CN105174339A - Forward-condensing multiple-effect back-heating array type humidification and dehumidification solar-powered seawater desalination device - Google Patents
Forward-condensing multiple-effect back-heating array type humidification and dehumidification solar-powered seawater desalination device Download PDFInfo
- Publication number
- CN105174339A CN105174339A CN201510609460.9A CN201510609460A CN105174339A CN 105174339 A CN105174339 A CN 105174339A CN 201510609460 A CN201510609460 A CN 201510609460A CN 105174339 A CN105174339 A CN 105174339A
- Authority
- CN
- China
- Prior art keywords
- stage
- effect
- seawater
- brine
- humidifier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013535 sea water Substances 0.000 title claims abstract description 58
- 238000010612 desalination reaction Methods 0.000 title claims abstract description 38
- 238000007791 dehumidification Methods 0.000 title claims abstract description 33
- 238000010438 heat treatment Methods 0.000 title claims description 11
- 238000011084 recovery Methods 0.000 claims abstract description 22
- 239000012267 brine Substances 0.000 claims abstract description 21
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims abstract description 21
- 230000000694 effects Effects 0.000 claims abstract description 14
- 238000009833 condensation Methods 0.000 claims abstract description 12
- 230000005494 condensation Effects 0.000 claims abstract description 12
- 239000013505 freshwater Substances 0.000 claims abstract description 12
- 239000011521 glass Substances 0.000 claims abstract description 12
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 6
- 230000001151 other effect Effects 0.000 claims abstract 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 8
- 150000003839 salts Chemical class 0.000 claims description 8
- 238000005507 spraying Methods 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 5
- 239000007921 spray Substances 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims 5
- 230000008020 evaporation Effects 0.000 claims 5
- 238000001816 cooling Methods 0.000 claims 1
- 239000013589 supplement Substances 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 description 13
- 238000010586 diagram Methods 0.000 description 6
- 239000011148 porous material Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000003491 array Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000001223 reverse osmosis Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/138—Water desalination using renewable energy
- Y02A20/141—Wind power
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/138—Water desalination using renewable energy
- Y02A20/142—Solar thermal; Photovoltaics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/20—Controlling water pollution; Waste water treatment
- Y02A20/208—Off-grid powered water treatment
- Y02A20/212—Solar-powered wastewater sewage treatment, e.g. spray evaporation
Landscapes
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Abstract
本发明公开了一种顺向聚光多效回热阵列式空气加湿除湿太阳能海水淡化装置,其包括聚光器,加湿器,冷凝器,风道。上方入射的太阳光经聚光器汇聚并穿透玻璃盖板,到达加湿器表面转为热能。海水经喷淋到加湿器上,吸收太阳光热能的蒸汽,与空气热湿交换形成饱和湿空气,高温湿空气在风机的驱动下,进入冷凝腔中与冷海水换热形成淡水。海水出冷凝器后,部分海水补充喷淋到加湿器上,剩余部分排出系统。未蒸发的盐水滴落盐水盘中被循环使用,多余的盐水经盘底部排出装置。该装置可阵列成多效系统,每效结构相同,高温湿空气和盐水盘中盐水被分别送至另一效去加热冷凝器中的盐水和冷却湿空气,回收蒸汽冷凝时放出的潜热,实现高效淡化海水的目的。
The invention discloses a forward concentrating multi-effect heat recovery array type air humidification and dehumidification solar seawater desalination device, which comprises a concentrator, a humidifier, a condenser and an air duct. The sunlight incident from above is concentrated by the concentrator and penetrates the glass cover plate, and reaches the surface of the humidifier to be converted into heat energy. The seawater is sprayed onto the humidifier, absorbing the heat of the sun, and exchanging heat and moisture with the air to form saturated humid air. Driven by the fan, the high-temperature humid air enters the condensation chamber to exchange heat with cold seawater to form fresh water. After the seawater leaves the condenser, part of the seawater is sprayed onto the humidifier, and the rest is discharged from the system. The unevaporated brine drips into the brine pan and is recycled, and the excess brine is discharged from the device through the bottom of the pan. The device can be arrayed into a multi-effect system, and each effect has the same structure. The high-temperature humid air and the brine in the brine pan are sent to the other effect to heat the brine in the condenser and cool the humid air respectively, and recover the latent heat released when the steam condenses, realizing The purpose of efficient desalination of seawater.
