用化学循环技术并应用将CO2反应至接近消失或消耗比产生的CO2更多的CO2的新概念,可以显著降低与从天然气生产合成气相关的成本的反应器和方法。本公开包括允许在单一过程中捕获和利用CO2并同时利用化石燃料的反应器和方法。在商业化规模上,包括前所未有的CO2的同时捕获和利用的化石燃料过程,在常规CO2利用和碳捕获市场上可能是变革性和破坏性的。
本文中公开的方法和系统配置使用了化学循环系统,其特征在于将氧载体的反应性料流与可以沿着还原器以可变的流速和位置引入的伴有CO2再循环的含碳料流和水蒸气同向流向下接触,以便产生用于液体燃料生产的所需数量和质量的合成气。这些特定的运行条件与独特的氧载体和支持物组成和热传递管理一起,产生了具有高度受控的氧传递的系统,这确保了高效地产生所需的合成气质量。
本公开描述了特定的反应器和条件,其能够使所述公开的新的化学循环过程起到碳负性或碳中性化石燃料过程的作用。在消耗的CO2多于产生的CO2的情况下(CO2负性系统),所述公开的化学循环系统可以充当有效的CO2利用系统。
一方面,本文公开了一种用于转化燃料的系统,所述系统包含:第一移动床反应器,其包含具有主要组分和次要组分的金属氧化物粒子,其中燃料、CO2和水蒸气以相对于所述金属氧化物粒子同向流动的模式添加到所述第一反应器,其中所述第一反应器被配置成用于将至少一部分所述金属氧化物粒子用所述燃料还原以产生第一还原的金属氧化物,并且被进一步配置成用于产生包含H2、CO、CO2和水蒸气的第一合成气料流;第二移动床反应器,其与所述第一移动床反应器并行运行并包含具有主要组分和次要组分的金属氧化物粒子,其中燃料、CO2和水蒸气以相对于所述金属氧化物粒子同向流动的模式添加到所述第二反应器,其中所述第二反应器被配置成用于将至少一部分所述金属氧化物粒子用所述燃料还原以产生第二还原的金属氧化物,并且被进一步配置成用于产生包含H2、CO、CO2和水蒸气的第二合成气料流;分离装置,其与所述第一反应器和第二反应器连通并被配置成用于从所述第一合成气料流和第二合成气料流除去CO2,其中所述第一和第二合成气料流的H2/CO比率通过将基本上所有的CO2从所述分离装置再循环到所述第一反应器和第二反应器来控制;以及第三同向流流化床反应器,其与所述第一反应器和第二反应器连通,并被配置成用于将所述第一还原的金属氧化物和第二还原的金属氧化物用氧化剂氧化以产生氧化的金属氧化物粒子,并将所述氧化的复合金属氧化物再循环到所述第一反应器和第二反应器用于随后的还原反应。
在某些实施方式中,所述主要组分是Fe2O3。在某些实施方式中,所述次要组分包含选自Ti、Al、Co、Cu、Mg、Mn、Zn的氧化物及其组合的金属氧化物。在某些实施方式中,所述次要组是氧化钛。在某些实施方式中,所述燃料是甲烷。在某些实施方式中,所述第一合成气料流的H2/CO比率为约2.9至约3.1。在某些实施方式中,所述第二合成气料流的H2/CO比率为约1.0至约1.5。在某些实施方式中,所述来自于每个还原器的合成气的合并产生约1至约3的总合成气H2/CO比率。在某些实施方式中,通过将水蒸气引入到所述第三反应器中,将所述第一还原的金属氧化物和第二还原的金属氧化物氧化。在某些实施方式中,所述系统消耗的CO2比它产生的CO2更多。
第二方面,本文中公开了一种用于转化燃料的系统,所述系统包含:多个并行运行的移动床反应器,每个所述反应器包含多个具有主要组分和次要组分的金属氧化物粒子,其中所述多个移动床反应器被配置成用于将至少一部分所述金属氧化物粒子用燃料还原以产生还原的金属或还原的金属氧化物粒子,并且被进一步配置成用于产生包含H2、CO、CO2和水蒸气的合成气料流;分离装置,其与所述多个移动床反应器连通并被配置成用于从所述合成气料流除去CO2,其中所述第一和第二合成气料流的H2/CO比率通过将基本上所有的CO2从所述分离装置再循环到所述多个移动床反应器来控制;以及氧化反应器,其与所述多个移动床反应器连通,并被配置成用于氧化所述还原的金属或金属氧化物粒子以产生氧化的金属或金属氧化物粒子,并将所述氧化的金属或金属氧化物粒子再循环到所述多个移动床反应器用于随后的还原反应。
在某些实施方式中,所述合成气料流的合并产生约1至约3的总合成气H2/CO比率。
另一方面,本文中公开了一种用于转化燃料的方法,所述方法包括:将所述燃料和金属氧化物粒子以相对于彼此同向流动的模式进料到与第二移动床反应器并行运行的第一移动床反应器中,其中所述金属氧化物粒子包含主要组分和次要组分,并将所述第一移动床反应器中的至少一部分所述金属氧化物粒子还原,以产生第一还原的金属氧化物和包含H2、CO、CO2、水蒸气或其组合的第一合成气料流;将所述燃料和金属氧化物粒子以相对于彼此同向流动的模式进料到第二移动床反应器中,并将所述第二移动床反应器中的至少一部分所述金属氧化物粒子还原,以产生第二还原的金属氧化物和包含H2、CO、CO2、水蒸气或其组合的第二合成气料流;将所述第一还原的金属氧化物粒子和第二还原的金属氧化物粒子运输到第三反应器,以氧化所述第一还原的金属氧化物粒子和第二还原的金属氧化物粒子以产生氧化的金属氧化物粒子,并将所述氧化的金属氧化物粒子最小化到所述第一和第二反应器,用于随后的还原反应;以及在分离装置中从所述第一和第二合成气料流除去CO2,并通过将基本上所有的CO2从所述分离装置再循环到所述第一反应器和第二反应器来控制所述H2/CO比率,其中所述第一和第二合成气料流的合并产生约2的总合成气H2/CO比率。
在某些实施方式中,将CO2和水蒸气进料到所述第一移动床反应器和第二移动床反应器中。在某些实施方式中,所述第一和第二移动床反应器在约800℃至约1190℃的温度下运行。在某些实施方式中,所述第一和第二移动床反应器在约1atm至约10atm的压力下运行。在某些实施方式中,所述燃料是甲烷。在某些实施方式中,所述主要组分是Fe2O3。在某些实施方式中,所述第一和第二移动床反应器具有约0.5至约1的有效Fe2O3/CH4比率。在某些实施方式中,通过将水蒸气引入到所述第三反应器中,将所述第一还原的金属氧化物和第二还原的金属氧化物氧化。
通过考察详细描述和附图,本发明的其他方面将变得显而易见。
附图简述
图1:在化石燃料的高效转化中使用CO2再循环和外部CO2源的碳负性或碳中性铁基化学循环系统的概念性示意图。
图2a:铁-钛复合金属氧化物(ITCMO)在0.33的Fe2O3:CH4比率下的合成气生成表面。
图2b:ITCMO在0.333的Fe2O3:CH4比率下的合成气纯度表面。
图3:在天然气向适用于Fischer-Tropsch合成和液体燃料生产的合成气的高效转化中使用CO2再循环和外部CO2源的碳负性或碳中性铁基化学循环系统的概念性示意图。
图4:在各种不同的H2O/CH4比率下可获得的H2/CO比率和相应的CO2再循环百分率的比较。
图5:对同向流移动床反应器来说,在0.8的有效Fe2O3/CH4比率下,在900℃和1atm下H2/CO比率随H2O/CH4和CO2/CH4比率的变化。
图6:对同向流移动床反应器来说,在0.8的有效Fe2O3/CH4比率下,在900℃和1atm下H2流速随H2O/CH4和CO2/CH4比率的变化。
图7:与单燃烧器反应器并行运行的多个还原器的概念性示意图。
图8:含有多个还原器和燃烧器的多个反应器模块的概念性示意图。
图9:使用与单燃烧器反应器并行运行的两个还原器的化学循环CO2再循环概念的概念性示意图。
图10:使用两个并行运行的含有还原器和燃烧器两者的模块的化学循环CO2再循环概念的概念性示意图。
图11:使用与单燃烧器反应器并行运行的三个还原器的化学循环CO2再循环概念的概念性示意图。
图12:使用三个并行运行的含有还原器和燃烧器两者的模块的化学循环CO2再循环概念的概念性示意图。
图13:对同向流移动床反应器来说,在0.8的有效Fe2O3/CH4比率下,在900℃和1atm下H2/CO比率随H2O/CH4和CO2/CH4比率的变化。
图14:对同向流移动床反应器来说,在0.8的有效Fe2O3/CH4比率下,在900℃和1atm下H2流速随H2O/CH4和CO2/CH4比率的变化。
图15:具有与单燃烧器反应器并行运行的两个还原器和CO2分离装置的化学循环CO2再循环系统的实施方式的示意图。
图16a:纯Fe2O3在0.33的Fe2O3:CH4比率下的合成气生成表面。
图16b:模块化策略的合成气生成性能的几何表述。
图17:ITCMO在0.333的Fe2O3:CH4比率下的合成气生成表面。
图18a:在0.34的Fe2O3:CH4比率、900℃和1atm下的合成气产率。
图18b:在1.2的Fe2O3:CH4比率、900℃和1atm下的合成气产率。
图18c:在9.8的Fe2O3:CH4比率、900℃和1atm下的合成气产率。
图18d:基于ITCMO的模块系统在900℃和1atm下用于改变H2O和CO2注入的操作点。
图19:图18d的共平面视图,示出了基于ITCMO的模块系统在900℃和1atm下用于改变[O]/CH4的操作点。
详细描述
在详细解释本发明的任何实施方式之前,应该理解,本发明的应用不限于在下面的描述中阐述或在下面的图中示出的构造和部件排列的细节。本发明能够使用其他实施方式并且能够以各种不同的方式实践或执行。
本公开描述了特定的反应器和条件,其允许所述公开的新的化学循环过程起到碳负性或碳中性化石燃料过程的作用。在消耗的CO2多于产生的CO2的情况下(CO2负性系统),所述公开的化学循环系统可以充当有效的CO2利用系统。
1.定义
除非另有定义,否则在本文中使用的所有技术和科学术语具有与本领域普通技术人员通常理解的相同的意义。在有冲突的情况下,以本文件、包括定义为准。下文描述了优选的方法和材料,尽管与本文所描述的相似或等同的方法和材料也可用于本发明的实践或试验。本文中提到的所有出版物、专利申请、专利和其他参考文献整体通过参考并入本文。本文中描述的材料、方法和实例仅仅是说明性的而不打算是限制性的。