Description
技术领域technical field
本发明涉及利用太阳能聚光直接加热海水使之蒸发,通过空气的加湿除湿过程,提取淡水的装置,属于太阳能热利用和海水淡化及水处理技术领域。具体涉及一种顺向聚光多效回热阵列式加湿除湿太阳能海水淡化装置。The invention relates to a device for directly heating seawater by concentrating solar energy to evaporate it, and extracting fresh water through an air humidification and dehumidification process, belonging to the technical fields of solar heat utilization, seawater desalination and water treatment. Specifically, it relates to a forward concentrating multi-effect heat recovery array type humidification and dehumidification solar seawater desalination device.
背景技术Background technique
目前太阳能海水淡化的最大问题是成本高、规模小。从成本上来说,大规模反渗透海水淡化系统目前的造水价格约在5-8元/吨;大规模低温多效海水淡化系统一般与电厂结合,成本在8-10元左右。而太阳能海水淡化系统,目前造水价格都在20元/吨以上,这是以系统寿命20年,平均每平方米集热器产水12升/天得到的,实际价格可能比这要高。从规模上看,目前世界上比较大的太阳能海水淡化系统每天也只有几十吨,与反渗透系统相比差距较大,也无法比拟低温多效系统的产水量。这些瓶颈一直困扰着太阳能海水淡化技术的前景。At present, the biggest problem of solar desalination is high cost and small scale. In terms of cost, the current water production price of a large-scale reverse osmosis desalination system is about 5-8 yuan/ton; a large-scale low-temperature multi-effect seawater desalination system is generally combined with a power plant, and the cost is about 8-10 yuan. As for the solar desalination system, the current price of water production is more than 20 yuan/ton. This is based on the system life of 20 years and an average water production of 12 liters/day per square meter of collectors. The actual price may be higher than this. In terms of scale, the largest solar desalination system in the world currently only has tens of tons of water per day, which is far behind the reverse osmosis system, and cannot match the water production of the low-temperature multi-effect system. These bottlenecks have plagued the prospects for solar desalination technology.
针对上述问题,提出顺向聚光直接加热海水淡化的技术方案。其特点是将光直接输送到海水中,并直接引起海水蒸发,后续再重复利用蒸汽凝结的潜热,从而将聚光器、接收器、储热器、管路和淡化器合而为一。变成一个浓缩的系统,从而减少能量的传递阻力,并尽可能地使用非金属材料,实现抗腐蚀和低成本的目标。Aiming at the above problems, a technical scheme of direct heating of seawater desalination by forward concentrating light is proposed. Its feature is to directly transport light into seawater, and directly cause seawater to evaporate, and then reuse the latent heat of steam condensation, so that the concentrator, receiver, heat storage, pipeline and desalinator are integrated into one. Turn it into a concentrated system, thereby reducing the resistance of energy transfer, and using non-metallic materials as much as possible to achieve the goals of corrosion resistance and low cost.
发明内容Contents of the invention
有鉴于此,为了改善现有太阳能海水淡化装置的性能,提高其热能利用率,实现太阳能聚光集热技术和新型加湿除湿传统海水淡化技术的耦合,本发明提供了一种顺向聚光多效回热阵列式加湿除湿的海水淡化装置,采用聚光直接加热多效加湿除湿系统,实现加湿除湿系统多效回热,提高系统的热利用效率。聚光器采用经设计的菲涅尔透镜进行聚光,也可以采用槽式CPC聚光器和其他顺向聚光器。这里,光的接收器就是淡化系统的蒸发器,将多个系统浓缩在一起,大大降低了系统的传热阻力和减少了系统的部件。In view of this, in order to improve the performance of the existing solar seawater desalination device, increase its thermal energy utilization rate, and realize the coupling of solar energy concentrating heat collection technology and new humidification and dehumidification traditional seawater desalination technology, the present invention provides a forward concentrating multi- The seawater desalination device with efficient heat recovery array humidification and dehumidification adopts concentrated light direct heating multi-effect humidification and dehumidification system to realize multi-effect recovery of humidification and dehumidification system and improve the heat utilization efficiency of the system. The concentrator uses a designed Fresnel lens for concentrating light, and can also use a trough CPC concentrator and other forward concentrators. Here, the light receiver is the evaporator of the desalination system, which condenses multiple systems together, greatly reducing the heat transfer resistance of the system and reducing the components of the system.
一种顺向聚光多效回热阵列式加湿除湿太阳能海水淡化装置,该海水淡化装置包括聚光器,透明玻璃盖板,加湿器,冷凝器,盐水盘,冷热风道,循环水泵,控制阀。其中加湿器内部包含喷淋器,黑色多孔材料和盐水盘。加湿器和冷凝器上下分布,组成一个独立单元。A forward concentrating multi-effect heat recovery array type humidification and dehumidification solar seawater desalination device, the seawater desalination device includes a concentrator, a transparent glass cover plate, a humidifier, a condenser, a salt water pan, a hot and cold air duct, a circulating water pump, Control valve. The inside of the humidifier contains a shower, black porous material and a salt water pan. The humidifier and condenser are distributed up and down to form an independent unit.
工作原理:沿聚光器表明垂直方向入射的太阳光线经过聚光器和二次聚光器汇聚到玻璃盖板,并透过盖板,进入由黑色多孔材料组成的加湿器中。透过喷淋器喷洒到加湿器上,与空气进行热湿交换形成湿饱和蒸汽,湿空气在风道中风机的驱动下,进入下一级冷凝器中冷凝成淡水。盐水盘底部的浓海水经循环水泵抽到下一级冷凝器中,在冷凝器中吸收了气化潜热的浓海水,再回到本级的加湿腔中进行喷淋。每一级单元结构完全相同,封闭空间内空气在风机的作用下不断循环,在每一效之间不断被加湿,然后被除湿。能量回收级不采用聚光方式加热,只是回收盐水盘和第一级冷凝器中的热能,是个单级热回收加湿除湿系统。Working principle: The sun rays incident vertically along the concentrator pass through the concentrator and the secondary concentrator and converge to the glass cover plate, and then pass through the cover plate and enter the humidifier made of black porous material. Spray on the humidifier through the sprinkler, and exchange heat and moisture with the air to form moist saturated steam. Driven by the fan in the air duct, the humid air enters the next-stage condenser to condense into fresh water. The concentrated seawater at the bottom of the brine pan is pumped to the next-stage condenser through the circulating water pump, and the concentrated seawater absorbs the latent heat of vaporization in the condenser, and then returns to the humidification chamber of the current stage for spraying. The unit structure of each level is exactly the same, and the air in the enclosed space is continuously circulated under the action of the fan, and is continuously humidified and then dehumidified between each effect. The energy recovery stage does not use concentrated light for heating, but only recovers the heat energy in the brine pan and the first-stage condenser. It is a single-stage heat recovery humidification and dehumidification system.
所述的二次聚光器是为了使个别散射的光线重新汇聚到透明玻璃盖板范围内,玻璃盖板采用超白玻璃,增强透过性。多孔材料的表面有亲水膜,作为加湿器均布在加湿腔内。The secondary concentrator is to re-converge individual scattered light into the scope of the transparent glass cover, and the glass cover is made of ultra-clear glass to enhance the permeability. The surface of the porous material has a hydrophilic film, which is evenly distributed in the humidification chamber as a humidifier.
有益效果:Beneficial effect:
(1)采用菲涅尔透镜、复合抛物面以及其他类似聚光器进行聚光,太阳光直接照射外壁面的受热盘管和加湿腔内的黑色多孔材料上。使得海水直接吸收太阳光,利用强光直接蒸发海水,省略了换热器,减少了传热环节,提高了聚热效率。(1) Fresnel lens, compound paraboloid and other similar concentrators are used for concentrating, and the sunlight directly shines on the heating coil on the outer wall and the black porous material in the humidification chamber. The seawater directly absorbs sunlight, uses strong light to directly evaporate seawater, omits a heat exchanger, reduces heat transfer links, and improves heat collection efficiency.
(2)黑色多孔材料对加湿器进行填充,可增加太阳光在蒸发器内的光程,强化海水对太阳热能的吸收效率,提高了装置的可靠性。(2) The black porous material fills the humidifier, which can increase the optical path of sunlight in the evaporator, strengthen the absorption efficiency of seawater to solar heat energy, and improve the reliability of the device.
(3)采用塑料冷凝器,整个装置全部可以用非金属材料制造,从而提高了整个系统的抗腐蚀性;降低了装置造价,减轻重量,有利于推广应用。(3) By adopting a plastic condenser, the entire device can be made of non-metallic materials, thereby improving the corrosion resistance of the entire system; reducing the cost and weight of the device, which is conducive to popularization and application.
(4)利用多效喷淋系统、亲水黑色多孔陶瓷提高了进料海水与空气的传热传质,以及湿空气的含湿量,增大了海水与空气的接触面积,利用多效回热方法,降低了进料海水与加热温度的温差,节约了热能。(4) The use of multi-effect spraying system and hydrophilic black porous ceramics improves the heat and mass transfer between feed seawater and air, as well as the moisture content of humid air, and increases the contact area between seawater and air. The thermal method reduces the temperature difference between the feed seawater and the heating temperature and saves heat energy.