当在本文中使用时,术语“包含”、“包括”、“具有”、“可以”、“含有”及其变化形式打算作为开放式过渡短语、术语或词语,其不排除其他行动或结构的可能性。没有具体数目的指称包括复数指称物,除非上下文明确陈述不是如此。本公开还设想了包含本文中提出的实施方式或要素、由其构成或基本上由其构成的其他实施方式,不论它们是否被明确阐述。
连接性术语“或”包括与所述连接性术语相关的一个或多个列出的要素的任何和所有组合。例如,短语“包含A或B的装置”可以指称包括A而B不存在的装置、包括B而A不存在的装置或A和B两者都存在的装置。短语“A、B、……和N中的至少一者”或“A、B、……和N中的至少一者或其组合”以最宽泛的意义定义,意味着选自A、B、……和N的一个或多个要素,也就是说,要素A、B、……或N中的一者或多者的任何组合,包括单独的或与一个或多个其他要素相组合的任一要素,其也可能组合地包括没有列出的其他要素。
对于本文中数值范围的叙述来说,明确地涵盖了在其之间的具有相同精度的居间数字。例如,对于6-9的范围来说,除了6和9之外还设想了7和8,并且对于范围6.0-7.0来说,明确地设想了数字6.0、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9和7.0。
当在本文中使用时,“碳中性”是指约100%的由系统产生的CO2被再循环的系统或过程。
当在本文中使用时,“碳负性”是指消耗的CO2比产生的CO2更多的系统或过程。
2.合成气生产系统
为了最大化每摩尔化石燃料进料生产的合成气的量,可以使用新的模块化策略,其中多个还原器反应器并行运行。这个概念允许每个还原器反应器在不同的运行条件下运行并生产不同质量的合成气。在线性合并时,所述运行条件产生所需的总合成气纯度和H2:CO要求,同时与单一还原器反应器相比使用更少的化石燃料进料。
图1示出了用于将化石燃料转化成增值产品的碳负性化学循环过程的方案。所述过程包括将化石燃料、CO2和水蒸气共同进料到多个移动床还原器反应器中以生产合成气。所述化石燃料可以包括但不限于气体化石燃料(天然气、页岩气、煤层甲烷等)、固体化石燃料(煤、生物质、石油焦等)或液体化石燃料(煤油、石油等)。
对用于生产合成气的还原器反应器的运行条件进行选择,以最大化每摩尔化石燃料进料生产的合成气的摩尔数,最大化合成气纯度,并满足下游过程的H2:CO比率要求。这些条件的新的组合可以得到CO2负性方案,其中进入所述反应器的CO2的摩尔量除以离开所述反应器的CO2的摩尔量(CRP或CO2反应参数)大于1。
运行条件的特定设置提供在表1(下文)中。组(1)是指CH4与金属氧化物的反应;组(2)是指CH4与CO2和金属氧化物的反应;组(3)是指CH4与H2O和金属氧化物的反应;组(4)是指CH4与CO2、H2O和金属氧化物的反应。对于组(4)运行来说,可以看到合理地满足以前给出的标准的CRP>1运行条件已在热力学上被确定并使用实验验证。
表1:在单一同向流移动床反应器中涉及CH4、Fe2O3和/或CO2和/或H2O的各种不同反应条件的实验数据
Figure BDA0001826678720000091
Figure BDA0001826678720000101
在所述碳负性化学循环系统的某些实施方式中,使用热力学吉布斯自由能最小化模拟将CRP大于1所必需的条件固定。图2a描述了每摩尔CH4进料的合成气生产随所述反应器的CO2和H2O输入的变化。注意到在高的H2O和CO2输入下,每摩尔CH4产生最大量的合成气。然而,图2b显示,在这些运行条件下,由于一部分H2O和CO2进料流过所述反应器而不反应,合成气纯度((H2+CO)摩尔数/(合成气总摩尔数))相对低(75%)。通常,高的合成气纯度(大于95%)对于高效下游加工来说是理想的。
图3示出了碳负性化学循环系统设计的一个实施方式。在这个实施方式中,天然气被转化成适用于Fischer-Tropsch合成和液体燃料生产的合成气。
图4示出了图3中示出的碳负性系统的可行操作点的分析。所述图包括在各种不同的水蒸气与天然气比率下的H2/CO比率和合成气中CO2的量与再循环的CO2的量的相应比率。从这张图可以确定一组条件是否得到H2/CO比率正确的合成气料流,以及该点所对应的CO2再循环百分率。通过点A和B的连接示出了一个实例。这个实例对应于0.5的H2O/CH4比率、2.0的H2/CO比率和接近140%的CO2再循环率。
图5示出了对于在900℃、1atm和0.8的有效Fe2O3/CH4比率下运行的同向流移动床反应器来说,H2/CO比率随每摩尔CH4的水蒸气输入和CO2的变化。
图6示出了对于图4中示出的H2/CO比率来说,合成气中H2流速的变化性。应该注意到,当水蒸气和CO2被可变地输入时所述H2/CO比率之间的非线性,是化学循环系统中CO2再循环的独特特征。这种非线性可用于开发多还原器系统。每个这些还原器反应器可以被专门优化,以在碳效率和成本方面最大化从最小化总天然气消耗量获得的总体益处。如图7中所示,在商业化规模上,多还原器系统可以被可行地视为具有多个还原器和单一燃烧器的单一循环固体回路。所述多还原器系统的另一种商业化规模的运行可以被设计成具有多个模块,每个模块含有多个还原器和燃烧器,如图8中所示。
在某些实施方式中,所述化学循环再循环系统包含具有两个还原器和三个还原器系统的多还原器涉及,其可以产生Fischer-Tropsch合成所需的合成气组成(H2/CO比率为2)。图9和图10示出了双还原器CO2再循环化学循环系统,其中每个还原器的运行条件由图5和图6中的点A和点B表示。每个还原器运行被优化,使得净合成气具有约1至约3的有效H2/CO比率。在某些实施方式中,所述净合成气具有约2的有效H2/CO比率。在某些实施方式中,所述对应于点A的还原器运行最大化H2的生产,以2的H2O/CH4比率、0.20的CO2/CH4比率运行,得到约2.9至约3.1、优选地3.02的合成气H2/CO比率。所述对应于为CO生产而优化的点B的还原器以0.20的H2O/CH4比率、0.57的CO2/CH4比率运行,得到约1.0至约1.5、优选地1.27的合成气比率。来自于每个还原器的合成气的合并导致总合成气H2/CO比率为“2”。多还原器概念的另一个应用使用如图11和图12中所示的三还原器模块来演示,其中特定运行条件由图13和14中的点A、B和C表示。图13和14显示出与图5和6中显示的相近的H2/CO比率和H2流速。三还原器组合可能可用于运行被极端优化以生产H2(图13中的点A)的一个还原器、被极端优化以生产CO(图13中的点C)的第二还原器和降低H2/CO比率(图13中的点B)的第三还原器。所述第一还原器可以在点A处运行(H2O/CH4比率为2,CO2/CH4比率为0.20,输出H2/CO比率为3.0),所述第二还原器可以在点B处运行(H2O/CH4比率为1.8,CO2/CH4比率为0.20,输出H2/CO比率为2.90),并且所述第三还原器可以在点C处运行(H2O/CH4比率为0.4,CO2/CH4比率为1.12,输出H2/CO比率为1.03)。这三个还原器的净H2/CO比率为“2”。应该指出,与所述二和三还原器的情况相似,所述概念可以被扩展到“n”个还原器或模块。这些“n”个还原器反应器中的每一个可以被选择性优化用于特定功能,其可以包括但不限于运行温度、运行压力、合成气H2/CO比率、有效Fe2O3/CH4比率、支持物重量百分率等。在给定的一组运行条件的基础上,这些专门运行可用于降低总成本并最大化效率。
图15示意示出了用于从化石燃料生产合成气的化学循环模块式过程。所述系统包括三个主要的反应器区段,包括还原器反应器区段、燃烧器反应器和分离装置。所述还原器反应器区段是一种模块式系统,其中两个或更多个同向流移动床反应器将化石燃料转变成包含H2、CO、CO2和水蒸气的合成气料流。所述还原器反应器的模块式配置允许最大化H2+CO生产,优于单一还原器反应器配置。所述模块式系统中的每个反应器可以在所述反应器的氧载体与燃料比率、温度和压力的基础上进行优化。所述同向流移动床反应器的一个优点是它确保了可以通过控制反应的化学计量来获得用于高合成气转化的热力学设计条件,并且可以获得足够的停留时间用于反应物的完全转化。
在所述系统的某些实施方式中,所述还原器反应器区段包含并行运行的两个同向流移动床反应器。在另一个实施方式中,所述还原器反应器系统包含相对于彼此并行运行的两个或更多个同向流移动床反应器。所述还原器反应器包含金属氧化物粒子。所述金属氧化物组合物由两种组分即主要和次要组分构成。在某些实施方式中,所述主要金属氧化物被选择成Fe2O3。所述主要金属氧化物应该能够向所述燃料混合物供氧。所述次要金属氧化物可以是Ti、Al、Co、Cu、Mg、Mn、Zn等的任何组合的氧化物。所述次要金属氧化物用于强化所述主要金属氧化物,并且可以通过形成具有比单独的氧化铁更好的热力学选择性的复合物来提高反应性。所述氧载体金属氧化物可以含有不同重量百分率的主要和次要金属氧化物的组合。所述金属氧化物可以通过包括但不限于挤出、造粒、共沉淀、湿法浸渍和机械压制的方法来制备。例如烧结合成的金属氧化物或添加粘合剂和溶胶-凝胶燃烧法的技术,可用于提高所述金属氧化物的强度。
在某些实施方式中,所述特定金属氧化物组合物由铁-钛复合金属氧化物(ITCMO)或铁-铝复合物构成。取决于相对摩尔比,这种复合物可以是富钛或富铁的。所述模拟的特定化学的总还原形式依赖于所述金属氧化物的相对摩尔比组成。例如,含有大于2的TiO2:Fe2O3摩尔比的富钛铁基复合金属氧化物粒子将产生还原形式FeTiO3。另一方面,小于2的TiO2:Fe2O3摩尔比在所述复合材料的还原形式中除了FeTiO3之外将有利于形成FeO-Fe2TiO4,并且所述化学必须相应地调整。
ITCMO的使用消除了对分子O2的需求,降低了运行温度,并在合成气生产中允许水蒸气使用、CO2使用和H2:CO摩尔比的更大的灵活性。在更高合成气选择性的基础上将ITCMO粒子设计在晶格氧周围,并且由于铁与钛氧化物之间的相互作用,在理论上与单独的分子O2或Fe2O3相比在更宽的操作范围内获得高得多的合成气产率。将CH4转化成H2和CO所必需的氧来自于H2O、CO2和ITCMO的组合。