本发明将传统除湿加湿型太阳能海水淡化系统进行了改进,实现了多效加热,在热利用方面,将盐水盘底部浓海水通过受冷凝器加热后喷淋来产水湿空气,充分利用了湿空气的凝结潜热,采用多级加湿除湿相结合,各效充分利用获得的热能,这样的装置中各效热能利用比较均衡。The invention improves the traditional dehumidification and humidification type solar seawater desalination system, and realizes multi-effect heating. In terms of heat utilization, the concentrated seawater at the bottom of the brine pan is heated by a condenser and then sprayed to produce water and humid air, making full use of the humid air. The latent heat of condensation of the air is combined with multi-stage humidification and dehumidification, and each effect makes full use of the heat energy obtained. In such a device, the heat energy utilization of each effect is relatively balanced.
附图说明Description of drawings
图1为本发明采用单级菲涅尔聚光加湿除湿的海水淡化机原理图;Fig. 1 is the schematic diagram of the seawater desalination machine using single-stage Fresnel concentrating humidification and dehumidification in the present invention;
图2为本发明采用菲涅尔聚光五级海水淡化机的原理图;Fig. 2 is the schematic diagram of the present invention adopting Fresnel light concentrating five-stage seawater desalination machine;
图3为本发明聚光体的复合式抛物面形成原理图;Fig. 3 is the formation principle diagram of the compound paraboloid of concentrator of the present invention;
图4为本发明复合式抛物面海水淡化机的光路运行原理图;Fig. 4 is the schematic diagram of the optical path operation of the compound parabolic seawater desalination machine of the present invention;
图5为本发明采用复合抛物面两列五级阵列槽式海水淡化机的立体结构图;Fig. 5 is the three-dimensional structure diagram of the present invention adopting compound parabolic two-row five-stage array trough-type seawater desalination machine;
图6为本发明采用多个复合抛物面整列的槽式海水淡化机原理图。Fig. 6 is a schematic diagram of a trough-type seawater desalination machine adopting multiple compound paraboloid arrays in the present invention.
其中,1—太阳入射光;2—顺向聚光器;3—二次聚光器;4—玻璃盖板;5—喷淋器;6—补水器;7—加湿器;8—控制阀;9—盐水盘;10—热风道;11—循环水泵;12—排浓出口;13—淡水出口;14—海水入口;15—冷凝器;16—风机;17—冷风道;18—海水进口;19—淡水出口;20—抛物面外沿入射光线;21—抛物面内沿入射光线;22—抛物面反射面;23—保温材料;f1—左侧抛物面焦点;f2—右侧抛物面焦点。Among them, 1—sun incident light; 2—forward concentrator; 3—secondary concentrator; 4—glass cover; 5—sprinkler; 6—water replenisher; 7—humidifier; 8—control valve ;9—salt water tray; 10—hot air passage; 11—circulating water pump; 12—concentrated discharge outlet; 13—fresh water outlet; 14—seawater inlet; 15—condenser; 16—fan; 17—cold air passage; ; 19—fresh water outlet; 20—incident light on the outer edge of the paraboloid; 21—incident light on the inner edge of the paraboloid; 22—reflecting surface of the paraboloid; 23—insulation material; f1—focus of the left paraboloid;
具体实施方式Detailed ways
下面结合附图并举实施例,对本发明进行详细描述。The present invention will be described in detail below with reference to the accompanying drawings and examples.
如附图1和2所示,本发明提供了一种顺向聚光多效回热阵列式加湿除湿太阳能海水淡化装置,装置主要包括聚光器2、二次聚光器3、喷淋器5、加湿器7、控制阀8、盐水盘9、循环水泵11、冷凝器15和风机16;其中,聚光器采用自制菲涅尔圆弧形透镜,二次聚光器采用复合抛物面型反射铝板。二次聚光器连接在加湿除湿单元的边缘处。As shown in Figures 1 and 2, the present invention provides a forward concentrating multi-effect heat recovery array type humidification and dehumidification solar seawater desalination device, the device mainly includes a concentrator 2, a secondary concentrator 3, and a shower 5. Humidifier 7, control valve 8, salt water pan 9, circulating water pump 11, condenser 15 and fan 16; among them, the concentrator adopts self-made Fresnel arc-shaped lens, and the secondary concentrator adopts compound parabolic reflector aluminum plate. The secondary concentrator is attached at the edge of the humidification and dehumidification unit.