在某些实施方式中,将燃料、CO2和水蒸气的组合以相对于所述金属氧化物粒子同向流动的模式添加到所述第一移动床反应器。所述第一反应器将它的至少一部分所述金属氧化物粒子还原并将所述燃料氧化,以产生包含H2、CO、CO2和水蒸气的第一合成气料流。同样地,将燃料、CO2和水蒸气的组合以同向流动的模式添加到与所述第一移动床反应器并行运行的第二移动床反应器。所述第二反应器将它的至少一部分金属氧化物粒子还原并将所述燃料氧化,以产生包含H2、CO、CO2和水蒸气的第二合成气料流。在另一个实施方式中,并行运行的多个移动床反应器以相对于所述金属氧化物粒子同向流动的模式接收所述燃料、CO2和水蒸气。每个反应器将它的至少一部分金属氧化物粒子还原,以产生还原的金属或还原的金属氧化物粒子和包含H2、CO、CO2和水蒸气的合成气料流。所述还原器反应器的典型运行温度范围在800℃至1190℃之间,压力范围为1atm至10atm。在某些实施方式中,来自于所述第一还原器反应器的第一合成气料流具有约2.9至约3.1的H2/CO比率,并且来自于所述第二还原器反应器的第二合成气料流具有约1.0至约1.5的H2/CO比率。在其他实施方式中,来自于每个还原器的合成气料流的合并产生约1至约3、优选为2的总合成气H2/CO。
用于这种系统的燃料可以是任何气态烃基燃料,包括但不限于天然气、页岩气和煤层甲烷。在某些实施方式中,所述燃料是甲烷。除了所述特定摩尔比之外,执行0.01至0.90之间的水蒸气与烃类碳的摩尔比,用于调整H2/CO比率。在某些实施方式中,所述第一和第二移动床还原器反应器具有约0.5至约1的有效Fe2O3/CH4比率。应该指出,在所述特定条件下运行将产生独特的组合,其通过将水蒸气的氧贡献给所述金属氧化物晶格,最大化水蒸气向H2的转化。与上面陈述的变量相结合,施加一定的CO2与烃类碳的摩尔比。这独特地在限制水煤气转换类型的效应方面对总合成气质量有帮助,并有助于碳效率的显著提高。还应该指出,上面陈述的条件产生独特的组合,并为所需的烃类向合成气转化效率所必需。这些特定运行条件与独特的氧载体和支持物组成和热传递管理一起,产生了具有高度受控的氧传递的系统,这确保了高效地产生所需的合成气质量。所有的气态反应物被注入到所述同向流移动床还原器反应器的顶部,并随着所述金属氧化物粒子一起向下流动。用于这些气体的注入端口的设计条件是基于为它们提供足够的停留时间以获得稳态转化。
分离装置被连接到每个所述多还原器反应器,并被配置成用于接收来自于每个所述还原器反应器的合成气料流。所述分离装置从每个所述合成气料流除去CO2,并通过将CO2从所述分离装置再循环到所述多个还原器反应器来控制H2/CO比率。将从所述合成气料流提取的基本上所有的CO2再循环回到所述还原器反应器。在具有两个还原器反应器的某些实施方式中,所述分离装置接收来自于所述第一和第二还原器反应器的第一合成气料流和第二合成气料流。所述分离装置从所述第一和第二合成气料流提取CO2,并将所述剥夺CO2的合成气料流送往下游用于进一步加工。将基本上所有被分离的CO2再循环回到所述第一和第二反应器。在某些实施方式中,所述系统是碳中性的,这意味着输入到所述还原器反应器的CO2等于在来自于所述还原器反应器的合成气中输出的CO2(CRP=1)。在其他实施方式中,所述系统是碳负性的,这意味着输入到所述还原器反应器的CO2大于在来自于所述还原器反应器的合成气中输出的CO2(CRP>1)。
与所述多还原器反应器连通的燃烧器反应器接收来自于所述还原器反应器的还原的金属氧化物粒子。所述燃烧器反应器通过在还原剂存在下将来自于所述还原器反应器的还原的金属氧化物粒子氧化,再生所述金属氧化物粒子。这个反应是放热的,并且能够抵消所述还原器反应器中的吸热热需求。所述氧化反应的产物是氧化的复合金属氧化物粒子,其包含来自于每个所述多还原器反应器的氧化的金属氧化物粒子。将所述氧化的复合金属氧化物粒子再循环回到所述多还原器反应器,以产生另外的合成气。所述燃烧器反应器可以是鼓泡流化反应器。在某些实施方式中,所述还原剂是空气。
在某些实施方式中,所述还原器反应器是移动床反应器,其摄入天然气并使用同向流动的ITCMO固体料流将它部分氧化成CO和H2的混合物。所述采取Fe2TiO5形式的ITCMO提供将CH4部分氧化成CO和H2的混合物所必需的氧。在所述还原器中,取决于反应器设计和接触模式,ITCMO被还原成Fe、FeTiO3和Fe3O4的混合物。同向流移动床系统确保了可以通过控制反应化学计量来获得用于高的合成气转化的热力学设计条件,并确保了可获得足够的停留时间用于反应物的完全转化。如果天然气用CH4表示,并且氧化和还原的ITCMO固体分别用FeTiyOx和FeTiyOx-1表示,则所述还原器反应器中的目标反应可以用方程(1)表示:
FeTiyOx+CH4→FeTiyOx-1+CO+2H2其中ΔH还原器≥0 (1)
所述还原器反应器的设计是基于最适的氧载体与燃料比率、反应器的温度和压力和活性氧载体与支持物材料的重量比。所述燃烧器反应器是鼓泡流化床反应器,其将来自于所述还原器的还原的ITCMO粒子用空气重新氧化。所述燃烧器反应器中的目标反应可以用方程(2)表示:
FeTiyO1-x+0.5O2→FeTiyOx 其中ΔH还原器≤0 (2)
所述燃烧器反应是放热的,并且所述热可以使用所述氧载体传递到所述还原器反应器,以抵消所述还原器反应器的吸热热量要求的能量需求。
所提出的的改良消除了合成气生产过程中CO2排放的直接来源。通过这一过程能够实现的碳排放减少与常规的化石燃料转化过程相比引起更低的环境影响。碳效率急剧提高,并且所述过程的曾经的废料流现在被再循环至消失并且也充当增补进料。
实施例
通过参考下面的实施例可以更好地理解上述内容,提出所述实施例是出于说明的目的而不打算限制本发明的范围。
实施例1:对于恒定的Fe2O3:CH4比率来说,使用Fe2O3、CO2和H2O从1kmol/hr CH4生产合成气的模块化设计
在本实施例中使用的模块化策略使用图16b来解释,该图是图16a的共平面视图。“点A”被选择成使得它充当单还原器合成气生产装置的最适设计条件。该点被分解成由点B和点C表示的双还原器运行条件。点B和C的复合合成气生成性能沿着连接所述两个点的直线。点D代表利用与点A相同的H2O、CO2和甲烷流速,但合成气产率提高“Δ”的模块式系统的合成气生成性能。天然气和水蒸气的相对分流由点B与点C之间的坐标差的比率确定。应该指出,连接点B与点C的线可能在它所作图的所有三个维度中具有分量。所述模块式合成气生产系统的特定实例示出在表2(下文)中。双还原器模块式系统的复合点D显示,对于与但还原器系统相同的输入流量来说,合成气产率提高11.8%(%Δ)。
表2:对于使用Fe2O3的0.333的恒定Fe2O3:CH4比率来说,合成气生成中模块化策略的特定实例
Figure BDA0001826678720000171
实施例2:对于恒定的Fe2O3:CH4比率来说,使用ITCMO、CO2和H2O从1kmol/hr CH4生产合成气的模块化设计
可以将与Fe2O3类似的模块化策略应用于ITCMO粒子。ITCMO模块化的动机可以使用图17来解释。使用ITCMO粒子的模块式合成气生产系统的特定实例在表3(下文)中给出。通过1kmol/hr的CH4输入来说明单还原器反应器性能(点A*)。点B*和点C*表示使用ITCMO的模块式反应器的运行条件。点D*,模块式点B*和点C*的复合模式,示出了使用与点A*中示出的单还原器系统匹配的输入合成气生产提高2.2%(%Δ*)。
表3:对于使用ITCMO的0.333的恒定Fe2O3:CH4比率来说,合成气生成中模块化策略的特定实例
Figure BDA0001826678720000181
实施例3:对于各种不同的Fe2O3:CH4比率来说,使用ITCMO、CO2和H2O从1kmol/hrCH4生产合成气的模块化设计
在实施例1和实施例2中讨论的用于纯Fe2O3和ITCMO情况的设计方法显示了在相同的Fe2O3:CH4摩尔比下运行所述两个还原器模块的模块化策略。这一章节调查了将单还原器性能与模块式双还原器性能进行比较的实施例,其中所述两个还原器以不同的Fe2O3:CH4比率运行。图18a-d示出了当每个还原器反应器中的Fe2O3:CH4比率分别为“0.34”、“1.2”和“9.8”时的合成气生产性能。模块化策略可以应用于这个系统,并通过在图18d中示出的运行条件点A**下维持与单还原器系统相同的总输入得以证实。所述两个还原器被选择成使得一个还原器在较低的Fe2O3:CH4下运行并且每摩尔甲烷产生高的合成气产率,即点B**,而所述第二个还原器在较高Fe2O3:CH4下运行并且产生很少合成气,即点C**。在较低Fe2O3:CH4摩尔比下合成气生成性能较高,但以较高的净吸热反应为代价实现,这是因为所述系统中的晶格氧含量较低。因此,点C**维持了与单还原器情况类似的总体热平衡考虑,而点B**生产大部分合成气。所述单还原器与双还原器模块式系统的比较示出在表4(下文)中。模块式系统的益处通过在点A**和模块的总和点D**中提供的实例之间的比较来说明。对于可比的CH4输入来说,所述双还原器模块系统产生与单还原器系统相比提高19%(%Δ**)的总合成气产率,其在图19中用几何法示出。
表4:对于使用ITCMO的0.333的恒定Fe2O3:CH4比率来说,合成气生成中模块化策略的特定实例
Figure BDA0001826678720000191
参考文献:
1.“美国进口多少石油和从哪里进口?”(How Much Petroleum Does the UnitedStates Import and from Where?),U.S.Energy Information Administration-EIA-Independent Statistics and Analysis.U.S.Department of Energy.Web.