如图2所示,从右往左分别是回热级、第一级、第二级、第三级、第四级和最终级加湿除湿海水淡化单元。该海水淡化机将多个加湿除湿型海水淡化单元串连阵列起来,进料海水是通过串联水平阵列方式进入装置参与淡化过程,组成一个多级太阳能加湿除湿型海水淡化装置。利用顺向聚光器将汇聚的光线穿透玻璃盖板4对加湿器7进行聚光直接加热。每一级的盐水盘9通过管道相连,这样保证有同等的水量。盐水盘9对从加湿器7滴落的海水进行收集,经过底部循环水泵11和喷淋器5将海水喷入各级加湿器7上,实现对海水等温加热的过程,并与空气进行热湿交换形成的湿饱和蒸汽,在第一级和最后一级单元内风机16的驱动下,在各级加湿除湿单元中循环,实现了加湿除湿的过程;高温高湿的蒸汽与冷凝器的进料海水进行换热、冷凝,生成淡水,同时对进料海水进行预热,实现了多级等温加热、多效回热的过程,提高了太阳能的热利用效率。As shown in Figure 2, from right to left are the heat recovery stage, the first stage, the second stage, the third stage, the fourth stage and the final stage humidification and dehumidification seawater desalination unit. The seawater desalination machine connects a plurality of humidification and dehumidification type seawater desalination units in series array, and the feed seawater enters the device through a series of horizontal arrays to participate in the desalination process, forming a multi-stage solar humidification and dehumidification type seawater desalination device. The converging light is transmitted through the glass cover plate 4 by a forward concentrator to condense and directly heat the humidifier 7 . The brine pan 9 of every level is connected by pipeline, guarantees that equal water yield is arranged like this. The brine tray 9 collects the seawater dripping from the humidifier 7, and sprays the seawater into the humidifiers 7 at all levels through the bottom circulating water pump 11 and the sprinkler 5, so as to realize the process of isothermal heating of the seawater and perform heat-humidity with the air. The wet saturated steam formed by the exchange is driven by the fans 16 in the first and last stage units, and circulates in the humidification and dehumidification units at all levels to realize the process of humidification and dehumidification; the high-temperature and high-humidity steam is fed to the condenser Seawater undergoes heat exchange and condensation to generate fresh water, and at the same time preheats the feed seawater, realizing the process of multi-stage isothermal heating and multi-effect heat recovery, and improving the heat utilization efficiency of solar energy.
具体的连接方式如图2,进料海水首先进入能量回收级的加湿除湿单元,此单元不在聚光器2聚光范围之内,只是用来回收第一级冷凝器中部分海水的显热。第一级中的风机16将加湿器7中高温高湿蒸汽,通过风道送入第二级的冷凝器15中,与冷凝器15内部较冷的海水进行换热、冷凝,生成淡水,同时对进料海水进行预热。冷凝后的空气再进入第三级的加湿器7中,产生的高温高湿蒸汽,送入第四级除湿腔中冷凝,冷凝后的空气进入最终级加湿器中。最终一级中的风机,助推空气,依次经过,最终级除湿腔、第四级加湿腔、第三级除湿腔、第二级加湿腔和第一级除湿腔,这样空气在加湿腔和除湿腔中交错通过,形成了一来一去完整封闭式循环。在整个装置中,前一级盐水盘中的浓盐水总是被各级的循环水泵11送入后一级冷凝器,再在后一级加湿器上进行喷淋。只有最终级盐水盘中的浓盐水被水泵送入该级加湿器喷淋。The specific connection method is shown in Figure 2. The feed seawater first enters the humidification and dehumidification unit of the energy recovery stage. This unit is not within the concentrating range of the concentrator 2, and is only used to recover part of the sensible heat of the seawater in the first-stage condenser. The fan 16 in the first stage sends the high-temperature and high-humidity steam in the humidifier 7 into the condenser 15 of the second stage through the air duct, exchanges heat with the cooler seawater inside the condenser 15, and condenses to generate fresh water. The feed seawater is preheated. The condensed air enters the humidifier 7 of the third stage, and the high-temperature and high-humidity steam generated is sent to the fourth-stage dehumidification chamber for condensation, and the condensed air enters the final humidifier. The fan in the final stage, boosting the air, passes through in turn, the final stage dehumidification chamber, the fourth stage humidification chamber, the third stage dehumidification chamber, the second stage humidification chamber and the first stage dehumidification chamber, so that the air in the humidification chamber and dehumidification chamber The cavities are staggered through, forming a complete closed cycle of coming and going. Throughout the device, the concentrated brine in the previous stage of brine pan is always sent to the rear stage condenser by the circulating water pumps 11 of each stage, and then sprayed on the rear stage humidifier. Only the concentrated brine in the final level of brine pan is pumped into this level of humidifier for spraying.