2.“预测至2040年的每年能源展望2015”(Annual Energy Outlook 2015withProjections to 2040),U.S.Energy Information Administration-EIA-IndependentStatistics and Analysis.U.S.Department of Energy,April 2015.
3.“被排放和烧掉的天然气”(Natural Gas Vented and Flared),U.S.EnergyInformation Administration-EIA-Independent Statistics andAnalysis.U.S.Department of Energy,29Feb.2016.Web.
4.“天然气每周更新”(Natural Gas Weekly Update),U.S.Energy InformationAdministration-EIA-Independent Statistics and Analysis.U.S.Department ofEnergy.Web.
5.Arno,De Klerk.,“气变油转化”(Gas-to-Liquid Conversion),Natural GasConversion Technologies Workshop of ARPA-E.U.S.Department of Energy,Houston,TX.Vol 13(2012).
6.“能源系统研究的质量指南——所选进料的技术规格”(Quality Guidelinesfor Energy System Studies-Specification for Selected Feedstocks),NationalEnergy Technology Laboratory.U.S.Department of Energy,Jan.2012.

Claims (19)

1.一种用于转化燃料的系统,所述系统包含:
第一移动床反应器,其包含具有主要组分和次要组分的金属氧化物粒子,其中燃料、CO2和水蒸气以相对于所述金属氧化物粒子同向流动的模式添加到所述第一移动床反应器,其中所述第一移动床反应器被配置成用于将至少一部分所述金属氧化物粒子用所述燃料还原以产生第一还原的金属氧化物,并且被进一步配置成用于产生包含H2、CO、CO2和水蒸气的第一合成气料流;
第二移动床反应器,其与所述第一移动床反应器并行运行并包含具有主要组分和次要组分的金属氧化物粒子,其中燃料、CO2和水蒸气以相对于所述金属氧化物粒子同向流动的模式添加到所述第二移动床反应器,其中所述第二移动床反应器被配置成用于将至少一部分所述金属氧化物粒子用所述燃料还原以产生第二还原的金属氧化物,并且被进一步配置成用于产生包含H2、CO、CO2和水蒸气的第二合成气料流;
分离装置,其与所述第一移动床反应器和第二移动床反应器连通并被配置成用于从所述第一合成气料流和第二合成气料流除去CO2,其中所述第一和第二合成气料流的H2/CO摩尔比通过将所有的CO2从所述分离装置再循环到所述第一移动床反应器和第二移动床反应器来控制;以及
第三同向流流化床反应器,其与所述第一移动床反应器和第二移动床反应器连通,并被配置成用于将所述第一还原的金属氧化物和第二还原的金属氧化物用氧化剂氧化以产生氧化的金属氧化物粒子,并将所述氧化的复合金属氧化物再循环到所述第一移动床反应器和第二移动床反应器用于随后的还原反应,
其中所述系统消耗的CO2比它产生的CO2更多。
2.根据权利要求1所述的系统,其中所述主要组分是Fe2O3
3.根据权利要求1或2所述的系统,其中所述次要组分包含选自Ti、Al、Co、Cu、Mg、Mn、Zn的氧化物及其组合的金属氧化物。
4.根据权利要求1或2所述的系统,其中所述次要组分是氧化钛。
5.根据权利要求1或2所述的系统,其中所述燃料是甲烷。
6.根据权利要求1或2所述的系统,其中所述第一合成气料流的H2/CO摩尔比为2.9至3.1。
7.根据权利要求1或2所述的系统,其中所述第二合成气料流的H2/CO摩尔比为1.0至1.5。
8.根据权利要求1或2所述的系统,其中来自于每个反应器的合成气的合并产生1至3的总合成气H2/CO摩尔比。
9.根据权利要求1或2所述的系统,其中通过将水蒸气引入到所述第三同向流流化床反应器中,将所述第一还原的金属氧化物和第二还原的金属氧化物氧化。
10.一种用于转化燃料的系统,所述系统包含:
多个并行运行的移动床反应器,每个所述反应器包含多个具有主要组分和次要组分的金属氧化物粒子,其中所述多个并行运行的移动床反应器被配置成用于将至少一部分所述金属氧化物粒子用燃料还原以产生还原的金属或还原的金属氧化物粒子,并且被进一步配置成用于产生包含H2、CO、CO2和水蒸气的合成气料流;
分离装置,其与所述多个并行运行的移动床反应器连通并被配置成用于从所述合成气料流除去CO2,其中所述合成气料流的H2/CO摩尔比通过将所有的CO2从所述分离装置再循环到所述多个并行运行的移动床反应器来控制;以及
氧化反应器,其与所述多个并行运行的移动床反应器连通,并被配置成用于氧化所述还原的金属或金属氧化物粒子以产生氧化的金属粒子,并将所述氧化的金属粒子再循环到所述多个并行运行的移动床反应器用于随后的还原反应,
所述系统消耗的CO2比它产生的CO2更多。
11.根据权利要求10所述的系统,其中所述合成气料流的合并产生1至3的总合成气H2/CO摩尔比。
12.一种用于转化燃料的方法,所述方法包括:
将所述燃料和金属氧化物粒子以相对于彼此同向流动的模式进料到与第二移动床反应器并行运行的第一移动床反应器中,其中所述金属氧化物粒子包含主要组分和次要组分,并将所述第一移动床反应器中的至少一部分所述金属氧化物粒子还原,以产生第一还原的金属氧化物和包含H2、CO、CO2、水蒸气或其组合的第一合成气料流;
将所述燃料和金属氧化物粒子以相对于彼此同向流动的模式进料到第二移动床反应器中,并将所述第二移动床反应器中的至少一部分所述金属氧化物粒子还原,以产生第二还原的金属氧化物和包含H2、CO、CO2、水蒸气或其组合的第二合成气料流;
将所述第一还原的金属氧化物粒子和第二还原的金属氧化物粒子运输到第三同向流流化床反应器,以氧化所述第一还原的金属氧化物粒子和第二还原的金属氧化物粒子以产生氧化的金属氧化物粒子,并将所述氧化的金属氧化物粒子最小化到所述第一移动床反应器和第二移动床反应器,用于随后的还原反应;以及
在分离装置中从所述第一和第二合成气料流除去CO2,并通过将所有的CO2从所述分离装置再循环到所述第一移动床反应器和第二移动床反应器来控制所述H2/CO摩尔比,其中所述第一和第二合成气料流的合并产生2的总合成气H2/CO摩尔比,其中所述方法消耗的CO2比它产生的CO2更多。
13.根据权利要求12所述的方法,其中将CO2和水蒸气进料到所述第一移动床反应器和第二移动床反应器中。
14.根据权利要求12或13所述的方法,其中所述第一移动床反应器和第二移动床反应器在800℃至1190℃的温度下运行。
15. 根据权利要求12或13所述的方法,其中所述第一移动床反应器和第二移动床反应器在1 atm至10 atm的压力下运行。
16.根据权利要求12或13所述的方法,其中所述燃料是甲烷。
17.根据权利要求12或13所述的方法,其中所述主要组分是Fe2O3
18.根据权利要求12或13所述的方法,其中所述第一移动床反应器和第二移动床反应器具有0.5至1的有效Fe2O3/CH4摩尔比。
19. 根据权利要求12或13所述 的方法,其中通过将水蒸气引入到所述第三同向流流化床反应器中,将所述第一还原的金属氧化物和第二还原的金属氧化物氧化。
CN201780023280.XA 2016-04-12 2017-04-12 从含碳燃料化学循环生产合成气 Active CN109195696B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662321607P 2016-04-12 2016-04-12
US62/321,607 2016-04-12
PCT/US2017/027241 WO2017180763A1 (en) 2016-04-12 2017-04-12 Chemical looping syngas production from carbonaceous fuels

Publications (2)

Publication Number Publication Date
CN109195696A CN109195696A (zh) 2019-01-11
CN109195696B true CN109195696B (zh) 2022-04-26

Family

ID=60042237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780023280.XA Active CN109195696B (zh) 2016-04-12 2017-04-12 从含碳燃料化学循环生产合成气

Country Status (6)

Country Link
US (1) US11111143B2 (zh)
EP (1) EP3429738B1 (zh)
CN (1) CN109195696B (zh)
AU (1) AU2017250214B2 (zh)
CA (1) CA3020406A1 (zh)
WO (1) WO2017180763A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102597173A (zh) 2009-09-08 2012-07-18 俄亥俄州立大学研究基金会 具有原位co2捕集的合成燃料和化学品生产
US10549236B2 (en) 2018-01-29 2020-02-04 Ohio State Innovation Foundation Systems, methods and materials for NOx decomposition with metal oxide materials
US11413574B2 (en) 2018-08-09 2022-08-16 Ohio State Innovation Foundation Systems, methods and materials for hydrogen sulfide conversion
WO2020150438A1 (en) 2019-01-17 2020-07-23 Ohio State Innovation Foundation Systems, methods and materials for stable phase syngas generation
US11453626B2 (en) 2019-04-09 2022-09-27 Ohio State Innovation Foundation Alkene generation using metal sulfide particles
AU2020340961A1 (en) 2019-09-03 2022-03-24 Ohio State Innovation Foundation Redox reaction facilitated carbon dioxide capture from flue gas and conversion to carbon monoxide
EP4078030A4 (en) * 2020-02-14 2023-09-20 Ohio State Innovation Foundation CHEMICAL LOOPING SYSTEMS WITH AT LEAST TWO TYPES OF PARTICLES
US20240116757A1 (en) * 2021-02-08 2024-04-11 Ohio State Innovation Foundation Methods for chemical process heating with carbon capture
CN113620240B (zh) * 2021-06-29 2022-08-19 东北大学 一种用于制备氢基还原气的工艺参数确定方法
EP4402407A1 (en) * 2021-10-19 2024-07-24 Her Majesty the Queen in Right of Canada as Represented by The Minister of Natural Resources Arrangements for chemical looping combustion systems
WO2023096643A1 (en) * 2021-11-24 2023-06-01 Ohio State Innovation Foundation Systems and methods for redox energy recovery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325319A (zh) * 1998-11-10 2001-12-05 国际燃料电池有限公司 燃料气蒸汽转化炉壁上的碳沉积的抑制
CN101389734A (zh) * 2006-01-12 2009-03-18 俄亥俄州立大学 转化燃料的体系和方法
CN103635449A (zh) * 2011-05-11 2014-03-12 俄亥俄州国家创新基金会 用来转化燃料的系统
CN104694169A (zh) * 2006-01-12 2015-06-10 俄亥俄州立大学 转化燃料的体系和方法
CN105132025A (zh) * 2008-09-26 2015-12-09 俄亥俄州立大学 将含碳燃料转化为无碳能量载体
CN105358475A (zh) * 2013-02-05 2016-02-24 俄亥俄州国家创新基金会 用于燃料转化的方法

Family Cites Families (253)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1658939A (en) 1928-02-14 Chaeles e
US2899374A (en) 1959-08-11 Methods and apparatus for handling particulate solids
US971206A (en) 1908-12-02 1910-09-27 Corp Internationale Wasserstoff Ag Process of producing hydrogen.
US1078686A (en) 1910-07-16 1913-11-18 Int Wasserstoff Ag Process for the production of hydrogen.
US2182747A (en) 1938-04-18 1939-12-05 Kellogg M W Co Production of hydrogen by the high pressure iron process
US2198560A (en) 1938-04-18 1940-04-23 Kellogg M W Co Method for the production of hydrogen
US2449635A (en) 1943-03-19 1948-09-21 Standard Catalytic Co Production of hydrogen
US2635947A (en) 1948-07-02 1953-04-21 Union Oil Co Hydrogen process
US2614067A (en) 1948-07-02 1952-10-14 Union Oil Co Refining process and apparatus
US2694622A (en) 1948-07-02 1954-11-16 Union Oil Co Hydrocarbon refining apparatus
US2686819A (en) 1949-09-01 1954-08-17 Kellogg M W Co Synthesis of methane
US2697686A (en) 1951-04-26 1954-12-21 Universal Oil Prod Co Method for effecting the conversion of fluid reactant streams by contact with a moving bed of solid particles
US3031287A (en) 1958-06-23 1962-04-24 Homer E Benson Process for manufacturing mixtures of hydrogen, carbon monoxide, and methane
US2979384A (en) 1958-12-22 1961-04-11 Parsons Co Ralph M Process for production of hydrogen and sulfur
US3027238A (en) 1959-12-07 1962-03-27 Universal Oil Prod Co Hydrogen manufacture
DE1248843B (zh) 1962-05-23
FR1043603A (fr) 1963-02-20 1953-11-10 Cavalier en matière élastique utilisable dans les fichiers
US3338667A (en) 1963-12-02 1967-08-29 Johns Manville Recovery of silica, iron oxide and magnesium carbonate from the treatment of serpentine with ammonium bisulfate
US3421869A (en) 1964-06-01 1969-01-14 Con Gas Service Corp Method for the production of a mixture of hydrogen and steam
US3442613A (en) 1965-10-22 1969-05-06 Braun & Co C F Hydrocarbon reforming for production of a synthesis gas from which ammonia can be prepared
GB1150906A (en) 1966-07-27 1969-05-07 Mullard Ltd Improvement relating to Screened Ferrite Elements
US3573224A (en) 1967-11-14 1971-03-30 Chemical Construction Corp Production of hydrogen-rich synthesis gas
US3494858A (en) 1967-11-17 1970-02-10 Exxon Research Engineering Co Two-stage countercurrent catalyst regenerator
US3442619A (en) 1968-03-27 1969-05-06 Consolidation Coal Co Production of hydrogen via the steam-iron process utilizing dual solids recycle
US3442620A (en) 1968-04-18 1969-05-06 Consolidation Coal Co Production of hydrogen via the steam-iron process
US3619142A (en) 1969-02-11 1971-11-09 Consolidation Coal Co Continuous steam-iron process
US3726966A (en) 1970-10-06 1973-04-10 Phillips Petroleum Co Barium promoted iron oxide for use as a catalyst in steam-iron process for producing hydrogen
NO127185B (zh) 1971-10-08 1973-05-21 Elkem Spigerverket As
US3801661A (en) 1972-07-11 1974-04-02 Dow Chemical Co Selective process for the continuous dyhydrogenation of nonaromatic hydrocarbons
JPS5111032B2 (zh) 1973-10-29 1976-04-08
US4017270A (en) 1974-01-31 1977-04-12 Kamyr, Inc. Coal gasification process with improved procedures for continuously feeding lump coal under pressure
US4334959A (en) 1974-03-07 1982-06-15 Occidental Petroleum Corporation Mixing method and apparatus
CA1050736A (en) 1974-05-24 1979-03-20 Occidental Petroleum Corporation Mixing of particulate materials
US4075079A (en) 1976-06-09 1978-02-21 Exxon Research & Engineering Co. Process for the production of hydrocarbons from coal
US4057402A (en) 1976-06-28 1977-11-08 Institute Of Gas Technology Coal pretreatment and gasification process
US4151124A (en) 1977-12-16 1979-04-24 Institute Of Gas Technology Sorbent composition and process for preparing it
US4155832A (en) 1977-12-23 1979-05-22 The United States Of America As Represented By The United States Department Of Energy Hydrogenation process for solid carbonaceous materials
US4272399A (en) 1979-09-21 1981-06-09 Monsanto Company Conversion of carbon-containing materials to synthesis gas
US4343624A (en) 1979-12-10 1982-08-10 Caterpillar Tractor Co. Rotating fluidized bed hydrogen production system
US4318711A (en) 1979-12-28 1982-03-09 Atlantic Richfield Company Converting low BTU gas to high BTU gas
US4325833A (en) 1980-06-27 1982-04-20 Chevron Research Company Three-stage catalyst regeneration
JPS5836034B2 (ja) 1980-12-22 1983-08-06 重質油対策技術研究組合 重質油の熱分解と共に還元鉄を製造する方法
CA1134596A (en) 1981-07-06 1982-11-02 Leo A. Behie Process for producing hydrogen from hydrogen sulphide in a gas fluidized bed reactor
US4348487A (en) 1981-11-02 1982-09-07 Exxon Research And Engineering Co. Production of methanol via catalytic coal gasification
US4404086A (en) 1981-12-21 1983-09-13 Standard Oil Company (Indiana) Radial flow retorting process with trays and downcomers
NL190510C (nl) 1983-02-17 1994-04-05 Hoogovens Groep Bv Gasmenger.
US4778585A (en) 1983-07-14 1988-10-18 Research Foundation Of The City Univ. Of Ny Two-stage pyrolysis of coal for producing liquid hydrocarbon fuels
US4594140A (en) 1984-04-04 1986-06-10 Cheng Shang I Integrated coal liquefaction, gasification and electricity production process
FR2563118B1 (fr) 1984-04-20 1987-04-30 Creusot Loire Procede et installation de traitement de matiere en lit fluidise circulant
US4861165A (en) 1986-08-20 1989-08-29 Beloit Corporation Method of and means for hydrodynamic mixing
US4869207A (en) 1987-07-13 1989-09-26 A. Ahlstrom Corporation Circulating fluidized bed reactor
FR2619023B1 (fr) 1987-08-07 1991-04-12 Lamort E & M Injecteur melangeur sous pression
DE3727119A1 (de) 1987-08-14 1989-02-23 Didier Werke Ag Verfahren zur herstellung von katalysatoren fuer die reduzierung von stickoxiden aus abgasen oder fuer chemische luftreinigungsverfahren und nach dem verfahren hergestellte katalysatoren
US5130106A (en) 1988-12-28 1992-07-14 Uop Moving bed radial flow reactor for high gas flow
WO1990013773A1 (en) 1989-05-01 1990-11-15 Ronald Stanley Tabery Fluidized bed device for combustion of low-melting fuels
US5916529A (en) * 1989-07-19 1999-06-29 Chevron U.S.A. Inc Multistage moving-bed hydroprocessing reactor with separate catalyst addition and withdrawal systems for each stage, and method for hydroprocessing a hydrocarbon feed stream
JPH0368898A (ja) 1989-08-08 1991-03-25 Nippon Nuclear Fuel Dev Co Ltd 核燃料ペレットの製造方法
US4902586A (en) 1989-08-28 1990-02-20 International Fuel Cells Corporation Once through molten carbonate fuel cell system
HU9201539D0 (en) 1990-09-11 1992-08-28 Kortec Ag Method and device for gasifying gasifiable materials and/or transforming gas as well as heat exchanger of high temperature for executing said method
US5578498A (en) 1991-05-22 1996-11-26 Behringwerke Ag Metal chelate containing compositions for use in chemiluminescent assays
US5365560A (en) 1991-07-29 1994-11-15 General Electric Company Method and apparatus for acquiring a uniform distribution of radon data sufficiently dense to constitute a complete set for exact image reconstruction of an object irradiated by a cone beam source
JP3315719B2 (ja) 1992-06-03 2002-08-19 東京電力株式会社 化学ループ燃焼方式発電プラントシステム
AU660852B2 (en) 1992-11-25 1995-07-06 Elan Pharma International Limited Method of grinding pharmaceutical substances
US5827496A (en) 1992-12-11 1998-10-27 Energy And Environmental Research Corp. Methods and systems for heat transfer by unmixed combustion
US5509362A (en) 1992-12-11 1996-04-23 Energy And Environmental Research Corporation Method and apparatus for unmixed combustion as an alternative to fire
US5630368A (en) 1993-05-24 1997-05-20 The University Of Tennessee Research Corporation Coal feed and injection system for a coal-fired firetube boiler
US5584615A (en) 1993-12-27 1996-12-17 Uop Pneumatic particulate transport with gravity assisted flow