如附图3所示,左右聚光体内侧的抛物面反射面形成的复合抛物面反射面。复合抛物反射面是由一个平面抛物线沿水平轴向右平移此抛物线的两倍焦距的距离并与原抛物线的右半部分相交,去掉交点两侧的抛物线部分,用长度为两抛物线焦点距离一半的直线去截剩余的锥形抛物线图,对截后图形的两下端点竖直延长成线,达到设计长度后分别于一个半圆相切,将两点切点水平相连,所形成的图形即可得到一个槽式复合抛物面。As shown in accompanying drawing 3, the parabolic reflective surface formed by the parabolic reflective surface inside the left and right concentrators is a compound parabolic reflective surface. The composite parabolic reflector is a plane parabola that is translated to the right along the horizontal axis by a distance of twice the focal length of the parabola and intersects with the right half of the original parabola. Cut off the remaining cone-shaped parabola graph with a straight line, extend the two lower end points of the truncated graph vertically into a line, reach the design length and tangent to a semicircle respectively, connect the two tangent points horizontally, and the resulting graph can be obtained A trough compound paraboloid.
如附图4和5所示,抛物面外沿入射光线21是入射到抛物面反射面的边界光线,抛物面内沿入射光线22是入射到抛物面反射面内沿的边界光线,抛物面外沿入射光线21和抛物面内沿入射光线22之间的入射光线沿对称轴入射都能照射到抛物面反射面23上,并被反射到玻璃盖板4上。As shown in accompanying drawing 4 and 5, the paraboloid outer edge incident ray 21 is the boundary ray incident to the paraboloid reflection surface, and the paraboloid inner edge incident ray 22 is the boundary ray incident to the paraboloid reflection surface inner edge, and the paraboloid outer edge incident ray 21 and The incident rays between the incident rays 22 in the paraboloid along the symmetry axis can all irradiate on the paraboloid reflective surface 23 and be reflected on the glass cover 4 .
复合抛物面下面并排放置着两组五级阵列式加湿除湿装置,经过抛物面反射面23反射的入射光线透过玻璃盖板4进入到加湿器7中,不断给加湿器7加热。装置四周和底部由保温材料24覆盖,阻止装置向外界散热。复合抛物面下的光线接收器部分就是五级淡化单元的蒸发器,将多个单元浓缩在一起,大大减少了系统的传热阻力和系统部件。位于复合抛物面聚光器外部的是用于能量回收的加湿除湿单元。复合抛物面下的五级淡化装置和外部用于能量回收的加湿除湿单元底部均有淡水出口13。两组能量回收单元前侧都有海水入口14,连接到内部冷凝器15。Two sets of five-stage array humidification and dehumidification devices are placed side by side under the compound paraboloid. The incident light reflected by the parabolic reflective surface 23 enters the humidifier 7 through the glass cover plate 4, and continuously heats the humidifier 7. The periphery and the bottom of the device are covered by thermal insulation material 24 to prevent the device from radiating heat to the outside. The light receiver part under the compound paraboloid is the evaporator of the five-stage desalination unit, which condenses multiple units together, greatly reducing the heat transfer resistance and system components of the system. Located outside the compound parabolic concentrator is a humidification and dehumidification unit for energy recovery. There are fresh water outlets 13 at the bottom of the five-stage desalination device under the compound parabola and the external humidification and dehumidification unit for energy recovery. Both sets of energy recovery units have seawater inlets 14 on their front sides, connected to internal condensers 15 .
如附图6所示,数个槽式复合抛物面聚光直热淡化装置串接在一起,通过给排水管道和冷热风道相连。入射光线分别直接加热各装置内的加湿器,海水从右侧能量回收级进入。各槽式装置内的盐水盘9通过穿过外壁的管道相连接,保证每效有同等的水量。高温饱和湿空气在各装置加湿除湿器中循环,通过冷凝器冷凝出淡水,分别由各装置底部淡水出口13输出系统,再进一步收集。低温空气进入加湿器7,重新获得高温饱和湿空气,循环往复。As shown in Figure 6, several trough-type compound parabolic concentrating direct heat desalination devices are connected in series and connected with cold and hot air ducts through water supply and drainage pipes. The incident light directly heats the humidifiers in each device respectively, and the seawater enters from the energy recovery stage on the right. The brine pan 9 in each trough device is connected by a pipeline passing through the outer wall, so as to ensure that every effect has an equal amount of water. The high-temperature saturated humid air circulates in the humidifier and dehumidifier of each device, and the fresh water is condensed through the condenser, which is output to the system through the fresh water outlet 13 at the bottom of each device, and further collected. The low-temperature air enters the humidifier 7 to regain high-temperature saturated humid air, and the cycle goes on and on.