US5456807A (en) 1994-03-09 1995-10-10 Gas Research Institute Method and apparatus for treating nitrogen oxide-containing gas streams using a combined electrochemical-sorbent approach
KR100249936B1 (ko) 1995-01-20 2000-03-15 제이. 에이치. 블롬 가스 스트림을 탈황하기 위한 방법 및 이 방법에적합한흡수체
US5529599A (en) 1995-01-20 1996-06-25 Calderon; Albert Method for co-producing fuel and iron
DE19546476A1 (de) 1995-12-13 1997-06-19 Daimler Benz Ag Katalysator, Verfahren zu dessen Herstellung und Verwendung desselben
DE19606657C1 (de) 1996-02-23 1997-07-10 Basf Ag Verfahren und Vorrichtung zum Reinigen von Gasen
JPH09272815A (ja) 1996-04-02 1997-10-21 Merck Japan Kk 金属酸化物複合微粒子及びその製造方法
TW406055B (en) 1996-04-08 2000-09-21 Air Prod & Chem Integrated steam methane reforming process for producing carbon monoxide and hydrogen
US5858210A (en) 1996-05-20 1999-01-12 Uop Llc Method for regulating particle transfer rates
US6007699A (en) 1996-08-21 1999-12-28 Energy And Environmental Research Corporation Autothermal methods and systems for fuels conversion
JP3094093B2 (ja) 1997-03-11 2000-10-03 科学技術庁無機材質研究所長 アルカリ土類珪酸塩によるco2の固定化方法
DE19724286A1 (de) 1997-06-09 1998-12-10 Linde Ag Verfahren zur Entfernung von Stickoxiden aus Gasen
US6025403A (en) 1997-07-07 2000-02-15 Mobil Oil Corporation Process for heat integration of an autothermal reformer and cogeneration power plant
WO1999017875A1 (fr) 1997-10-07 1999-04-15 Nkk Corporation Catalyseur pour la production d'hydrogene ou de gaz de synthese et procede de production correspondant
US6187465B1 (en) 1997-11-07 2001-02-13 Terry R. Galloway Process and system for converting carbonaceous feedstocks into energy without greenhouse gas emissions
US5958222A (en) 1997-11-17 1999-09-28 Uop Llc Standpipe distributor for short time contact of hydrocarbon compounds with particles
US6348278B1 (en) 1998-06-09 2002-02-19 Mobil Oil Corporation Method and system for supplying hydrogen for use in fuel cells
US6334895B1 (en) 1998-07-20 2002-01-01 The University Of Wyoming Research Corporation System for producing manufactured materials from coal combustion ash
GB9819645D0 (en) 1998-09-10 1998-11-04 Bp Chem Int Ltd Process
JP3898892B2 (ja) 1998-10-14 2007-03-28 アイダテック・エルエルシー 改質器
US6143203A (en) 1999-04-13 2000-11-07 The Boc Group, Inc. Hydrocarbon partial oxidation process
AU4835800A (en) 1999-05-07 2000-11-21 Rentech, Inc. Convertible methanol/fischer-tropsch plant and method
FI107758B (fi) 1999-11-10 2001-09-28 Foster Wheeler Energia Oy Kiertoleijureaktori
US6790430B1 (en) 1999-12-09 2004-09-14 The Regents Of The University Of California Hydrogen production from carbonaceous material
CA2340822C (en) 2000-03-17 2010-08-03 Snamprogetti S.P.A. Process for the production of hydrogen
EP1136467A1 (en) 2000-03-24 2001-09-26 Aventis Animal Nutrition S.A. Catalytic conversion of alkanes to alkenes
JP2001299744A (ja) 2000-04-18 2001-10-30 Hitachi Medical Corp 医用x線装置
DE60121744T2 (de) 2000-04-24 2007-08-02 Shell Internationale Research Maatschappij B.V. Verfahren zur behandlung von erdöllagerstätten
WO2002008117A1 (en) 2000-07-25 2002-01-31 Apollo Energy Systems, Incorporated Ammonia cracker for production of hydrogen
US7247279B2 (en) 2000-08-01 2007-07-24 Enviroscrub Technologies Corporation System for removal of pollutants from a gas stream
US6506351B1 (en) 2000-08-11 2003-01-14 The Boc Group, Inc. Removal of nitrogen oxides from gas streams
US6509000B1 (en) 2000-08-31 2003-01-21 Council Of Scientific And Industrial Research Low temperature process for the production of hydrogen
DE10047642A1 (de) 2000-09-26 2002-04-11 Basf Ag Verfahren zur Dehydrierung von Kohlenwasserstoffen
US6444712B1 (en) 2000-09-28 2002-09-03 Exxonmobil Chemical Patents, Inc. Methanol, olefin, and hydrocarbon synthesis process
WO2002058557A2 (en) 2000-10-24 2002-08-01 The Johns Hopkins University Method and apparatus for multiple-projection, dual-energy x-ray absorptiometry scanning
US6412559B1 (en) 2000-11-24 2002-07-02 Alberta Research Council Inc. Process for recovering methane and/or sequestering fluids
DE10063862A1 (de) 2000-12-21 2002-07-11 Solarworld Ag Verfahren zur Herstellung von hochreinem, granularen Silizium
KR100868392B1 (ko) 2001-03-02 2008-11-11 메소퓨얼 인코포레이티드 암모니아에 근거한 수소발생장치 및 사용방법
US6663681B2 (en) 2001-03-06 2003-12-16 Alchemix Corporation Method for the production of hydrogen and applications thereof
US6682714B2 (en) 2001-03-06 2004-01-27 Alchemix Corporation Method for the production of hydrogen gas
US6685754B2 (en) 2001-03-06 2004-02-03 Alchemix Corporation Method for the production of hydrogen-containing gaseous mixtures
EP1379469B1 (en) 2001-04-20 2006-03-01 Shell Internationale Researchmaatschappij B.V. Process for mineral carbonation with carbon dioxide
US20020179887A1 (en) 2001-05-01 2002-12-05 Yongxian Zeng Supported perovskite-type oxides and methods for preparation thereof
US6448441B1 (en) * 2001-05-07 2002-09-10 Texaco, Inc. Gasification process for ammonia/urea production
EP1262235A3 (en) 2001-05-23 2003-04-16 Rohm And Haas Company Mixed-metal oxide catalysts containing molybdenum and vanadium and processes for preparing the same
JP4092090B2 (ja) 2001-06-26 2008-05-28 株式会社日本触媒 固体粒子充填反応器およびその反応器を用いた接触気相酸化方法
US6568206B2 (en) 2001-07-18 2003-05-27 Air Products And Chemicals, Inc. Cryogenic hydrogen and carbon monoxide production with membrane permeate expander
US6669917B2 (en) 2001-07-31 2003-12-30 General Electric Co. Process for converting coal into fuel cell quality hydrogen and sequestration-ready carbon dioxide
US6494153B1 (en) 2001-07-31 2002-12-17 General Electric Co. Unmixed combustion of coal with sulfur recycle
US6834623B2 (en) 2001-08-07 2004-12-28 Christopher T. Cheng Portable hydrogen generation using metal emulsions
US6667022B2 (en) 2001-08-14 2003-12-23 General Electric Co. Process for separating synthesis gas into fuel cell quality hydrogen and sequestration ready carbon dioxide
WO2003029390A1 (fr) 2001-09-28 2003-04-10 Ebara Corporation Procede de modification de gaz inflammable, appareil de modification de gaz inflammable et appareil de gazeification
US6607704B2 (en) 2001-10-18 2003-08-19 Ford Global Technologies, Llc Sulfur tolerant lean NOx trap
US6797253B2 (en) 2001-11-26 2004-09-28 General Electric Co. Conversion of static sour natural gas to fuels and chemicals
FR2833005B1 (fr) 2001-11-30 2004-01-23 Atofina Procede de fabrication d'acide acrylique a partir de propane et en l'absence d'oxygene moleculaire
US6703343B2 (en) 2001-12-18 2004-03-09 Caterpillar Inc Method of preparing doped oxide catalysts for lean NOx exhaust
US20030119658A1 (en) 2001-12-21 2003-06-26 Conocophillips Company Recovery of rhenium from a spent catalyst via sublimation
DE10202127A1 (de) 2002-01-22 2003-07-31 Kataleuna Gmbh Catalysts Kugelförmige hochaktive Metall-Trägerkatalysatoren
US6747066B2 (en) 2002-01-31 2004-06-08 Conocophillips Company Selective removal of oxygen from syngas
US20080031809A1 (en) 2006-07-18 2008-02-07 Norbeck Joseph M Controlling the synthesis gas composition of a steam methane reformer
US20030162846A1 (en) 2002-02-25 2003-08-28 Wang Shoou-L Process and apparatus for the production of synthesis gas
CA2478794A1 (en) 2002-03-13 2003-09-25 Conocophillips Company Controlled-pore catalyst structures and process for producing synthesis gas
US7244399B2 (en) 2002-04-26 2007-07-17 Foster Wheeler Energia Oy Grid construction for a fluidized bed reactor
TWI225426B (en) 2002-05-01 2004-12-21 Rohm & Haas Supported mixed metal oxide catalyst