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。To sum up, the above are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510609460.9A CN105174339B (en) | 2015-09-22 | 2015-09-22 | Forward optically focused multiple-effect backheat array humidifies dehumidifying solar energy sea water desalination apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510609460.9A CN105174339B (en) | 2015-09-22 | 2015-09-22 | Forward optically focused multiple-effect backheat array humidifies dehumidifying solar energy sea water desalination apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105174339A true CN105174339A (en) | 2015-12-23 |
CN105174339B CN105174339B (en) | 2017-07-14 |
Family
ID=54896879
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510609460.9A Expired - Fee Related CN105174339B (en) | 2015-09-22 | 2015-09-22 | Forward optically focused multiple-effect backheat array humidifies dehumidifying solar energy sea water desalination apparatus |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105174339B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106006808A (en) * | 2016-06-17 | 2016-10-12 | 北京理工大学 | Floating sea water desalination film with backheating capillary action |
CN106219645A (en) * | 2016-08-17 | 2016-12-14 | 国家海洋局第海洋研究所 | Thermal gradient energy evaporative condenser integral type desalination tank |
CN106225256A (en) * | 2016-08-01 | 2016-12-14 | 浙江大学 | Outer solidifying formula lens light gathering hot vaporizer |
CN106915790A (en) * | 2017-03-20 | 2017-07-04 | 北京理工大学 | A kind of liquid-filled flexible optically focused solar energy sea water desalination apparatus under water |
CN107585936A (en) * | 2017-09-22 | 2018-01-16 | 北京万邦达环保技术股份有限公司 | The Zero-discharge treating process and device of a kind of high-salt wastewater |
CN107973359A (en) * | 2017-11-22 | 2018-05-01 | 桑夏太阳能股份有限公司 | Fishing boat monoblock type small-sized solar passive type desalination plant |
CN108910996A (en) * | 2018-08-28 | 2018-11-30 | 曾庆福 | A kind of solar seawater desalination salt extraction and generating integrated system |
CN109534428A (en) * | 2019-01-17 | 2019-03-29 | 云南师范大学 | Reflection heat-aggregation and the compound core pattern solar seawater desalination system of Fresnel optically focused |
CN112624238A (en) * | 2020-10-28 | 2021-04-09 | 华中科技大学 | Inside and outside coagulation formula solar energy distillation sea water desalination |
CN114623532A (en) * | 2022-02-28 | 2022-06-14 | 南京航空航天大学 | Solar-driven efficient humidifier system based on electrowetting effect and working method |
CN116282297A (en) * | 2023-02-07 | 2023-06-23 | 浙江可胜技术股份有限公司 | A kind of saline wastewater treatment device and heliostat mirror field saline wastewater treatment system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2480355Y (en) * | 2001-06-15 | 2002-03-06 | 西安交通大学 | Horizontal pipe down film evaporation inner heat reversing type sea water desalination machine |
CN2825618Y (en) * | 2004-05-08 | 2006-10-11 | 北京理工大学 | Self-balancing multi-effect seawater desalting plant in falling film evaporation and falling film condensation system |
CN101581502A (en) * | 2009-06-18 | 2009-11-18 | 北京理工大学 | Trough-type consequent focus solar condensator for axial light transmitting |
WO2011066623A1 (en) * | 2009-12-03 | 2011-06-09 | First Green Park Pty Ltd | Water disinfection by ultraviolet radiation in solar energy |
CN103739029A (en) * | 2013-12-24 | 2014-04-23 | 国家海洋局天津海水淡化与综合利用研究所 | Solar concentrating distillation seawater desalination device |
-
2015
- 2015-09-22 CN CN201510609460.9A patent/CN105174339B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2480355Y (en) * | 2001-06-15 | 2002-03-06 | 西安交通大学 | Horizontal pipe down film evaporation inner heat reversing type sea water desalination machine |
CN2825618Y (en) * | 2004-05-08 | 2006-10-11 | 北京理工大学 | Self-balancing multi-effect seawater desalting plant in falling film evaporation and falling film condensation system |
CN101581502A (en) * | 2009-06-18 | 2009-11-18 | 北京理工大学 | Trough-type consequent focus solar condensator for axial light transmitting |
WO2011066623A1 (en) * | 2009-12-03 | 2011-06-09 | First Green Park Pty Ltd | Water disinfection by ultraviolet radiation in solar energy |
CN103739029A (en) * | 2013-12-24 | 2014-04-23 | 国家海洋局天津海水淡化与综合利用研究所 | Solar concentrating distillation seawater desalination device |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106006808B (en) * | 2016-06-17 | 2019-02-05 | 北京理工大学 | A floating seawater desalination membrane with recuperative capillary action |
CN106006808A (en) * | 2016-06-17 | 2016-10-12 | 北京理工大学 | Floating sea water desalination film with backheating capillary action |
CN106225256A (en) * | 2016-08-01 | 2016-12-14 | 浙江大学 | Outer solidifying formula lens light gathering hot vaporizer |