WO2004002881A1 (ja) 2002-06-26 2004-01-08 Uchiya Thermostat Co.,Ltd. 水素製造方法および水素供給装置
CA2500546A1 (en) 2002-10-16 2004-04-29 Conocophillips Company Fischer-tropsch processes and catalysts made from a material comprising boehmite
WO2004035178A1 (en) 2002-10-17 2004-04-29 Mykrolis Corporation Method for purifying carbon dioxide
US20040126293A1 (en) 2002-10-23 2004-07-01 Geerlings Jacobus Johannes Cornelis Process for removal of carbon dioxide from flue gases
US7226548B2 (en) 2002-11-11 2007-06-05 Conocophillips Company Syngas catalysts and their method of use
CA2448715C (en) 2002-11-11 2011-07-05 Nippon Telegraph And Telephone Corporation Fuel cell power generating system with two fuel cells of different types and method of controlling the same
US7945021B2 (en) 2002-12-18 2011-05-17 Varian Medical Systems, Inc. Multi-mode cone beam CT radiotherapy simulator and treatment machine with a flat panel imager
ITMI20030192A1 (it) 2003-02-05 2004-08-06 Eni Spa Sistema catalitico e procedimento per la produzione
US7067456B2 (en) 2003-02-06 2006-06-27 The Ohio State University Sorbent for separation of carbon dioxide (CO2) from gas mixtures
WO2004076017A2 (en) 2003-02-26 2004-09-10 Questair Technologies Inc. Hydrogen recycle for high temperature fuel cells
US20040213705A1 (en) 2003-04-23 2004-10-28 Blencoe James G. Carbonation of metal silicates for long-term CO2 sequestration
US7604787B2 (en) 2003-05-02 2009-10-20 The Penn State Research Foundation Process for sequestering carbon dioxide and sulfur dioxide
US7075532B2 (en) 2003-05-23 2006-07-11 International Business Machines Corporation Robust tetrahedralization and triangulation method with applications in VLSI layout design and manufacturability
US7255840B2 (en) 2003-06-26 2007-08-14 Praxair Technology, Inc. Autothermal reactor and method for production of synthesis gas
TW200519073A (en) 2003-08-21 2005-06-16 Pearson Technologies Inc Process and apparatus for the production of useful products from carbonaceous feedstock
US7496450B2 (en) 2003-08-22 2009-02-24 Instituto Mexicano Del Petroleo Method for imaging multiphase flow using electrical capacitance tomography
US7767191B2 (en) * 2003-12-11 2010-08-03 The Ohio State University Combustion looping using composite oxygen carriers
WO2005077818A1 (en) 2004-02-06 2005-08-25 David Tsay Single stage membrane reactor for high purity hydrogen production
ITMI20040555A1 (it) 2004-03-23 2004-06-23 Eni Spa Procedimento per la produzione di idrogeno e la co-produzione di anidride carbonica
US20050274648A1 (en) 2004-04-21 2005-12-15 Goldstein Stuart S Method for revamping fixed-bed catalytic reformers
US7547419B2 (en) 2004-06-16 2009-06-16 United Technologies Corporation Two phase injector for fluidized bed reactor
US20060021308A1 (en) 2004-07-29 2006-02-02 Merkel Gregory A Mullite-aluminum titanate body and method for making same
US20060042565A1 (en) 2004-08-26 2006-03-02 Eaton Corporation Integrated fuel injection system for on-board fuel reformer
US7223714B2 (en) 2004-11-04 2007-05-29 Exxonmobil Chemical Patents Inc. Method of transferring catalyst in a reaction system
KR100655133B1 (ko) 2005-03-02 2006-12-08 아주대학교산학협력단 산화질소 제거용 금속산화물 촉매 및 그 제조방법
US20090081087A1 (en) 2005-03-29 2009-03-26 Yanmar Co., Ltd. Exhaust gas purifier
US20110289845A1 (en) 2005-04-12 2011-12-01 Ze-Gen, Inc. Method for controlling syngas production in a system with multiple feed materials using a molten metal bath
FR2889248B1 (fr) 2005-07-29 2007-09-07 Inst Francais Du Petrole Nouvelle masse active oxydo-reductrice pour un procede d'oxydo-reduction en boucle
US7842635B2 (en) 2006-01-06 2010-11-30 Headwaters Technology Innovation, Llc Hydrocarbon-soluble, bimetallic catalyst precursors and methods for making same
DE102006017614A1 (de) 2006-04-12 2007-10-18 J. Eberspächer GmbH & Co. KG Brennstoffzellensystem und zugehöriges Betriebsverfahren
AU2007242514B2 (en) 2006-04-24 2011-09-22 University Of The Witwatersrand, Johannesburg Improvement of carbon efficiencies in hydrocarbon production
NZ573217A (en) 2006-05-05 2011-11-25 Plascoenergy Ip Holdings S L Bilbao Schaffhausen Branch A facility for conversion of carbonaceous feedstock into a reformulated syngas containing CO and H2
WO2007134075A2 (en) 2006-05-08 2007-11-22 Alchemix Corporation Method for the gasification of hydrocarbon feedstocks
US20090308731A1 (en) 2006-08-04 2009-12-17 Zabolotny Ernest R Gasification process
US7824574B2 (en) 2006-09-21 2010-11-02 Eltron Research & Development Cyclic catalytic upgrading of chemical species using metal oxide materials
ES2822323T3 (es) 2006-09-25 2021-04-30 Ohio State Innovation Foundation Proceso de ciclado de calcio para la producción de hidrógeno de alta pureza
US20080134666A1 (en) 2006-12-11 2008-06-12 Parag Prakash Kulkarni Systems and Methods Using an Unmixed Fuel Processor
WO2008071215A1 (de) 2006-12-14 2008-06-19 Horst Grochowski Verfahren und vorrichtung zum reinigen von abgasen eines sinterprozesses von erzen und/oder anderen metallhaltigen materialien in der metallerzeugung
US7902416B2 (en) 2006-12-28 2011-03-08 Uop Llc Fluidized bed reactor with back-mixing for dehydrogenation of light paraffins
WO2008082312A1 (en) 2007-01-05 2008-07-10 Sinvent As Hydrogen production
NO328522B1 (no) 2007-03-19 2010-03-08 Statoil Asa Fremgangsmate for produksjon av hydrogen, hydrogenproduksjonsanlegg, en vann-gassskift-reaktor samt en fremgangsmate for fremstilling av hydrogen fra syngass.
US7840053B2 (en) 2007-04-05 2010-11-23 Liao Hstau Y System and methods for tomography image reconstruction
CA2693117A1 (en) 2007-06-14 2008-12-24 Kansas State University Research Foundation Fluidized bed precipitator
DE102007031635A1 (de) 2007-07-06 2009-01-15 Evonik Degussa Gmbh Verfahren zur Herstellung von Metalloxidgranulaten
WO2009009388A2 (en) 2007-07-09 2009-01-15 Range Fuels, Inc. Methods and apparatus for producing syngas
KR100896455B1 (ko) 2007-07-09 2009-05-14 한국에너지기술연구원 압력변동흡착장치 및 이를 이용한 수소 정제 방법
US8926717B2 (en) 2007-07-27 2015-01-06 The Trustees Of Columbia University In The City Of New York Methods and systems for producing synthetic fuel
US20090042070A1 (en) 2007-08-08 2009-02-12 The University Corporation, Inc. At California State University, Northridge Barometric thermal trap and collection apparatus and method thereof for combining multiple exhaust streams into one
WO2009023515A2 (en) 2007-08-09 2009-02-19 Eli Lilly And Company Reactors and methods for processing reactants therein
AT505526B1 (de) 2007-08-14 2010-09-15 Univ Wien Tech Wirbelschichtreaktorsystem
FR2923732B1 (fr) 2007-11-16 2011-03-04 Nicolas Ugolin Procede utilisant l'energie thermique solaire couplee a des plasmas pour produire un carburant liquide et du dihydrogene a partir de biomasse ou de charbon fossile (procede p-sl et p-sh)
FR2924035B1 (fr) 2007-11-23 2010-09-03 Sebatien Roux Formulation d'oxydes, son obtention et son utilisation comme porteur d'oxygene dans un procede d'oxydation et/ou de desoxydation d'un flux gazeux
US7880481B2 (en) 2007-12-19 2011-02-01 Infineon Technologies Ag Capacitive sensor and measurement system
US8160730B2 (en) 2008-03-03 2012-04-17 Xinsheng Lou Fuzzy logic control and optimization system
TWI461522B (zh) 2008-03-05 2014-11-21 Thyssenkrupp Uhde Gmbh 用於煤的氣化反應器之連續燃料供應系統
US20090263312A1 (en) 2008-04-21 2009-10-22 Swapsol Corp. Hydrogen Sulfide Conversion to Hydrogen
FR2930733B1 (fr) 2008-04-30 2014-04-11 Inst Francais Du Petrole Masse active d'oxydo-reduction et procede de combustion en boucle chimique.