CN106219645A (en) * | 2016-08-17 | 2016-12-14 | 国家海洋局第海洋研究所 | Thermal gradient energy evaporative condenser integral type desalination tank |
CN106915790B (en) * | 2017-03-20 | 2020-01-21 | 北京理工大学 | Liquid-filled flexible light-gathering underwater solar seawater desalination device |
CN106915790A (en) * | 2017-03-20 | 2017-07-04 | 北京理工大学 | A kind of liquid-filled flexible optically focused solar energy sea water desalination apparatus under water |
CN107585936A (en) * | 2017-09-22 | 2018-01-16 | 北京万邦达环保技术股份有限公司 | The Zero-discharge treating process and device of a kind of high-salt wastewater |
CN107973359A (en) * | 2017-11-22 | 2018-05-01 | 桑夏太阳能股份有限公司 | Fishing boat monoblock type small-sized solar passive type desalination plant |
CN108910996A (en) * | 2018-08-28 | 2018-11-30 | 曾庆福 | A kind of solar seawater desalination salt extraction and generating integrated system |
CN108910996B (en) * | 2018-08-28 | 2023-12-08 | 广州汉华投资合伙企业(有限合伙) | Solar seawater desalination salt extraction and power generation integrated system |
CN109534428A (en) * | 2019-01-17 | 2019-03-29 | 云南师范大学 | Reflection heat-aggregation and the compound core pattern solar seawater desalination system of Fresnel optically focused |
CN112624238A (en) * | 2020-10-28 | 2021-04-09 | 华中科技大学 | Inside and outside coagulation formula solar energy distillation sea water desalination |
CN114623532A (en) * | 2022-02-28 | 2022-06-14 | 南京航空航天大学 | Solar-driven efficient humidifier system based on electrowetting effect and working method |
CN114623532B (en) * | 2022-02-28 | 2022-12-23 | 南京航空航天大学 | Solar-driven high-efficiency humidifier system and working method based on electrowetting |
CN116282297A (en) * | 2023-02-07 | 2023-06-23 | 浙江可胜技术股份有限公司 | A kind of saline wastewater treatment device and heliostat mirror field saline wastewater treatment system |
Also Published As
Publication number | Publication date |
---|---|
CN105174339B (en) | 2017-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105174339B (en) | Forward optically focused multiple-effect backheat array humidifies dehumidifying solar energy sea water desalination apparatus | |
CN111392797B (en) | Solar desalination system and method | |
CN202246147U (en) | Novel solar seawater desalination and salt manufacturing device | |
CN106673097B (en) | A kind of solar energy coupling heat pump desalination plant | |
CN103058306B (en) | Solar air-conditioning seawater desalting system | |
CN106800320A (en) | A kind of heat accumulating type humidification dehumidifying solar seawater desalination system and process | |
CN108910996A (en) | A kind of solar seawater desalination salt extraction and generating integrated system | |
CN108793299A (en) | A kind of small-sized solar energy sea water desalination apparatus and method | |
CN104944488B (en) | A kind of solar tracking solar chimney salt, water, cogeneration system and its operation method | |
CN105439232B (en) | A kind of heat pump type sea water desalination device and its control method with step preheating | |
CN106915791B (en) | Horizontal eccentric casing solar seawater desalination device with concentrated light and direct heat function | |
CN104528853B (en) | A kind of embedded pair of chimney type solar seawater desalination system and desalination method thereof | |
CN104709953A (en) | Multistage back-heating humidification dehumidifying seawater desalination device with thermal energy gradient utilization | |
CN209685356U (en) | A high-efficiency concentrating solar seawater desalination system | |
CN208762183U (en) | A kind of solar seawater desalination salt extraction and generating integrated system | |
WO2022178926A1 (en) | Passive all-weather integrated solar water desalination and condensate collection equipment | |
CN201052976Y (en) | Solar energy seawater desalting device with cross-pipe falling-film evaporator and cross-pipe type surface-cooling equipment | |
CN104192930B (en) | Solar energy separate heat pipe desalination plant | |
CN104944487B (en) | Electricity and fresh water co-generation compound solar device | |
CN104402078B (en) | A kind of two chimney type motion tracking solar seawater desalination system and desalination method thereof | |
CN101708872B (en) | Solar desalting device | |
CN109179543B (en) | An efficient concentrated solar water desalination technology and system | |
CN105923677B (en) | The multi-stage falling-film desalination plant that parabolic concentrator is pulsed compound with hot steam | |
CN207904067U (en) | Membrane humidifier and its seawater desalination device and cogeneration system | |
CN112624238A (en) | Inside and outside coagulation formula solar energy distillation sea water desalination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170714 Termination date: 20180922 |
|
CF01 | Termination of patent right due to non-payment of annual fee |