CN102076829B (zh) 2008-06-27 2013-08-28 格雷特波因特能源公司 用于合成气制备的四列催化气化系统
US20110176988A1 (en) 2008-09-17 2011-07-21 Junji Okamura Ammonia decomposition catalysts and their production processes, as well as ammonia treatment method
CN102159683B (zh) 2008-09-19 2014-10-01 格雷特波因特能源公司 碳质原料的气化方法
FR2937119B1 (fr) 2008-10-15 2010-12-17 Air Liquide Procede de production d'energie et capture de co2
CN102209675B (zh) 2008-11-14 2014-07-23 电源开发工程技术株式会社 闭锁料斗
CA2745055C (fr) 2008-12-02 2016-10-04 Jean-Xavier Morin Installation a cycle thermochimique pour combustibles reactifs
US20100187159A1 (en) 2009-01-28 2010-07-29 Christopher Naunheimer Moving Bed Hydrocarbon Conversion Process
US8241523B2 (en) 2009-01-21 2012-08-14 Rentech, Inc. System and method for dual fluidized bed gasification
JP2010167366A (ja) 2009-01-22 2010-08-05 Ngk Insulators Ltd ハニカム触媒体
FR2941689B1 (fr) 2009-01-30 2011-02-18 Inst Francais Du Petrole Procede integre d'oxydation, reduction et gazeification pour production de gaz de synthese en boucle chimique
WO2010118127A1 (en) 2009-04-10 2010-10-14 University Of Southern California Rendering coal as an environmentally carbon dioxide neutral fuel and a regenerative carbon source
US20100275514A1 (en) 2009-04-14 2010-11-04 Packer Engineering, Inc. Biomass gasification/pyrolysis system and process
FR2945034B1 (fr) 2009-04-29 2012-06-08 Inst Francais Du Petrole Procede integre de production d'energie et/ou de gaz de synthese par production d'oxygene in situ, combustion et gazeification en boucle chimique
US8500868B2 (en) 2009-05-01 2013-08-06 Massachusetts Institute Of Technology Systems and methods for the separation of carbon dioxide and water
WO2011002793A1 (en) 2009-06-30 2011-01-06 The University Of Connecticut Multiple excitation capacitance polling for enhanced electronic capacitance tomography
US8202349B2 (en) 2009-06-30 2012-06-19 General Electric Company Method and apparatus for removal of carbon dioxide from pre-combustion syngas
WO2011006059A2 (en) 2009-07-10 2011-01-13 Southern Company Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas
US8394240B2 (en) 2009-07-14 2013-03-12 C2O Technologies, Llc Process for treating bituminous coal by removing volatile components
FR2948177B1 (fr) 2009-07-16 2011-08-05 Inst Francais Du Petrole Procede de combustion en boucle chimique avec controle independant de la circulation des solides
WO2011022501A2 (en) 2009-08-18 2011-02-24 Van Dyke, Marc Method and system for producing syngas
CN102597173A (zh) 2009-09-08 2012-07-18 俄亥俄州立大学研究基金会 具有原位co2捕集的合成燃料和化学品生产
AU2010292313B2 (en) 2009-09-08 2015-08-20 The Ohio State University Research Foundation Integration of reforming/water splitting and electrochemical systems for power generation with integrated carbon capture
US9873840B2 (en) 2009-09-18 2018-01-23 Wormser Energy Solutions, Inc. Integrated gasification combined cycle plant with char preparation system
KR101029680B1 (ko) 2009-10-26 2011-04-15 상명대학교 산학협력단 혼합금속산화물 촉매를 이용한 희박 질소산화물의 흡장 및 분해 방법
US20110094226A1 (en) 2009-10-28 2011-04-28 Mchugh Lawrence F Process and apparatus for high energy efficiency chemical looping combustion
US8356992B2 (en) 2009-11-30 2013-01-22 Chevron U.S.A. Inc. Method and system for capturing carbon dioxide in an oxyfiring process where oxygen is supplied by regenerable metal oxide sorbents
US8961629B2 (en) 2009-12-21 2015-02-24 Southern Company Services, Inc. Apparatus, components and operating methods for circulating fluidized bed transport gasifiers and reactors
US8761943B2 (en) 2010-01-29 2014-06-24 Alstom Technology Ltd Control and optimization system and method for chemical looping processes
DE102010028816A1 (de) 2010-05-10 2011-11-10 Highterm Research Gmbh Wirbelschichtreaktor und Verfahren zur Erzeugung von Produktgas aus kohlenstoffhaltigen Einsatzstoffen
SG185444A1 (en) 2010-05-28 2012-12-28 Exxonmobil Chem Patents Inc Reactor with reactor head and integrated valve
FR2960869B1 (fr) 2010-06-02 2014-08-08 Inst Francais Du Petrole Procede et installation de production d'oxygene par boucle chimique en lit fluidise
FR2960940B1 (fr) 2010-06-02 2015-08-07 Inst Francais Du Petrole Procede de combustion en boucle chimique avec une zone de reaction integrant une zone de separation gaz-solide et installation utilisant un tel procede
AT509586B8 (de) 2010-06-11 2011-12-15 Univ Wien Tech Verbessertes wirbelschichtreaktorsystem
EP2601443A1 (en) 2010-08-02 2013-06-12 Siemens Aktiengesellschaft Chemical looping system
US8508238B2 (en) 2010-08-12 2013-08-13 General Electric Company System and method for performing electrical impedance tomography
US20120214106A1 (en) 2010-10-13 2012-08-23 Song Sit Chemical looping combustion
FR2966160B1 (fr) 2010-10-14 2013-11-15 IFP Energies Nouvelles Procede de craquage catalytique adapte au traitement de charges a faible carbon conradson comportant le recycle d'une coupe cokante selon une technologie nouvelle
AU2011326127B2 (en) 2010-11-08 2017-04-20 Particulate Solid Research, Inc. Circulating fluidized bed with moving bed downcomers and gas sealing between reactors
EP2450420A1 (en) 2010-11-08 2012-05-09 Shell Internationale Research Maatschappij B.V. Multi stage process for producing hydrocarbons from syngas
KR20120064030A (ko) 2010-12-08 2012-06-18 에스케이이노베이션 주식회사 이산화탄소의 배출이 저감된 가스화 방법
EP2515038A1 (en) 2011-04-21 2012-10-24 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Fixed bed chemical looping combustion
WO2012155059A1 (en) 2011-05-11 2012-11-15 The Ohio State University Oxygen carrying materials
US9017627B2 (en) 2011-09-21 2015-04-28 Shell Oil Company Process for removing hydrogen sulfide from very sour hydrocarbon gas streams using metal sulfide
US8562928B2 (en) 2011-09-21 2013-10-22 Shell Oil Company Process for producing hydrogen, sulfur and sulfur dioxide from hydrogen sulfide-containing gas streams
EP2758339B1 (en) 2011-09-23 2017-12-20 Newcastle Innovation Limited Integrated chemical looping air separation in large-scale oxy-fuel plants
US9259168B2 (en) 2011-10-04 2016-02-16 The Ohio State University Adaptive electrical capacitance volume tomography
US20130261355A1 (en) 2012-03-28 2013-10-03 Kior, Inc. Catalyst Compositions for Use in a Two-Stage Reactor Assembly Unit for the Thermolysis and Catalytic Conversion of Biomass
US20130255272A1 (en) 2012-03-30 2013-10-03 Alstom Technology Ltd. Method for carbon capture in a gas turbine based power plant using chemical looping reactor system
ES2796856T3 (es) 2012-08-29 2020-11-30 Borealis Ag Conjunto de reactor y procedimiento para la polimerización de olefinas
CN104837555B (zh) 2012-11-08 2020-07-10 代表Mt创新中心的斯塔米卡邦有限公司 用于同时制造氢的硫回收方法的催化剂、其制造方法以及使用该催化剂的同时制造氢的硫回收方法
WO2014085243A1 (en) 2012-11-30 2014-06-05 Saudi Arabian Oil Company Staged chemical looping process with integrated oxygen generation
EP2969129A4 (en) 2013-03-13 2016-11-02 Ohio State Innovation Foundation OXYGEN SUPPORT MATERIALS AND METHOD FOR THE PRODUCTION THEREOF
WO2014159956A1 (en) 2013-03-13 2014-10-02 Ohio State Innovation Foundation Distributing secondary solids in packed moving bed reactors
US9616403B2 (en) 2013-03-14 2017-04-11 Ohio State Innovation Foundation Systems and methods for converting carbonaceous fuels
US9481837B2 (en) * 2013-03-15 2016-11-01 The Babcock & Wilcox Company Chemical looping processes for partial oxidation of carbonaceous fuels
WO2014151138A1 (en) 2013-03-15 2014-09-25 Seerstone Llc Reactors, systems, and methods for forming solid products
EP2810709A1 (en) 2013-06-06 2014-12-10 Saudi Basic Industries Corporation Catalyst composition for the production of syngas
CN103468322B (zh) 2013-07-25 2015-08-12 易高环保能源研究院有限公司 一种由固体有机物水蒸气气化制取富氢气体的方法
US8877150B1 (en) 2013-07-26 2014-11-04 The Ohio State University Single-step process for the simultaneous removal of CO2, SOx and NOx from a gas mixture
WO2015131117A1 (en) * 2014-02-27 2015-09-03 Ohio State Innovation Foundation Systems and methods for partial or complete oxidation of fuels
US20150343416A1 (en) 2014-06-03 2015-12-03 Saudi Arabian Oil Company Activation of Waste Metal Oxide as an Oxygen Carrier for Chemical Looping Combustion Applications
US9738460B2 (en) 2014-10-01 2017-08-22 Shell Oil Company Systems and methods for providing feed material to a pressurized system
WO2017106448A1 (en) 2015-12-18 2017-06-22 3M Innovative Properties Company Metal-containing sorbents for nitrogen-containing compounds
NO20151775A1 (en) 2015-12-22 2017-06-23 Inst Energiteknik Sustainable oxygen carriers for chemical looping combustion with oxygen uncoupling and methods for their manufacture
WO2017162427A1 (en) 2016-03-22 2017-09-28 Haldor Topsøe A/S Sulfide-based alkane dehydrogenation catalysts
US10434471B2 (en) 2017-04-17 2019-10-08 Toyota Motor Engineering & Manufacturing North America, Inc. Copper oxides supported on spinel oxides as catalysts for low temperature direct NOx decomposition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325319A (zh) * 1998-11-10 2001-12-05 国际燃料电池有限公司 燃料气蒸汽转化炉壁上的碳沉积的抑制
CN101389734A (zh) * 2006-01-12 2009-03-18 俄亥俄州立大学 转化燃料的体系和方法
CN104694169A (zh) * 2006-01-12 2015-06-10 俄亥俄州立大学 转化燃料的体系和方法
CN105132025A (zh) * 2008-09-26 2015-12-09 俄亥俄州立大学 将含碳燃料转化为无碳能量载体
CN103635449A (zh) * 2011-05-11 2014-03-12 俄亥俄州国家创新基金会 用来转化燃料的系统
CN105358475A (zh) * 2013-02-05 2016-02-24 俄亥俄州国家创新基金会 用于燃料转化的方法

Also Published As

Publication number Publication date
CA3020406A1 (en) 2017-10-19
EP3429738B1 (en) 2024-07-17
AU2017250214B2 (en) 2021-08-12
WO2017180763A1 (en) 2017-10-19
EP3429738A1 (en) 2019-01-23
US11111143B2 (en) 2021-09-07
AU2017250214A1 (en) 2018-11-15
EP3429738A4 (en) 2019-09-18
CN109195696A (zh) 2019-01-11
US20190152778A1 (en) 2019-05-23

Similar Documents

Publication Publication Date Title
CN109195696B (zh) 从含碳燃料化学循环生产合成气
US10022693B2 (en) Systems and methods for partial or complete oxidation of fuels
US10501318B2 (en) Methods for fuel conversion
CN101875483B (zh) 通过原位产生氧气、化学循环燃烧和气化的联合能量和/或合成气制备方法
US9115045B2 (en) Method and system for producing methanol using an oxygen transport membrane based reforming system
KR102189391B1 (ko) 수소, 일산화탄소 및 탄소-함유 생성물의 병행 제조 방법
CN107849462B (zh) 通过金属氧化物循环还原和氧化的合成气生产
US20020127178A1 (en) Method and apparatus for the production of hydrogen gas
AU2010209592A1 (en) Integrated oxidation, reduction, and gasification method for producing a synthetic gas and energy in a chemical loop
KR20240017021A (ko) Co2 시프트를 위한 열교환 반응기
WO2003062141A1 (en) Process for preparing synthesis gas by autothermal reforming
CN1268104A (zh) 氧化剂辅助的自热重整炉与热电联产电厂的改进型热集成的方法
Wang et al. Chemical looping process for hydrogen and electricity co-production: Design and operational consideration for moving-bed-reducer-based circulating fluidized bed systems
EP1441981A1 (en) Method and reactor for reformation of natural gas and simultaneous production of hydrogen
Virla et al. Chemical looping reforming (CLR) for syngas production
EP4371933A1 (en) System and process for producing synthesis gas
WO2024059619A2 (en) Redox looping systems, methods and techniques for the production of hydrogen and carbon dioxide products
WO2024258831A1 (en) Systems, methods and techniques for hydrogen production from chemical looping systems with particle heating
MXPA00000086A (en) Process for heat integration of an autothermal reformer and cogeneration power plant

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant