CN105142913A - Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances - Google Patents
Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances Download PDFInfo
- Publication number
- CN105142913A CN105142913A CN201480023530.6A CN201480023530A CN105142913A CN 105142913 A CN105142913 A CN 105142913A CN 201480023530 A CN201480023530 A CN 201480023530A CN 105142913 A CN105142913 A CN 105142913A
- Authority
- CN
- China
- Prior art keywords
- nozzle
- printhead
- drop
- ink
- droplet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/205—Ink jet for printing a discrete number of tones
- B41J2/2054—Ink jet for printing a discrete number of tones by the variation of dot disposition or characteristics, e.g. dot number density, dot shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B12/00—Arrangements for controlling delivery; Arrangements for controlling the spray area
- B05B12/08—Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
- B05B12/12—Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C11/00—Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
- B05C11/10—Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C5/00—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
- B05C5/02—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
- B05C5/0291—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work the material being discharged on the work through discrete orifices as discrete droplets, beads or strips that coalesce on the work or are spread on the work so as to form a continuous coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/015—Ink jet characterised by the jet generation process
- B41J2/04—Ink jet characterised by the jet generation process generating single droplets or particles on demand
- B41J2/045—Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
- B41J2/04501—Control methods or devices therefor, e.g. driver circuits, control circuits
- B41J2/0456—Control methods or devices therefor, e.g. driver circuits, control circuits detecting drop size, volume or weight
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/015—Ink jet characterised by the jet generation process
- B41J2/04—Ink jet characterised by the jet generation process generating single droplets or particles on demand
- B41J2/045—Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
- B41J2/04501—Control methods or devices therefor, e.g. driver circuits, control circuits
- B41J2/04581—Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/015—Ink jet characterised by the jet generation process
- B41J2/04—Ink jet characterised by the jet generation process generating single droplets or particles on demand
- B41J2/045—Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
- B41J2/04501—Control methods or devices therefor, e.g. driver circuits, control circuits
- B41J2/04588—Control methods or devices therefor, e.g. driver circuits, control circuits using a specific waveform
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/015—Ink jet characterised by the jet generation process
- B41J2/04—Ink jet characterised by the jet generation process generating single droplets or particles on demand
- B41J2/045—Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
- B41J2/04501—Control methods or devices therefor, e.g. driver circuits, control circuits
- B41J2/04593—Dot-size modulation by changing the size of the drop
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/07—Ink jet characterised by jet control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/21—Ink jet for multi-colour printing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/21—Ink jet for multi-colour printing
- B41J2/2132—Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
- B41J2/2135—Alignment of dots
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/21—Ink jet for multi-colour printing
- B41J2/2132—Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
- B41J2/2142—Detection of malfunctioning nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J29/00—Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
- B41J29/38—Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F22/00—Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67126—Apparatus for sealing, encapsulating, glassing, decapsulating or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/50—Encapsulations or containers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/852—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/85—Packages
- H10H20/852—Encapsulations
- H10H20/853—Encapsulations characterised by their shape
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/84—Passivation; Containers; Encapsulations
- H10K50/844—Encapsulations
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/1201—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/13—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
- H10K71/135—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/191—Deposition of organic active material characterised by provisions for the orientation or alignment of the layer to be deposited
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/811—Controlling the atmosphere during processing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/036—Manufacture or treatment of packages
- H10H20/0362—Manufacture or treatment of packages of encapsulations
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Quality & Reliability (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Coating Apparatus (AREA)
- Fluid Mechanics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Optics & Photonics (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Ink Jet (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
一种油墨打印处理采用按每喷嘴的液滴体积测量和规划液滴组合的处理软件以达到每目标区域的特定聚合油墨填充,确保与由规范设置的最小油墨填充和最大油墨填充相符。在各个实施例中,通过不同的打印头/基底扫描偏移、各打印头之间的偏移、不同喷嘴驱动波形的使用和/或其它技术来产生不同的液滴组合。这些组合可以基于重复的快速液滴测量,其求得对于每个喷嘴的、用于所期待的液滴体积、速度和轨迹的平均值和扩展的理解,其中,基于这些统计参数来规划液滴组合。可选地,可以引入随机填充变化,从而减轻制成的显示器设备中的斑效应。所公开的技术具有很多可能的应用。
An ink printing process employs process software that measures drop volume per nozzle and plans drop combinations to achieve a specific aggregate ink fill per target area, ensuring compliance with minimum and maximum ink fills set by specifications. In various embodiments, different droplet combinations are produced by different printhead/substrate scan offsets, offsets between printheads, use of different nozzle drive waveforms, and/or other techniques. These combinations may be based on repeated rapid droplet measurements that yield an average and expanded understanding for each nozzle for expected droplet volume, velocity, and trajectory, where the droplet is planned based on these statistical parameters combination. Optionally, random fill variations can be introduced, thereby mitigating speckle effects in the fabricated display device. The disclosed technology has many possible applications.
Description
相关申请的交叉引用 Cross References to Related Applications
该申请要求代表第一命名发明人Nahid Harjee于2014年3月10日提交的“Techniques For Print Ink Droplet Volume Measurement And Control Over Deposited Fluids Within Precise Tolerances”的美国临时专利申请No.61/950,820的优先权。该申请在某种程度上也是代表第一命名发明人Nahid Harjee于2014年1月23日提交的“Techniques for Print Ink Volume Control To Deposit Fluids Within Precise Tolerances”的美国实用新型专利申请No.14/162525的延续。美国实用新型专利申请No.14/162525要求代表第一命名发明人Nahid Harjee于2013年12月26日关于“Techniques for Print Ink Volume Control To Deposit Fluids Within Precise Tolerances”所提交的台湾专利申请No.102148330的优先权,并且也是代表第一命名发明人Nahid Harjee于2013年12月24日关于“Techniques for Print Ink Volume Control To Deposit Fluids Within Precise Tolerances”所提交的PCT专利申请No.PCT/US2013/077720的延续。PCT专利申请No.PCT/US2013/077720要求以下专利申请中的每一项的优先权:代表第一命名发明人Conor Francis Madigan于2012年12月27日提交的关于“Smart Mixing”的美国临时专利申请No.61/746,545;代表第一命名发明人Nahid Harjee于2013年5月13日提交的关于“Systems and Methods Providing Uniform Printing of OLED Panels”的美国临时专利申请No.61/822855;代表第一命名发明人Nahid Harjee于2013年7月2日提交的关于“Systems and Methods Providing Uniform Printing of OLED Panels”的美国临时专利申请No.61/842351;代表第一命名发明人Nahid Harjee于2013年7月23日提交的关于“Systems and Methods Providing Uniform Printing of OLED Panels”的美国临时专利申请No.61/857298;代表第一命名发明人Nahid Harjee于2013年11月1日提交的关于“Systems and Methods Providing Uniform Printing of OLED Panels”的美国临时专利申请No.61/898769;以及代表第一命名发明人Nahid Harjee于2013年12月24日提交的关于“Techniques for Print Ink Volume Control To Deposit Fluids Within Precise Tolerances”的美国临时专利申请No.61/920,715。该申请还要求代表第一命名发明人Alexander Sou-Kang Ko于2014年4月26日提交的关于“OLED Printing Systems and Methods Using Laser Light Scattering for Measuring Ink Drop Size, Velocity and Trajectory”的美国临时专利申请No.61/816696以及代表第一命名发明人Alexander Sou-Kang Ko于2013年8月14日提交的关于“OLED Printing Systems and Methods Using Laser Light Scattering for Measuring Ink Drop Size, Velocity and Trajectory”的美国临时专利申请No.61/866031的利益。前述专利申请中的每一个通过引用合并到此。 The application requests "Techniques For Print Ink Droplet Volume Measurement And Control Over Deposited Fluids Within Precise Tolerances," U.S. Provisional Patent Application No. 61/950,820. This application is also in part representative of "Techniques for A continuation of U.S. Utility Patent Application No. 14/162525 for Print Ink Volume Control To Deposit Fluids Within Precise Tolerances". U.S. Utility Patent Application No. 14/162525 is claimed on behalf of first named inventor Nahid Harjee on December 26, 2013 Day on "Techniques for Print Ink Volume Control To Deposit Fluids Within Precise Tolerances" the priority of Taiwan Patent Application No. 102148330, and also on behalf of the first named inventor Nahid Harjee on December 24, 2013 on "Techniques for A continuation of PCT Patent Application No. PCT/US2013/077720 filed for Print Ink Volume Control To Deposit Fluids Within Precise Tolerances. PCT Patent Application No. PCT/US2013/077720 claims priority to each of the following patent applications: U.S. Provisional Patent Application No. 61/746,545, filed December 27, 2012, on "Smart Mixing" on behalf of first named inventor Conor Francis Madigan; on behalf of first named inventor Nahid Harjee, May 13, 2013 on “Systems and Methods Providing Uniform Printing of OLED Panels" U.S. Provisional Patent Application No. 61/822855; filed on July 2, 2013 on behalf of first named inventor Nahid Harjee for "Systems and Methods Providing Uniform Printing of OLED Panels" U.S. Provisional Patent Application No. 61/842351; filed on July 23, 2013 on behalf of first named inventor Nahid Harjee for "Systems and Methods Providing Uniform Printing of OLED Panels" U.S. Provisional Patent Application No. 61/857298; filed on Nov. 1, 2013 on behalf of first named inventor Nahid Harjee for "Systems and Methods Providing Uniform Printing of OLED Panels” U.S. Provisional Patent Application No. 61/898769; and “Techniques for Print Ink Volume Control To Deposit Fluids Within Precise Tolerances," U.S. Provisional Patent Application No. 61/920,715. This application also claims a patent application filed on April 26, 2014 on behalf of first named inventor Alexander Sou-Kang Ko for "OLED Printing Systems and Methods Using Laser Light Scattering for Measuring Ink Drop Size, Velocity and Trajectory," U.S. Provisional Patent Application No. 61/816696, and "OLED Printing Systems and Methods Using Laser Light Scattering for Measuring Ink Drop Size, Velocity and Trajectory," U.S. Provisional Patent Application No. 61/866,031. Each of the foregoing patent applications is hereby incorporated by reference.
技术领域 technical field
该公开涉及用于以高统计精准度来测量对于有机发光二极管(“OLED”)设备制备所使用的油墨喷射液滴体积的技术,涉及用于以精确的聚合数量来将流体油墨的液滴传送到基底的目标区的打印处理的用法,并且涉及有关的方法、设备、改进和系统。在一个非限定性应用中,该公开所提供的技术可以应用到用于OLED显示器面板的制造处理。 This disclosure relates to techniques for measuring with high statistical accuracy the volume of inkjet droplets used in the fabrication of organic light emitting diode ("OLED") devices, for delivering droplets of fluid ink in precise aggregate quantities Print processing to a target area of a substrate, and relates to related methods, apparatus, improvements and systems. In one non-limiting application, the techniques provided by this disclosure can be applied to fabrication processes for OLED display panels.
背景技术 Background technique
在打印头具有多个喷嘴的打印处理中,并非每个喷嘴以相同方式对标准驱动波形起反应,即每个喷嘴可能产生稍微不同体积的液滴。在依赖于喷嘴以将流体液滴沉积到相应流体沉积区(“目标区”)中的情况下,缺乏一致性可能导致问题。对于油墨转印将变为电子设备内的永久薄膜结构的材料的制造应用,情况尤其如此。该问题出现的一个示例应用是在应用于制备对于小型和大型电子设备(例如对于便携式设备、大规模高清晰度电视面板和其它设备)所使用的显示器(例如有机发光二极管(“OLED”)显示器)的制造处理中。在使用打印处理以沉积这些显示器的油墨携带光生成材料的情况下,跨像素的行或列的体积差异贡献于所显示的图像中的可见光照或色彩瑕疵。注意,在此所使用的“油墨”指代打印头的喷嘴所应用于基底的任何流体,而无论色彩特性如何;例如,在所提到的OLED显示器制备应用中,油墨典型地沉积到位,然后受处理、干燥或固化,以直接形成永久材料层,并且该处理可以通过相同油墨或不同油墨而重复,以形成若干这样的层。 In a printing process where a printhead has multiple nozzles, not every nozzle reacts in the same way to a standard drive waveform, ie each nozzle may produce a drop of slightly different volume. Where nozzles are relied upon to deposit fluid droplets into respective fluid deposition zones ("target zones"), the lack of uniformity can cause problems. This is especially true for manufacturing applications where ink transfers to materials will become permanent thin film structures within electronic devices. An example application where this problem arises is in the manufacture of displays (such as organic light-emitting diode (“OLED”) displays) for use in small and large electronic devices, such as for portable devices, large-scale high-definition television panels, and others ) in the manufacturing process. Where the printing process is used to deposit the ink-borne light-generating material of these displays, volumetric differences across rows or columns of pixels contribute to visible lighting or color artifacts in the displayed image. Note that "ink" as used herein refers to any fluid that is applied to a substrate by the nozzles of a printhead, regardless of color characteristics; for example, in the mentioned OLED display fabrication application, ink is typically deposited in place and then Treated, dried or cured to directly form a layer of permanent material, and the treatment may be repeated with the same ink or different inks to form several such layers.
使用图1A以通过通常使用标号101所指代的说明性示图来介绍这种喷嘴液滴不一致性问题。在图1A中,打印头103可见为具有均使用在打印头的底部处的小三角形描述的五个油墨喷嘴,其均分别编号(1)-(5)。注意,在典型制造应用中,取决于应用,可以存在很多大于五个的喷嘴(例如24-10,000个);在图1A的情况下,为了易于理解,简单地指代五个喷嘴。应假设,在示例应用中,期望将五十皮升(50.00pL)的流体沉积到这些区域的阵列的五个特定目标区中的每一个中,此外,打印头的五个喷嘴中的每一个应通过打印头与基底之间的每次相对移动(“通过”或“扫描”)将十皮升(10.00pL)的流体喷出到各个目标区中的每一个中。目标区可以是基底的任何表面面积,包括毗邻的不分离的区(例如,从而所沉积的流体油墨部分地蔓延,以在各区域之间混合在一起)或相应的流控式隔离的区域。通常分别使用椭圆形104-108在图1A中表示这些区域。因此,可以假定打印头的确切五次通过如描述的那样对于填充五个特定目标区中的每一个是必须的。然而,打印头喷嘴将实际上在结构或激励方面具有一些微小的变化,从而应用于各个喷嘴换能器的给定驱动波形对于每个喷嘴产生稍微不同液滴体积。如图1A中所描述的那样,例如,喷嘴(1)的发射通利用每次通过产生9.80皮升(pL)的液滴体积,其中,五个9.80pL液滴描述于椭圆形104内。注意,液滴中的每一个在图中由目标区104内的不同位置表示,但实际上,液滴中的每一个的位置可以相同或可以重叠。通过对比,喷嘴(2)-(5)产生10.01pL、9.89pL、9.96pL和10.03pL的稍微不同的相应液滴体积。通过在每个喷嘴在互斥的基础上将流体沉积到目标区104-108中的情况下的打印头与基底之间的五次通过,这种沉积将产生跨五个目标区的1.15pL的总沉积油墨体积变化;这对于很多应用可能是不可接受的。例如,在一些应用中,所沉积的流体中的如一个百分比(或甚至远更小)那么少的差异就可能引起问题;在OLED显示器制备的情况下,这种变化可能潜在地导致所制成的显示器中可观测到的图像赝像。 FIG. 1A is used to introduce this nozzle droplet inconsistency problem by way of an illustrative diagram generally indicated by reference numeral 101 . In FIG. 1A , printhead 103 can be seen as having five ink nozzles, each numbered (1 )-(5), each depicted with a small triangle at the bottom of the printhead. Note that in a typical manufacturing application, there may be many greater than five nozzles (eg, 24-10,000), depending on the application; in the case of FIG. 1A , simply five nozzles are referred to for ease of understanding. It should be assumed that, in the example application, it is desired to deposit fifty picoliters (50.00 pL) of fluid into each of the five specific target zones of the array of these zones, and that in addition, each of the five nozzles of the printhead Ten picoliters (10.00 pL) of fluid should be ejected into each of the respective target zones with each relative movement ("pass" or "scan") between the printhead and the substrate. The target area may be any surface area of the substrate, including adjacent non-separated areas (eg, such that deposited fluid ink partially spreads to mix together between areas) or corresponding fluidically isolated areas. These regions are generally represented in FIG. 1A using ovals 104-108, respectively. Therefore, it can be assumed that exactly five passes of the printhead are necessary to fill each of the five specific target zones as described. However, the printhead nozzles will actually have some slight variation in structure or actuation such that a given drive waveform applied to each nozzle transducer produces a slightly different drop volume for each nozzle. As depicted in FIG. 1A , for example, the firing pass of nozzle ( 1 ) produces a drop volume of 9.80 picoliters (pL) per pass, where five 9.80 pL drops are depicted within oval 104 . Note that each of the droplets is represented in the figure by a different location within the target zone 104, but in reality, the location of each of the droplets may be the same or may overlap. By way of comparison, nozzles (2)-(5) produced slightly different corresponding droplet volumes of 10.01 pL, 9.89 pL, 9.96 pL and 10.03 pL. With five passes between the printhead and the substrate where each nozzle deposits fluid into the target areas 104-108 on a mutually exclusive basis, this deposition will produce 1.15 pL of fluid across the five target areas. Total deposited ink volume varies; this may not be acceptable for many applications. For example, in some applications, as little as a percentage (or even far less) variance in the deposited fluid can cause problems; in the case of OLED display fabrication, this variation could potentially lead to image artifacts observable in displays.
电视和其它形式的显示器的制造商将因此以高精确度有效地指定必须观测到的精确体积范围(例如50.00pL、±0.25pL),以使所得产品被看作为是可接受的;注意,在该示例性情况下,所指定的容限必须在50.00pL的目标的0.5个百分比内。在图1A所表示的每个喷嘴沉积到高清晰度电视(“HDTV”)屏幕的相应水平行中的像素中的应用中,所描绘的49.02pL-50.17pL的变化可能因此产生不可接受的质量,因为这将表示大约±1.2%变化(例如,并不是±0.5%变化的期望最大容限)。虽然显示器技术已经引述为示例,但应理解,喷嘴液滴不一致性问题可能出现在其它情形中。 Manufacturers of televisions and other forms of displays will thus effectively specify with high precision the exact volume ranges that must be observed (e.g. 50.00pL, ±0.25pL) in order for the resulting product to be considered acceptable; note that in In this exemplary case, the specified tolerance must be within 0.5 percent of the target of 50.00 pL. In an application represented by Figure 1A where each nozzle deposits into pixels in a corresponding horizontal row of a high-definition television ("HDTV") screen, the depicted variation of 49.02pL-50.17pL may thus yield unacceptable quality , as this would represent approximately ±1.2% variation (eg, not the desired maximum tolerance of ±0.5% variation). While display technology has been cited as an example, it should be understood that nozzle droplet inconsistency issues may arise in other situations.
在图1A中,喷嘴具体地与目标区(例如阱)对准,以使得特定的喷嘴打印到特定目标区中。在图1B中,示出替换情况151,其中,喷嘴并非被具体地对准,但喷嘴密度相对于目标区密度很高;在此情况下,在扫描或通过期间碰巧横穿特定的目标区的任一个喷嘴被用于打印到这些目标区中,其中,在每次通过中,潜在地若干个喷嘴横穿每个目标区。在所示示例中,可见打印头153具有五个油墨喷嘴,并且可见基底具有两个目标区154-155,每个被定位为使得:喷嘴(1)和(2)将横穿目标区154,喷嘴(4)和(5)将横穿目标区155,喷嘴(3)将不横穿任何目标区。如所示那样,在每次通过中,一个或两个液滴被沉积到每个阱中,如所描绘的那样。再次注意,液滴可以以重叠的方式而被沉积,或沉积在每个目标区内的离散点处,并且图1B中的特定图解仅是说明性的;至于图1A中所呈现的示例,再次假定期望将五十皮升(50.00pL)的流体沉积到目标区154-155中的每一个中,并且每个喷嘴具有近似10.00pL的标称液滴体积。利用与有关图1A的示例所观测到的相同的每喷嘴液滴体积变化,并且假定在给定的通过上与目标区重叠的每个喷嘴将液滴输送到该目标区中,直到已经输送了总共五个液滴,观测到目标区在三次通过中被填充,并且跨两个目标区存在0.58pL的距50.00pL的目标的总沉积油墨体积变化以及在所指定的容限之外的进一步的差异;再次,这对于很多应用而言可能是不可接受的。 In FIG. 1A , nozzles are specifically aligned with target areas (eg, wells) such that specific nozzles print into specific target areas. In FIG. 1B an alternative case 151 is shown, in which the nozzles are not specifically aimed, but the nozzle density is high relative to the target zone density; Any one nozzle is used to print into these target zones, with potentially several nozzles traversing each target zone in each pass. In the example shown, the visible printhead 153 has five ink nozzles, and the visible substrate has two target zones 154-155, each positioned such that: nozzles (1) and (2) will traverse target zone 154, Nozzles (4) and (5) will traverse target zone 155 and nozzle (3) will not traverse any target zone. As shown, in each pass, one or two droplets are deposited into each well, as depicted. Note again that the droplets may be deposited in an overlapping fashion, or at discrete points within each target zone, and that the particular illustration in FIG. 1B is illustrative only; as for the example presented in FIG. 1A , again Assume that fifty picoliters (50.00 pL) of fluid are desired to be deposited into each of the target zones 154-155, and that each nozzle has a nominal drop volume of approximately 10.00 pL. Utilizing the same per-nozzle droplet volume variation observed with respect to the example of FIG. 1A , and assuming that each nozzle that overlaps a target zone on a given pass delivers a droplet into that zone until it has delivered For a total of five drops, the target area was observed to be filled in three passes, and there was a total deposited ink volume change of 0.58 pL across the two target areas from the 50.00 pL target and a further change outside the specified tolerance. difference; again, this may not be acceptable for many applications.
注意,与以上示例有关地,甚至对于给定的喷嘴和给定的驱动波形,也可能因液滴体积可能在统计上变化的问题而进一步加重液滴一致性问题。因此,在上面讨论的示例中,虽然假定来自图1A和图1B的打印头的喷嘴(1)将响应于给定驱动波形而产生9.80pL的液滴体积,但实际上,在现实世界的情况下,可以假定液滴体积取决于各种因素(例如工艺、电压、温度、打印头老化以及很多其它因素)而一定程度地变化,以至于可能并非精确地获知实际液滴体积。 Note that, in relation to the above example, even for a given nozzle and a given drive waveform, the problem of drop consistency may be further exacerbated by the problem that drop volume may vary statistically. Thus, in the example discussed above, although it was assumed that the nozzle (1) from the printhead of Figures 1A and 1B would produce a droplet volume of 9.80 pL in response to a given drive waveform, in practice, in real-world situations In this case, it can be assumed that drop volume varies to such an extent that it depends on various factors such as process, voltage, temperature, printhead aging, and many others, such that the actual drop volume may not be known precisely.
虽然已经提出技术来解决液滴一致性问题,但一般来说,这些技术要么仍然并不可靠地提供停留在期望容限范围内的填充体积,要么它们急剧地增加制造时间和成本,即它们与在低消费者价格点的情况下具有高质量的目标不相符;这样的质量和低价格点对于关注于商用产品(诸如HDTV)的应用可能是关键的。 While techniques have been proposed to address the droplet consistency problem, in general, these techniques either still do not reliably provide fill volumes that stay within desired tolerances, or they dramatically increase manufacturing time and cost, i.e., they are not the same as The goal of having high quality at a low consumer price point is misaligned; such quality and low price point may be critical for applications focused on commercial products such as HDTV.
因此,需要的是对使用具有喷嘴的打印头将流体沉积到基底的目标区上来说有用的技术。更具体地说,所需要的是用于在允许快速流体沉积操作并且因此改进设备制备的速度的成本有效的基础上,尽管有喷嘴液滴喷出体积的变化也理想地精确地控制基底的相应的目标区中的所沉积的流体体积的技术。下述的技术满足这些需要,并且提供进一步的相关的优点。 Accordingly, what is needed are techniques useful for depositing fluid onto target areas of a substrate using a printhead having nozzles. More specifically, what is needed is a method for ideally precisely controlling the response of a substrate despite variations in nozzle droplet ejection volume on a cost-effective basis that allows rapid fluid deposition operations and thus improves the speed of device fabrication. The technique of the deposited fluid volume in the target zone. The techniques described below meet these needs and provide further related advantages.
附图说明 Description of drawings
图1A是呈现出将油墨沉积在基底的目标区中的假设问题的示图,其中,使用具有五个喷嘴的打印头,以在五个特定的目标区中的每一个中沉积50.00pL的目标填充。 Figure 1A is a diagram presenting a hypothetical problem of depositing ink in target areas of a substrate using a printhead with five nozzles to deposit 50.00 pL of target in each of five specific target areas filling.
图1B是呈现出将油墨沉积在基底的目标区中的假设问题的另一示图,其中,使用具有五个喷嘴的打印头,以在两个特定的目标区中的每一个中沉积50.00pL的目标填充。 Figure 1B is another diagram presenting the hypothetical problem of depositing ink in target areas of a substrate using a printhead with five nozzles to deposit 50.00 pL in each of two specific target areas target padding.
图2A是示出能够对于大打印头组件的每个喷嘴测量液滴体积的液滴测量系统的说明性示图。 2A is an illustrative diagram showing a drop measurement system capable of measuring drop volume for each nozzle of a large printhead assembly.
图2B是示出与对于每个喷嘴测量液滴体积关联的各种处理和选项的方法示图。 2B is a method diagram illustrating various processes and options associated with measuring drop volume for each nozzle.
图2C是示出与对于每个喷嘴测量液滴体积关联的各种处理和选项的方法示图,用于实现所期待的液滴体积的高置信度理解。 2C is a method diagram illustrating various processes and options associated with measuring drop volume for each nozzle for achieving a high confidence understanding of expected drop volume.
图2D是示出用于执行液滴测量的一个实施例中所使用的各种部件的布局的示意图。 Figure 2D is a schematic diagram illustrating the layout of various components used in one embodiment for performing droplet measurements.
图2E是示出用于执行液滴测量的另一实施例中所使用的各种部件的布局的示意图。 Figure 2E is a schematic diagram showing the layout of various components used in another embodiment for performing droplet measurements.
图3A提供示出可以均独立地体现前面介绍的技术的一系列可选层(tier)、产品或服务的说明性视图。 FIG. 3A provides an illustrative view showing a series of optional tiers, products, or services that may each independently embody the techniques described above.
图3B是示出在基底最终用于形成具有像素的显示器面板的应用中的打印机和基底的假设布置的说明性示图。 3B is an illustrative diagram showing a hypothetical arrangement of a printer and a substrate in an application where the substrate is ultimately used to form a display panel having pixels.
图3C是从来自图3B的直线C-C的透视取得的图3B的打印头和基底的截面闭合图。 3C is a cross-sectional close-up view of the printhead and substrate of FIG. 3B taken from perspective from line C-C of FIG. 3B.
图4A是与图1A相似的示图,但示出使用液滴体积组合以在预定容限范围内对于每个目标区可靠地产生油墨填充体积;在一个可选实施例中,从预定的喷嘴发射波形集合产生不同液滴体积组合,并且在另一可选实施例中,使用打印头与基底之间的相对运动(405)从打印头的相应喷嘴产生不同液滴体积组合。 Figure 4A is a diagram similar to Figure 1A, but showing the use of drop volume combinations to reliably produce ink fill volumes for each target zone within predetermined tolerances; The set of firing waveforms produces different combinations of drop volumes and, in another optional embodiment, relative motion between the printhead and substrate (405) is used to produce different combinations of drop volumes from corresponding nozzles of the printhead.
图4B是用于示出相对的打印头/基底运动以及不同液滴体积组合喷出到基底的相应目标区中的示图。 Figure 4B is a diagram illustrating relative printhead/substrate motion and ejection of different drop volume combinations into corresponding target areas of the substrate.
图4C是用于示出在每个喷嘴处使用不同喷嘴驱动波形以产生进入基底的相应的目标区中的不同液滴体积组合的示图。 Figure 4C is a diagram illustrating the use of different nozzle drive waveforms at each nozzle to produce different drop volume combinations into respective target regions of the substrate.
图4D是与图1B相似的示图,但示出使用液滴体积组合以在预定容限范围内对于每个目标区可靠地产生油墨填充体积;在一个可选实施例中,从预定喷嘴发射波形集合产生不同液滴体积组合,并且在另一可选实施例中,使用打印头与基底之间的相对运动(472)从打印头的相应喷嘴产生不同液滴体积组合。 Figure 4D is a diagram similar to Figure 1B, but showing the use of drop volume combinations to reliably produce ink fill volumes for each target zone within predetermined tolerances; in an alternative embodiment, firing from predetermined nozzles The set of waveforms produces different combinations of drop volumes, and in another optional embodiment, the relative motion between the printhead and the substrate is used (472) to produce different combinations of drop volumes from corresponding nozzles of the printhead.
图5提供示出对于基底的每个目标区规划液滴组合的方法的框图;该方法可以应用于图4A-图4D所介绍的任何可选实施例。 Figure 5 provides a block diagram illustrating a method of planning droplet combinations for each target area of a substrate; this method may be applied to any of the alternative embodiments described in Figures 4A-4D.
图6A提供可例如随前面介绍的任何实施例使用的用于对于基底的每个目标区选取可接受的液滴组合的特定集合的框图。 Figure 6A provides a block diagram for selecting a particular set of acceptable droplet combinations for each target region of a substrate that may be used, for example, with any of the previously described embodiments.
图6B提供用于迭代地规划打印头/基底运动并且对于每个打印区域基于液滴组合来使用喷嘴的框图。 Figure 6B provides a block diagram for iteratively planning printhead/substrate motion and using nozzles based on droplet combinations for each print zone.
图6C提供示出进一步优化打印头/基底运动并且使用喷嘴,以具体地以可能尽可能高效地执行打印的方式对扫描进行排序的框图。 Figure 6C provides a block diagram illustrating further optimization of printhead/substrate motion and use of nozzles, specifically to sequence scans in such a way as to perform printing as efficiently as possible.
图6D是将最终产生多个平坦面板显示器设备(例如683)的基底的假设平面视图;如区域687所标注的那样,可以对于单个平坦面板显示器设备的特定区域优化打印头/基底运动,其中,跨每个显示器设备(例如四个所描绘的平坦面板显示器设备)在可重复或周期性的基础上使用优化。 Figure 6D is a hypothetical plan view of a substrate that would ultimately result in multiple flat panel display devices (e.g. 683); as labeled area 687, printhead/substrate motion can be optimized for specific regions of a single flat panel display device, where Optimization is used on a repeatable or periodic basis across each display device (eg, the four depicted flat panel display devices).
图7提供用于在可接受的容限内故意地变化填充体积以减少显示器设备中的视觉赝像的框图。 7 provides a block diagram for intentionally varying fill volumes within acceptable tolerances to reduce visual artifacts in a display device.
图8A提供示出可以如何使用液滴测量来容纳每喷嘴和每驱动波形的液滴体积的统计变化并且仍允许给定目标区内的精确聚合油墨填充的框图。 FIG. 8A provides a block diagram showing how drop measurement can be used to accommodate statistical variation in drop volume per nozzle and per drive waveform and still allow accurate polymeric ink filling within a given target zone.
图8B提供示出可以如何规划液滴测量从而容纳每喷嘴和每驱动波形的液滴体积的统计变化并且仍允许给定目标区内的精确聚合油墨填充的框图。 FIG. 8B provides a block diagram showing how drop measurement can be planned to accommodate statistical variation in drop volume per nozzle and per drive waveform and still allow accurate aggregate ink filling within a given target zone.
图9A提供示出在没有对于打印头的喷嘴间液滴体积变化进行调整的情况下的目标区填充体积的变化的图线。 Figure 9A provides a graph showing the change in target zone fill volume without adjustment for the printhead's inter-nozzle drop volume change.
图9B提供示出在随机地使用不同喷嘴来以统计方式补偿打印头的喷嘴间液滴体积变化的情况下的目标区填充体积的变化的图线。 Figure 9B provides a graph showing the variation in target zone fill volume where different nozzles are used randomly to statistically compensate for drop volume variation across nozzles of a printhead.
图9C提供示出在使用不同体积的一个或多个液滴以在所规划的基础上在精确容限内实现目标区填充体积的情况下的目标区填充体积的变化的图线。 Figure 9C provides a graph showing the change in target zone fill volume using one or more droplets of different volumes to achieve the target zone fill volume within precise tolerances on a planned basis.
图10A提供示出在没有对于打印头的喷嘴间液滴体积变化进行调整的情况下的目标区填充体积的变化的图线。 Figure 10A provides a graph showing the change in target zone fill volume without adjustment for the printhead's inter-nozzle drop volume change.
图10B提供示出在随机地使用不同喷嘴来以统计方式补偿打印头的喷嘴间液滴体积变化的情况下的目标区填充体积的变化的图线。 FIG. 10B provides a graph showing the variation in target zone fill volume when different nozzles are used randomly to statistically compensate for drop volume variation across nozzles of a printhead.
图10C提供示出在使用不同体积的一个或多个液滴以在所规划的基础上在精确容限内实现目标区填充体积的情况下的目标区填充体积的变化的图线。 FIG. 10C provides a graph showing the change in target zone fill volume using one or more droplets of different volumes to achieve the target zone fill volume within precise tolerances on a planned basis.
图11示出用作制备装置的一部分的打印机的平面视图;打印机可以处于允许打印产生在受控气氛中的气包体内。 Figure 11 shows a plan view of a printer used as part of the fabrication apparatus; the printer may be within an air enclosure allowing printing to take place in a controlled atmosphere.
图12提供打印机的框图;这样的打印机可以可选地例如采用于图11中所描述的制备装置中。 FIG. 12 provides a block diagram of a printer; such a printer may optionally be employed, for example, in the preparation apparatus described in FIG. 11 .
图13A示出使用多个打印头(均具有喷嘴)以在基底上沉积油墨的实施例。 Figure 13A shows an embodiment using multiple print heads (each having nozzles) to deposit ink on a substrate.
图13B示出旋转多个打印头以更好地将相应打印头的喷嘴与基底对准。 Figure 13B illustrates rotating multiple printheads to better align the nozzles of the respective printheads with the substrate.
图13C示出与智能扫描关联的多个打印头中的单独打印头的偏移,以故意地产生特定液滴体积组合。 Figure 13C shows the offset of individual printheads of a plurality of printheads associated with smart scanning to intentionally produce specific drop volume combinations.
图13D示出包括可以用在有机发光二极管(OLED)显示器中的层的基底的截面。 Figure 13D shows a cross-section of a substrate including layers that may be used in an organic light emitting diode (OLED) display.
图14A示出定制或改变喷嘴发射波形的多种不同方式。 Figure 14A shows a number of different ways of customizing or changing the nozzle firing waveform.
图14B示出根据离散波形分段来定义波形的方式。 Figure 14B illustrates the manner in which a waveform is defined in terms of discrete waveform segments.
图15A示出可以使用预定喷嘴发射波形的不同组合来实现不同液滴体积组合的实施例。 Figure 15A shows an embodiment where different combinations of drop volumes can be achieved using different combinations of predetermined nozzle firing waveforms.
图15B示出了与在编程时间(或位置)生成编程波形并将其施加于打印头的喷嘴相关联的电路;例如,此电路提供来自图15A的电路1523/1531、1524/1532和1525/1533中的每一个的一个可能实现方式。 Figure 15B shows the circuitry associated with generating a programming waveform at a programming time (or position) and applying it to the nozzles of a printhead; One possible implementation of each of 1533.
图15C示出使用不同喷嘴发射波形的一个实施例的流程图。 Figure 15C shows a flow diagram of one embodiment using different nozzle firing waveforms.
图15D示出与喷嘴或喷嘴波形资格关联的流程图。 Figure 15D shows a flow diagram associated with nozzle or nozzle waveform qualification.
图16示出工业打印机的透视图。 Figure 16 shows a perspective view of an industrial printer.
图17示出工业打印机的另一透视图。 Figure 17 shows another perspective view of the industrial printer.
图18A呈现示出基于阴影图的液滴测量系统的实施例中的部件的布局的示意图。 Figure 18A presents a schematic diagram showing the layout of components in an embodiment of a shadow map based droplet measurement system.
图18B呈现示出基于干涉法的液滴测量系统的实施例中的部件的布局的示意图。 Figure 18B presents a schematic diagram showing the layout of components in an embodiment of an interferometry-based droplet measurement system.
图19示出与可选地用以OLED设备的制备的将液滴测量系统与工业打印机集成的一个说明性处理关联的流程图。 19 shows a flowchart associated with one illustrative process of integrating a drop measurement system with an industrial printer, optionally for the fabrication of OLED devices.
通过参考应结合附图来阅读的以下详细描述可更好地理解由列举的权利要求定义的主题。在下面阐述以使得一个人能够构建并使用权利要求所阐述的技术的各种实施方式的一个或多个特定实施例的描述并不意图限制列举的权利要求,而是举例说明其应用。在不限制前述内容的情况下,本公开提供了用来通过规划打印头移动来制造材料层、从而将沉积油墨体积保持在预定容差内而同时不过度地增加打印头通过的次数(和因此完成沉积层所需的时间)的技术的多个不同示例。与这些技术相关地,可以执行精准的液滴测量,从而利用与生产打印高度集成的测量来精准地规划任何目标区中的合成油墨填充。各种技术可以被体现为用于执行这些技术的软件、计算机的形式、打印机或运行所述软件的另外设备、用于形成材料层的控制数据(例如打印图像)的形式、沉积机构或作为这些技术的结果而制备的电子设备或另外设备(例如平坦面板设备或其它消费者端产品)的形式。虽然提出具体示例,但在此所描述的原理也可以同样应用于其它方法、设备和系统。 The subject matter defined by the enumerated claims may be better understood by referring to the following detailed description which should be read in conjunction with the accompanying drawings. The description of one or more specific examples of the various implementations set forth below to enable one to make and use the claimed technology is not intended to limit the enumerated claims, but rather to illustrate their application. Without limiting the foregoing, the present disclosure provides methods for fabricating layers of material by planning printhead movements such that the deposited ink volume remains within predetermined tolerances without unduly increasing the number of printhead passes (and thus A number of different examples of techniques for the time it takes to complete a deposited layer). Associated with these technologies, precise drop measurement can be performed, allowing precise planning of synthetic ink fill in any target zone with measurements highly integrated with production printing. The various techniques may be embodied in the form of software for carrying out these techniques, in the form of a computer, a printer or another device running the software, in the form of control data (such as printing images) for forming layers of material, in deposition mechanisms, or as such In the form of an electronic device or another device (such as a flat panel device or other consumer end product) produced as a result of the technology. While specific examples are presented, the principles described herein are equally applicable to other methods, devices, and systems.
具体实施方式 Detailed ways
该公开涉及用以将层材料转印到基底的打印处理的使用、用于在高精准度的情况下的液滴测量的技术以及有关的方法、改进、设备和系统。 This disclosure relates to the use of a printing process to transfer layer material to a substrate, techniques for drop measurement with high precision, and related methods, improvements, devices and systems.
可以通过针对给定喷嘴发射波形测量打印头的每个喷嘴液滴体积(或跨喷嘴的液滴体积的变化)来解决上文介绍的喷嘴一致性问题。这允许规划打印头发射图案(pattern)和/或运动以在每个目标区中沉积精确聚合的填充体积的油墨。在理解液滴体积如何跨喷嘴改变的情况下,可以以适应液滴体积的差异但仍随着每次通过或扫描而同时地在相邻目标区中沉积液滴的方式来规划打印头/接地位置偏移和/或液滴发射图案。从不同的角度看,作为对液滴体积的喷嘴间变化进行归一化或平均的替代,以规划方式测量和使用每个喷嘴的特定液滴体积特性以针对基底的多个目标区同时地实现特定的范围内聚合体积;在许多实施例中,使用根据一个或多个优化准则来减少扫描或打印头通过次数的优化处理来执行此任务。 The nozzle uniformity problem described above can be addressed by measuring the per-nozzle drop volume of a printhead (or the variation in drop volume across nozzles) for a given nozzle firing waveform. This allows planning of printhead firing patterns and/or movements to deposit precisely aggregated fill volumes of ink in each target zone. With an understanding of how drop volumes vary across nozzles, printheads/grounds can be planned in a way that accommodates differences in drop volumes but still simultaneously deposits drops in adjacent target zones with each pass or scan Positional offset and/or droplet emission pattern. Viewed from a different perspective, instead of normalizing or averaging the nozzle-to-nozzle variation in drop volume, the specific drop volume characteristics of each nozzle are measured and used in a programmatic fashion to simultaneously achieve Aggregate volumes within a specified range; in many embodiments, this task is performed using an optimization process that reduces the number of scans or printhead passes according to one or more optimization criteria.
以下将提出贡献于实现这些结果的多个不同实施例。可以单独地使用每个实施例,并且还明确预期任何实施例的特征可以可选地与不同实施例的特征混合并且匹配。 A number of different embodiments contributing to achieving these results are presented below. Each embodiment may be used on its own, and it is also expressly contemplated that features of any embodiment may optionally be mixed and matched with features of different embodiments.
一个实施例提出在非常大的(例如具有几百至几千个喷嘴或更多的)打印头组件上提供个性化液滴测量的系统和技术。使用沉积平面下测量技术(即,通过超出基底要针对沉积而被正常地定位的相对距离地来将光重定向为远离打印头附近),例如使用可以在达到三个维度中被致动的光器件组件以使得(例如所限制的空间内的)大打印头组件可以可选地停泊(例如在打印机服务站处)并且液滴测量设备相对于大打印头组件精确地连结,从而解决与光器件的定位关联的逻辑困难。尽管是受限制的空间,沉积平面下的光器件组件的精确放置也使得能够在距喷嘴板的所要求的距离处进行所封装的喷嘴阵列的液滴体积测量(打印头组件典型地在距基底表面1毫米的量级上操作)。在一个可选实施例中,光器件系统采用从特定喷嘴发出的液滴(并且可选地,改变的喷嘴驱动波形)的阴影图和重复测量,以增加所期待的液滴体积的统计置信度。在另一可选实施例中,光器件系统采用从特定喷嘴发出的液滴(并且可选地,改变的喷嘴驱动波形)的干涉法和重复测量,以增加所期待的液滴体积的统计置信度。 One embodiment proposes systems and techniques that provide personalized drop measurement on very large (eg, with hundreds to thousands of nozzles or more) printhead assemblies. Using a deposition-plane measurement technique (i.e. redirecting light away from the vicinity of the printhead by going beyond the relative distance at which the substrate would normally be positioned for deposition), for example using light that can be actuated in up to three dimensions Device assembly such that (e.g. within a confined space) a large printhead assembly can optionally be docked (e.g. at a printer service station) and the drop measurement device precisely coupled relative to the large printhead assembly, addressing issues with optics The logical difficulty of locating associations. Precise placement of the optics assembly below the deposition plane enables drop volume measurements of the packaged nozzle array at the required distance from the nozzle plate despite the confined space (printhead assemblies are typically at a distance from the substrate operating on the order of 1 mm of the surface). In an optional embodiment, the optics system employs shadow maps and repeated measurements of droplets (and optionally, altered nozzle drive waveforms) emitted from specific nozzles to increase statistical confidence in expected droplet volumes . In another optional embodiment, the optics system employs interferometry and repeated measurements of droplets emitted from specific nozzles (and optionally, altered nozzle drive waveforms) to increase statistical confidence in the expected droplet volume Spend.
注意,在生产线中,典型地期望具有尽可能小的停工期,以便使生产力最大化并且使得制造成本最小化。在另一可选实施例中,液滴测量时间因此“隐藏”或“堆叠”在其它线路处理之后。例如,在可选平坦面板显示器制备生产线中,随着每个新的基底被加载或另外被搬运、处理或转印,使用液滴测量处理来分析打印机的打印头组件,以促进每喷嘴(和/或每喷嘴、每驱动波形)液滴体积的精准统计理解。对于具有几十千个喷嘴的打印头组件,重复的液滴测量(例如如果使用多个驱动波形,则每喷嘴、每驱动波形的大量液滴测量)可能耗费大量时间;可选的系统控制处理和有关软件可以因此可选地在动态、增量的基础上执行液滴测量。例如,如果假设的加载/卸载处理要求例如30秒,其中,每个打印处理耗费90秒,则可以在两分钟周期中在加载/卸载处理期间测量打印头组件,更新液滴测量,以使用在与每个两分钟周期关联的加载/卸载处理期间所分析的喷嘴/液滴的滑动窗口来获得每喷嘴液滴体积平均值和置信度区间。注意,很多其它处理是可能的,并且并非所有实施例要求连续的动态处理。然而,确信的是,实际上,不仅用于给定喷嘴和驱动波形的液滴体积将相对于其它喷嘴和驱动波形而变化,而且进一步地,归因于诸如油墨性质的细微变化、喷嘴老化和降级之类的因素以及其它因素,典型值也将随着时间而改变;例如每隔几个小时到几天来周期性地更新测量的处理可以因此有利地进一步改进可靠性。 Note that in a production line it is typically desirable to have as little downtime as possible in order to maximize productivity and minimize manufacturing costs. In another alternative embodiment, the drop measurement time is thus "hidden" or "stacked" behind other line processing. For example, in an optional flat panel display manufacturing line, as each new substrate is loaded or otherwise handled, processed, or transferred, a drop measurement process is used to analyze the printer's printhead assembly to facilitate per-nozzle (and and/or precise statistical understanding of drop volume per nozzle, per drive waveform. For printhead assemblies with tens of thousands of nozzles, repeated drop measurements (e.g. large number of drops per nozzle, per drive waveform if multiple drive waveforms are used) can be time consuming; optional system control processing and associated software can thus optionally perform droplet measurements on a dynamic, incremental basis. For example, if a hypothetical load/unload process requires, say, 30 seconds, where each print process takes 90 seconds, the printhead assembly can be measured during the load/unload process in a two-minute period, updating the drop measurements to use the A sliding window of nozzles/droplets analyzed during the loading/unloading process associated with each two-minute period was used to obtain droplet volume averages and confidence intervals per nozzle. Note that many other processes are possible, and not all embodiments require continuous dynamic processing. However, it is believed that, in practice, not only will the drop volume for a given nozzle and drive waveform vary relative to other nozzles and drive waveforms, but further, due to factors such as subtle changes in ink properties, nozzle aging and Factors such as degradation and others, typical values will also change over time; a process of periodically updating measurements eg every few hours to days may thus advantageously further improve reliability.
在又一可选实施例中,液滴测量系统使用干涉法和非成像技术,以获得非常快速的液滴测量,例如,在几微秒中执行每液滴测量,并且在少于三十分钟中跨具有几千个喷嘴的打印头组件执行重复的液滴测量。与(使用相机和所捕获的图像像素处理技术来推导体积测量的)成像技术对比,干涉法技术可以通过使用多个光传感器来检测表示液滴形状的干涉图案间距并且将该间距与液滴体积进行相关来提供精准的液滴体积测量。在一个实现方式中,机械地安装激光源和/或有关光器件和/或传感器以用于沉积平面下测量和相对于大打印头组件的有效连结。归因于通过这样的系统可获得的非常快速的测量,恰如所描述的那样,干涉法技术在执行动态增量测量的实施例中尤其有用,并且通过这样的技术,在每个打印周期的情况下,几十至几百个喷嘴可以经受重复的液滴测量(例如每喷嘴三十个液滴的测量),以实现在每个所期待的液滴体积附近的高统计置信度。 In yet another alternative embodiment, the droplet measurement system uses interferometry and non-imaging techniques to obtain very fast droplet measurements, for example, performing per-droplet measurements in a few microseconds and in less than thirty minutes Repeated drop measurement is performed across a printhead assembly with several thousand nozzles. In contrast to imaging techniques (which use a camera and captured image pixel processing techniques to derive volumetric measurements), interferometry techniques can detect the spacing of an interference pattern representing the shape of a droplet by using multiple light sensors and relate this spacing to the volume of the droplet. Correlation is performed to provide accurate drop volume measurements. In one implementation, the laser source and/or associated optics and/or sensors are mechanically mounted for down-plane measurement and active linkage relative to the large printhead assembly. Due to the very fast measurements achievable by such systems, interferometry techniques are especially useful in embodiments where dynamic incremental measurements are performed as described, and by such techniques, at each print cycle Here, tens to hundreds of nozzles can be subjected to repeated drop measurements (eg, measurements of thirty drops per nozzle) to achieve high statistical confidence around each expected drop volume.
在又一可选实施例中,对每喷嘴和每喷嘴驱动波形采取很多液滴测量(对于使用改变的喷嘴驱动波形的实施例)。随着测量的数量增加,关于每个喷嘴波形组合的平均值和标准差(假定正态随机分布)变得更分明。使用软件所实现的数学处理,可以创建并且精准地组合用于每个液滴的统计模型,以求得用于每目标区的合成油墨填充的统计模型。为了提供示例,对于每个驱动波形,针对每个喷嘴采取很多测量。如果期待液滴体积的给定单次测量在两个百分比的标准差的情况下是精准的,则通过采取很多测量,在减少的方差或标准差的情况下获得令人满意地精准的平均值;也就是说,再次假定正态随机分布,标准差根据σ/(n)1/2因测量的数量n而降低,从而液滴体积的四次测量将让标准差减少一半,依此类推。因此,在一个实施例中,使用软件以通过具体地规划的重复测量来实现所期待的液滴体积附近的更高得多的置信度区间,这有助于实质上减少测量误差。可以使用很多不同的满意措施,但例如,对于期待合成填充落入±x%(例如目标填充的±0.5%)的范围内的实施例,则可以针对每个喷嘴并且针对每个不同驱动波形采取液滴测量,获得在平均液滴体积的相同范围(例如±0.5%)内在所期待的液滴体积附近的3σ(99.73%)的置信度区间。或许另外声明的是,利用对于每个不同液滴所构建的精准统计模型,可以使用已知的技术,基于关联统计模型的数学组合来规划液滴组合,以求得聚合的每目标区油墨填充附近的更高的精准度(尽管喷嘴间或波形间液滴体积变化)。注意,虽然针对挑选的实施例使用正态随机分布,但可以使用任何统计模型(例如泊松、Student's-T等),其中,可以(例如通过软件)组合各个分布,以获得表示不同液滴组合的聚合分布。还注意的是,虽然在一些实施例中,使用3σ(99.73%)测度,但在其它预期的实施例中,使用其它类型的统计测度,诸如4σ、5σ或6σ或并非特定地与随机分布关联的测度。 In yet another alternative embodiment, many droplet measurements are taken per nozzle and per nozzle drive waveform (for embodiments using altered nozzle drive waveforms). As the number of measurements increases, the mean and standard deviation (assuming a normal random distribution) for each combination of nozzle waveforms becomes more distinct. Using mathematical processing implemented by the software, statistical models for each droplet can be created and precisely combined to derive a statistical model for composite ink fill per target zone. To provide an example, for each drive waveform, many measurements were taken for each nozzle. If a given single measurement of droplet volume is expected to be accurate with a standard deviation of two percent, by taking many measurements, a satisfactorily accurate mean is obtained with reduced variance or standard deviation; That is, again assuming a normal random distribution, the standard deviation decreases according to σ/(n) 1/2 for the number n of measurements, so four measurements of the droplet volume will halve the standard deviation, and so on. Thus, in one embodiment, software is used to achieve much higher confidence intervals around the expected droplet volume through specifically planned repeated measurements, which helps to substantially reduce measurement errors. Many different measures of satisfaction can be used, but for example, for an embodiment where the resultant fill is expected to fall within ±x%, such as ±0.5% of the target fill, then a measure can be taken for each nozzle and for each different drive waveform. Droplet measurements were obtained with a 3σ (99.73%) confidence interval around the expected droplet volume within the same range (eg ±0.5%) of the mean droplet volume. Perhaps additionally stated, with an accurate statistical model constructed for each of the distinct droplets, it is possible to use known techniques to plan drop combinations based on mathematical combinations of associated statistical models to obtain the aggregated ink fill per target area Nearby higher accuracy (despite drop volume variations from nozzle to nozzle or waveform to waveform). Note that while a normal random distribution is used for the chosen embodiments, any statistical model (e.g., Poisson, Student's-T, etc.) can be used, where the individual distributions can be combined (e.g., by software) to obtain aggregate distribution. Note also that while in some embodiments a 3σ (99.73%) measure is used, in other contemplated embodiments other types of statistical measures are used, such as 4σ, 5σ, or 6σ or not specifically associated with a random distribution measure.
注意的是,相似技术可以应用于求得用于每个喷嘴波形组合的液滴速度和飞行轨迹的模型。在其它可选实施例中可以进一步应用这些变量。 Note that similar techniques can be applied to derive a model of droplet velocity and flight trajectory for each combination of nozzle waveforms. These variables may be further applied in other alternative embodiments.
上述技术和实施例的任何置换和子集可以应用于对于目标区中的聚合油墨填充(即以基于每喷嘴液滴体积变化对于特定合成体积规划的方式)进行精确地规划。也就是说,并非尝试通过跨各喷嘴来平均化体积差异,这些差异被理解并且具体地用在打印控制处理中,以(例如从不同喷嘴或使用不同驱动波形)组合不同液滴,并且获得非常精确的油墨填充。 Any permutations and subsets of the techniques and embodiments described above can be applied to accurately plan for polymeric ink fill in the target zone (ie in a manner planned for a specific composite volume based on per-nozzle droplet volume variation). That is, rather than attempting to average volume differences across nozzles, these differences are understood and used specifically in the print control process to combine different drops (eg from different nozzles or using different drive waveforms) and obtain very Precise ink filling.
在一个可选实施例中,打印头和/或基底在可变量方面是“步进的”,从而适当地改变在各个通过中对于每个目标区所使用的一个或多个喷嘴,以具体地喷出期望的液滴体积。例如,可以通过有选择地相对于基底偏移打印头或打印头组件来把来自一个喷嘴的液滴(例如具有9.95pL的平均值液滴体积)与来自另一喷嘴的液滴(例如具有10.05pL的平均值液滴体积)组合(以获得20.00pL的聚合合成)。规划出多次通过,从而每个目标区接收匹配于期望目标填充的特定聚合填充。也就是说,每个目标区(例如将形成显示器的像素化部件的一行阱中的每个阱)接收所规划的一个或多个液滴体积组合,以使用打印头相对于基底的不同几何步幅来实现所指定的容限范围内的聚合体积。在该实施例的更详细的特征中,给定喷嘴对于彼此的位置关系,可以计算并且应用帕累托优化解,从而在规范内允许每个目标区的体积变化的可容忍量,但同时,规划打印头/基底移动,以对于相应目标沉积区域使得喷嘴的平均同时使用最大化。上面讨论的统计技术可以用于确保合成(即多个液滴)油墨填充的统计模型落入任何期望容限范围内。在一个可选改良中,应用功能以使得打印所需的打印头/基底通过的数量减少并且甚至最小化,以实现这些目的。简要地对这些各种特征反映,由于可以快速地并且高效地执行基底上的材料的层的打印,因此制备成本实质性地减少。 In an alternative embodiment, the printhead and/or substrate are "stepped" in a variable amount to appropriately vary the nozzle or nozzles used for each target zone in individual passes to specifically Dispense the desired droplet volume. For example, droplets from one nozzle (eg, having an average drop volume of 9.95 pL) can be compared to droplets from another nozzle (eg, having a mean drop volume of 10.05 pL) by selectively offsetting the printhead or printhead assembly relative to the substrate. pL of mean droplet volume) combined (to obtain an aggregated synthesis of 20.00 pL). Multiple passes are planned such that each target zone receives a specific aggregate fill that matches the desired target fill. That is, each target area (e.g., each well in a row of wells that will form the pixelated features of the display) receives one or more combinations of drop volumes programmed to use different geometric steps of the printhead relative to the substrate. Amplitude to achieve aggregate volume within specified tolerances. In a more detailed feature of this embodiment, given the positional relationship of the nozzles to each other, a Pareto-optimized solution can be calculated and applied, allowing a tolerable amount of volume variation for each target zone within specification, but at the same time, The printhead/substrate movement is planned to maximize the average simultaneous usage of the nozzles for the corresponding target deposition area. The statistical techniques discussed above can be used to ensure that the statistical model of composite (ie, multiple droplet) ink fill falls within any desired tolerance. In an optional refinement, functions are applied such that the number of printhead/substrate passes required for printing is reduced and even minimized to achieve these goals. Reflecting briefly on these various features, since the printing of layers of material on a substrate can be performed quickly and efficiently, fabrication costs are substantially reduced.
注意,在典型应用中,接收油墨的目标区被阵列化,也就是说,铺设在行和列中,其中,由相对的打印头/基底运动所描述的刈迹(swath)将在(阵列的目标区的)所有行的子集中但是以在单次通过中覆盖阵列的所有列的方式来沉积油墨;另外,行、列和打印头喷嘴的数量可以非常大,例如牵涉几百或几千个行、列和/或打印头喷嘴。 Note that in a typical application, the ink-receiving target areas are arrayed, that is, laid out in rows and columns, where the swath described by relative printhead/substrate motion will be in the (array's Ink is deposited in a subset of all rows of the target area but in a manner that covers all columns of the array in a single pass; in addition, the number of rows, columns and printhead nozzles can be very large, for example involving hundreds or thousands Rows, columns and/or printhead nozzles.
另一可选实施例以稍微不同的方式来解决喷嘴一致性问题。使具有已知的(并且不同的)液滴体积特性的多个预先布置的替换的喷嘴发射波形的集合对于每个喷嘴可用;例如,可以硬线连或另外预先定义四个、八个或另一数量的替换的波形的集合,以提供可选择的稍微不同液滴体积的对应集合。然后使用每喷嘴体积数据(或不同数据)和任何关联统计模型,以通过确定用于基底的每个目标区的喷嘴波形组合的集合来对于多个目标区的同时沉积进行规划。再次,依赖于每个喷嘴(并且在此情况下,每个喷嘴波形组合)的特定体积特性以及关联分布、置信度区间等,以实现具有高置信度的特定填充体积;也就是说,并非尝试校正每喷嘴体积变化,而是将变化具体地使用在组合中,以获得良好理解的统计范围内的特定填充体积。注意,为了满足这些目的,将典型地存在可以用于在基底的每个目标区中沉积达到期望范围的液滴的大量替换组合。在更详细的实施例中,可以跨打印头的一些(或甚至所有)喷嘴来共享喷嘴波形的“公共集合”,其中,每喷嘴液滴体积被存储并且对于混合并且匹配不同液滴体积是可用的,以实现特定填充。作为进一步的选项,可以使用校准阶段,以在离线处理(例如上面介绍的动态增量测量处理)中选择不同波形,其中,基于校准来选择特定喷嘴发射波形集合,以实现相应的具体期望的体积特性的集合。再次,在进一步的详细实施例中,可以执行优化,以通过例如凭借使同时的喷嘴使用最大化或凭借优化一些其它准则来使扫描或打印头通过的数量最小化来改进打印时间的方式而规划打印。 Another alternative embodiment addresses the nozzle uniformity problem in a slightly different manner. Make available for each nozzle a set of multiple pre-arranged alternative nozzle firing waveforms with known (and different) drop volume characteristics; for example, four, eight, or another set may be hardwired or otherwise predefined A number of sets of alternate waveforms to provide alternative sets of corresponding sets of slightly different droplet volumes. The per-nozzle volume data (or different data) and any associated statistical models are then used to plan for simultaneous deposition of multiple target zones by determining a set of nozzle waveform combinations for each target zone of the substrate. Again, relying on the specific volume characteristics of each nozzle (and in this case, each combination of nozzle waveforms) and associated distributions, confidence intervals, etc. to achieve a specific fill volume with high confidence; that is, not trying to Instead of correcting for per-nozzle volume variation, the variation is used specifically in combinations to obtain a specific fill volume within a well-understood statistical range. Note that to meet these objectives there will typically be a number of alternative combinations that can be used to deposit the desired range of droplets in each target area of the substrate. In a more detailed embodiment, a "common set" of nozzle waveforms may be shared across some (or even all) of the printhead's nozzles, where per-nozzle drop volumes are stored and available for mixing and matching different drop volumes , to achieve specific padding. As a further option, a calibration stage can be used to select different waveforms in an offline process such as the dynamic incremental measurement process described above, where a specific set of nozzle firing waveforms is selected based on the calibration to achieve a corresponding specific desired volume A collection of properties. Again, in a further detailed embodiment, optimization can be performed to plan in such a way as to improve print time by, for example, maximizing simultaneous nozzle usage or by optimizing some other criterion to minimize the number of scans or printhead passes Print.
又一实施例依赖于使用打印头组件中的多个打印头,其中,每个打印头及其喷嘴可以相对于彼此而偏移(或等效地,打印结构具有可以均相对于彼此而偏移的多行喷嘴)。使用这样的故意的偏移,可以利用每次通过或扫描来跨打印头(或喷嘴的行)地对每喷嘴体积变化进行智能的组合。再次,将典型地存在可以用于在基底的每个目标区中沉积液滴以达到期望范围的大量替换组合,并且在详细的实施例中,执行优化来以通过例如凭借使扫描或打印头通过的数量最小化或凭借使同时的喷嘴使用最小化来改进打印时间的方式对偏移的使用进行规划。 Yet another embodiment relies on the use of multiple printheads in a printhead assembly, where each printhead and its nozzles can be offset relative to each other (or equivalently, printing structures with print structures that can each be offset relative to each other) multi-row nozzles). Using such intentional offsets, per-nozzle volume changes can be intelligently combined across the printhead (or row of nozzles) with each pass or scan. Again, there will typically be a large number of alternative combinations that can be used to deposit droplets in each target area of the substrate to achieve the desired range, and in a detailed embodiment, optimization is performed to achieve the desired range by, for example, passing a scanning or printing head through Plan the use of offsets in a way that minimizes the number of nozzles or improves print time by minimizing simultaneous nozzle usage.
注意,上述技术的一个益处是,通过虽然存在液滴体积变化但也对它们进行组合以实现特定的预定目标区填充体积,可以实现不仅对用以满足期望的填充容限范围的能力而且还对精确体积量以及在这些量上的故意的被控制的(或被注入的)变化的高控制度。可以通过在此所提出的大量技术来减缓可能引起可观测的图案的来自沉积处理的几何图案的不均性或存在(或者说斑)。也就是说,甚至在低空间频率下的目标填充体积上的些许差异可能引入对人类眼睛可见的并且因此是不期望的不想要的几何赝像。因此,在一些实施例中,期望以仍在规范内的方式来故意地但随机地改变每个目标区的合成填充体积或用于实现合成填充的特定液滴组合。使用49.75pL-50.25pL的示例性容限,而不是简单地任意确保所有目标区填充都处于该容限范围内的值,对于这样的应用而言可能例如期望在该范围内引入有意的变化,以使得变化或差异的任何图案在所制成的操作显示器中作为图案对于人类眼睛不可观测。在被应用于彩色显示器的情况下,一个示例性实施例以对于以下中的至少一个在统计上独立的方式故意地加入这样的填充体积变化:(a)x维度(例如沿着目标区的行的方向)、(b)y维度(例如沿着目标区的列的方向)、和/或(c)跨一个或多个色彩维度(例如对于红色目标区对蓝色目标区、蓝色目标区对绿色目标区、红色目标区对绿色目标区而言独立地)。在一个实施例中,跨这些维度中的每一个,变化在统计上是独立的。这样的变化被确信呈现对于人类眼睛不可感知的任何填充体积变化,并且因此贡献于这样的显示器的高图像质量。注意,对于使用通过扫描路径中的“几何步幅”或偏移的可重复集合而产生的来自不同喷嘴的所规划的液滴组合的实施例而言,对于每个喷嘴的(即通过对于每个喷嘴使用多个替换的发射波形而产生的)细微但故意的液滴体积变化的使用提供用于在无需变化扫描路径的情况下抑制斑的潜势的有力技术。在一个预期的实施例中,例如,每个喷嘴被分配产生理想体积的±10.0%内的相应平均值体积的替换的波形的集合;然后可以在通过使用液滴图案的所注入的变化(要么通过所规划的来自不同喷嘴波形配对的液滴体积组合,要么通过在选择/规划喷嘴液滴组合以实现特定填充之后所注入的波形变化)而被抑制了的斑的情况下根据精确平均值(即实现精确的所意图的填充)来规划来自不同喷嘴的液滴组合。在其它实施例中,可以对于每个目标区预先布置故意不同的合成液滴体积,以产生聚合填充,或可以沿着扫描路径应用不同的喷嘴液滴组合,或可以使用非线性扫描路径,皆达到相同效果。其它变化也是可能的。 Note that one benefit of the technique described above is that by combining droplet volume variations to achieve a specific predetermined target zone fill volume not only in the presence of drop volume variations, but also in the ability to meet desired fill tolerance ranges can be achieved. A high degree of control over precise volumetric quantities and intentional controlled (or injected) variations in those quantities. The inhomogeneity or presence (or speckle) of the geometric pattern from the deposition process that may cause observable patterns can be mitigated by a number of techniques presented herein. That is, slight differences in the target fill volume even at low spatial frequencies may introduce unwanted geometric artifacts that are visible to the human eye and are therefore undesirable. Therefore, in some embodiments, it is desirable to intentionally but randomly vary the resultant fill volume of each target zone or the particular combination of droplets used to achieve the resultant fill in a manner that is still within specification. Using an exemplary tolerance of 49.75pL-50.25pL, rather than simply arbitrarily arbitrarily ensuring that all target zone fills are within that tolerance, it may be desirable for such applications to introduce intentional variation within that range, for example, Any pattern in such a way that changes or differences are not observable to the human eye as a pattern in the resulting operational display. When applied to color displays, an exemplary embodiment deliberately incorporates such fill volume variation in a manner that is statistically independent of at least one of: (a) the x-dimension (e.g., along a row of target regions direction), (b) the y-dimension (e.g., along the direction of a column of target areas), and/or (c) across one or more color dimensions (e.g., for a red target area versus a blue target area, a blue target area to green target area, red target area to green target area independently). In one embodiment, the changes are statistically independent across each of these dimensions. Such variations are believed to represent any fill volume variation imperceptible to the human eye, and thus contribute to the high image quality of such displays. Note that for embodiments using a planned combination of drops from different nozzles produced by a repeatable set of "geometric steps" or offsets in the scan path, for each nozzle (i.e., by The use of subtle but deliberate drop volume variations (generated by multiple alternate firing waveforms for each nozzle) provides a powerful technique for suppressing the potential for speckle without changing the scan path. In one contemplated embodiment, for example, each nozzle is assigned a set of alternate waveforms that produce a corresponding mean volume within ±10.0% of the ideal volume; this can then be determined by using the injected variation of the droplet pattern (either In the case of spots suppressed by the planned combination of drop volumes from different nozzle waveform pairings, or by the injected waveform variation after selecting/programming the nozzle drop combination to achieve a specific fill) according to the exact mean value ( i.e. to achieve the exact intended fill) to plan the combination of droplets from different nozzles. In other embodiments, intentionally different synthetic drop volumes may be pre-placed for each target zone to produce a convergent fill, or different combinations of nozzle drops may be applied along the scan path, or a non-linear scan path may be used, either achieve the same effect. Other variations are also possible.
另外,然而常规的液滴测量技术可能耗费很多小时或很多天,并且因此归因于在长的测量周期期间液滴特性的可能变化而导致打印处理的误差,快速技术(例如干涉法技术)以及(上面介绍的)关联结构的使用促进更多的更新,并且因此喷嘴间和液滴间体积变化的更精准的动态理解允许以高置信度来使用先前所描述的所规划的组合。例如,虽然常规的液滴测量技术可能耗费很多小时来执行,但通过使用非成像技术(诸如干涉法),液滴测量可以保持连续更新,因此使得进行精准的跟踪处理、电压和温度(PVT变化)、打印头喷嘴降级、油墨改变以及其它可能影响测量的精准度的动态处理。通过使用例如在前面提到的基底加载和卸载时间中隐藏增量液滴测量的滚动测量处理,期待的是可以(例如小于每隔3-4数小时对于每个喷嘴)几乎连续地重新采取并且更新液滴测量,并且因此使其呈现启用前述合成填充规划的精准模型。在一个实施例中,在周期性的基础上(例如每隔2小时至24小时周期一次)并且优选地按较短时间间隔(例如两个小时)来(例如从开始)重新测量每一喷嘴或喷嘴波形配对所产生的液滴。注意,并非所有实施例都要求滚动处理,即,在一个实施例中,可以在对于所有喷嘴期间在打印被中断的专用校准处理期间采取(或重新采取)测量。为了提供一个示例,在一个可能实施例中,可以对于每个90秒打印周期在基底加载和卸载阶段期间测量具有6,000个喷嘴和24,000个喷嘴波形组合的打印头组件达15秒,接下来的情况是,每次迭代检查24,000个喷嘴波形组合的不同的滚动子集直到已经处理所有喷嘴波形组合,然后返回以在循环的基础上重复处理;替代地,在(例如每隔三个小时)使用专用校准处理的实施例中,这样的打印头组件可以停泊达某时段(例如30分钟),以在返回到有效打印之前求得用于所有喷嘴波形组合的统计模型。 In addition, whereas conventional drop measurement techniques can take many hours or days and thus lead to errors in the printing process due to possible changes in drop characteristics during long measurement cycles, fast techniques (such as interferometry techniques) and The use of an associative structure (introduced above) facilitates more updates, and thus a more precise dynamic understanding of inter-nozzle and inter-drop volume changes allows the previously described planned combinations to be used with high confidence. For example, while conventional droplet measurement techniques may take many hours to perform, by using non-imaging techniques such as interferometry, droplet measurements can be kept continuously updated, thus enabling precise tracking of process, voltage and temperature (PVT variations ), printhead nozzle degradation, ink changes, and other dynamics that can affect the accuracy of the measurement. By using, for example, a rolling measurement process that hides incremental droplet measurements in the aforementioned substrate loading and unloading times, it is expected that retakes can be made almost continuously (eg, less than every 3-4 hours for each nozzle) and The droplet measurement is updated and thus rendered an accurate model enabling the aforementioned synthetic fill planning. In one embodiment, each nozzle or nozzle is remeasured (eg, from the start) on a periodic basis (eg, every 2 hours to 24 hour period) and preferably at shorter intervals (eg, two hours). Droplets produced by nozzle waveform pairing. Note that not all embodiments require a rolling process, ie, in one embodiment measurements may be taken (or re-taken) during a dedicated calibration process for all nozzles during which printing was interrupted. To provide an example, in one possible embodiment, a printhead assembly with 6,000 nozzles and a combination of 24,000 nozzle waveforms can be measured for 15 seconds during the substrate loading and unloading phases for each 90 second printing cycle, the following case Yes, each iteration checks a different rolling subset of the 24,000 nozzle waveform combinations until all nozzle waveform combinations have been processed, then returns to repeat processing on a round-robin basis; instead, use dedicated In an embodiment of the calibration process, such a printhead assembly may be parked for a certain period of time (eg, 30 minutes) to derive a statistical model for all nozzle waveform combinations before returning to active printing.
再次注意,上面介绍的可选技术和实施例中的每一个被看作对于彼此是可选的,并且相反地,预期的是这样的技术在各个实施例中可以在任何可能的置换或组合中可选地被组合。作为示例,可以使用每喷嘴/驱动波形液滴速度和/或飞行角度的测量,以基于确定特定的喷嘴波形组合产生畸变液滴“平均值”或基于确定特定的喷嘴波形组合产生超过阈值的液滴统计扩展,来针对给定的喷嘴波形组合使得“错误”液滴不合格。为了提供另一非限定性示例,可以使用干涉法或其它非成像技术,以通过按断续间隔对喷嘴波形组合的各个窗口增量地并且动态地执行这样的测量(即,因为打印头组件在基底的加载和/或卸载期间“停泊”)来动态地更新速度和/或飞行角度行为。清楚地,很多组合和置换基于上面介绍的置换是可能的。 Note again that each of the optional techniques and embodiments described above are considered optional to each other, and conversely, it is contemplated that such techniques may be used in any possible permutation or combination in various embodiments optionally be combined. As an example, measurements of drop velocity and/or angle of flight per nozzle/drive waveform may be used to determine a particular combination of nozzle waveforms that produces a distorted drop "average" or a drop that exceeds a threshold based on determining a particular combination of nozzle waveforms. Drop statistics extension to disqualify "wrong" drops for a given combination of nozzle waveforms. To provide another non-limiting example, interferometry or other non-imaging techniques may be used to perform such measurements incrementally and dynamically by combining windows of the nozzle waveform at intermittent intervals (i.e., as the printhead assembly "parking" during substrate loading and/or unloading) to dynamically update velocity and/or flight angle behavior. Clearly, many combinations and permutations are possible based on the permutations presented above.
示例将帮助介绍关于每个目标区的填充体积的智能规划的某些概念。可以使用用于给定喷嘴发射波形的每个喷嘴体积数据(或差数据)通过确定用于每个目标区的可能喷嘴液滴体积集合来规划多个目标区的同时沉积。通常将存在喷嘴的许多可能组合,其可以被用于在多次通过中沉积墨滴以在满足规格的窄容限范围内将每个目标区填充至期望的填充体积。暂时返回使用图1A介绍的假定,如果根据规格可接受的填充体积在49.75pL与50.25pL之间(即,在目标的0.5%的范围内),还可以使用许多不同的各组喷嘴/通过来实现可接受的填充体积,在没有限制的情况下包括:(a)达到总共50.05pL的喷嘴2(10.01pL)的五次通过;(b)喷嘴1的单次通过(9.80pL)和喷嘴5(10.03pL)的四次通过,达到总共49.92pL;(c)喷嘴3(9.89pL)的单次通过和喷嘴5(10.03pL)的四次通过,达到总共50.01pL;(d)喷嘴3(9.89pL)的单次通过和喷嘴4(9.96pL)的三次通过以及喷嘴5(10.03pL)的单次通过,达到总共49.80pL;以及(e)喷嘴2(10.01pL)的单次通过、喷嘴4(9.96pL)的两次通过和喷嘴5(10.03pL)的两次通过,达到总共49.99pL。很明显还可以有其它组合。尽管与单次液滴测量关联的相对更大的统计误差(例如体积的±2%),也可以使用上述液滴测量技术,以获得这些期待的(例如平均值)液滴体积。因此,即使对于每个喷嘴(或所有喷嘴)而言喷嘴驱动波形的仅一个选择可用,则可以使用上文介绍的第一实施例来使打印头以一系列的规划偏移或“几何步幅”相对于基底偏移,其在每次扫描期间将尽可能多的喷嘴应用于沉积液滴(例如,在不同的目标区中),但是其以具体预定的方式将针对每个目标区的已沉积液滴组合。也就是说,此假定中的喷嘴液滴体积的许多组合可以用来在符合规范容限的统计方差的良好理解的范围内实现期望的填充体积,特定实施例有效地通过扫描运动和/或喷嘴驱动波形的其选择来选择用于每个目标区(即,用于每个区域的特定集合)的选择可接受液滴组合中的特定的一个,从而促进使用各喷嘴的目标区的不同行和/或列的同时填充。通过以使打印发生的时间最小化的方式来选择相对打印头/基底运动的图案,本第一实施例提供了基本上提高的制造吞吐量。请注意,此提高可以可选地以使打印头/基底扫描或“通过”的次数最小化的形式体现,以使相对打印头/基底移动的原始距离最小化的方式或者以另外使得总体打印时间最小化的方式。也就是说,可以预先规划打印头/基底移动(例如,扫描)并用来以满足预定义准则的方式填充目标区,诸如最小打印头/基底通过或扫描、在(一个或多个)定义维度上的最小打印头和/或基底移动、最小时间量内的打印或其它准则。 The examples will help introduce some concepts about intelligent planning of fill volumes for each target zone. Simultaneous deposition of multiple target zones can be planned using per nozzle volume data (or difference data) for a given nozzle firing waveform by determining the set of possible nozzle drop volumes for each target zone. There will generally be many possible combinations of nozzles that can be used to deposit ink drops in multiple passes to fill each target zone to the desired fill volume within narrow tolerances meeting specifications. Returning for a moment to the assumptions introduced in Figure 1A, if the acceptable fill volume per specification is between 49.75pL and 50.25pL (i.e., within 0.5% of the target), many different sets of nozzles/passes could also be used to Achieving an acceptable fill volume includes, without limitation: (a) five passes of nozzle 2 (10.01 pL) to achieve a total of 50.05 pL; (b) a single pass of nozzle 1 (9.80 pL) and nozzle 5 (10.03pL) for a total of 49.92pL; (c) a single pass for nozzle 3 (9.89pL) and four passes for nozzle 5 (10.03pL) for a total of 50.01pL; (d) nozzle 3 ( 9.89pL) with a single pass of nozzle 4 (9.96pL) and a single pass of nozzle 5 (10.03pL) for a total of 49.80pL; and (e) a single pass of nozzle 2 (10.01pL), nozzle Two passes of 4 (9.96 pL) and two passes of nozzle 5 (10.03 pL), for a total of 49.99 pL. Obviously other combinations are possible. Despite the relatively larger statistical error (eg, ±2% of volume) associated with single droplet measurements, the droplet measurement techniques described above can be used to obtain these expected (eg, mean) droplet volumes. Thus, even if only one choice of nozzle drive waveform is available for each nozzle (or all nozzles), the first embodiment described above can be used to cause the printhead to move in a series of planned offsets or "geometric steps." ” is relative to the substrate offset, which applies as many nozzles as possible to deposit droplets during each scan (e.g., in different target zones), but which applies in a specific predetermined way to the already Deposition droplet combination. That is, many combinations of nozzle drop volumes in this assumption can be used to achieve a desired fill volume within a well-understood range of statistical variance that meets specification tolerances, and certain embodiments effectively pass the scanning motion and/or nozzle its selection of drive waveforms to select a specific one of the acceptable droplet combinations for each target zone (i.e., for each specific set of zones), thereby facilitating the use of different rows of target zones for each nozzle and /or simultaneous padding of columns. By selecting the pattern relative to the printhead/substrate motion in such a way that the time for printing to occur is minimized, this first embodiment provides substantially increased manufacturing throughput. Note that this improvement can optionally be in the form of minimizing the number of printhead/substrate scans or "passes", minimizing the original distance moved relative to the printhead/substrate or otherwise making the overall print time way to minimize. That is, printhead/substrate movement (e.g., scanning) can be preplanned and used to fill the target area in a manner that satisfies predefined criteria, such as minimum printhead/substrate pass or scan, in defined dimension(s) Minimum printhead and/or substrate movement, printing in a minimum amount of time, or other criteria.
该方法全部同样地适用于其中喷嘴并未被特殊地对准到各目标区的图1B的假定。再次地,如果根据规格的可接受填充体积在49.75pL和50.25pL之间(即,在目标的任一侧的0.5%的范围内),则还可以用许多不同的各组喷嘴/通过来实现可接受的填充体积,在没有限制的情况下包括上文针对图1A所列的所有示例以及图1B的假定所特定的附加示例,其中在单次通过中使用两个相邻喷嘴来填充特定目标区,例如,喷嘴4(4)(9.96 pL)和喷嘴(5)(10.03 pL)的两次通过以及喷管(2)(10.01 pL)的一次通过,达到总共49.99 pL。再一次,每个这样的体积可以相当于基于很多液滴测量的统计平均值。例如,如果该示例中的喷嘴(4)、(5)和(2)与表征所引述的平均值以及等于或小于所引述的平均值0.5%的3σ值关联,则聚合填充将也具有等于或小于49.99pL的±0.5%的3σ值,通常以高统计精准度来满足所指定的容限。注意,对于高清晰度OLED显示器(即具有几百万个像素),接近地匹配填充容限的3σ(99.73%)值可能是不够的,例如,这在统计上指示潜在地几千个像素可能仍处于期望的容限的外部;为此,在很多实施例中,更大的扩展测度(例如6σ)匹配于合成填充容限,有效地确保高清晰度显示器的每一像素实质上符合制造商规范。 This approach all applies equally to the assumption of FIG. 1B where the nozzles are not specifically aimed at each target zone. Again, if the acceptable fill volume per specification is between 49.75pL and 50.25pL (i.e. within 0.5% either side of the target), this can also be achieved with many different sets of nozzles/passes Acceptable fill volumes include, without limitation, all of the examples listed above for Figure 1A and an additional example specific to the assumption of Figure 1B where two adjacent nozzles are used in a single pass to fill a specific target Zone, for example, two passes of nozzle 4 (4) (9.96 pL) and nozzle (5) (10.03 pL) and one pass of nozzle (2) (10.01 pL), for a total of 49.99 pL. Again, each such volume may correspond to a statistical average based on many droplet measurements. For example, if nozzles (4), (5) and (2) in this example were associated with characterizing the quoted mean and a 3σ value equal to or less than 0.5% of the quoted mean, then the aggregate fill would also have a value equal to or A 3σ value of ±0.5% less than 49.99 pL usually meets the specified tolerances with high statistical accuracy. Note that for high-definition OLED displays (i.e., with several million pixels), it may not be sufficient to closely match the 3σ (99.73%) value of the fill-tolerance, for example, which statistically indicates that potentially several thousand pixels may Still outside the desired tolerance; for this reason, in many embodiments, a larger measure of expansion (such as 6σ) is matched to the composite fill tolerance, effectively ensuring that each pixel of the high-definition display is substantially compliant with the manufacturer's specification.
这些相同原理还应用于多个每喷嘴驱动波形实施例。例如,在图1A所提出的假设中,可以通过如发射波形A至E所标识的五个不同发射波形来驱动喷嘴中的每一个,从而针对不同发射波形的不同喷嘴的所得到体积特性由以下表1A描述。仅考虑目标区104和仅喷嘴(1),将有可能的是,例如通过使用预定义发射波形D(以从喷嘴(1)生成9.96pL液滴)的第一打印头通过并且利用使用预定义发射波形E(以从喷嘴(1)生成10.01pL液滴)的四次后续通过在五次通过中沉积50.00pL目标,全都在扫描路径中无任何偏移。相似地,可以对于每个喷嘴在每次通过中同时使用不同发射波形组合,以在目标区中的每一个中生成接近目标值的体积,而没有扫描路径中的任何偏移。表1A。 These same principles also apply to multiple per-nozzle drive waveform embodiments. For example, in the assumptions set forth in FIG. 1A , each of the nozzles can be driven by five different firing waveforms as identified by firing waveforms A through E, such that the resulting volumetric properties of the different nozzles for the different firing waveforms are given by Table 1A description. Considering only the target zone 104 and only the nozzle (1), it would be possible, for example, by using the predefined firing waveform D (to generate 9.96pL drops from the nozzle (1)) through the first printhead and using the predefined Four subsequent passes of firing waveform E (to generate a 10.01 pL droplet from the nozzle (1)) deposited the 50.00 pL target in five passes, all without any offset in the scan path. Similarly, different combinations of firing waveforms can be used simultaneously in each pass for each nozzle to generate a volume close to the target value in each of the target zones without any shift in the scan path. Table 1A.
这些方法全部同样地适用于图1B的假定。例如,仅考虑目标区104和喷嘴(1)和(2)(即,在扫描期间与目标区154重叠的两个喷嘴),可以在三次通过中实现50.00 pL,例如,第一打印头通过使用喷嘴(1)和预定义波形B(达到9.70 pL的液滴体积)和第二喷嘴(2)和预定义波形C(达到10.10的液滴体积),第二打印头通过使用喷嘴(1)和预定义波形E(达到10.01 pL的液滴体积)和喷嘴(2)和预定义波形D(达到10.18 pL的液滴体积),并且第三打印头通过使用喷嘴(1)和预定义波形E(达到10.01 pL的液滴体积)。 These methods all apply equally to the assumptions of FIG. 1B . For example, considering only target zone 104 and nozzles (1) and (2) (i.e., the two nozzles that overlap target zone 154 during the scan), 50.00 can be achieved in three passes pL, for example, the first printhead by using nozzle (1) with predefined waveform B (to achieve a droplet volume of 9.70 pL) and the second nozzle (2) with predefined waveform C (to achieve a droplet volume of 10.10), p. The second printhead (reaches a drop volume of 10.01 pL) by using nozzle (1) and predefined waveform E (reaches a droplet volume of 10.01 pL) and nozzle (2) and a predefined waveform D (reaches a droplet volume of 10.18 pL), and the third printhead by using Nozzle (1) and predefined waveform E (up to a droplet volume of 10.01 pL).
注意,在图1A的假设和图1B的假设这两者中,可以在单次通过中在目标区的单行中沉积每个目标体积。例如,将可以使打印头旋转九十度并针对一行中的每个目标区从每个喷嘴用单个液滴精确地沉积50.00pL,例如对喷嘴(1)使用波形(E),对喷嘴(2)、(4)和(5)使用波形(A)并对喷嘴(3)使用波形(C)(10.01pL+10.01pL+9.99pL+9.96pL+10.03pL=50.00pL)。还可以可能的是,甚至在不旋转打印头的情况下,在一次通过过中沉积所有对于实现目标体积必要的液滴。例如,喷嘴(1)可以能够在单次通过中将具有波形D的液滴以及来自波形E的4个液滴分配到区域104中。 Note that in both the assumption of FIG. 1A and the assumption of FIG. 1B , each target volume may be deposited in a single row of the target zone in a single pass. For example, it would be possible to rotate the printhead ninety degrees and deposit exactly 50.00pL with a single droplet from each nozzle for each target zone in a row, such as using waveform (E) for nozzle (1) and waveform (E) for nozzle (2 ), (4) and (5) using waveform (A) and using waveform (C) for nozzle (3) (10.01pL+10.01pL+9.99pL+9.96pL+10.03pL=50.00pL). It may also be possible to deposit all the drops necessary to achieve the target volume in one pass, even without rotating the print head. For example, nozzle ( 1 ) may be capable of dispensing a drop with waveform D and 4 droplets from waveform E into zone 104 in a single pass.
这些相同原理也应用于上面介绍的打印头偏移实施例。例如,对于由图1A呈现的假定而言,体积特性可以反映用于第一打印头(例如,“打印头A”)的喷嘴,此第一打印头被与四个附加打印头(例如,打印头“B”至“E”)集成在一起,每个被单个发射波形驱动并具有各自的每个喷嘴液滴体积特性。打印头被共同地组织成使得在执行扫描通过时,被标识为用于打印头的喷嘴(1)的每个喷嘴被对准以向目标区(例如,来自图1A的目标区104)中进行打印,来自各种打印头的被标识为喷嘴(2)的每个喷嘴被对准以向第二目标区(例如,来自图1A的目标区105)中进行打印等等,下面用表1B来描述用于不同打印头的不同喷嘴的体积特性。可选地,可以使用调整例如扫描之间的间距的马达来使各打印头相互偏移。仅考虑目标区104和每个打印头上的喷嘴(1),将可以在四次通过中沉积50.00pL,例如,其中打印头D和打印头E两者都向目标区中发射液滴的第一打印头通过以及其中仅打印头E向目标区中发射液滴的三次后续通过。可以有使用甚至较高通过的其它组合,其仍然可以在目标区中产生接近于50.00 pL目标的体积,例如在49.75 pL和50.25 pL范围内。再次地仅考虑目标区104和每个打印头上的喷嘴(1),将可以在两次通过中沉积49.83 pL,例如,其中打印头C、D和E全部向目标区中发射液滴的第一打印头通过以及其中打印头D和E两者都向目标区中发射液滴的第二打印头通过。同样地,可以在每次通过中同时地使用来自不同打印头的喷嘴的不同组合以在没有扫描路径中的任何偏移的情况下在每个目标区中产生接近于目标值的体积。因此,以这种方式使用多次通过对于其中期望在不同的目标区中(即,例如在像素的不同行中)同时地沉积液滴的实施例而言将是有利的。再次,可以通过以计算来获得与每喷嘴和/或每驱动波形液滴体积关联的期望统计特性和关联的平均值的方式规划液滴测量,从而确保统计精度。表1B。 These same principles also apply to the printhead offset embodiments described above. For example, for the assumptions presented by FIG. 1A , volumetric properties may reflect nozzles for a first printhead (e.g., “Printhead A”) that is combined with four additional printheads (e.g., Printhead A). Heads "B" through "E") are integrated, each driven by a single firing waveform and having individual drop volume characteristics per nozzle. The printheads are collectively organized such that when performing a scan pass, each nozzle identified as a nozzle (1) for the printhead is aligned to travel into a target zone (eg, target zone 104 from FIG. 1A ). printing, each nozzle identified as nozzle (2) from the various printheads is aligned to print into a second target zone (e.g., target zone 105 from FIG. Describe the volume characteristics of different nozzles for different printheads. Alternatively, the printheads may be offset relative to each other using motors that adjust eg the spacing between scans. Considering only the target zone 104 and nozzles (1) on each printhead, it would be possible to deposit 50.00 pL in four passes, e.g. One printhead pass and three subsequent passes in which only printhead E fires drops into the target zone. There can be other combinations using even higher passes which can still produce closer to 50.00 in the target zone The volume of the pL target, for example at 49.75 pL and 50.25 within the pL range. Considering again only the target zone 104 and nozzles (1) on each printhead, it would be possible to deposit 49.83 pL in two passes, e.g. One printhead pass and a second printhead pass in which printheads D and E both fire drops into the target zone. Likewise, different combinations of nozzles from different printheads can be used simultaneously in each pass to produce a volume close to the target value in each target zone without any offset in the scan path. Thus, using multiple passes in this manner would be advantageous for embodiments where it is desired to simultaneously deposit droplets in different target regions (ie, for example, in different rows of pixels). Again, statistical accuracy can be ensured by planning drop measurements in a manner that is calculated to obtain desired statistical properties associated with drop volumes per nozzle and/or per drive waveform and associated average values. Table 1B.
所有的该方法同样地适用于图1B的假定。再次地仅考虑目标区154和每个打印头上的喷嘴(1)和(2)(即,在扫描期间与目标区154重叠的喷嘴),可以在两次通过中沉积50.00 pL,例如,其中打印头C和E使喷嘴(1)发射且打印头B和C使喷嘴(2)发射的第一打印头通过以及其中打印头C使喷嘴(2)发射的第二打印头通过。还可以在单次通过中沉积49.99 pL(很明显,在49.75 pL和50.25 pL的示例性目标范围内),例如,其中打印头C、D和E使喷嘴(1)发射且打印头B和E使喷嘴(2)发射的打印头通过。 All of this approach applies equally to the assumptions of FIG. 1B . Considering again only target zone 154 and nozzles (1) and (2) on each printhead (i.e. nozzles that overlap target zone 154 during scanning), 50.00 can be deposited in two passes pL, e.g. the first printhead where printheads C and E fire nozzle (1) and printheads B and C fire nozzle (2) passes and the second printhead where printhead C fires nozzle (2) pass. also deposited 49.99 pL in a single pass (obviously, at 49.75 pL and 50.25 pL), for example, where printheads C, D, and E fire nozzle (1) and printheads B and E fire nozzle (2).
还应显而易见的是可选地与扫描路径偏移组合,替换喷嘴发射波形的使用急剧地增加了对于给定打印头而言可以实现的液滴体积组合的数目,并且通过如上所述地使用多个打印头(或者等价地,多行喷嘴)进一步增加了这些选项。例如,在由上文图1的讨论传达的假定示例中,具有各自固有喷射特性(例如,液滴体积)的五个喷嘴与八个替换波形的组合可以提供可能液滴体积组合的几乎数千个不同集合。优化各组喷嘴波形组合并针对每个目标区(或者针对阵列中的每行打印阱)选择特定的一组喷嘴波形组合使得能够根据期望准则来进一步优化打印。在使用多个打印头(或各行打印头喷嘴)的实施例中,选择性地使那些打印头/行偏移也进一步提高每次打印头/基底扫描可以应用的组合的数目。再次地,对于这些实施例而言,假设可以替换地使用多组的(一个或多个)喷嘴波形组合来实现指定填充体积,则本第二实施例针对每个目标区选择“可接受”各组中的特定的一个,跨目标区的该特定的一个的此选择一般地对应于使用多个喷嘴的多个目标区的同时打印。也就是说,通过改变参数以使打印发生的时间最小化,这些实施例每个提高制造吞吐量,并且促进所需打印头/基底扫描或“通过”的数目、沿着(一个或多个)特定维度的相对打印头/基底移动的原始距离、总打印时间最小化,或者帮助满足某个其它准则。 It should also be apparent that the use of alternate nozzle firing waveforms, optionally in combination with scan path offsets, dramatically increases the number of drop volume combinations achievable for a given printhead, and by using multiple A printhead (or equivalently, multiple rows of nozzles) further increases these options. For example, in the hypothetical example conveyed by the discussion of Figure 1 above, the combination of five nozzles with their respective intrinsic ejection characteristics (e.g., drop volumes) and eight alternate waveforms could provide nearly thousands of possible drop volume combinations. different collections. Optimizing each set of nozzle waveform combinations and selecting a specific set of nozzle waveform combinations for each target zone (or for each row of print wells in the array) enables further optimization of printing according to desired criteria. In embodiments using multiple printheads (or rows of printhead nozzles), selectively offsetting those printheads/rows also further increases the number of combinations that can be applied per printhead/substrate scan. Again, for these embodiments, this second embodiment selects "acceptable" individual values for each target zone, assuming multiple sets (one or more) of nozzle waveform combinations could alternatively be used to achieve the specified fill volume. A particular one of the group, this selection across the particular one of the target zones generally corresponds to simultaneous printing of multiple target zones using multiple nozzles. That is, by varying parameters to minimize the time that printing takes place, each of these embodiments increases manufacturing throughput and facilitates the number, along(s), of printhead/substrate scans or "passes" required The original distance relative to the printhead/substrate movement of a particular dimension, the total print time is minimized, or to help satisfy some other criterion.
很多其它处理可以被使用或与上面介绍的各种技术组合。例如,可以在每喷嘴的基础上“调谐”喷嘴驱动波形,以减少每喷嘴液滴体积的变化(例如,通过改变驱动电压、上升斜率或下降斜率、脉冲宽度、延迟时间、每液滴所使用的脉冲的数量和相应电平等对驱动脉冲进行整形)。 Many other processes can be used or combined with the various techniques introduced above. For example, nozzle drive waveforms can be "tuned" on a per-nozzle basis to reduce variations in droplet volume per nozzle (e.g., by varying drive voltage, ramp-up or down-slope, pulse width, delay time, number of drops used per droplet, etc.) The number of pulses and the corresponding level of the driving pulse are shaped).
虽然在本文中讨论的某些应用参考离散流体容器或“阱”中的填充体积,但其还可以使用所述技术来沉积相对于基底的其它结构(例如,诸如相对于晶体管、通路、二极管及其它电子部件)而言具有大的布局的“覆盖涂层”。在此类背景下,流体传墨层材料(例如,将需要原地固化、干燥或硬化以形成永久性设备层)将在一定程度上散布,但是相对于基底的其它目标沉积区而言将(给定油墨粘度及其它因数)仍保持特定特性。可以使用此背景下的本文中的技术例如以在对针对每个目标区的油墨填充体积具有特定的局部化控制的情况下沉积覆盖层,诸如密封或其它层。本文所讨论的技术不受限于具体提出的应用或实施例。 While certain applications discussed herein refer to fill volumes in discrete fluidic containers or "wells," the techniques can also be used to deposit other structures relative to a substrate (such as, for example, relative to transistors, vias, diodes, and other electronic components) with a large layout of the "overcoat". In such contexts, the fluid transfer layer material (e.g., will need to cure in place, dry or harden to form a permanent device layer) will spread to some extent, but will ( Given ink viscosity and other factors) still maintain specific characteristics. The techniques herein in this context can be used, for example, to deposit a cover layer, such as a seal or other layer, with specific localized control over the ink fill volume for each target zone. The techniques discussed herein are not limited to specific presented applications or embodiments.
来自上文介绍的技术的其它变化、优点和应用对于本领域的技术人员而言将是显而易见的。也就是说,可以将这些技术应用于许多不同领域,并且其不限于制造显示设备或像素化设备。如本文所使用的打印“阱”指的是将接收沉积油墨的基底的任何容器,并且因此具有适合于约束该油墨的流量的化学或结构特性。如下面将针对OLED打印举例说明的,这可以包括其中各流体容器将每个接收到各体积的油墨和/或各类型的油墨的情况;例如,在其中使用所述技术来沉积不同色彩的发光材料的显示器应用中,可以使用各打印头和各油墨针对每个色彩执行连续打印处理—在这种情况下,每个处理可以对阵列中的“每隔两个阱”(例如,针对每个“蓝色”色彩部件)或者等价地每隔两个阵列中的每个阱(其使阱与用于其它色彩部件的重叠阵列相点缀)进行沉积。每个打印阱是一种可能类型的目标区的示例。还可以有其它变化。还请注意,在本公开在不暗示任何绝对方向的情况下使用“行”和“列”。例如,一“行”打印阱可以延伸基底的长度或宽度,或者采取另一方式(线性或非线性);一般而言,在本文中将使用“行”和“列”来指代每个表示至少一个独立维度的方向,但是并非对于所有实施例而言情况都需要如此。并且,请注意由于现代打印机可以使用涉及到多个维度的相对基底/打印头运动,所以相对运动不必在路径或速度方面是线性的,也就是说,打印头/基底相对运动不必遵循直线或者甚至连续的路径或恒定速度。因此,打印头相对于基底的“通过”或“扫描”简单地指代涉及到相对打印头/基底运动的使用多个喷嘴在多个目标区上沉积液滴的迭代。然而,在下文针对OLED打印处理所述的许多实施例中,每次通过或扫描可以是基本上连续的线性运动,每次随后的通过或扫描平行于下一个,相对于彼此以几何步幅偏移。此偏移或几何步幅可以是通过或扫描起始位置、平均位置、结束位置方面的差或某个其它类型的位置偏移,并且并不暗示一定平行的扫描路径。还应注意的是在本文中所讨论的各种实施例论及将在不同目标区(例如,不同的各行目标区)中进行沉积的不同喷嘴的“同时”使用;此术语“同时”并不要求同时的墨滴喷射,相反地,仅仅指代在任何扫描或通过期间可以使用不同的喷嘴或各组喷嘴来相互排斥地向各目标区中发射油墨的概念。例如,可以在给定扫描期间使第一组的一个或多个喷嘴发射以在第一行的流体阱中沉积第一液滴,同时可以在此给定扫描期间使得第二组的一个或多个喷嘴发射以在第二行的流体阱中沉积第二液滴。术语“打印头”指代具有用于朝向基底打印(喷出)油墨的一个或多个喷嘴的整体式或模块式设备。“打印头组件”通过对比而指代针对相对于基底的共同定位而支持作为组的一个或多个打印头的组件或模块式元件;因此,一些实施例中的打印头组件可以仅包括单个打印头,而在其它实施例中,这样的组件包括六个或更多个打印头。在一些实现方式中,单独的打印头可以在这样的组件内相对于彼此而偏移。注意,在对于大规模制造处理(例如电视平坦面板显示器)所使用的典型实施例中,打印头组件可能非常大,囊括几千个打印喷嘴;取决于实现方式,这样的组件可以很大,其中,在此所讨论的液滴测量机构被设计为在这样的组件周围连结,以获得每液滴测量。例如,在具有六个打印头和近似10,000个或更多个打印喷嘴的打印头组件的情况下,打印头组件可以“停泊”在打印机内、在离(打印)轴服务站内,以用于包括液滴测量的各种支持操作。 Other variations, advantages and applications from the techniques introduced above will be apparent to those skilled in the art. That said, these techniques can be applied in many different fields, and they are not limited to manufacturing display devices or pixelated devices. A print "well" as used herein refers to any container of a substrate that will receive deposited ink, and thus has chemical or structural properties suitable to restrict the flow of that ink. As will be exemplified below for OLED printing, this may include situations where the fluid containers will each receive respective volumes and/or types of ink; for example, where the technique is used to deposit different colored luminescent In display applications of the material, successive print processes can be performed for each color using each printhead and each ink—in this case, each process can be applied to "every second well" in the array (e.g., for each "blue" color components) or equivalently every second array of each well (which intersperses wells with overlapping arrays for other color components). Each print well is an example of one possible type of target area. Other variations are also possible. Note also that "row" and "column" are used in this disclosure without implying any absolute direction. For example, a "row" of printed wells may extend the length or width of the substrate, or take another approach (linear or non-linear); generally, "row" and "column" will be used herein to refer to each representation direction of at least one independent dimension, but this need not be the case for all embodiments. Also, note that since modern printers can use relative substrate/printhead motion that involves multiple dimensions, the relative motion does not have to be linear in path or velocity, that is, the printhead/substrate relative motion doesn't have to follow a straight line or even Continuous path or constant speed. Thus, a "pass" or "scan" of a printhead relative to a substrate simply refers to iterations involving relative printhead/substrate motion using multiple nozzles to deposit droplets on multiple target areas. However, in many of the embodiments described below for the OLED printing process, each pass or scan may be a substantially continuous linear motion, with each subsequent pass or scan parallel to the next, offset relative to each other by geometric steps. shift. This offset or geometric step may be a difference in pass or scan start position, average position, end position, or some other type of position offset, and does not imply necessarily parallel scan paths. It should also be noted that various embodiments discussed herein refer to the "simultaneous" use of different nozzles to deposit in different target areas (e.g., different rows of target areas); the term "simultaneously" does not Simultaneous droplet ejection is required, rather, simply refers to the concept that different nozzles or groups of nozzles may be used during any scan or pass to mutually exclusively fire ink into target zones. For example, a first set of one or more nozzles may be fired during a given scan to deposit a first droplet in a first row of fluid wells while a second set of one or more nozzles may be fired during this given scan. nozzles fire to deposit a second droplet in the second row of fluid wells. The term "printhead" refers to a monolithic or modular device having one or more nozzles for printing (ejecting) ink toward a substrate. "Printhead assembly" refers by contrast to an assembly or modular element that supports one or more printheads as a group for co-location with respect to a substrate; thus, a printhead assembly in some embodiments may include only a single printhead head, while in other embodiments, such an assembly includes six or more print heads. In some implementations, individual printheads can be offset relative to each other within such an assembly. Note that in typical embodiments used for large-scale manufacturing processes such as flat-panel displays for televisions, the printhead assembly can be very large, incorporating several thousand print nozzles; depending on the implementation, such an assembly can be very large, where , the droplet measurement mechanism discussed here is designed to link around such components to obtain per-droplet measurements. For example, in the case of a printhead assembly having six printheads and approximately 10,000 or more print nozzles, the printhead assembly can be "parked" within the printer, within an off-axis (printing) service station, for use including Various support operations for droplet measurement.
利用因此而陈述的若干不同实施例的主要部分,该公开将被大致地组织为如下。图2A-图2E将用于介绍用于对大规模打印头组件进行成像的特定液滴测量配置。这些配置可以可选地集成在打印机(例如打印将在平坦面板设备基底上形成永久薄膜层油墨材料的平坦面板显示器制备设备)内。在可选实现方式中,这些配置可以使用部分或所有与液滴测量关联的光器件的三维连结,例如,以关于具有已经停泊在打印机的服务站中的具有多个打印头和几千个油墨喷射喷嘴的打印头组件进行连结。图3A-图4D将用于介绍与喷嘴一致性问题、OLED打印/制备以及实施例如何解决喷嘴一致性问题有关的一些一般原理。这些技术可以可选地与所提到的液滴测量配置一起使用。图5–图7将用于例示可以用于对于基底的每个目标区来规划液滴组合的软件处理。图8A-图8B用于示出与构建用于每个喷嘴/波形组合的液滴体积的统计模型关联的并且用于使用这些模型以对于每个目标区产生聚合油墨填充的原理。尽管是喷嘴一致性问题,这些原理也可以可选地结合液滴测量而得以使用,以在可计量的确定性的情况下(例如在每目标区的99%或更好的置信度的情况下)可靠地产生满足所指定的容限范围的合成油墨填充(即通过使用所规划的液滴组合)。图9A-图10C用于呈现一些实验性数据,即,其展现在改进目标区填充一致性方面所提到的规划的液滴组合技术的有效性。图11–图12将用于讨论对OLED面板制备以及关联的打印和控制机构的示例性应用。图13A-图13C用于讨论可以用于改变通过每个扫描而沉积的液滴组合的打印头偏移。图14A-图15D用于进一步讨论应用于提供不同液滴体积或组合的不同的替换的喷嘴发射波形。图16-图17将提供关于包括液滴测量设备的工业打印机的结构和配置的附加细节。图18A和图18B将分别用于讨论例如与该工业打印机集成的液滴测量系统的特定详细实施例。最后,图19将用于讨论用于在其它系统处理之后隐藏液滴测量时间从而使得生产时间最大化的技术。 With the major parts of several different embodiments thus presented, this disclosure will be roughly organized as follows. Figures 2A-2E will be used to describe specific droplet measurement configurations for imaging large-scale printhead assemblies. These arrangements may optionally be integrated within a printer (eg a flat panel display fabrication device that prints ink material that will form a permanent thin film layer on a flat panel device substrate). In alternative implementations, these configurations may use three-dimensional linkage of some or all of the optics associated with droplet measurement, for example, in relation to a printer with multiple printheads and thousands of inks already parked in a printer's service station. The printhead assembly that ejects the nozzles is connected. Figures 3A-4D will be used to introduce some general principles related to nozzle uniformity issues, OLED printing/fabrication, and how embodiments address nozzle uniformity issues. These techniques can optionally be used with the mentioned droplet measurement configurations. Figures 5-7 will serve to illustrate the software process that can be used to plan droplet assembly for each target area of a substrate. 8A-8B are used to illustrate the principles associated with building statistical models of drop volume for each nozzle/waveform combination and for using these models to produce aggregated ink fills for each target zone. Notwithstanding the issue of nozzle consistency, these principles can optionally be used in conjunction with droplet measurement to provide a measureable degree of certainty (e.g., 99% or better confidence per target area). ) reliably produces a synthetic ink fill that meets the specified tolerance range (ie, by using the planned droplet combination). Figures 9A-10C are used to present some experimental data, ie, which demonstrate the effectiveness of the proposed planned droplet combination technique in improving target zone filling consistency. Figures 11 - 12 will be used to discuss exemplary applications to OLED panel fabrication and associated printing and control mechanisms. 13A-13C are used to discuss printhead offsets that can be used to vary the combination of droplets deposited by each scan. 14A-15D are used to further discuss different alternative nozzle firing waveforms applied to provide different droplet volumes or combinations. Figures 16-17 will provide additional details regarding the structure and configuration of an industrial printer including a drop measurement device. Figures 18A and 18B, respectively, will be used to discuss certain detailed embodiments of a drop measurement system integrated with the industrial printer, for example. Finally, Figure 19 will be used to discuss techniques for hiding droplet measurement time after other system processing to maximize production time.
图2A-图2E用于总体上介绍用于每喷嘴液滴测量的技术。 2A-2E are used to generally describe techniques for per-nozzle droplet measurement.
更具体地说,图2A提供描绘光器件系统201和相对大的打印头组件203的说明性视图;打印头组件具有均带有大量单独喷嘴(例如207)的多个打印头(205A/205B),其中,存在几百至几千个喷嘴。油墨供给(未示出)以流控方式与每个喷嘴(例如喷嘴207)连接,并且压电换能器(也未示出)用于在每喷嘴电子控制信号的控制下喷射油墨的液滴。喷嘴设计在每个喷嘴(例如喷嘴207)处保持稍微负值的油墨的压力,以避免喷嘴板的泛流,其中,使用用于给定喷嘴的电信号来激活对应压电换能器,对用于给定喷嘴的油墨进行加压,并且由此从给定喷嘴排出液滴。在一个实施例中,在处于对于特定喷嘴所使用的给定电压的正脉冲或信号电平的情况下,用于每个喷嘴的控制信号正常地处于零伏特,以对于该喷嘴喷出液滴(每脉冲一个);在另一实施例中,在喷嘴间可以使用不同的修正脉冲(或其它更复杂的波形)。然而,结合图2A所提供的示例,应假定期望测量待由器皿209收集的从打印头向下(即在表示相对于三维坐标系统208的z轴高度的方向“h”中)喷出液滴的特定喷嘴(例如喷嘴207)所产生的液滴体积。注意,在典型应用中,“h”的维度典型地处于1毫米或更小的量级上,并且存在要使相应的液滴在操作打印机内以此方式单独地被测量的几千个喷嘴(例如10,000个喷嘴)。因此,为了以光学方式精确地测量每个液滴(即源自恰如上所述的近似毫米测量窗口内的大打印头组件环境中的几千个喷嘴中的特定喷嘴的液滴),在所公开的实施例中使用特定技术,以精确地对光器件组件201、打印头组件203或二者的元件相对于彼此进行定位,以用于光学测量。 More specifically, FIG. 2A provides an illustrative view depicting an optics system 201 and a relatively large printhead assembly 203; the printhead assembly has multiple printheads (205A/205B) each with a large number of individual nozzles (e.g., 207) , where there are hundreds to thousands of nozzles. An ink supply (not shown) is fluidically connected to each nozzle (such as nozzle 207), and piezoelectric transducers (also not shown) are used to eject droplets of ink under the control of per-nozzle electronic control signals . The nozzle design maintains a slightly negative ink pressure at each nozzle (such as nozzle 207) to avoid flooding of the nozzle plate, where an electrical signal for a given nozzle is used to activate the corresponding piezoelectric transducer, for Ink for a given nozzle is pressurized and droplets are thereby expelled from the given nozzle. In one embodiment, the control signal for each nozzle is normally at zero volts at a positive pulse or signal level of a given voltage used for that particular nozzle to eject a droplet for that nozzle (one per pulse); in another embodiment, different correction pulses (or other more complex waveforms) may be used across nozzles. However, in connection with the example provided in FIG. 2A , it should be assumed that it is desired to measure the ejected droplets to be collected by the vessel 209 downwards from the printhead (i.e. in the direction "h" representing the height of the z-axis relative to the three-dimensional coordinate system 208). The droplet volume produced by a particular nozzle (such as nozzle 207) of . Note that in typical applications, the dimension of "h" is typically on the order of 1 millimeter or less, and there are several thousand nozzles to have the corresponding drops measured individually in this way within an operating printer ( eg 10,000 nozzles). Therefore, in order to optically accurately measure each droplet (i.e., a droplet originating from a specific nozzle out of several thousand nozzles in the environment of a large printhead assembly within the approximate millimeter measurement window just described above), at the Certain techniques are used in the disclosed embodiments to precisely position elements of optics assembly 201, printhead assembly 203, or both, relative to each other for optical measurements.
在一个实施例中,这些技术利用以下的组合:(a)用于精确地定位与待产生用于光学校准/测量的液滴的任何喷嘴紧密相邻的测量区215的(例如维度平面213内的)光学系统的至少一部分的x-y运动控制(211A)以及(b)平面下光学恢复(211B)(例如,尽管是大的打印头表面面积,也由此允许容易地将测量区放置为挨着任何喷嘴)。因此,在具有大约10,000个或更多的打印喷嘴的示例性环境中,该运动系统能够在(例如)靠近打印头组件的每个相应喷嘴的排放路径的10,000或10,000多个离散位置中定位光学系统的至少一部分。如以下将讨论的那样,两种预期的光学测量技术包括阴影图和干涉法。关于每种技术,光器件典型地调整到位,从而在测量区上保持精确聚焦,以捕获飞行中的液滴(例如,以在阴影图的情况下有效地对液滴的阴影进行成像)。注意,典型液滴在直径上可以处于微米的量级,从而光学放置典型地是相当精确的,并且关于打印头组件和测量光器件/测量区的相对定位提出挑战。在一些实施例中,为了协助该定位,光器件(镜子、棱镜等)用于定向光捕获路径,以用于源自测量区215的维度平面213之下的感测,从而测量光器件可以放置得靠近测量区,而不干扰光器件系统和打印头的相对定位。这样允许在监控之下以不受限于对液滴进行成像的毫米量级沉积高度h或打印头所占据的大规模x和y宽度的方式来进行有效位置控制。利用基于干涉法的液滴测量技术,在小液滴创建可从通常与光路径正交的视角检测的干涉图案时,分离的光束从不同角度入射;因此,该系统中的光器件从源波束的路径离开近似九十度的角度但也以利用平面下光学恢复从而测量液滴参数的方式来捕获光。也可以使用其它光学测量技术。在这些系统的又一变形中,可选地并且有利地使得运动系统211A是xyz-运动系统,这样允许液滴测量系统的选择性接合和释放,无需在液滴测量期间移动打印头组件。简单介绍的话,在具有一个或多个大打印头组件的工业制备中,为了使得制造运转时间最大化,预期每个打印头组件将随时“停泊”在服务站中,以执行一个或多个维护功能;给定打印头的极薄(sheer)大小和喷嘴的数量,可以期望对打印头的不同部分一次执行多个维护功能。为此,在该实施例中,在打印头周围移动测量/校准设备可能是有利的,反之则不然。[这于是同样允许例如根据期望与另一喷嘴有关的其它非光学维护处理的接合。]为了协助这些动作,通过标识待经受光学校准的特定喷嘴或喷嘴的范围的系统,打印头组件可以可选地“停泊”。一旦打印头组件或给定的打印头是固定的,运动系统211A就接合,以相对于“停泊的”打印头组件移动光器件系统的至少一部分,从而在适合于检测从特定喷嘴喷射的液滴的位置处精确地定位测量区215;移动的z轴的使用允许来自打印头的平面刚好之下的光恢复光器件的选择性接合,代替或外加光学校准来促进其它维护操作。或许另外声明,xyz运动系统的使用允许独立于服务站环境中所使用的其它测试或测试设备来有选择地接合液滴测量系统。注意,并非所有实施例需要这种结构;例如,结合以下图16-图17,将描述允许测量组件和打印头组件二者的运动(例如,为了液滴测量的目的,打印头组件相对于具有x-y运动的测量组件的z轴运动)的机构。其它替换也是可能的,其中,仅打印头组件移动,并且测量组件是固定的,或者其中,打印头组件的停泊是不必要的。 In one embodiment, these techniques utilize a combination of: (a) for precisely positioning the measurement region 215 (e.g., within the dimension plane 213 a) x-y motion control ( 211A ) of at least a portion of the optical system and (b) in-plane optical recovery ( 211B ) (e.g., thereby allowing easy placement of measurement regions next to each other despite the large printhead surface area any nozzle). Thus, in an exemplary environment with approximately 10,000 or more print nozzles, the motion system is capable of positioning the optical nozzles in, for example, 10,000 or more discrete positions near the discharge path of each respective nozzle of the printhead assembly. at least part of the system. As will be discussed below, two contemplated optical measurement techniques include shadow graphics and interferometry. With each technique, optics are typically adjusted in place to maintain precise focus over the measurement region to capture droplets in flight (eg, to effectively image the drop's shadow in the case of a shadow map). Note that typical droplets can be on the order of microns in diameter, so optical placement is typically quite precise and presents challenges with respect to the relative positioning of the printhead assembly and measurement optics/measurement zone. In some embodiments, to assist with this positioning, optics (mirrors, prisms, etc.) are used to orient the light capture path for sensing originating below the dimension plane 213 of the measurement region 215 so that the measurement optics can be placed must be close to the measurement area without interfering with the relative positioning of the optics system and printhead. This allows effective position control under supervision in a manner not limited to the millimeter scale deposition height h at which the drop is imaged, or the large scale x and y width occupied by the printhead. With interferometry-based droplet measurement techniques, the split beams are incident from different angles as small droplets create interference patterns that are detectable from viewing angles that are generally orthogonal to the optical path; The path of α leaves an angle of approximately ninety degrees but also traps light in a way that utilizes in-plane optical recovery to measure droplet parameters. Other optical measurement techniques may also be used. In yet another variation of these systems, it is optional and advantageous to have the motion system 211A be an xyz-motion system, which allows selective engagement and release of the drop measurement system without moving the printhead assembly during drop measurement. Briefly, in industrial manufacturing with one or more large printhead assemblies, in order to maximize manufacturing uptime, it is expected that each printhead assembly will be "parked" in a service station at any time to perform one or more maintenance Function; given the sheer size of the printhead and the number of nozzles, it may be expected to perform multiple maintenance functions at once on different parts of the printhead. For this reason, in this embodiment it may be advantageous to move the measurement/calibration device around the printhead, but not vice versa. [This then also allows the engagement of other non-optical maintenance treatments, eg as desired, in relation to another nozzle. ] To assist these actions, the printhead assembly can optionally be "parked" by a system that identifies the particular nozzle or range of nozzles to be subjected to optical alignment. Once the printhead assembly, or a given printhead, is stationary, the motion system 211A is engaged to move at least a portion of the optics system relative to the "parked" printhead assembly to detect a drop ejected from a particular nozzle The measurement zone 215 is precisely positioned at the location of ; the use of a moving z-axis allows selective engagement of light recovery optics from just below the plane of the printhead, instead of or in addition to optical alignment to facilitate other maintenance operations. Perhaps stated otherwise, the use of the xyz motion system allows the droplet measurement system to be selectively engaged independently of other testing or testing equipment used in the service station environment. Note that not all embodiments require this configuration; for example, movement of both the measurement assembly and the printhead assembly (e.g., for drop measurement purposes, the printhead assembly relative to the Measuring x-y motion of the z-axis motion of the component) mechanism. Other alternatives are also possible, wherein only the printhead assembly moves and the measurement assembly is fixed, or wherein parking of the printhead assembly is unnecessary.
通常来说,对于液滴测量所使用的光器件将包括光源217、可选光输送光器件集合219(其根据需要而将光从光源217导向到测量区215)、一个或多个光传感器221以及将用于测量(多个)液滴的光从测量区215导向到一个或多个光传感器221的恢复光器件集合223。在还提供容器(例如器皿209)以收集所喷射的油墨的同时,运动系统211A可选地以允许将液滴后测量光从器皿209周围的测量区215导向到平面下位置的方式连同器皿209一起移动这些元件中的一个或多个。在一个实施例中,光输送光器件219和/或光恢复光器件223使用沿着与液滴行进平行的垂直维度将光导向去往/出自测量区215的镜子,其中,运动系统在液滴测量期间移动作为整体单元的元件217、219、221、223和器皿209中的每一个;这种设置带来无需相对于测量区215重新校准焦点的优点。如标号211C所注记的那样,光输送光器件还用于可选地供给来自测量区的维度平面213之下的位置的源光,例如,其中,为了测量的目的,光源217和(多个)光传感器221都在器皿209的任一侧上引导光,如通常所示的那样。如标号225和227所注记的那样,光器件系统可以可选地包括目的在于聚焦的透镜以及光电检测器(例如,用于不依赖于处理很多像素化“图片”的非成像技术)。再一次注意,针对光器件组件和器皿的z运动控制的可选使用允许光器件系统的可选接合和释放,以及在打印头组件“停泊”的同时的任何时间点测量区215靠近任何喷嘴的精确定位。并非所有实施例需要打印头组件203的这种停泊以及光器件系统201的xyz运动。例如,在一个实施例中,激光干涉法用于测量液滴特性,其中,任一打印头组件(和/或光器件系统)在沉积平面内或平行于沉积平面(例如在平面213之内或平行于平面213)移动,以对来自各个喷嘴的液滴进行成像;其它组合和置换也是可能的。 Typically, the optics used for droplet measurement will include a light source 217, an optional set of light delivery optics 219 that direct light from the light source 217 to the measurement region 215 as desired, one or more light sensors 221 And a set of recovery optics 223 directing light for measuring the drop(s) from the measurement zone 215 to one or more photosensors 221 . While also providing a container, such as the vessel 209, to collect the ejected ink, the motion system 211A is optionally associated with the vessel 209 in a manner that allows post-drop measurement light to be directed from the measurement zone 215 around the vessel 209 to a sub-plane location. Move one or more of these elements together. In one embodiment, light delivery optics 219 and/or light recovery optics 223 use mirrors that direct light to/from measurement region 215 along a vertical dimension parallel to droplet travel, wherein the motion system Each of the elements 217 , 219 , 221 , 223 and vessel 209 as an integral unit is moved during the measurement; this arrangement has the advantage of not requiring recalibration of the focus with respect to the measurement zone 215 . As noted at 211C, the light delivery optics are also used to optionally supply source light from a location below the dimension plane 213 of the measurement region, for example, where, for measurement purposes, the light source 217 and (a plurality of ) light sensors 221 direct light on either side of the vessel 209, as generally shown. As noted at 225 and 227, the optics system may optionally include lenses for focusing purposes and photodetectors (eg, for non-imaging techniques that do not rely on processing many pixelated "pictures"). Note again that the optional use of z-motion control for the optics assembly and vessel allows for the optional engagement and release of the optics system, as well as the proximity of the measurement zone 215 to any nozzle at any point in time while the printhead assembly is "parked". accurate locating. Not all embodiments require such parking of the printhead assembly 203 and xyz movement of the optics system 201 . For example, in one embodiment, laser interferometry is used to measure drop properties where either printhead assembly (and/or optics system) is within or parallel to the deposition plane (e.g., within plane 213 or parallel to plane 213) to image droplets from each nozzle; other combinations and permutations are possible.
图2B提供与用于一些实施例的液滴测量关联的处理的流程。在图2B中总体上使用标号231来指定该处理流程。更具体地说,如标号233所指示的那样,在该特定处理中,打印头组件首先停泊在例如打印机或沉积装置的服务站(未示出)中。液滴测量设备然后通过从沉积平面之下移动到光器件系统能够测量单独液滴的位置而凭借部分或所有光器件系统的选择性接合来与打印头组件接合(235)。按标号237,可以在x维度、y维度和z维度中可选地执行这种相对于与所停泊的打印头相对的一个或多个光器件系统部件的运动。 Figure 2B provides a flow of processing associated with droplet measurement for some embodiments. This process flow is designated generally in FIG. 2B using reference numeral 231 . More specifically, as indicated by reference numeral 233, in this particular process, the printhead assembly is first parked in a service station (not shown), such as a printer or deposition device. The drop measurement device is then engaged with the printhead assembly by selective engagement of some or all of the optics system by moving from below the deposition plane to a position where the optics system is capable of measuring individual droplets (235). Such movement relative to one or more optics system components opposite the parked printhead can optionally be performed in the x-, y-, and z-dimensions, at 237 .
如先前指出的,甚至单个喷嘴和关联的驱动波形(即用于喷射液滴的(多个)脉冲或(多个)信号电平)可以产生按不同液滴而稍微变化的液滴体积、轨迹和速度。根据在此的教导,在一个实施例中,标号239所指示的液滴测量系统获得期望参数的每液滴的n次测量,以关于该参数的期望性质来推导统计置信度。在一个实现方式中,所测量的参数可以是体积,而对于其它实现方式,所测量的参数可以是飞行速度、飞行轨迹或另一参数、或多个这些参数的组合。在一个实现方式中,“n”对于每个喷嘴可以变化,而在另一实现方式中,“n”可以是对于每个喷嘴要被执行的固定的测量数量(例如“24”);在还一实现方式中,“n”指代最小测量数量,从而可以执行附加测量,以动态地调整所测量的参数的统计性质,或细化置信度。清楚的是,很多变化是可能的。对于图2B所提供的示例,应假定液滴体积正被测量,从而获得表示来自给定喷嘴的所期待的液滴体积的精准平均值和严格的置信度区间。在关于期待目标(即相对于液滴平均值的合成)在目标区中可靠地维持合成油墨填充的分布的同时,这使得能够(使用多个喷嘴和/或驱动波形)可选地对液滴组合进行规划。如可选处理框241和243所注记的那样,干涉法或阴影图是所预期的光学测量处理,其理想地使得能够瞬时或或近乎瞬时地测量并且计算体积(或其它期望参数);通过这种快速测量,变得有可能的是,频繁地并且动态地更新体积测量,例如,以计及油墨性质(包括黏度和构成材料)、温度、电源波动和其它因素方面随着时间的改变。依赖于此,阴影图典型地表征例如使用高分辨率CCD相机作为光传感器机构来捕获液滴的图像;在液滴可以(例如使用频闪的光源)在多个位置处被精准地成像于单个图像捕获帧的同时,图像处理软件典型地涉及用于计算液滴体积的有限时间量,从而来自(例如具有几千个喷嘴的)大打印头组件的足够的液滴布居的成像可能耗费数小时。依赖于多个二进制光检测器以及基于这些检测器的输出来检测干涉图案间距的干涉法是一种非成像技术(即不需要图像分析),并且因此比阴影图或其它技术更快很多时间量级(例如50x)而产生液滴体积测量;例如,利用10,000个喷嘴打印头组件,期待可以在数分钟中获得用于几千个喷嘴中的每一个的大测量布居,将其呈现为对于频繁地并且动态地执行液滴测量而言是可行的。如上所述,在一个可选实施例中,液滴测量(或其它参数(例如轨迹和/或速度)的测量)可以执行为周期性的断续处理,其中,液滴测量系统根据调度而被接合,或处于各基底之间(例如,随着基底加载或卸载),或相对于其它组件和/或其它打印头维护处理而被堆叠。注意,对于允许以对每个喷嘴特定的方式来使用替换的喷嘴驱动波形的实施例,快速测量系统(例如干涉仪系统)容易地允许进行对于每个喷嘴以及对于用于该喷嘴的每个替换的驱动波形的统计布居求得,由此促进由各个喷嘴波形配对产生的液滴的所规划的液滴组合,如上面提到那样。按标号245和247,通过喷嘴接喷嘴(和/或喷嘴波形配对接配对)地测量所期待的液滴体积达到比0.01pL更好的精度,变为可能的是,对于每目标沉积区域的非常精确的液滴组合进行规划,其中,合成填充也可以规划为0.01pL分辨率,并且其中,目标体积可以保持在目标体积的0.5%或更好的所指定的误差(例如容限)范围;如标号247所指示的那样,用于每个喷嘴或每个喷嘴波形配对的测量布居在一个实施例中被规划,从而产生用于每个这种喷嘴或喷嘴波形配对的可靠性分布模型,即,具有小于规范最大填充误差的3σ置信度(或另外统计测度,例如4σ、5σ、6σ等)。一旦对于各个液滴采取足够的测量,涉及这些液滴组合的填充就可以被估计并且用于以可能的最高效方式来规划打印(248)。如分隔线249所指示的那样,可以通过有效打印处理与测量和校准处理之间的前后断续切换来执行液滴测量。 As previously noted, even a single nozzle and associated drive waveform (i.e., the pulse(s) or signal level(s) used to eject the droplet) can produce droplet volumes, trajectories that vary slightly from droplet to droplet and speed. In accordance with the teachings herein, in one embodiment, a drop measurement system indicated at 239 obtains n measurements per drop of a desired parameter to derive a statistical confidence level regarding the desired property of the parameter. In one implementation, the measured parameter may be volume, while for other implementations, the measured parameter may be flight speed, flight trajectory, or another parameter, or a combination of multiple of these parameters. In one implementation, "n" may vary for each nozzle, while in another implementation, "n" may be a fixed number of measurements to be performed for each nozzle (eg, "24"); In an implementation, "n" refers to the minimum number of measurements so that additional measurements can be performed to dynamically adjust the statistical properties of the measured parameters, or to refine confidence levels. It is clear that many variations are possible. For the example provided in FIG. 2B , it should be assumed that drop volumes are being measured so that an exact mean value and tight confidence intervals representing the expected drop volume from a given nozzle are obtained. This enables (using multiple nozzles and/or drive waveforms) the ability to optionally map drops to Combine for planning. As noted in optional processing blocks 241 and 243, interferometry or shadow mapping are contemplated optical measurement processes that ideally enable instantaneous or near-instantaneous measurement and calculation of volume (or other desired parameter); by With such rapid measurements, it becomes possible to frequently and dynamically update volume measurements, for example, to account for changes over time in ink properties (including viscosity and constituent materials), temperature, power supply fluctuations, and other factors. Depending on this, a shadow map typically characterizes the image of a droplet captured using, for example, a high-resolution CCD camera as the light sensor mechanism; where a droplet can be precisely imaged at multiple locations (e.g. using a strobe light source) on a single Image processing software typically involves a finite amount of time for calculating droplet volume while the image is capturing the frame, so imaging of sufficient droplet population from a large printhead assembly (e.g., with thousands of nozzles) can take several hours. Hour. Interferometry, which relies on multiple binary photodetectors and the detection of the interferometric pattern spacing based on the outputs of these detectors, is a non-imaging technique (i.e. does not require image analysis) and is therefore much faster than shadowmap or other techniques by many amounts of time Drop volume measurements are produced at the scale (e.g. 50x); for example, with a 10,000 nozzle printhead assembly, it is expected that a large measured population for each of several thousand nozzles can be obtained in minutes, which is presented for It is feasible to perform droplet measurements frequently and dynamically. As mentioned above, in an alternative embodiment, droplet measurement (or measurement of other parameters such as trajectory and/or velocity) may be performed as a periodic intermittent process, wherein the droplet measurement system is controlled according to a schedule. Bonded, or between substrates (eg, as substrates are loaded or unloaded), or stacked relative to other components and/or other printhead maintenance processes. Note that for embodiments that allow alternate nozzle drive waveforms to be used in a manner specific to each nozzle, a fast measurement system (such as an interferometer system) readily allows for each nozzle and for each alternate The statistical population of the drive waveforms is derived, thereby facilitating the planned drop combination of droplets produced by the individual nozzle waveform pairings, as mentioned above. According to reference numerals 245 and 247, by nozzle-to-nozzle (and/or nozzle-waveform pair-to-pair) measurement of the expected droplet volume to an accuracy better than 0.01 pL, it becomes possible for very Accurate droplet assembly planning, where synthetic filling can also be planned to 0.01pL resolution, and where the target volume can be maintained within a specified error (e.g., tolerance) of 0.5% of the target volume or better; as As indicated by reference numeral 247, the measured population for each nozzle or pair of nozzle waveforms is planned in one embodiment to generate a reliability distribution model for each such nozzle or pair of nozzle waveforms, i.e. , with a 3σ confidence level (or another statistical measure such as 4σ, 5σ, 6σ, etc.) less than the normative maximum filling error. Once sufficient measurements have been taken for individual drops, the fill involving combinations of these drops can be estimated and used to plan printing in the most efficient manner possible ( 248 ). As indicated by separation line 249, drop measurement may be performed by intermittently switching back and forth between active printing processing and measurement and calibration processing.
图2C示出与每喷嘴(或每喷嘴波形配对)液滴测量的规划和/或对每个喷嘴的行为进行建模所用的统计数据的初始化关联的一个可能处理的流程251。如标号253所指示的那样,在该处理中首先接收指定期望容限范围的数据,其例如可以是根据制造商规范而建立的。在一个实施例中,例如,该容限或可接受性范围可以指定为给定目标的±5.0%;在另一实施例中,可以使用另一范围(例如期望目标液滴大小的±2.5%、±2.0%、±1.0%、±0.6%或±0.5%)。以替换方式来指定可接受的值的范围或集合也是可能的。无论规范的方法如何,取决于期望的容限和液滴系统测量误差,然后标识(255)测量的阈值数量。注意,如上所指示那样,该数量可以选择为实现多个目的:(a)获得足够大的液滴测量的布居,从而提供所期待的液滴参数(例如平均体积、速度或轨迹)的可靠测度;(b)获得足够大的液滴测量的布居,从而对液滴参数的变化(例如用于给定参数的标准差或σ)进行建模;和/或(c)获得足够的数据,从而标识具有大于期待误差的喷嘴或喷嘴波形配对,目的是使得在打印处理期间特定喷嘴/喷嘴波形配对的使用不合格。利用任何所规划的数量的液滴测量或期望的测量准则或因此而定义的有关最小值,然后使用液滴测量系统259(例如,使用在此所讨论的光学技术)来执行(257)测量。按处理判断块261,然后执行用于每个喷嘴(或喷嘴波形)的测量,直到满足所指定的准则为止。如果测量的数量满足所规划的准则,则该方法然后按处理块269而结束。如果需要执行附加测量,则测量处理循环,直到已经获得足够的测量,如图2C中指代的那样。 FIG. 2C shows a flow 251 of one possible process associated with planning of droplet measurements per nozzle (or per nozzle waveform pairing) and/or initialization of statistics used to model the behavior of each nozzle. As indicated at reference numeral 253, first in the process is received data specifying a desired tolerance range, which may be established, for example, according to manufacturer specifications. In one embodiment, for example, the tolerance or acceptability range may be specified as ±5.0% of a given target; in another embodiment, another range may be used (e.g., ±2.5% of the desired target droplet size , ±2.0%, ±1.0%, ±0.6% or ±0.5%). It is also possible to specify a range or set of acceptable values in alternative ways. Regardless of the canonical approach, depending on the desired tolerance and droplet system measurement error, a threshold amount of measurement is then identified ( 255 ). Note that, as indicated above, this number can be chosen to achieve several goals: (a) to obtain a population of droplet measurements large enough to provide a reliable estimate of the desired droplet parameters (e.g. mean volume, velocity, or trajectory). measure; (b) obtain a population of droplet measurements large enough to model variations in droplet parameters (such as standard deviation or σ for a given parameter); and/or (c) obtain sufficient data , thereby identifying nozzles or nozzle waveform pairs that have a greater than expected error in order to disqualify the use of a particular nozzle/nozzle waveform pair during the print process. Measurements are then performed ( 257 ) using droplet measurement system 259 (eg, using the optical techniques discussed herein) using any planned number of droplet measurements or desired measurement criteria or associated minimums defined thereby. Per process decision block 261, measurements for each nozzle (or nozzle waveform) are then performed until specified criteria are met. If the measured quantity satisfies the programmed criteria, the method then ends with processing block 269 . If additional measurements need to be performed, the measurement process loops until sufficient measurements have been obtained, as indicated in Figure 2C.
图2C示出多个示例性处理变化。首先,如标号263所指示的那样,该测量处理可选地应用于打印头组件的所有喷嘴(和/或所有可能的喷嘴/波形组合)。并非所有实施例需要如此。例如,在一个实施例中(见以下图14A-图15C的讨论),可以使用潜在地无限数量的驱动波形变化,以影响用于给定喷嘴的所喷射的液滴的参数;替代穷尽地测试每个可能波形,液滴测量处理可以通过表示可能波形的宽分布的预定波形集合、通过用于选择少数波形的迭代内插搜索处理来进行实验(例如,有可能产生跨越期望液滴大小的±10%的范围的平均液滴体积)。在另一实施例中,如果基于初始测量,给定喷嘴被认为是有缺陷的(例如液滴体积具有距期望平均值的大于20%分布),则根据进一步的考虑,可以可选地排除该喷嘴(或喷嘴波形配对)。在又一示例中,如果实际上规划并不使用特定喷嘴的打印扫描,则可能有利的是,仅对于在所规划的扫描中有效地使用的喷嘴执行动态附加液滴测量,至少直到达到某种类型的误差或方差准则。再一次,很多可能性存在;功能块263简单地指示所应用的处理无需涉及所有喷嘴(或喷嘴波形配对)。其次,标号265指示,在一个实施例中,最小准则可以涉及对于每个喷嘴或喷嘴波形配对可以不同的最小阈值。为了引述对于该功能贴切的一些示例,在一个实施例中,对于给定喷嘴或喷嘴波形配对执行液滴测量,并且计算分布扩展测度(例如方差、标准差或另一测度),其中,执行超过原始阈值的测量,直到扩展测度满足预定准则;如应当领会的那样,如果最小值是例如每喷嘴10次液滴测量,并且如果用于特定喷嘴的10次液滴测量产生为大于期待的方差,则可以对于给定喷嘴唯一地执行附加测量,直到实现期望的扩展(例如3σ≤平均值体积的1.0%),或直到已经执行某个最大数量的测量。该实施例例如可以造成每喷嘴不同数量的测量,即,其中,规划测量迭代以实现一些最小准则(例如,在该示例中,最小测量数量以及小于阈值的扩展测度)。再者,如标号267所指示的那样,还有可能在液滴测量规划中使用位置推测,例如,以获得每喷嘴(或喷嘴波形)的“确切24次”液滴测量,或获得每小时x数量的测量,依此类推。最后,无论测量管理技术如何,都有可能将测量应用于使得特定喷嘴或喷嘴波形组合具有资格(通过)或失去资格。再次引述可能的实现方式选项,跟随执行阈值数量的测量,可以按标号270基于测量数据来使得特定喷嘴或喷嘴波形具有资格或失去资格。例如,如果在一个应用中理想液滴体积是10.00pL,则可以使得不产生9.90pL-10.10pL的平均值液滴体积的喷嘴/喷嘴波形配对立即失去资格;可以对于统计扩展采取同一方法,例如,跟随最小数量的测量,可以使得产生大于0.5%的液滴扩展(例如方差、标准差等)的任何喷嘴/喷嘴波形配对立即失去资格,依此类推。再一次,很多实现方式示例存在。 Figure 2C illustrates a number of exemplary processing variations. First, as indicated by reference numeral 263, the measurement process is optionally applied to all nozzles (and/or all possible nozzle/waveform combinations) of the printhead assembly. This is not required for all embodiments. For example, in one embodiment (see discussion of FIGS. 14A-15C below), a potentially infinite number of drive waveform changes may be used to affect parameters of ejected droplets for a given nozzle; instead of exhaustively testing For each possible waveform, the droplet measurement process can experiment with a predetermined set of waveforms representing a broad distribution of possible waveforms, through an iterative interpolation search process for selecting a small number of waveforms (e.g., it is possible to generate ± 10% of the mean droplet volume). In another embodiment, if based on initial measurements, a given nozzle is considered defective (e.g., drop volume has a distribution greater than 20% from the desired mean), then that nozzle may optionally be excluded upon further consideration. Nozzles (or nozzle waveform pairs). In yet another example, if a print scan that does not actually use a particular nozzle is planned, it may be advantageous to perform dynamic additional drop measurements only for nozzles that are actively used in the planned scan, at least until a certain type of error or variance criterion. Again, many possibilities exist; function block 263 simply indicates that the processing applied need not involve all nozzles (or nozzle waveform pairs). Next, reference numeral 265 indicates that, in one embodiment, the minimum criterion may relate to a minimum threshold that may be different for each nozzle or pair of nozzle waveforms. To cite some examples pertinent to this functionality, in one embodiment, droplet measurements are performed for a given nozzle or pair of nozzle waveforms, and a measure of distribution spread (such as variance, standard deviation, or another measure) is calculated, wherein performing over Measurement of the raw threshold until the spread metric satisfies predetermined criteria; as should be appreciated, if the minimum is, for example, 10 drop measurements per nozzle, and if 10 drop measurements for a particular nozzle yields a variance greater than expected, Additional measurements may then be performed uniquely for a given nozzle until the desired expansion is achieved (eg 3σ < 1.0% of mean volume), or until some maximum number of measurements have been performed. This embodiment may, for example, result in a different number of measurements per nozzle, ie where the measurement iterations are planned to achieve some minimum criteria (eg, in this example, a minimum number of measurements and an expansion measure less than a threshold). Again, as indicated at 267, it is also possible to use position extrapolation in drop measurement planning, for example, to obtain "exact 24" drop measurements per nozzle (or nozzle waveform), or to obtain x Quantities are measured, and so on. Ultimately, regardless of the measurement management technique, it is possible to apply measurements to qualify (pass) or disqualify a particular nozzle or combination of nozzle waveforms. Referring again to possible implementation options, following performing a threshold number of measurements, particular nozzles or nozzle waveforms may be qualified or disqualified based on the measurement data at reference numeral 270 . For example, if the ideal drop volume in an application is 10.00pL, nozzle/nozzle waveform pairs that do not produce an average drop volume of 9.90pL-10.10pL can be immediately disqualified; the same approach can be taken for statistical extensions, e.g. , following a minimum number of measurements, can immediately disqualify any nozzle/nozzle waveform pairing that produces a droplet spread (eg, variance, standard deviation, etc.) greater than 0.5%, and so on. Again, many implementation examples exist.
图2D是总体上由标号271指代的关于光学技术所预测的液滴测量系统的一个实现方式的示意图。更具体地说,打印头273在截面中示出为具有被布置为将在(如标记图例274所指示的)z方向上向下喷射流控油墨的一行喷嘴的五个所枚举的打印喷嘴。光源275A被布置到打印头的一侧,从而照射液滴将通过的测量区278,以用于测量;在图2D的情况下,该测量区(以及部分或所有光器件系统)被布置为测量源自打印头的喷嘴(3)的液滴。光源275A描绘为在打印头273的一个横向侧的外部,从而生成将把光导向到光测量区中的光路径277(即在变量h所表示的毫米量级高度内,以照射任何多个喷嘴,而不干扰打印头273)。如标号275B所表示的那样,在一个实施例中,光源也可以反而有利地安装在沉积平面289之下(以及器皿286的上部外围),从而提供光器件相对于来自任何喷嘴的液滴路径的相对容易的固定距离定位;再次,虽然图2D中描述五个喷嘴,但在一个实施例中,存在几百至个喷嘴或更多。通过用于对液滴测量区278的照射进行导向的光器件,沉积平面下光生成促进光器件系统相对于所描绘的打印头273的任何喷嘴的容易定位,并且用于液滴测量系统的选择性接合和释放(例如相对于可选服务站,如上所述)。在所描绘的示例中,镜子285A用于重新导向来自光源275B的光,从而入射到从打印头273朝向器皿286行进的测量区278内的液滴。也可以使用相对于光源275B定位光器件路径的其它手段,例如通过非限定性示例的方式,棱镜、光纤缆线等。对于使用成像测量技术(例如阴影图)的实现方式,光源275A/275B可以是频闪热光源或单色源。注意,图2D还示出被沿着其中源在附图页面的外部并且借助或不借助光路径路由光器件将光导向到附图页面之中或之外的路径275C(例如沿着标号图例274所描述的y维度)而导向的来自第三起源位置的光;例如,在依赖于干涉法的情况下,可以使用这种定位框架,其中,干涉图案的检测产生自与照射路径正交(或与之成另一角度)的方向。无论照射源的相对布置如何,都应注意,沿着光路径277以及对于打印头273的位置和沉积平面290处于中间的照射平面290来导向光,并且由光路径路由光器件285B将测量光(即来自所测量的液滴)从成像平面路由到安装在沉积平面289之下的光检测器。再一次,尽管是大的打印头大小和相对小的高度h,这也允许光的窄方向和聚焦。此外,至于光路径路由光器件285A,镜子、棱镜、光纤光器件或其它光重新导向设备和技术可以用于完成这种光恢复的沉积平面下路由。在图2D中可见,测量光导向到聚焦光器件279(例如透镜)并且导向到光检测器280上。聚焦光器件与测量区之间的光路径的距离由距离f标识,表示光器件系统的焦距长度。如之前提到那样,期望液滴测量(取决于光器件技术)提供正确地对液滴进行成像所需的精确聚焦,为此,对于图2D所表示的系统,光路径路由光器件285B、聚焦光器件279、液滴测量区278和器皿286透镜全都作为整体单元而移动,以测量来自不同喷嘴的液滴,如由所描绘的对于公共底盘283的连接所表示的那样。光源275A/275B和光源导向光器件取决于实施例可以可选地也耦合到该底盘。 FIG. 2D is a schematic diagram of one implementation of a droplet measurement system as predicted by optical techniques, generally designated by reference numeral 271 . More specifically, printhead 273 is shown in cross section with five enumerated print nozzles arranged as a row of nozzles that will eject fluidic ink downward in the z-direction (as indicated by label legend 274 ). . A light source 275A is arranged to one side of the printhead so as to illuminate a measurement zone 278 through which the drop will pass for measurement; in the case of FIG. 2D this measurement zone (and some or all of the optics system) is arranged to measure Droplets originating from the nozzles (3) of the printhead. Light source 275A is depicted as being external to one lateral side of printhead 273, thereby generating a light path 277 that will direct light into the light measurement zone (i.e., within a height on the order of millimeters represented by the variable h to illuminate any number of nozzles , without disturbing the print head 273). As indicated by reference numeral 275B, in one embodiment, the light source may instead be advantageously mounted below the deposition plane 289 (and the upper periphery of the vessel 286), thereby providing visibility of the optics relative to the path of the droplets from any nozzles. Relatively easy fixed distance positioning; again, while five nozzles are depicted in FIG. 2D, in one embodiment, there are several hundred to several nozzles or more. The below deposition plane light generation facilitates easy positioning of the optics system relative to any nozzle of the depicted printhead 273 with optics for directing illumination to the drop measurement zone 278, and for selection of the drop measurement system Sexual engagement and release (e.g. with respect to optional service stations, as described above). In the depicted example, mirror 285A is used to redirect light from light source 275B to be incident on droplets within measurement zone 278 traveling from printhead 273 toward vessel 286 . Other means of positioning the path of the optics relative to the light source 275B may also be used, such as, by way of non-limiting example, prisms, fiber optic cables, and the like. For implementations using imaging measurement techniques such as shadow mapping, the light source 275A/275B may be a strobe thermal light source or a monochromatic source. Note that FIG. 2D also shows a path 275C along which the source is outside the page of the figure and light is directed into or out of the page of the figure with or without the aid of light path routing optics (such as along numbered legend 274 The light from the third origin position directed by the described y-dimension); for example, where relying on interferometry, this localization framework can be used, where the detection of the interference pattern arises from the path orthogonal to the illumination (or at another angle to it). Regardless of the relative arrangement of the illumination sources, it should be noted that the light is directed along the light path 277 and the illumination plane 290 intermediate the location of the printhead 273 and the deposition plane 290, and is directed by the light path routing optics 285B to the measurement light ( ie from the measured droplet) is routed from the imaging plane to a photodetector mounted below the deposition plane 289 . Again, this allows narrow direction and focusing of light despite the large print head size and relatively small height h. Additionally, as with the light path routing optics 285A, mirrors, prisms, fiber optics, or other light redirecting devices and techniques can be used to accomplish this light-recovery sub-plane routing of deposition. As can be seen in FIG. 2D , the measurement light is directed to focusing optics 279 (eg a lens) and onto a light detector 280 . The distance of the light path between the focusing optics and the measurement region is identified by the distance f, representing the focal length of the optics system. As mentioned previously, droplet measurement (depending on optics technology) is expected to provide the precise focus required to properly image the droplet, and for this reason, for the system represented in FIG. Optics 279 , drop measurement zone 278 and vessel 286 lens all move as an integral unit to measure drops from different nozzles, as represented by the depicted connection to common chassis 283 . Light sources 275A/275B and light source guide lights may optionally also be coupled to the chassis depending on the embodiment.
注意,在图2D中还概念性地表示的基于干涉法的系统中,光源275A/275B(或产生光路径275C)可以是用于产生干涉图案的激光器,其中,波束沿着光学路径在某点处划分为两个或更多个不同分量,用于产生干涉图案。将结合图18B在以下进一步讨论至于这些光器件的附加详情以及用于创建干涉图案的多个波束的使用;目前,应假定标号275A/275B/275C涵盖(包括用于干涉法的光源的)激光源。 Note that in an interferometry-based system, also conceptually represented in FIG. 2D , the light sources 275A/275B (or generating optical path 275C) may be lasers used to generate an interference pattern, wherein the beams at some point along the optical path is divided into two or more different components, which are used to generate interference patterns. Additional details regarding these optics and the use of multiple beams for creating interferometric patterns will be discussed further below in connection with FIG. 18B; source.
图2E示出总体上由标号291指代的关于光学技术所预测的液滴测量系统的实现方式的另一示意图。更具体地说,见于图2E中的实现方式依赖于干涉法来测量液滴参数(例如体积)。如前面那样,这种配置依赖于打印头273、测量区278、底盘283和器皿286。然而,在该实施例中,激光器具体地用作光源292,以生成经由照射路径293导向到测量区的光束。注意,典型地,以此方式来导向两个或更多个波束,如以下将进一步解释的那样。在测量区278中的液滴中生成干涉图案,并且从基本上与照射路径293正交的方向观测该干涉图案,如标号297所表示的那样。这种同样的关系(来自不平行于照射路径的方向的测量)也由图2D(例如使用路径275C)表示,但在图2E中,发散的测量角度是这样的:在测量区278的平面之下,测量光被负向地向下导向。注意,在如下的意义上,光检测器295是非成像的:(虽然典型地使用多个光检测器,)但无需使用相机,并且无需使用图像处理来标识像素化图像内的液滴轮廓,实质上改进检测和测量的速度;也就是说,随着液滴通过叠合光束的区域,干涉方法简单地测量干涉图案的改变,其中,可从所获得的结果推导液滴体积。使用多于两个的光束(或增加的数量的检测器)促进测量液滴轨迹和速度以及其它参数。如前面那样,光源292、器皿286和光检测器295可以作为整体(即通过公共底盘283)而移动,促进保留精确光学路径参数。在一个实现方式中,相对于“停泊的”打印头组件在三个维度中再一次执行光器件系统的运动,以在打印头组件处于服务站中的同时有选择地接合并且释放液滴测量设备,并且容易地而且精确地定位液滴测量设备,以测量大规模打印头的几千个喷嘴中的任一个。 FIG. 2E shows another schematic diagram of an implementation of a droplet measurement system as predicted by optical techniques, generally designated by reference numeral 291 . More specifically, the implementation seen in FIG. 2E relies on interferometry to measure droplet parameters such as volume. As before, this configuration relies on printhead 273 , measurement zone 278 , chassis 283 and vessel 286 . In this embodiment, however, a laser is used specifically as light source 292 to generate a beam of light directed via illumination path 293 to the measurement region. Note that typically two or more beams are steered in this way, as will be explained further below. An interference pattern is generated in the droplet in the measurement zone 278 and is observed from a direction substantially orthogonal to the illumination path 293 , as indicated by reference numeral 297 . This same relationship (measurements from directions not parallel to the illumination path) is also represented by FIG. 2D (for example using path 275C), but in FIG. Next, the measuring light is guided negatively downwards. Note that photodetector 295 is non-imaging in the sense that (although multiple photodetectors are typically used), no camera is used, and image processing is not used to identify droplet outlines within the pixelated image, essentially This improves the speed of detection and measurement; that is, the interferometric method simply measures the change in the interference pattern as the drop passes through the region of overlapping beams, where the drop volume can be deduced from the obtained results. Using more than two beams (or increased number of detectors) facilitates measuring droplet trajectories and velocities, among other parameters. As before, the light source 292, vessel 286 and light detector 295 can be moved as a unit (ie, via the common chassis 283), facilitating preservation of precise optical path parameters. In one implementation, movement of the optics system is again performed in three dimensions relative to the "parked" printhead assembly to selectively engage and release the drop measurement device while the printhead assembly is in the service station , and easily and precisely position a drop measurement device to measure any one of the thousands of nozzles of a large-scale printhead.
如上所述,通过液滴测量设备或系统的合适配置,(例如用于OLED设备制备的)工业打印机可以使喷嘴及其带来的液滴被重复地校准,允许在任何目标区中规划非常精确的液滴组合。也就是说,可以使用测量设备,以对于每个喷嘴以及对于喷嘴所使用的每个波形快速地求得体积的精准的、严整地分组的统计分布,这样使得能够精准地规划用于实现合成填充的液滴组合。在其它实施例中,使用这些相同技术来构建用于液滴速度和飞行角度的模型,从而用于这些参数的模型可以应用在打印处理中。 As mentioned above, with a suitable configuration of the droplet measurement device or system, industrial printers (such as those used for OLED device fabrication) can enable the nozzles and the droplets they bring to be reproducibly calibrated, allowing very precise planning in any target zone droplet combination. That is, measurement equipment can be used to quickly derive an accurate, tightly grouped statistical distribution of volumes for each nozzle and for each waveform used by the nozzle, which enables precise planning for achieving the composite fill droplet combination. In other embodiments, these same techniques are used to build models for drop velocity and flight angle so that models for these parameters can be applied in the printing process.
注意,任何这些各种技术(以及在该公开中所引入的任何打印或合成填充技术)可以显现在不同产品和/或不同制造层中。例如,图3A表示共同地用附图标记301指定的许多不同实施方式层级,这些层级中的每一个表示上文介绍的技术的可能分立实施方式。首先,可以将上文介绍的技术体现为存储在非暂态机器可读介质上的指令,如图形303所表示的(例如,用于控制计算机或打印机的软件)。其次,按照计算机图标305,可以将这些技术实现为计算机或网络的一部分,例如在设计或制造供销售或在其它产品中使用的部件的公司内。例如,可以由公司将上文介绍的技术实现为设计软件,该公司向高清晰度电视(HDTV)制造商咨询或者为其执行设计;替换地,可以直接地由此类制造商使用这些技术来制造电视(或显示屏)。第三,如先前介绍并使用存储介质图形307举例说明的,先前介绍的技术可以采取打印机指令的形式,例如作为存储指令或数据,其在被作用时将引起打印机按照上文的讨论根据规划液滴聚合技术的使用来制造一个或多个部件层。第四,如制造设备图标309所表示的,可以将上文公开的技术实现为制造装置或机器的一部分,或者采取在此类装置或机器内的打印机的形式。例如,可以以其中液滴测量结果以及外部供应的“层数据”的转换被机器(例如,通过使用软件)自动地转换成将使用这里所述的技术打印以透明地优化/加速打印处理的打印机指令的方式来出售制造机器或对其进行自定义。还可以离线地计算此类数据,并且然后在制造许多单元的可缩放、管线式制造处理中以可再现方式重新应用。应注意的是制造设备图标309的特定描绘表示下面将讨论(例如,参考图11—12)的一个示例性打印机设备。还可以将上文介绍的技术体现为组件,诸如将单独地出售的多个部件的阵列311;例如在图3中,以半成品平板设备阵列的形式来描绘多个此类部件,其稍后将被分离并出售以用于结合到最终消费者产品中。所描绘的设备可具有例如根据上文介绍的方法沉积的一个或多个层(例如,色彩部件层、半导体层、密封层或其它材料)。还可以以例如提到的最终消费者产品的形式来体现上文介绍的技术,例如,采取用于便携式数字设备313(例如,诸如电子板或智能电话)、作为电视显示屏315(例如,HDTV)或其它类型的设备的显示屏的形式。例如,图3A使用太阳能板图形317来表示可以将上文介绍的处理应用于其它形式的电子设备,例如以沉积每个目标区结构(诸如构成聚合设备的单独单元的一个或多个层)或覆盖层(例如,用于TV或太阳能板的密封层)。很明显,可以有许多示例。 Note that any of these various techniques (as well as any printing or synthetic filling techniques introduced in this disclosure) may appear in different products and/or different layers of fabrication. For example, Figure 3A represents a number of different implementation levels, designated collectively by the reference numeral 301, each of which represents a possible discrete implementation of the techniques introduced above. First, the techniques described above can be embodied as instructions stored on a non-transitory machine-readable medium, as represented by graph 303 (eg, software for controlling a computer or a printer). Second, according to computer icon 305, these technologies may be implemented as part of a computer or network, such as within a company that designs or manufactures components for sale or for use in other products. For example, the techniques described above could be implemented as design software by a company that consults with or performs designs for high-definition television (HDTV) manufacturers; alternatively, the techniques can be used directly by such manufacturers to Make TVs (or displays). Third, as previously described and exemplified using storage medium graphic 307, the previously described techniques may take the form of printer instructions, such as stored instructions or data, which, when acted on, will cause the printer to program fluid flow as discussed above. Drop polymerization techniques are used to fabricate one or more component layers. Fourth, as represented by manufacturing equipment icon 309, the techniques disclosed above may be implemented as part of a manufacturing device or machine, or in the form of a printer within such a device or machine. For example, a printer in which drop measurements as well as externally supplied "layer data" is automatically converted by the machine (e.g., by using software) to print using the techniques described here transparently optimizes/accelerates the printing process Command way to sell crafting machines or customize them. Such data can also be computed offline and then reapplied in a reproducible manner in a scalable, pipelined manufacturing process that manufactures many units. It should be noted that the particular depiction of the manufacturing device icon 309 represents one exemplary printer device that will be discussed below (eg, with reference to FIGS. 11-12 ). The techniques described above may also be embodied as an assembly, such as an array 311 of multiple parts that would be sold separately; for example, in FIG. are separated and sold for incorporation into final consumer products. The depicted device may have one or more layers (eg, color component layers, semiconductor layers, sealing layers, or other materials) deposited, for example, according to the methods described above. The technology described above can also be embodied in the form of, for example, the mentioned end consumer products, for example, in the form of a portable digital device 313 (such as an electronic board or a smart phone, for example), as a television display 315 (for example, an HDTV ) or other types of devices in the form of display screens. For example, FIG. 3A uses a solar panel graphic 317 to indicate that the processes described above can be applied to other forms of electronic devices, for example to deposit each target area structure such as one or more layers that make up an individual unit of an aggregated device, or Covering layers (e.g. sealing layers for TVs or solar panels). Obviously, there can be many examples.
在没有限制的情况下,可以将上文介绍的技术应用于图3A中所示的任何层级或部件。例如,本文公开的技术的一个实施例是最终消费者设备;本文公开的技术的第二实施例是一种包括将使用特定喷嘴体积的组合控制层的制造以获得特定每个目标区填充的数据的装置;可以预先确定或者就地测量和应用喷嘴体积。另一实施例是例如使用打印机来使用上文介绍的技术打印一个或多个油墨的沉积机器。可以在一个机器或超过一个机器、例如机器网络或系列(其中在不同的机器处应用不同的步骤)上实现这些技术。所有此类实施例及其它的可以独立地或整体地利用本公开介绍的技术。 Without limitation, the techniques described above may be applied to any of the layers or components shown in FIG. 3A. For example, one embodiment of the technology disclosed herein is an end-consumer device; a second embodiment of the technology disclosed herein is one that includes fabrication of combined control layers that will use specific nozzle volumes to obtain data specific to each target zone fill. device; the nozzle volume can be predetermined or measured and applied in situ. Another embodiment is a deposition machine that prints one or more inks using the techniques described above, eg, using a printer. These techniques can be implemented on one machine or on more than one machine, such as a network or train of machines where different steps are applied at different machines. All such embodiments and others may, individually or collectively, utilize the techniques presented in this disclosure.
如图3B所表示的,在一个应用中,可以使用打印处理来向基底上沉积一个或多个材料层。可以使用上文所讨论技术来产生打印控制指令(例如,可以传输到打印机的电子控制文件)以便随后在制造设备时使用。在一个特定应用中,可以使这些指令适合于在打印一层低成本、可缩放有机发光二极管(“OLED”)显示器时有用的喷墨打印处理。更具体地,可以应用所述技术来沉积此类OLED设备的一个或多个发光或其它层,例如“红色”、“绿色”和“蓝色”(或其它)像素化色彩部件或此类设备的其它发光层或部件。此示例性应用是非限制性的,并且可以将所述技术应用于许多其它类型的层和/或设备的制造,无论那些层是否是发光且无论该设备是否是显示设备。在本示例性应用中,喷墨打印头的各种常规设计约束对可以使用各种喷墨打印系统来打印的OLED堆的各种层的处理效率和膜覆盖涂层均匀度提出挑战。可以通过本文中的讲授内容来解决那些挑战。 As represented in Figure 3B, in one application, a printing process may be used to deposit one or more layers of material onto a substrate. The techniques discussed above can be used to generate printing control instructions (eg, electronic control files that can be transmitted to the printer) for subsequent use in manufacturing the device. In one particular application, these instructions can be adapted to an inkjet printing process useful in printing a layer of low-cost, scalable organic light-emitting diode ("OLED") displays. More specifically, the techniques described can be applied to deposit one or more light-emitting or other layers of such OLED devices, such as "red", "green" and "blue" (or other) pixelated color components or such devices other light-emitting layers or components. This exemplary application is non-limiting, and the techniques can be applied to the fabrication of many other types of layers and/or devices, whether those layers are light emitting or not and whether the device is a display device or not. In this exemplary application, various conventional design constraints of inkjet printheads challenge the processing efficiency and film coverage uniformity of the various layers of OLED stacks that can be printed using various inkjet printing systems. Those challenges can be addressed through the teachings in this article.
更具体地,图3B是打印机321的一个实施例的平面图。该打印机包括用来向基底325上沉积流体油墨的打印组件323。不同于打印文本和图形的打印机,本示例中的打印机321在制造处理中用来沉积将具有期望厚度的流体油墨。也就是说,在典型的制造应用中,油墨承载将被用来形成永久性的一层成品设备的材料,其中,该层具有具体期望的厚度。通过沉积流体油墨而产生的层的厚度取决于施加油墨的体积。油墨通常以一个或多个材料为特征,其将形成成品层的一部分,形成为单体、聚合物或由溶剂或其它传送介质承载的材料。在一个实施例中,这些材料是有机的。在油墨沉积之后,该油墨被干燥、固化或硬化以形成永久性层;例如,某些应用使用紫外线(UV)固化处理来将液体单体转换成固体聚合物,而其它处理将油墨干燥以去除溶剂并在永久性位置上留下传送的材料。还可以有其它处理。请注意,存在将所描绘打印处理与常规的图形和文本应用区别开的许多其它变化;例如,在某些实施例中,在被控制以将环境气氛调节成除空气之外的某种东西或者另外排除不想要的微粒的环境中执行期望材料层的沉积。例如,如下面将进一步描述的,一个设想应用使用一种制造机构,其将打印机321包围在气室内,使得在存在诸如惰性环境之类的受控气氛的情况下执行打印,所述惰性环境例如包括但不限于氮气、任何惰性气体以及其任何组合。 More specifically, FIG. 3B is a plan view of one embodiment of a printer 321 . The printer includes a printing assembly 323 for depositing fluid ink onto a substrate 325 . Unlike a printer that prints text and graphics, printer 321 in this example is used in the manufacturing process to deposit fluid ink that will have a desired thickness. That is, in a typical manufacturing application, the ink bears the material that will be used to form a permanent layer of the finished device, where the layer has a specific desired thickness. The thickness of the layer produced by depositing fluid ink depends on the volume of ink applied. Inks typically feature one or more materials that will form part of the finished layer, formed as monomers, polymers, or materials carried by a solvent or other delivery medium. In one embodiment, these materials are organic. After ink is deposited, the ink is dried, cured, or hardened to form a permanent layer; for example, some applications use ultraviolet (UV) curing to convert liquid monomers into solid polymers, while other treatments dry the ink to remove Solvent and leave conveyed material in a permanent location. Other treatments are also possible. Note that there are many other variations that differentiate the depicted printing process from conventional graphics and text applications; for example, in some embodiments, the ambient atmosphere is controlled to be something other than air or Deposition of the desired material layer is performed in an environment that additionally excludes unwanted particulates. For example, as will be described further below, one contemplated application uses a fabrication mechanism that encloses the printer 321 within a gas chamber such that printing is performed in the presence of a controlled atmosphere, such as an inert environment such as Including but not limited to nitrogen, any inert gas, and any combination thereof.
如在图3B中进一步看到的,打印头组件323包括许多喷嘴,诸如喷嘴327。请注意,在图3B中,出于图示的目的,将打印头组件323和喷嘴描绘为从页面的顶部向外打开,但事实上,这些喷嘴面朝下朝向基底,并且从图3B的角度看被从视图隐藏(即,图3B示出了实际上打印头组件323的剖视图是什么)。看到喷嘴被布置成行和列(诸如示例性行328和列329),但这并不是所有实施例都需要的,即某些实施方式仅使用单行的喷嘴(诸如行328)。另外,可以将各行喷嘴设置在各打印头上,每个打印头相对于彼此是(可选地)可单独偏移的,如上文介绍的。在其中使用打印机来制造显示设备的一部分的应用中,例如,针对显示设备的各红色、绿色和蓝色色彩部件中的每一个的材料,打印机通常对每个不同的油墨或材料使用专用的打印头组件,并且可以将在本文中讨论的技术单独地应用于每个对应的打印头或打印头组件。 As further seen in FIG. 3B , printhead assembly 323 includes a number of nozzles, such as nozzle 327 . Note that in FIG. 3B, the printhead assembly 323 and nozzles are depicted as opening outward from the top of the page for purposes of illustration, but in fact these nozzles are facing down toward the substrate, and from the perspective of FIG. 3B Views are hidden from view (ie, Figure 3B shows what is actually a cross-sectional view of printhead assembly 323). The nozzles are seen arranged in rows and columns (such as the exemplary row 328 and column 329 ), but this is not required for all embodiments, ie some implementations use only a single row of nozzles (such as row 328 ). In addition, individual rows of nozzles may be provided on individual printheads, each printhead being (optionally) individually shiftable relative to each other, as introduced above. In applications where a printer is used to manufacture part of a display device, such as materials for each of the red, green, and blue color components of a display device, the printer typically uses a dedicated print for each different ink or material head assemblies, and the techniques discussed herein can be applied individually to each corresponding printhead or printhead assembly.
图3B图示出一个打印头组件323(即,具有未被分离地描绘的一个或多个单独的打印头)。在本示例中,打印机321包括可以用来相对于基底325对打印头组件323进行定位的两个不同运动机构。首先,可以使用滑环(traveler)或台架331来安装打印头组件323并允许如箭头333所表示的相对运动。如果出现,则该运动机构也可以可选地将打印头组件323运送到服务站;这样的服务站在图3B中由标号334表示。然而,其次,可以使用基底传送机构来使得基底沿着一个或多个维度相对于滑环移动。例如,如用箭头335所表示的,基底传送机构可以允许在两个正交方向中的每一个上的移动,诸如根据x和y笛卡尔维度(337),并且可以可选地支撑基底旋转。在一个实施例中,基底传送机构包括用来选择性地固定并许可基底在气体轴承上的移动的气浮台。还请注意,该打印机可选地允许打印头组件323相对于滑环331的旋转,如旋转图形338所表示的。此类旋转允许相对于基底改变喷嘴327的表观间距和相对构造;例如,在基底的每个目标区被定义成是特定区域或者相对于另一目标区具有一定间距的情况下,打印头组件和/或基底的旋转可以在沿着或垂直于扫描方向的方向上改变喷嘴的相对间隔。在实施例中,还可以改变打印头组件323相对于基底325的高度,例如沿着进入图3B的视图方向或从其中出来的z笛卡尔维度。 FIG. 3B illustrates one printhead assembly 323 (ie, with one or more individual printheads not separately depicted). In this example, printer 321 includes two distinct motion mechanisms that may be used to position printhead assembly 323 relative to substrate 325 . First, a traveler or carriage 331 may be used to mount the printhead assembly 323 and allow relative movement as indicated by arrow 333 . If present, the motion mechanism may also optionally transport the printhead assembly 323 to a service station; such a service station is indicated at 334 in FIG. 3B. Second, however, a substrate transport mechanism may be used to move the substrate relative to the slip ring along one or more dimensions. For example, as represented by arrow 335, the substrate transport mechanism may allow movement in each of two orthogonal directions, such as according to x and y Cartesian dimensions (337), and may optionally support substrate rotation. In one embodiment, the substrate transport mechanism includes an air bearing table for selectively securing and permitting movement of the substrate on gas bearings. Note also that the printer optionally allows rotation of printhead assembly 323 relative to slip ring 331 , as represented by rotation graphic 338 . Such rotation allows the apparent spacing and relative configuration of the nozzles 327 to be changed relative to the substrate; And/or rotation of the substrate may change the relative spacing of the nozzles in a direction along or perpendicular to the scan direction. In an embodiment, the height of the printhead assembly 323 relative to the substrate 325 may also be varied, for example along the z Cartesian dimension into or out of the view direction of FIG. 3B .
在图3B中分别地用方向箭头339和340来分别地图示出两个扫描路径。简要地,基底运动机构随着打印头在箭头333的方向上以几何步幅或偏移量移动而使基底在箭头339和340的方向上来回移动。使用移动的这些组合,打印头组件的喷嘴可以到达基底的任何期望区域以沉积油墨。如先前提到的,以受控方式向基底的离散目标区中沉积油墨。可以将这些目标区排成阵列,亦即以行和列布置,诸如可选地分别沿着所描绘的y和x维度。请注意,在此图中看到各行喷嘴(诸如行328)垂直于目标区的行和列,即,使得一行喷嘴用每次扫描沿着各行目标区的方向扫过,穿过基底的目标区的每列(例如,沿着方向339)。并非对于所有实施例而言情况都需要如此。为了获得运动效率,后续扫描或通过然后使此运动方向反向,按照相反的顺序、亦即沿着方向340定址各列的目标区。 The two scan paths are illustrated separately in FIG. 3B with directional arrows 339 and 340 , respectively. Briefly, the substrate motion mechanism moves the substrate back and forth in the directions of arrows 339 and 340 as the printhead moves in geometric steps or offsets in the direction of arrow 333 . Using these combinations of movements, the nozzles of the printhead assembly can reach any desired area of the substrate to deposit ink. As previously mentioned, ink is deposited into discrete target areas of the substrate in a controlled manner. These target areas may be arranged in an array, ie arranged in rows and columns, such as optionally along the depicted y and x dimensions, respectively. Note in this figure that each row of nozzles (such as row 328) is seen to be perpendicular to the rows and columns of the target area, i.e., such that a row of nozzles is swept with each scan in the direction of each row of target area, across the target area of the substrate Each column of (for example, along direction 339). This need not be the case for all embodiments. To gain motion efficiency, subsequent scans or passes then reverse this motion direction, addressing the target areas of the columns in reverse order, ie along direction 340 .
用在放大图中看到在图的右侧的突出显示区域341来描绘本示例中的目标区的布置。也就是说,用数字343来表示两行像素中的每一个,每个像素具有红色、绿色和蓝色色彩部件,而用数字345来表示与扫描方向(339/340)正交的像素列中的每一个。在左上角的像素中,看到红色、绿色和蓝色部件将占据不同的目标区347、349和351作为区域的各重叠阵列的一部分。每个像素中的每个色彩部件还可以具有关联的电子装置,例如数字353所表示的。在要制造的设备是背光式显示器(例如,作为常规类型LCD电视的一部分)的情况下,这些电子装置可以控制用红色、绿色和蓝色区域过滤的光的选择性掩模。在要制造的设备是新型显示器的情况下,亦即红色、绿色和蓝色区域直接地产生具有相应色彩特性的其自己的光,这些电子装置353可以包括图案化电极和对期望的光产生和光特性有所贡献的其它材料层。 The placement of the target zone in this example is depicted with the highlighted area 341 seen on the right side of the figure in the enlarged view. That is, numeral 343 is used to designate each of the two rows of pixels, each pixel having red, green and blue color components, and numeral 345 is used to designate the pixel in the column orthogonal to the scan direction (339/340). of each. In the top left pixel, it is seen that the red, green and blue components will occupy different target regions 347, 349 and 351 as part of respective overlapping arrays of regions. Each color component in each pixel may also have associated electronics, such as indicated by numeral 353 . In cases where the device to be manufactured is a backlit display (for example, as part of a conventional type LCD television), these electronics can control the selective masking of light filtered with red, green and blue regions. In case the device to be manufactured is a new type of display, i.e. the red, green and blue regions directly generate their own light with corresponding color characteristics, these electronics 353 may include patterned electrodes and controls for the desired light generation and light Additional material layers that contribute to the properties.
图3C提供从直线C-C的视点相对于图3B的打印头组件取得的打印头373和基底375的闭合截面图。。更具体地,数字371一般地表示打印机,而数字378表示一行打印喷嘴377。使用带括号的数字、例如(1)、(2)、(3)等来指定每个喷嘴。典型打印头通常具有多个此类喷嘴,例如64、128或另一数目;在一个实施例中,可以以一行或多行来布置1000-10000或更多个喷嘴。如前所述,使本实施例中的打印头相对于基底移动以在箭头385所参考的方向上实现扫描之间的几何步幅或偏移。根据基底运动机制,可以使基底与此方向正交(例如,相对于图3C的视图,进入页面和从其中出来)地移动,并且在某些实施例中,还在箭头385所表示的方向上。请注意,图3C还示出了基底的各目标区379的列383,在这种情况下,布置为“阱”,其将接收沉积的油墨并将沉积的油墨保持在各阱的结构界限内。出于图3C的目的将假设仅表示一个油墨(例如,每个所描绘的阱379表示显示器的仅一个色彩,诸如红色色彩部件,其它色彩部件和关联的阱并未示出)。请注意,附图并不是按比例的,例如,看到喷嘴被从(1)至(16)编号,同时看到阱被从(A)至(ZZ)标明字母,表示702个阱。在某些实施例中,喷嘴将对准到各阱,使得具有16个喷嘴的所描绘打印头将使用从图3C的角度看进入页面和从其中出来的相对打印头/基底运动的扫描同时地在多达16个阱中在箭头381的方向上沉积油墨。在其它实施例中,如之前所述(例如,参考图1B),喷嘴密度将比目标区密度大得多,并且随着任何扫描或通过,喷嘴的子集(例如,一个至多个的一组,取决于哪些喷嘴穿过每个目标区)将被用于至每个相应的目标区的沉积。例如,再次地使用十六个喷嘴的说明性示例,可以使用喷嘴(1)—(3)来在第一目标区中沉积油墨且可以同时地使用喷嘴(7—10)来在第二目标区中沉积油墨是可能的,针对给定的通过以相互排斥的方式。 FIG. 3C provides a closed cross-sectional view of printhead 373 and substrate 375 taken with respect to the printhead assembly of FIG. 3B from the viewpoint of line C-C. . More specifically, numeral 371 generally designates a printer, while numeral 378 designates a row of print nozzles 377 . Designate each nozzle using a number in parentheses such as (1), (2), (3), etc. A typical printhead typically has a plurality of such nozzles, such as 64, 128 or another number; in one embodiment, 1000-10000 or more nozzles may be arranged in one or more rows. As before, the printhead in this embodiment is moved relative to the substrate to achieve a geometric step or offset between scans in the direction referenced by arrow 385 . Depending on the substrate motion mechanism, the substrate may be moved orthogonally to this direction (e.g., into and out of the page with respect to the view of FIG. 3C ), and in some embodiments, also in the direction indicated by arrow 385 . Note that Figure 3C also shows columns 383 of each target area 379 of the substrate, in this case arranged as "wells" that will receive deposited ink and keep the deposited ink within the structural confines of each well . For the purposes of FIG. 3C it will be assumed that only one ink is represented (eg, each depicted well 379 represents only one color of the display, such as a red color component, other color components and associated wells are not shown). Note that the drawings are not to scale, for example, see the nozzles numbered from (1) to (16) while seeing the wells lettered from (A) to (ZZ), representing 702 wells. In some embodiments, nozzles will be aligned to each well such that the depicted printhead with 16 nozzles will simultaneously scan using relative printhead/substrate motion into and out of the page from the perspective of FIG. 3C Ink is deposited in the direction of arrow 381 in up to 16 wells. In other embodiments, as previously described (see, for example, FIG. 1B ), the nozzle density will be much greater than the target area density, and with any scan or pass, a subset of nozzles (for example, a group of one to many , depending on which nozzles pass through each target zone) will be used for deposition to each respective target zone. For example, again using the illustrative example of sixteen nozzles, nozzles (1)-(3) may be used to deposit ink in a first target zone and nozzles (7-10) may be used simultaneously to deposit ink in a second target zone. It is possible to deposit ink in a mutually exclusive manner for a given pass.
常规地,可能操作打印机使用所描绘的十六个喷嘴来同时地在多达十六行的阱中沉积油墨,根据需要随着后续的扫描而来回移动,直至例如在每个阱中沉积五个液滴,打印头根据需要使用固定步幅前进,该固定步幅是扫描所穿过的刈幅的宽度的整数倍。然而,由本公开提供的技术以适合于针对每个阱产生特定填充体积的组合利用由不同的喷嘴产生的液滴体积方面的固有变化。不同的实施例依赖于不同的技术来实现这些组合。在一个实施例中,改变几何步幅以实现不同的组合,并且自由地是除打印头刈幅所描述的宽度的整数倍之外的某个东西。例如,如果适合于在图3C的各阱379中沉积所选的各组液滴组合,则几何步幅可以是打印头的刈幅的1/160th,在本示例中,其实际上表示阱的一行的十分之一的间距的基底与打印头之间的相对位移。视每个阱中期望的液滴的特定组合而定,下移偏移或几何步幅可以是不同的,例如,打印头刈幅的5/16ths的假定偏移,对应于阱的整数间距;此变化可以根据需要以正和负步幅继续以沉积油墨以获得期望的填充体积。请注意,可以由许多不同类型或尺寸的偏移,并且步幅尺寸在扫描之间不需要是固定的或者是阱间距的特定分数。然而,在许多制造应用中,期望使打印时间最小化,以便使生产速率最大化,并且尽可能地使每单位制造成本最小化;为此,在特定实施例中,以使扫描的总数、几何步幅的总数、偏移或几何步幅的尺寸以及几何步幅所穿过的累计距离最小化的方式对打印头运动进行规划和排序。这些及其它措施可以单独地、一起或者以任何期望的组合使用以使总打印时间最小化。在其中使用喷嘴的独立可偏移行(例如,多个打印头)的实施例中,可以部分地用打印头或喷嘴行之间的偏移来表示几何步幅;与打印头部件的总偏移(例如,用于打印头组件的固定步幅)组合的此类偏移可以用来实现可变尺寸几何步幅并因此向每个阱中沉积液滴组合。在其中单独地使用喷嘴驱动波形中的变化的实施例中,可以使用常规的固定步幅,液滴体积变化是使用多个打印头和/或多次打印头通过而实现的。如下面将注意到的,在一个实施例中,可以在液滴之间针对每个喷嘴对喷嘴驱动波形进行编程,因此允许每个喷嘴对一行阱内的每个阱产生并贡献各液滴体积。 Conventionally, it is possible to operate the printer using the sixteen depicted nozzles to simultaneously deposit ink in up to sixteen rows of wells, moving back and forth with subsequent scans as necessary until, for example, five are deposited in each well. Droplets, the printhead advances as needed using a fixed stride that is an integer multiple of the width of the swath across which the scan is made. However, the techniques provided by this disclosure take advantage of the inherent variation in droplet volume produced by different nozzles in combinations suitable to produce specific fill volumes for each well. Different embodiments rely on different techniques to achieve these combinations. In one embodiment, the geometric strides are varied to achieve different combinations, and are freely something other than an integer multiple of the width described by the printhead swath. For example, the geometric step may be 1/160th of the swath of the printhead, which in this example actually represents well The relative displacement between the substrate and the printhead is one-tenth of the pitch of a row. Depending on the specific combination of droplets desired in each well, the downshift offset or geometric step can be different, e.g. an assumed offset of 5/16 ths of the swath of the printhead, corresponding to an integer pitch of the wells ; This change can be continued in positive and negative steps as needed to deposit ink to achieve the desired fill volume. Note that offsets of many different types or sizes are possible, and that the step size need not be fixed between scans or be a specific fraction of the well spacing. In many manufacturing applications, however, it is desirable to minimize print time in order to maximize production rate and, where possible, minimize cost per unit of manufacturing; to this end, in certain embodiments, such that the total number of scans, geometric Printhead motion is planned and sequenced in such a way that the total number of steps, the size of the offset or geometric steps, and the cumulative distance traversed by the geometric steps are minimized. These and other measures can be used individually, together, or in any desired combination to minimize the total printing time. In embodiments where independently shiftable rows of nozzles are used (e.g., multiple printheads), the geometric stride may be represented in part by offsets between printhead or nozzle rows; Combinations of offsets (eg, for a fixed stride of a printhead assembly) such offsets can be used to achieve variable size geometry strides and thus deposit combinations of droplets into each well. In embodiments where variations in nozzle drive waveforms are used solely, conventional fixed steps may be used, drop volume variations are achieved using multiple printheads and/or multiple printhead passes. As will be noted below, in one embodiment, the nozzle drive waveform can be programmed for each nozzle between drops, thus allowing each nozzle to generate and contribute individual drop volumes to each well within a row of wells .
图4A—4D用来提供关于在实现期望填充体积时对特定液滴体积的依赖性的附加细节。 Figures 4A-4D serve to provide additional detail regarding the dependence on a particular droplet volume in achieving a desired fill volume.
图4A呈现打印头404的说明性视图401和在打印头401下面看到的两个相关图示。可选地在提供打印头相对于基底的非固定几何步幅的实施例中使用该打印头,并且因此使用数字405来表示使特定打印头喷嘴(例如,具有图1中描绘的喷嘴(1)—(5)的总共16个喷嘴)与不同目标区(在本示例中五个,413、414、415、416和417)对准的偏移。注意力回到图1A的示例,如果喷嘴(1)—(16)分别地产生流体油墨的9.80、10.01、9.89、9.96、10.03、9.99、10.08、10.00、10.09、10.07、9.99、9.92、9.97、9.81 10.04和9.95 pL的液滴体积(例如,平均液滴体积),并且如果期望每个目标区沉积50.00pL,此值的百分之±0.5,则可以使用打印头来在五次通过或扫描中沉积液滴,分别地使用0、-1、-1、-2和-4的几何步幅,导致49.82、49.92、49.95、49.90和50.16pL的每个区域的(期望的平均)总填充值,如图中所描绘的;很明显这在用于每个所描绘目标区的49.75—50.25pL的期望容限范围内。相对于先前的位置以递增方式来表示本示例中的每个步幅,但也可以使用其它措施。取决于所期待的每液滴体积的变化,仍可以实际上确保填充将符合期望容限范围;例如,通过采取上述很多液滴测量(例如每喷嘴20-30次液滴测量或更多),可以使得每个液滴体积的期待方差非常小,允许所期待的合成体积的分布上的高置信度。因此,如看到的,可以使用以取决于各液滴体积和用于每个目标区的期望填充的故意方式进行的液滴组合来实现精确的已调节填充,具有高度的可靠性。 FIG. 4A presents an illustrative view 401 of a printhead 404 and two related illustrations seen below the printhead 401 . This printhead is optionally used in embodiments that provide a non-fixed geometric stride of the printhead relative to the substrate, and therefore uses numeral 405 to denote that a particular printhead nozzle (e.g., with nozzle (1) depicted in FIG. 1 - Offsets of (a total of 16 nozzles of 5) aligned with different target zones (five in this example, 413, 414, 415, 416 and 417). Returning attention to the example of Figure 1A, if the nozzles (1)-(16) respectively produce 9.80, 10.01, 9.89, 9.96, 10.03, 9.99, 10.08, 10.00, 10.09, 10.07, 9.99, 9.92, 9.97, 9.81 Drop volumes of 10.04 and 9.95 pL (e.g., average drop volume), and if it is desired to deposit 50.00 pL per target area, ±0.5 percent of this value, the printhead can be used to medium-deposited droplets, using geometric strides of 0, -1, -1, -2, and -4, respectively, resulting in (expected mean) total fill values per region of 49.82, 49.92, 49.95, 49.90, and 50.16 pL , as depicted in the figure; clearly this is within the expected tolerance range of 49.75-50.25 pL for each delineated target zone. Each stride in this example is expressed incrementally relative to the previous position, although other measures could be used. Depending on the desired variation in volume per droplet, it is still possible to virtually ensure that the fill will be within the desired tolerance range; for example, by taking as many droplet measurements as described above (e.g. 20-30 droplet measurements per nozzle or more), The expected variance of the volumes per droplet can be made very small, allowing high confidence in the distribution of the expected resultant volumes. Thus, as seen, precise tuned filling can be achieved with a high degree of reliability using droplet combination in a deliberate manner dependent on the individual droplet volumes and the desired filling for each target zone.
请注意,此图可以用来表示喷嘴驱动波形变化和/或多个打印头的使用。例如,如果喷嘴参考标号(1)—(16)参考由十六个不同的驱动波形(即,使用波形1—16)产生的用于单个喷嘴的液滴体积,则理论上可以简单地通过使用不同的驱动波形、例如用于目标区413的波形号1、2、3、5、和9来获得每个区域填充体积。在实践中,由于处理变化可导致不同的每个喷嘴特性,则系统将针对每个波形测量用于每个喷嘴的液滴体积,并且将基于此而智能地规划液滴组合。在其中喷嘴参考标号(1)—(15)参考多个打印头(例如,参考标号(1)—(5)参考第一打印头,参考标号(6)—(10)参考第二打印头且参考标号(11)—(15)参考第三打印头)的实施例中,可以使用打印头之间的偏移来减少通过或扫描的次数;例如,最右侧目标区417可以具有在一次通过中沉积的三个液滴,包括10.03、10.09和9.97pL的液滴体积(打印头(1),0偏移;打印头(2),+1偏移;以及打印头(3),+2偏移)。应显而易见的是这些不同的技术的组合促进特定体积液滴的许多可能组合以在容限范围内实现特定填充体积。请注意,在图4A中,目标区之间的聚合油墨填充体积的变化是小的且在容限内,即在49.82pL至50.16pL的范围内。 Note that this graph can be used to represent nozzle drive waveform variations and/or the use of multiple printheads. For example, if nozzle reference numbers (1)-(16) refer to the droplet volumes for a single nozzle produced by sixteen different drive waveforms (i.e., using waveforms 1-16), then theoretically one can simply use Different drive waveforms, eg, waveform numbers 1, 2, 3, 5, and 9 for the target zone 413, are used to achieve each region fill volume. In practice, since process variations can result in different per-nozzle characteristics, the system will measure the drop volume for each nozzle for each waveform, and will intelligently plan drop combinations based on this. where nozzle references (1)-(15) refer to a plurality of printheads (eg, references (1)-(5) refer to a first printhead, references (6)-(10) refer to a second printhead and In the embodiments of reference numerals (11)-(15) referring to the third printhead), the offset between the printheads can be used to reduce the number of passes or scans; for example, the rightmost target zone 417 can have Three droplets deposited in , including droplet volumes of 10.03, 10.09, and 9.97 pL (printhead (1), offset 0; printhead (2), +1 offset; and printhead (3), +2 offset). It should be apparent that combinations of these different techniques facilitate many possible combinations of specific volume droplets to achieve specific fill volumes within tolerances. Note that in Figure 4A, the variation in polymerized ink fill volume between target zones is small and within tolerance, ie in the range of 49.82 pL to 50.16 pL.
图4B示出了一系列打印头扫描的说明性视图421,其中,每次扫描垂直于箭头422的方向,其中,喷嘴由不同矩形或条形表示,例如由标号423-430表示。结合此图,应假设打印头/基底相对运动在可变尺寸几何步幅的序列中前进。再次地注意,通常,每个步幅将指定扫过多个列的目标区(例如,像素)超过在图页的平面上表示(并用参考标号413—417表示)的单列的五个区域的扫描。按照自上而下的顺序示出了扫描,包括其中看到打印头相对于基底向右移位、使得仅喷嘴(1)和(2)分别地与目标区416和417对准的第一扫描423。在每次打印扫描描述(诸如方框423)内,圆圈用实心黑色填充来表示每个喷嘴,以表示当喷嘴在扫描期间在具体描绘的目标区上时将使喷嘴发射,或者是“空心的”,亦即用白色填充,以表示在相关时间将不使喷嘴发射(但对于在扫描上遇到的其它目标区而言可能是)。请注意,在本实施例中,以二元方式使每个喷嘴发射,即根据任何可调整参数而使每个喷嘴发射或不发射,例如以针对在扫描期间遇到的每个目标区沉积预定液滴体积。可选地针对本文所述的任何实施例(亦即,例如,在其中使用多个发射波形的情况下,在液滴之间调整波形参数)采用“二元”发射方案。在第一次通过423中,看到使喷嘴(1)发射以向第二最右目标区中沉积9.80pL液滴,同时使喷嘴(2)发射以向最右目标区417中沉积10.01pL液滴。扫描继续扫过其它列的目标区(例如,其它行的像素阱),适当地沉积墨滴。在第一次通过423完成之后,打印头前进-3的几何步幅,其使打印头相对于基底向左移动,使得喷嘴(1)现在将在与第一扫描相反的方向上的第二扫描424期间穿过目标区413。在此第二扫描424期间,喷嘴(2)、(3)、(4)和(5)还将分别地穿过区域414、415、 416和417。用黑色填充的圆圈看到在适当的时间将使喷嘴(1)、(2)、(3)和(5)发射以分别地沉积9.80pL、10.01pL、9.89pL和10.03pL的液滴体积,对应于喷嘴(1)、(2)、(3)和(5)的固有特性。还请注意,在任何一次通过中,用来沉积油墨的一行喷嘴中的喷嘴将以相互排斥的方式向各目标区中这样做,例如对于通过424而言,使用喷嘴(1)来向目标区413(但目标区414—417中没有一个)中沉积油墨,使用喷嘴(2)来在目标区414(但区域413或415—417中没有一个)中沉积油墨,使用喷嘴(3)来在目标区415(但区域413—414或416—417中没有一个)中沉积油墨,并且使用喷嘴(5)来在目标区417(但区域413—416中没有一个)中沉积油墨。使用数字425表示的第三扫描使打印头有效地前进一行的目标区(-1几何步幅),使得喷嘴(2)、(3)、(4)、(5)和(6)将分别地在扫描期间穿过区域413、414、415、416和417;实心填充喷嘴图形表示在此通过期间,喷嘴(2)—(6)中的每一个将被致动而发射液滴,分别地产生10.01、9.89、9.96、10.03和9.99pL的所期望的液滴体积。 Figure 4B shows an illustrative view 421 of a series of printhead scans, where each scan is perpendicular to the direction of arrow 422, where the nozzles are represented by different rectangles or bars, for example by reference numerals 423-430. In conjunction with this figure, it should be assumed that the printhead/substrate relative motion proceeds in a sequence of variable-sized geometric steps. Note again that, in general, each stride will specify a sweep across multiple columns of target areas (e.g., pixels) over a single column of five regions represented on the plane of the page (and denoted by reference numerals 413-417) . The scans are shown in top-down order, including the first scan where the printhead is seen shifted to the right relative to the substrate such that only nozzles (1) and (2) are aligned with target zones 416 and 417 respectively 423. Within each print scan description (such as box 423), each nozzle is represented by a circle filled with solid black to indicate that the nozzle will fire when it is over a specifically delineated target area during the scan, or "hollow". ”, that is filled with white, to indicate that the nozzle will not be firing at the relevant time (but it may be for other target areas encountered on the scan). Note that in this embodiment, each nozzle is fired in a binary fashion, that is, each nozzle is made to fire or not fire according to any adjustable parameter, such as to deposit a predetermined Droplet volume. A "binary" firing scheme is optionally employed for any of the embodiments described herein (ie, eg, adjusting waveform parameters between droplets where multiple firing waveforms are used). In the first pass 423, nozzle (1) is seen firing to deposit a 9.80 pL droplet into the second rightmost target zone while nozzle (2) is fired to deposit 10.01 pL into the rightmost target zone 417 drop. Scanning continues across other columns of target areas (eg, other rows of pixel wells), depositing drops as appropriate. After the first pass 423 is complete, the printhead advances a geometric step of -3, which moves the printhead to the left relative to the substrate, so that the nozzle (1) will now be in the second scan in the opposite direction to the first scan Go through target zone 413 during 424 . During this second scan 424 the nozzles ( 2 ), ( 3 ), ( 4 ) and ( 5 ) will also pass through regions 414 , 415 , 416 and 417 respectively. The black filled circles see that nozzles (1), (2), (3) and (5) will be fired at the appropriate times to deposit droplet volumes of 9.80pL, 10.01pL, 9.89pL and 10.03pL respectively, Corresponds to the intrinsic properties of nozzles (1), (2), (3) and (5). Also note that in any one pass, nozzles in a row of nozzles used to deposit ink will do so in a mutually exclusive manner into each target zone, e.g. for pass 424 nozzle (1) is used to 413 (but none of target areas 414-417), use nozzle (2) to deposit ink in target area 414 (but none of areas 413 or 415-417), use nozzle (3) to Ink is deposited in zone 415 (but none of areas 413-414 or 416-417), and the nozzle (5) is used to deposit ink in target zone 417 (but none of areas 413-416). The third scan, represented by numeral 425, advances the printhead effectively by one line of the target zone (-1 geometric steps), so that nozzles (2), (3), (4), (5) and (6) will respectively Areas 413, 414, 415, 416, and 417 are traversed during the scan; the solid filled nozzle graphic indicates that during this pass, each of the nozzles (2)-(6) will be actuated to fire droplets, respectively producing Desired droplet volumes of 10.01, 9.89, 9.96, 10.03 and 9.99 pL.
如果该打印处理在此时间点停止,则区域417将例如具有对应于三个液滴的30.03pL(10.01pL+10.03pL+9.99pL)的填充,而区域413将具有19.81pL(9.80pL+10.01pL)的填充,对应于两个液滴。请注意,在一个实施例中的扫描图案遵循用图3B的箭头339和340表示的来回图案。在跨这些目标区的通过426—430(或多列的多个此类区域的扫描)之后分别地沉积:(a)区域413中的10.01pL、0.00pL、0.00pL、10.08pL和10.09pL液滴,对应于喷嘴(2)、(3)、(4)、(7)和(9)在连续扫描中的通过;(b)区域414中的0.00pL、0.00pL、10.03pL、10.00pL和10.07pL液滴,对应于喷嘴(3)、(4)、(5)、(8)和(10)在连续扫描中的各通过;(c)区域415中的9.89pL、9.96pL、10.03pL、9.99pL、10.09pL和0.00pL液滴,对应于喷嘴(4)、(5)、(6)、(9)和(11)在连续扫描中的通过;(d)区域416中的0.00pL、9.99pL、10.08pL、10.07pL和0.00pL液滴,对应于喷嘴(5)、(6)、(7)、(10)和(12)在连续扫描中的通过;以及(e)区域417中的9.99pL、0.00pL、10.00pL、0.00pL和0.00pL液滴,对应于喷嘴(6)、(7)、(8)、(11)和(13)在连续扫描中的通过。再次地,请注意,在仅单个发射波形的情况下(即,使得其液滴体积特性在扫描之间并未改变)且以二元方式使用本示例中的喷嘴,例如在第五扫描427中,喷嘴(7)未发射,未产生用于区域417的液滴(0.00pL),而在后续的扫描时,其发射,产生用于区域416的10.08pL液滴。 If the printing process were to stop at this point in time, area 417 would for example have a fill of 30.03 pL (10.01 pL + 10.03 pL + 9.99 pL) corresponding to three droplets, while area 413 would have a fill of 19.81 pL (9.80 pL + 10.01 pL) pL), corresponding to two droplets. Note that the scanning pattern in one embodiment follows a back and forth pattern represented by arrows 339 and 340 of Figure 3B. After passing 426-430 (or multiple columns of scans of such areas) across these target areas, respectively deposit: (a) 10.01 pL, 0.00 pL, 0.00 pL, 10.08 pL, and 10.09 pL of liquid in area 413 drops, corresponding to the passage of nozzles (2), (3), (4), (7) and (9) in successive scans; (b) 0.00pL, 0.00pL, 10.03pL, 10.00pL and 10.07pL droplets, corresponding to each pass of nozzles (3), (4), (5), (8) and (10) in consecutive scans; (c) 9.89pL, 9.96pL, 10.03pL in region 415 , 9.99pL, 10.09pL and 0.00pL droplets, corresponding to the passage of nozzles (4), (5), (6), (9) and (11) in successive scans; (d) 0.00pL in region 416 , 9.99pL, 10.08pL, 10.07pL and 0.00pL droplets, corresponding to the passage of nozzles (5), (6), (7), (10) and (12) in successive scans; and (e) area 417 The 9.99pL, 0.00pL, 10.00pL, 0.00pL and 0.00pL droplets in , correspond to the passage of nozzles (6), (7), (8), (11) and (13) in successive scans. Again, note that the nozzle in this example is used with only a single firing waveform (i.e. such that its drop volume characteristics do not change between scans) and in a binary fashion, such as in the fifth scan 427 , the nozzle ( 7 ) did not fire, producing no droplet (0.00 pL) for region 417 , while on subsequent scans it fired, producing 10.08 pL droplet for region 416 .
如在页面的最底部分处的图表中看到的,此假定扫描处理产生49.99pL、50.00pL、49.96pL、49.99pL和50.02pL的期望的聚合填充,很容易在目标值(50.00pL)加或减百分之½(49.75pL—50.25pL)的期望范围内。请注意,在本示例中,使用喷嘴针对每次扫描大体上同时地向多个目标区中沉积油墨,规划用于每个所描绘区域(即,如数字413-417处的图形所标识的)的液滴体积的特定组合,使得可以随着多次通过而在每个目标区中沉积多个液滴。八次所描绘的通过一起与在指定容限范围内产生填充体积的特定各组(或特定组合)的液滴体积相关(例如,在区域413的情况下来自喷嘴(1)、(2)、(2)、(7)和(9)的液滴的组合),但是也可能使用其它的各组可能液滴。例如,对于区域413而言,将替换地可以使用来自喷嘴(2)的五个液滴(5×10.01pL=50.05pL);然而,此替换将是低效的,因为将要求附加扫描,因为(例如)在此时间期间不能同时地广泛地使用喷嘴(3)(9.89pL)(即,来自来自此喷嘴的五个液滴的结果将是5×9.89=49.45pL,在期望容限范围之外)。在由图4B接替的示例中,选择特定的扫描及其序列,从而使用较少的打印时间、较少通过次数、较小的几何步幅和潜在地小的聚合几何步幅距离或者根据某个其它准则。请注意,所描绘的示例仅仅用于叙述讨论,并且可能可以进一步将使用所呈现液体体积的扫描次数进一步减少至少于八次扫描而获得目标填充。在某些实施例中,以避免具有所需扫描次数(例如,在打印头旋转九十度的情况下每行目标区一次扫描)的最坏情况情形的方式来规划扫描处理。在其它实施例中,在基于一个或多个最大值或最小值的程度上应用此优化,例如,以在对于给定油墨而言在给定用于每个目标区的所有可能液滴组合的情况下导致可能的最少次数的扫描的方式来规划扫描。 As seen in the graph at the very bottom of the page, this hypothetical scan process produces the desired aggregate fill of 49.99pL, 50.00pL, 49.96pL, 49.99pL, and 50.02pL, easily added at the target value (50.00pL). Or minus ½ percent (49.75pL—50.25pL) within the desired range. Note that in this example, nozzles are used to deposit ink substantially simultaneously into multiple target areas for each scan, planned for each delineated area (i.e., as identified by the graphics at numerals 413-417) The specific combination of droplet volumes allows for the deposition of multiple droplets in each target zone over multiple passes. Together the eight depicted passes are related to drop volumes for particular sets (or combinations) that produce fill volumes within specified tolerances (e.g., in the case of region 413 from nozzles (1), (2), (2), (7) and (9)), but it is also possible to use other possible sets of droplets. For example, for region 413, five droplets (5 x 10.01pL = 50.05pL) from nozzle (2) would alternatively be used; however, this substitution would be inefficient as an additional scan would be required because (eg) Nozzle (3) (9.89pL) cannot be used extensively at the same time during this time (i.e. the result from five droplets from this nozzle would be 5 x 9.89 = 49.45pL, within the desired tolerance range outside). In the example taken over from Figure 4B, specific scans and their sequences are chosen to use less printing time, fewer passes, smaller geometric strides and potentially small aggregated geometric stride distances or according to some other criteria. Note that the depicted example is for illustrative discussion only, and that it may be possible to further reduce the number of scans using the presented liquid volume to less than eight scans to achieve the target fill. In some embodiments, the scan process is planned in a manner to avoid a worst case scenario with the required number of scans (eg, one scan per row of target areas with the printhead rotated ninety degrees). In other embodiments, this optimization is applied to an extent based on one or more maxima or minima, e.g. Schedule scans in a way that results in the fewest number of scans possible.
图4C提出与图4B相似的示图,但其与对于每个喷嘴使用不同喷嘴驱动波形对应。如将领会那样,在喷墨打印头中,典型地使用压电激励器来喷出油墨,压电激励器延伸并且接触流体库,以从相应打印喷嘴排出油墨。油墨通常在稍微负值压力下保存在库中,以避免使得喷嘴板泛流,其中,电压脉冲施加到激励器,以喷出具有取决于电压脉冲的大小和形状的性质的液滴。不同脉冲特性可以因此产生所喷出的液滴的不同体积、速度和其它特性。在图4C中,应假定不同的预先规划的电压脉冲波形已经确定为产生一系列不同液滴体积(以及关联液滴体积概率分布)。扫描总体上由标号441指代,其中,扫描443-447中的每一个产生在与条块443-447垂直的方向上;在每个扫描条块(例如框443)内,标号指定表示特定打印头喷嘴,字母指定表示用于特定喷嘴的不同波形。例如,标号“1-A”表示对于用于喷嘴(1)的激励器所使用的第一驱动波形“A”,而标号“1-C”表示对于用于喷嘴(1)的激励器所使用的第三驱动波形“C”。注意,在校准过程期间,可以测试任何期望数量的波形,以选择产生匹配理想目标液滴体积的期待液滴体积(或多个液滴集合)的波形。在图4C中,例如,测试用于喷嘴(1)的多个波形可以产生两个特定波形的结果(例如,“A”和“C”分别产生接近期望10.00pL平均值(例如9.94pL平均值和10.01pL平均值)的期待液滴体积)。也就是说,如果通过确切地匹配理想液滴体积(例如10.00pL)的测试无法产生期待平均值,则可以选择囊括期望的理想化体积(例如对于喷嘴(1)、(3)、(4)和(5)所描述的9.94pL/10.01pL、9.99pL/10.01pL、10.03pL/9.95pL以及9.95/10.04pL)的两个或更多个波形。尽管关于上述示例,可以使用不同喷嘴驱动波形来组合不同液滴,以具体地规划处于期望容限内的用于每个目标区的聚合填充。注意,对于图4C的示例,无需在各次扫描之间偏移打印头组件以实现这些组合;然而,在很多实施例中,多个喷嘴波形的使用可以与分数刈迹宽度偏移组合,以求得很多可以用于使用最小数量扫描(并且因此,最小每基底打印时间)来产生目标填充的可能液滴组合。在图4C中,可见,所描述的处理产生非常严整地分组的假设填充(例如49.99pL-50.02pL期待填充体积)。 Figure 4C presents a diagram similar to Figure 4B, but corresponding to the use of different nozzle drive waveforms for each nozzle. As will be appreciated, in inkjet printheads ink is typically ejected using piezoelectric actuators that extend and contact fluid reservoirs to eject ink from respective print nozzles. Ink is typically held in the reservoir at slightly negative pressure to avoid flooding the nozzle plate, where a voltage pulse is applied to the actuator to eject a droplet with properties dependent on the size and shape of the voltage pulse. Different pulse characteristics can thus produce different volumes, velocities and other characteristics of the ejected droplets. In Figure 4C, it should be assumed that different pre-planned voltage pulse waveforms have been determined to produce a range of different drop volumes (and associated drop volume probability distributions). Scans are generally referred to by reference numeral 441, wherein each of scans 443-447 occurs in a direction perpendicular to bars 443-447; within each scan bar (e.g., box 443), the reference designation represents a particular print Head nozzles, letter designations denote different waveforms for a particular nozzle. For example, the designation "1-A" indicates the first drive waveform "A" used for the actuator for nozzle (1), and the designation "1-C" indicates the first driving waveform "A" for the actuator for nozzle (1). The third drive waveform "C". Note that any desired number of waveforms may be tested during the calibration process to select a waveform that produces a desired drop volume (or collection of drops) that matches the ideal target drop volume. In Figure 4C, for example, testing multiple waveforms for nozzle (1) can yield results for two particular waveforms (e.g., "A" and "C" each yielding close to the desired 10.00pL average (e.g., 9.94pL average and expected droplet volume of 10.01 pL average). That is, if testing to exactly match the ideal drop volume (e.g. 10.00pL) does not yield the expected average, there is an option to include the desired idealized volume (e.g. for nozzles (1), (3), (4) and two or more waveforms of 9.94pL/10.01pL, 9.99pL/10.01pL, 10.03pL/9.95pL, and 9.95/10.04pL as described in (5). Notwithstanding the above examples, different nozzle drive waveforms may be used to combine different droplets to specifically plan aggregate fill for each target zone within desired tolerances. Note that for the example of FIG. 4C, it is not necessary to offset the printhead assembly between scans to achieve these combinations; however, in many embodiments, the use of multiple nozzle waveforms can be combined with fractional trace width offsets to achieve A number of possible droplet combinations are found that can be used to produce the target fill using the minimum number of scans (and thus minimum print time per substrate). In FIG. 4C , it can be seen that the described process produces very neatly grouped hypothetical fills (eg, 49.99 pL - 50.02 pL expected fill volumes).
图4D与图4A类似地呈现打印头474的说明性视图471和在打印头474下面看到的两个相关图示,但是在这里具有并未特殊地对准到特定阱的喷嘴。可选地在提供打印头相对于基底的非固定几何步幅的实施例中使用该打印头,并且因此使用数字472来表示使特定打印头喷嘴(例如,具有图中描绘的喷嘴(1)-(5)的总共16个喷嘴)与不同目标区(在本示例中两个,474和475)对准的偏移。再次地遵循图4A的假定,如果喷嘴(1)—(16)分别地产生流体油墨的9.80、10.01、9.89、9.96、10.03、9.99、10.08、10.00、10.09、10.07、9.99、9.92、9.97、9.81、10.04和9.95 pL的液滴体积,并且如果期望每个目标区沉积50.00pL,此值的百分之±0.5,则可以使用打印头来在三次通过或扫描中沉积液滴,分别地使用0、-1和-3的几何步幅,并且每次扫描向每个目标区中发射一个或两个液滴。这将导致49.93和50.10的每个区域的总填充值,如在图中描绘的,很明显其再次地在用于每个所描绘目标区域的49.75—50.25pL的期望容限范围内。因此,如看到的,该方法同样地适用于并未对准到阱的喷嘴的情况,并且可以使用以取决于各液滴体积和用于每个目标区的期望填充的故意方式进行的液滴组合来实现精确的已调节填充。此外,正如上文针对图4A的假定所述,可以使用此图来表示喷嘴驱动波形变化和/或多个打印头的使用。例如,如果喷嘴参考标号(1)—(16)参考用于由十六个不同驱动波形(即,使用波形1—16)产生的单个喷嘴的液滴体积,则理论上可以简单地通过使用不同的驱动波形来获得每个区域填充体积。本领域的技术人员可以看到如上文参考图4B—4C所述的相同方法也同样地适用于并未特殊地对准到阱的喷嘴的情况,即,各组的一个或多个喷嘴被用于到各阱中的同时液滴沉积。最后请注意,图4A—4D还表示相对简单的示例;在典型应用中,可存在数百个至数千个喷嘴以及数百万个目标区。例如,在其中在当前的高清晰度电视屏幕的每个像素色彩部件的制造中(例如,每个像素具有红色、绿色和蓝色阱,像素被布置在垂直分辨率的1080个水平线和水平分辨率的1920个垂直线中)应用公开技术的应用中,存在可能接收油墨的约六百万个阱(即,两百万个阱中的每一个三个重叠阵列)。预期下一代电视将使此分辨率增加四倍或更多。在此类处理中,为了改进打印的速度,打印头可将数千个喷嘴用于打印,例如,通常将存在惊人数目的可能打印处理变更。上文提出的简化示例用来介绍概念,但是应注意的是,给定在典型组合中提出的惊人数目,现实电视应用所表示的变更是相当复杂的,打印优化通常由软件且使用复杂的数学操作来应用。图5—7用来提供如何可以应用这些操作的非限制性示例。 Figure 4D presents an illustrative view 471 of a printhead 474 and two related illustrations seen below the printhead 474 similarly to Figure 4A, but here with nozzles not specifically aligned to a particular well. This printhead is optionally used in embodiments that provide a non-fixed geometric stride of the printhead relative to the substrate, and therefore uses numeral 472 to denote that a particular printhead nozzle (eg, having nozzle (1) depicted in the figure - A total of 16 nozzles of (5)) are aligned with different target zones (two in this example, 474 and 475). Again following the assumption of Figure 4A, if the nozzles (1)-(16) respectively produce 9.80, 10.01, 9.89, 9.96, 10.03, 9.99, 10.08, 10.00, 10.09, 10.07, 9.99, 9.92, 9.97, 9.81 , 10.04, and 9.95 pL drop volumes, and if it is desired to deposit 50.00 pL per target area, ±0.5 percent of this value, the printhead can be used to deposit droplets in three passes or scans, respectively, using 0 , -1 and -3 geometric steps, and each scan fired one or two droplets into each target zone. This would result in total fill values per region of 49.93 and 50.10, as depicted in the figure, again clearly within the desired tolerance range of 49.75 - 50.25 pL for each depicted target region. Thus, as seen, the method is equally applicable to the case of nozzles that are not aligned to the well, and can be used in a deliberate manner that depends on the individual droplet volumes and the desired fill for each target zone. drop combination to achieve precise adjusted fill. Additionally, as described above for the assumptions of FIG. 4A , this graph can be used to represent nozzle drive waveform changes and/or the use of multiple printheads. For example, if nozzle reference numbers (1)-(16) refer to the droplet volumes for a single nozzle produced by sixteen different drive waveforms (i.e., using waveforms 1-16), then it is theoretically possible simply by using the different drive waveforms to obtain the fill volume for each region. Those skilled in the art will see that the same approach as described above with reference to FIGS. Droplets are deposited simultaneously into each well. Finally, note that Figures 4A-4D also represent relatively simple examples; in a typical application, there may be hundreds to thousands of nozzles and millions of target zones. For example, in the fabrication of color components per pixel (e.g., each pixel has red, green and blue wells, pixels are arranged at 1080 horizontal lines of vertical resolution and horizontally resolved In 1920 vertical lines at the rate of 1920) applying the disclosed technique, there are approximately six million wells (ie, three overlapping arrays each of two million wells) that may receive ink. Next-generation televisions are expected to quadruple or more this resolution. In such processes, in order to improve the speed of printing, a printhead may use thousands of nozzles for printing, for example, there will typically be a surprising number of possible print process variations. The simplified examples presented above serve to introduce the concepts, but it should be noted that given the astonishing number presented in typical combinations, the changes represented by reality television applications are quite complex, and print optimization is often done by software and using complex mathematics operation to apply. Figures 5-7 serve to provide non-limiting examples of how these operations may be applied.
用图5来介绍用于规划打印的示例性处理。一般地使用数字501来参考此处理及关联方法和设备。 Exemplary processing for planning printing is described using FIG. 5 . The number 501 is used generally to refer to this process and associated methods and apparatus.
更具体地,具体地确定用于每个喷嘴(以及针对每个波形用于每个喷嘴,如果应用多个驱动波形的话)的液滴体积(503)。可以例如使用多种技术来执行此类测量,在没有限制的情况下,包括构建到打印机(或工厂常驻机器)中的光学成像或激光成像或非成像设备,其在飞行期间对液滴进行测量(例如,在校准打印操作或实时打印操作期间),并基于液滴形状、速度、轨迹和/或其它因素来精确地计算体积。在具体实施例中,如所述那样,由于甚至使用单个驱动波形所产生的来自单个喷嘴的液滴体积可以随液滴而变化,因此每个测量仅是近似精准的。为此,可以使用液滴测量技术以求得用于来自每个喷嘴的液滴以及用于每个喷嘴波形组合的统计模型,每个特定液滴体积表示为来自给定喷嘴和给定喷嘴驱动波形的平均值期待液滴体积。还可以使用其它测量技术,包括打印油墨且然后使用打印后成像或其它技术来基于图案标识而计算单独液滴体积。替换地,该标识可以基于由打印机或打印头供应商供应的数据,例如基于在制造处理之前很久在工厂处获取并用机器(或在线)供应的测量结果。在某些应用中,液滴体积特性可以随时间而改变,例如取决于油墨粘度或类型、温度、喷嘴堵塞或其它退化,或者由于其它因素;因此,在一个实施例中,可以在原地动态地执行液滴体积测量,例如在上电时(或者在发生其它类型的功率循环事件时)、随着基底的每次新打印、在预定时间到期时或者基于另一日历或非日历时间。在一个实施例中,如上所述,通过每次加载或卸载新的平坦面板基底就对于打印喷嘴和喷嘴波形组合的移动窗口执行测量而在断续的基础上连续地执行该测量,以获得动态更新。如数字504所表示的,存储此数据(测量或提供)以供在优化处理中使用。 More specifically, the droplet volume for each nozzle (and for each waveform if multiple drive waveforms are applied) is specifically determined (503). Such measurements can be performed, for example, using a variety of techniques including, without limitation, optical imaging or laser imaging or non-imaging devices built into the printer (or factory resident machine) that image the droplets during flight. Measure (eg, during a calibration print operation or a real-time print operation) and accurately calculate volume based on drop shape, velocity, trajectory, and/or other factors. In particular embodiments, as described, each measurement is only approximately accurate since the drop volume from a single nozzle produced using even a single drive waveform may vary from drop to drop. To this end, droplet measurement techniques can be used to derive a statistical model for the droplet from each nozzle and for each combination of nozzle waveforms, each specific droplet volume expressed as The mean of the waveform is expected for the droplet volume. Other measurement techniques may also be used, including printing the ink and then using post-print imaging or other techniques to calculate individual droplet volumes based on pattern identification. Alternatively, the identification may be based on data supplied by the printer or printhead supplier, eg based on measurements taken at the factory and supplied machine (or online) long before the manufacturing process. In some applications, drop volume characteristics may change over time, such as depending on ink viscosity or type, temperature, nozzle clogging or other degradation, or due to other factors; thus, in one embodiment, dynamic Droplet volume measurements are performed, for example, upon power-up (or upon the occurrence of other types of power cycling events), with each new print of a substrate, upon expiration of a predetermined time, or based on another calendar or non-calendar time. In one embodiment, as described above, the measurement is performed continuously on an intermittent basis by performing the measurement for a moving window of print nozzle and nozzle waveform combinations each time a new flat panel substrate is loaded or unloaded, to obtain dynamic renew. As represented by numeral 504, this data (measured or provided) is stored for use in the optimization process.
除每个喷嘴(以及可选地每个驱动波形)液滴体积数据之外,还接收关于用于每个目标区的期望填充体积的信息(505)。此数据可以是要应用于所有目标区的单个目标填充值、要应用于单独目标区、各行目标区或各列目标区的各目标填充值、或者以某个其它方式分解的值。例如,在应用于制造相对于单独电子设备结构(诸如晶体管或通路)而言很大的单个材料“覆盖”层时,此类数据可以由要应用于整个层的单个厚度组成(例如,软件然后基于相关油墨所特定的预定转换数据将其转换成每个目标区期望油墨填充体积);在这种情况下,可以将数据转换成用于每个“打印单元”(在这种情况下,其等价于每个目标区或者由多个目标区组成)的公共值。在另一示例中,数据可以表示用于一个或多个阱的特定值(例如,50.00pL),基于上下文来提供或理解范围数据。如从这些示例应理解的,可以以许多不同形式来指定期望的填充,在没有限制的情况下,包括作为厚度数据或体积数据。还可以可选地向接收设备提供或由接收设备执行附加过滤或处理准则;例如,如先前提到的,可以由接收设备将填充体积的随机变化注入到一个或多个提供的厚度或体积参数中以在成品显示器中使得线状花纹对人眼而言不可见。此类变化可以预先执行(并作为在区域间不同的各每个目标区填充而提供),或者可以从接收设备(例如,由下游计算机或打印机)智能地且透明地导出。 In addition to per-nozzle (and optionally per drive waveform) drop volume data, information about the desired fill volume for each target zone is received (505). This data can be a single target fill value to be applied to all target areas, individual target fill values to be applied to individual target areas, each row target area, or each column target area, or a value broken down in some other way. For example, when applied to fabricate a single "coverage" layer of material that is large relative to an individual electronic device structure (such as a transistor or via), such data could consist of a single thickness to be applied to the entire layer (e.g., software then This is converted into the desired ink fill volume for each target zone based on predetermined conversion data specific to the relevant ink); in this case, the data can be converted into Equivalent to the common value for each target zone or consisting of multiple target zones). In another example, the data may represent a specific value (eg, 50.00 pL) for one or more wells, providing or interpreting range data based on context. As should be understood from these examples, the desired fill may be specified in many different forms, including, without limitation, as thickness data or volume data. Additional filtering or processing criteria may also optionally be provided to or performed by the receiving device; for example, as previously mentioned, random variations in fill volume may be injected by the receiving device into one or more provided thickness or volume parameters Medium to render the linear pattern invisible to the human eye in the finished display. Such variations can be performed in advance (and provided as per-target zone fills that differ from zone to zone), or can be derived intelligently and transparently from the receiving device (eg, by a downstream computer or printer).
基于用于每个区域的目标填充体积和单独液滴体积测量结果(即,每个打印头喷嘴和每个喷嘴驱动波形),该处理然后可选地前进至计算各种液滴的组合,其总和为期望容限范围内的填充体积(即,每个处理方框506)。如所述,可以为此范围提供目标填充数据,或者可以基于上下文“理解”。在一个实施例中,将该范围理解成所提供填充值的±百分之一。在另一实施例中,将该范围理解成所提供填充值的±百分之零点五。很明显,对于容限范围而言存在许多其它可能性,无论是大于还是小于这些示例性范围。 Based on the target fill volume for each zone and the individual drop volume measurements (i.e., each printhead nozzle and each nozzle drive waveform), the process then optionally proceeds to calculating various droplet combinations, which The sum is the fill volume within the desired tolerance (ie, per processing block 506 ). As mentioned, target population data can be provided for this range, or can be "understood" based on the context. In one embodiment, the range is understood to mean ± one percent of the fill value provided. In another embodiment, the range is understood to be ±0.5 percent of the fill value provided. Clearly, many other possibilities exist for tolerance ranges, both larger and smaller than these exemplary ranges.
在这里,示例将帮助传达用于计算各组可能液滴组合的一个可能方法。返回先前所述的简化示例,应假设存在五个喷嘴,每个具有9.80pL、10.01pL、9.89pL、9.96pL和10.03 pL的相应的假定的平均液滴体积,并且期望在五个阱中沉积50.00pL±½%(49.75pL—50.25pL)的目标体积。这种方法通过确定可以组合而达到但不超过容限范围的液滴数目以及针对每个喷嘴的可以在任何可接受变更中使用的来自该喷嘴的液滴的最小和最大数目开始。例如,在此假定中,给定在考虑中的喷嘴的最小和最大液滴体积,来自喷嘴(1)的不超过单个液滴、来自喷嘴(3)的两个液滴和来自喷嘴(4)的四个液滴将被期待在任何组合中都是可用的。此步骤限制需要考虑的组合的数目。提供对集合考虑的此类约束,该方法然后考虑液滴的所需数目(在本示例中为五个)的组合,依次取每个喷嘴。例如,该方法首先从喷嘴(1)的开始,应理解的是涉及到此喷嘴的仅有可接受组合在给定的计算出的平均值的情况下以来自此喷嘴的一个液滴或更少为特征。考虑涉及到来自此喷嘴的单个液滴的组合,该方法然后考虑在考虑中的其它相应的喷嘴波形组合的最小和最大液滴体积;例如,假设喷嘴(1)被确定为针对给定驱动波形产生9.80pL的平均液滴体积,可以将来自喷嘴(3)的不超过一个液滴或来自喷嘴(4)的两个液滴以与来自喷嘴(1)的液滴组合的方式使用以达到期望容限范围。该方法前进至考虑来自喷嘴(1)的液滴的组合和来自其它喷嘴的四个液滴、例如来自喷嘴(2)或(5)的四个液滴、来自喷嘴(2)的三个液滴和来自喷嘴(4)的一个液滴的组合等等。考虑仅涉及到喷嘴(1)的组合,为了简化讨论,可以潜在地在容限范围内使用涉及到第一喷嘴的以下不同组合中的任何一个: Here, examples will help convey one possible method for computing each set of possible droplet combinations. Returning to the simplified example described earlier, it should be assumed that there are five nozzles, each with a corresponding assumed average droplet volume of 9.80pL, 10.01pL, 9.89pL, 9.96pL, and 10.03pL, and that it is desired to deposit Target volume of 50.00pL±½% (49.75pL—50.25pL). This method begins by determining the number of droplets that can be combined to achieve but not exceed the tolerance range, and for each nozzle the minimum and maximum number of droplets from that nozzle that can be used in any acceptable variation. For example, in this assumption, given the minimum and maximum droplet volumes of the nozzles under consideration, no more than a single droplet from nozzle (1), two droplets from nozzle (3) and The four drops will be expected to be available in any combination. This step limits the number of combinations that need to be considered. Providing such constraints on the ensemble considerations, the method then considers combinations of the required number (five in this example) of droplets, taking each nozzle in turn. For example, the method starts with nozzle (1) first, it being understood that the only acceptable combinations involving this nozzle are those with one droplet or less from this nozzle given the calculated average value as a feature. Considering combinations involving a single drop from this nozzle, the method then considers the minimum and maximum drop volumes for the other corresponding nozzle waveform combinations under consideration; for example, suppose nozzle (1) is determined to be Yielding an average drop volume of 9.80pL, no more than one drop from nozzle (3) or two drops from nozzle (4) can be used in combination with a drop from nozzle (1) to achieve the desired tolerance range. The method proceeds to consider the combination of the droplet from nozzle (1) and four droplets from other nozzles, for example four droplets from nozzles (2) or (5), three droplets from nozzle (2) combination of a droplet and a droplet from the nozzle (4) and so on. Considering a combination involving only nozzle (1), to simplify the discussion, any of the following different combinations involving the first nozzle could potentially be used within tolerance:
{1(1),4(2)}、 {1(1),3(2),1(4)}、{1(1),3(2),1(5)}、 {1(1),2(2),1(4),1(5)}、{1(1),1(2),1(3),2(5)}、{1(1),1(2),1(4),2(5)}、{1(1),1(2),3(5)}、{1(1),1(3),3(5)}、{1(1),2(4),2(5)}、{1(1),1(4),3(5)}和{1(1),4(5)}。 {1(1), 4(2)}, {1(1), 3(2), 1(4)}, {1(1), 3(2), 1(5)}, {1(1) ), 2(2), 1(4), 1(5)}, {1(1), 1(2), 1(3), 2(5)}, {1(1), 1(2) , 1(4), 2(5)}, {1(1), 1(2), 3(5)}, {1(1), 1(3), 3(5)}, {1(1 ), 2(4), 2(5)}, {1(1), 1(4), 3(5)} and {1(1), 4(5)}.
在上文阐述的数学表达式中,括号的使用表示一组的五个液滴,其表示来自一个或多个喷嘴的液滴体积组合,这些括号内的每个圆括号标识特定喷嘴;例如,表达式{1(1),4(2)}表示来自喷嘴(1)的一个液滴和来自喷嘴(2)的四个液滴,9.80pL+(4×10.01pL)= 49.84pL,其被期待产生在指定容限范围内的合成填充。实际上,基于各种平均值,本示例中的方法考虑来自喷嘴(1)的液滴的最高数目,其可以用来产生期望容限,评估涉及到此最高数目的组合,将数目减小一,并重复考虑的处理。在一个实施例中,重复此处理以确定可以使用的所有可能的各组非冗余液滴组合。当已经完全探索了涉及到喷嘴(1)的组合时,该方法前进至涉及到喷嘴(2)而不是喷嘴(1)的组合并重复该处理,并且以此类推,测试每个可能喷嘴组合的组合的平均以确定其是否可以实现期望的容限范围。例如在本实施例中,该方法已确定不能使用来自喷嘴(1)的两个或更多液滴的组合,因此其从以各种组合方式考虑涉及到来自喷嘴(1)的一个液滴和来自其它喷嘴的四个液滴的组合开始。该方法实际上评估是否可以使用喷嘴(2)的四个液滴,确定其可以{1(1),4(2)},则将此数目减小一(来自喷嘴2的三个液滴),并且确定可以与来自喷嘴(4)或(5)的单个液滴组合地使用此数目,提供可接受的各组{1(1),3(2),1(4)}、{1(1),3(2),1(5)}。该方法然后进一步将来自喷嘴(2)的可接受液滴的数目减少一个,并且评估{1(1),2(2)….}以及然后{1(1),1(2)….}等等的组合。一旦与来自喷嘴(1)的液滴相组合地考虑涉及到(2)的组合,该方法然后取下一喷嘴,即喷嘴(3),并且考虑涉及到此喷嘴而不是喷组(2)的组合,并确定由{1(1),1(3),3(5)}给定唯一可接受组合。一旦已经考虑了涉及到来自喷嘴(1)的液滴的所有组合,该方法然后考虑涉及到来自喷嘴(2)而不是喷嘴(1)的液滴的5液滴组合,例如{5(2)}、{4(2),1(3)}、{4(2),1(4)}、{4(2),1(5)}、{3(2),2(3)}、{3(2),1(3),1(4)}等。 In the mathematical expressions set forth above, the use of parentheses indicates a set of five droplets representing a combination of droplet volumes from one or more nozzles, each parenthesis within these parentheses identifying a specific nozzle; for example, The expression {1(1), 4(2)} represents one droplet from nozzle (1) and four droplets from nozzle (2), 9.80pL+(4×10.01pL)=49.84pL, which is expected Produces a composite fill within the specified tolerance. In fact, based on various average values, the method in this example considers the highest number of droplets from the nozzle (1) that can be used to generate the desired tolerance, evaluates combinations involving this highest number, and reduces the number by one , and repeated consideration of the processing. In one embodiment, this process is repeated to determine all possible sets of non-redundant droplet combinations that can be used. When combinations involving nozzle (1) have been fully explored, the method advances to combinations involving nozzle (2) instead of nozzle (1) and repeats the process, and so on, testing the combined to determine whether it can achieve the desired tolerance range. For example in this example, the method has determined that combinations of two or more droplets from nozzle (1) cannot be used, so it is never considered in various combinations involving one droplet from nozzle (1) and Combination of four droplets from other nozzles begins. The method actually evaluates whether four droplets from nozzle (2) can be used, determines that it can {1(1), 4(2)}, then decreases this number by one (three droplets from nozzle 2) , and it is determined that this number can be used in combination with a single droplet from nozzle (4) or (5), providing acceptable sets of {1(1), 3(2), 1(4)}, {1( 1), 3(2), 1(5)}. The method then further reduces the number of acceptable droplets from the nozzle (2) by one, and evaluates {1(1), 2(2)....} and then {1(1), 1(2)....} and so on. Once the combination involving (2) is considered in combination with the droplets from nozzle (1), the method then takes the next nozzle, nozzle (3), and considers the combination, and determine the only acceptable combination given by {1(1), 1(3), 3(5)}. Once all combinations involving droplets from nozzle (1) have been considered, the method then considers 5-droplet combinations involving droplets from nozzle (2) but not nozzle (1), e.g. {5(2) }, {4(2), 1(3)}, {4(2), 1(4)}, {4(2), 1(5)}, {3(2), 2(3)}, {3(2), 1(3), 1(4)} etc.
还应注意的是该方法在可以用多个发射波形(每个产生不同的液滴体积)来驱动喷嘴的情况下同样适用。这些附加喷嘴波形组合简单地提供附加液滴体积平均值以供在选择在目标体积容限范围内的液滴组合集合时使用。多个发射波形的使用还可以通过使得较大数目的可接受液滴组合可用且从而增加在每次通过时从大部分的喷嘴同时地发射液滴的可能性来改进打印处理的效率。在喷嘴具有多个驱动波形且还使用几何步幅的情况下,一组液滴组合的选择将结合在给定扫描中将使用的几何偏移和将被用于每个喷嘴的喷嘴波形两者。 It should also be noted that the method works equally well in cases where the nozzle can be driven with multiple firing waveforms, each producing a different droplet volume. These additional nozzle waveform combinations simply provide additional drop volume averages for use in selecting a set of drop combinations that are within target volume tolerances. The use of multiple firing waveforms can also improve the efficiency of the printing process by making available a larger number of acceptable drop combinations and thereby increasing the likelihood that drops will be fired simultaneously from a majority of the nozzles on each pass. In the case of nozzles with multiple drive waveforms and also using geometric strides, the selection of a set of drop combinations will combine both the geometric offset to be used in a given scan and the nozzle waveform to be used for each nozzle .
请注意,出于叙述的目的,已经描述了蛮干法,并且在实践中通常将呈现惊人数目的可能组合,例如在喷嘴和目标区的数目很大(例如,每个超过128个)的情况下。然而,此类计算很好地在具有适当软件的高速处理器的能力范围内。并且,请注意,存在可以应用于减少计算的各种数学捷径。例如,在给定实施例中,该方法可以从考虑中排除将对应于在任何一次通过中使用少于一半的可用喷嘴的任何组合(或者替换地,可以使考虑局限于使任何单次通过中的跨目标区(TR)的体积差异最小化的组合)。在一个实施例中,该方法仅确定将产生可接受合成填充值的液滴组合的某些集合;在第二实施例中,该方法穷举地计算将产生可接受合成填充值的液滴组合的每个可能集合。还可以使用迭代法,其中,在多次重复中,执行打印扫描,并且出于优化下一后续扫描的目的而考虑仍将要沉积以达到(一个或多个)期望容限范围的油墨的体积。还可以有其它处理。 Note that the brute force approach has been described for narrative purposes, and that in practice a surprising number of possible combinations will often be presented, e.g. where the number of nozzles and target zones is large (e.g. more than 128 each) . However, such calculations are well within the capabilities of high-speed processors with appropriate software. And, note that there are various mathematical shortcuts that can be applied to reduce calculations. For example, in a given embodiment, the method may exclude from consideration any combination that would correspond to using less than half of the available nozzles in any one pass (or alternatively, may limit consideration to Combinations that minimize volume differences across the target region (TR). In one embodiment, the method determines only certain sets of droplet combinations that will yield an acceptable composite fill value; in a second embodiment, the method exhaustively computes the droplet combinations that will yield an acceptable composite fill value every possible set of . An iterative approach may also be used, where, in multiple iterations, a print scan is performed and the volume of ink still to be deposited to achieve the desired tolerance range(s) is taken into account for the purpose of optimizing the next subsequent scan. Other treatments are also possible.
还请注意,作为初始操作,如果同一填充值(和容限)适用于每个目标区,则计算组合一次(例如,针对一个目标区)并存储这些可能的液滴组合以供每个目标区情况下的初始使用就足够了。不一定对于所有集合计算方法而言和对于所有应用而言情况都是如此(例如,在某些实施例中,可接受填充范围可针对每个目标区而改变)。 Note also that, as an initial operation, if the same fill value (and tolerance) applies to each target zone, compute combinations once (for example, for one target zone) and store these possible droplet combinations for each target zone The initial use of the case is sufficient. This is not necessarily the case for all ensemble calculation methods and for all applications (eg, in some embodiments, acceptable fill ranges may vary for each target zone).
在另一实施例中,该方法使用诸如近似、矩阵数学、随机选择或其它技术之类的数学捷径来确定用于每个目标区的可接受液滴组合的集合。 In another embodiment, the method uses mathematical shortcuts such as approximation, matrix mathematics, random selection, or other techniques to determine the set of acceptable droplet combinations for each target zone.
如处理方框507所表示的,一旦已经针对每个目标区确定可接受组合的集合,则该方法然后以与用于每个目标区的特定集合(或液滴组合)相关联的方式有效地规划扫描。以其中特定几何(针对每个目标区一个)通过使用至少一次扫描来同时地在多个目标区中沉积液滴体积进行的处理节省的方式来执行此特定集合选择。也就是说,在理想情况下,该方法针对每个目标区选择一个特定集合,其中,该特定集合以打印头可以一次同时地向多行目标区中进行打印的方式表示特定液滴体积组合。所选组合中的特定液滴选择表示与预定准则匹配的打印处理,诸如最小打印时间、最小扫描次数、几何步幅的最小尺寸、最小聚合几何步幅距离或其它准则。在图5中用数字508来表示这些准则。在一个实施例中,优化是帕雷托最佳的,以使扫描系数、聚合几何步幅距离以及几何步幅尺寸中的每一个按照该顺序最小化的方式来选择特定集合。再次地,可以以任何期望方式来执行特定集合的此选择,下面进一步讨论多个非限制性示例。 As represented by process block 507, once the set of acceptable combinations has been determined for each target zone, the method then effectively Schedule scans. This particular set selection is performed in a manner where a particular geometry (one for each target zone) saves processing by using at least one scan to simultaneously deposit drop volumes in multiple target zones. That is, ideally, the method selects for each target zone a specific set that represents a particular combination of drop volumes in such a way that the printhead can simultaneously print into multiple rows of target zones at once. A particular drop selection in the selected combination represents a print process that matches predetermined criteria, such as minimum print time, minimum number of scans, minimum size of geometric stride, minimum aggregated geometric stride distance, or other criteria. These criteria are indicated by numeral 508 in FIG. 5 . In one embodiment, the optimization is Pareto optimal, selecting the particular set in such a way that each of the scan coefficient, the aggregated geometric stride distance, and the geometric stride size are minimized, in that order. Again, this selection of a particular set may be performed in any desired manner, a number of non-limiting examples being discussed further below.
在一个示例中,该方法从用于每个目标区的每个集合中选择与应用于正在考虑的所有区域的特定几何步幅或波形相对应的液滴,并且然后其将此液滴从可用集合减去并确定剩余部分。例如,如果可用集合的选择最初是用于五个目标区中的每一个的{1(1),4(2)}、 {1(1),3(2),1(4)}、{1(1),3(2),1(5)}、 {1(1),2(2),1(4),1(5)}、{1(1),1(2),1(3),2(5)}、{1(1),1(2),1(4),2(5)}、{1(1),1(2),3(5)}、{1(1),1(3),3(5)}、{1(1),2(4),2(5)}、{1(1),1(4),3(5)}和{1(1),4(5)},则本实施例将从此初始集合中减去一个液滴(1)以获得五个目标区中的第一个所特定的剩余部分,从该初始集合中减去一个液滴(2)以获得五个目标区中的第二个所特定的剩余部分,从该初始集合中减去一个液滴(3)以获得目标区中的第三个所特定的剩余部分等等。此评估将表示“0”的几何步幅。 该方法然后将评估该剩余部分并针对其它可能几何步幅重复该处理。例如,如果然后应用“-1”的几何步幅,则该方法将针对五个目标区中的第一个从初始集合中减去一个液滴(2),针对目标区中的第二个从初始集合中减去一个液滴(3)等等,并且评估该剩余部分。 In one example, the method selects from each set for each target region a droplet corresponding to a particular geometric stride or waveform applied to all regions under consideration, and then it divides this droplet from the available The set subtracts and determines the remainder. For example, if the selection of available sets is initially {1(1), 4(2)}, {1(1), 3(2), 1(4)}, { 1(1), 3(2), 1(5)}, {1(1), 2(2), 1(4), 1(5)}, {1(1), 1(2), 1 (3), 2(5)}, {1(1), 1(2), 1(4), 2(5)}, {1(1), 1(2), 3(5)}, { 1(1), 1(3), 3(5)}, {1(1), 2(4), 2(5)}, {1(1), 1(4), 3(5)} and {1(1), 4(5)}, then this embodiment will subtract one droplet (1) from this initial set to obtain the remainder specified by the first of the five target regions, from which initial set Subtract one droplet (2) from this initial set to obtain the remainder specified by the second of the five target regions, and subtract one droplet (3) from this initial set to obtain the remainder specified by the third of the five target regions. the rest of and so on. This evaluation will represent a geometry stride of "0". The method will then evaluate the remainder and repeat the process for the other possible geometric strides. For example, if a geometry stride of "-1" is then applied, the method will subtract one droplet (2) from the initial set for the first of the five target regions, and from Subtract one droplet (3) etc. from the initial set, and evaluate the remainder.
在选择特定几何步幅(和喷嘴发射)作为打印规划的一部分时,该方法根据分数或优先级函数来分析各种剩余部分,并选择具有最佳分数的几何步幅。在一个实施例中,应用分数来对(a)使同时地使用的喷嘴的数目最大化且(b)使用于受影响目标区的剩余的组合的最小数目最大化的步幅更重地加权。例如,与使用来自仅仅两个喷嘴的液滴的扫描相比,在扫描期间使用来自四个喷嘴的液滴的扫描将更加有利。同样地,如果在考虑在针对一个可能步幅的用于各目标区的1、2、2、4和5个剩余组合以及针对第二可能步幅的用于各目标区的2、2、2、3和4个剩余组合中得到的不同步幅时使用上文所讨论的减法处理,则该方法将对后者更重地加权(即,最大的最小数是“2”)。在实践中,可以凭经验来逐渐产生适当的加权系数。很明显,可以应用其它算法,并且可以应用其它形式的分析或算法捷径。例如,可以使用矩阵数学(例如,使用本征向量分析)来确定满足预定准则的特定液滴组合和关联扫描参数。在另一变化中,可使用例如将规划的随机填充变化的使用计算在内以缓解线状花纹的其它公式。 Upon selecting a specific geometry step (and nozzle firing) as part of print planning, the method analyzes the various remainders according to a score or priority function and selects the geometry step with the best score. In one embodiment, a score is applied to weight more heavily the stride that (a) maximizes the number of simultaneously used nozzles and (b) maximizes the minimum number of remaining combinations for the affected target zone. For example, scanning using droplets from four nozzles during scanning would be more advantageous than scanning using droplets from only two nozzles. Likewise, if one is considering the remaining combinations of 1, 2, 2, 4 and 5 for each target zone for one possible stride and 2, 2, 2 for each target zone for a second possible stride , 3, and 4 remaining combinations using the subtraction process discussed above, the method will weight the latter more heavily (ie, the largest minimum number is "2"). In practice, appropriate weighting coefficients can be gradually generated empirically. Obviously, other algorithms can be applied, and other forms of analysis or algorithmic shortcuts can be applied. For example, matrix mathematics (eg, using eigenvector analysis) can be used to determine particular droplet combinations and associated scan parameters that satisfy predetermined criteria. In another variation, other formulas may be used that take into account, for example, the use of planned random fill variations to mitigate the linear pattern.
一旦已按照数字507选择特定集合和/或扫描路径,则将打印机动作排序,经由数字509。例如,应注意的是如果聚合填充体积是唯一的考虑因素,则通常可以按照任意的顺序来沉积一组液滴。如果将打印规划为使扫描或通过的次数最小化,则还可以选择几何步幅的顺序使打印头/基底运动最小化;例如,如果假定示例中的可接受扫描涉及到{0,+3,-2,+6和-4}的相对几何步幅,则这些扫描可被重新排序以使打印头/基底运动最小化,并且因此进一步改进打印速度,例如,将扫描排序为{0,+1,+2,0和+4}的步幅序列。与涉及到15的聚合步幅增量距离的几何步幅的第一序列比较,几何步幅{0,+1,+2,0和+4}的第二序列涉及7的聚合步幅增量距离,这促进打印机更快响应。 Once a particular set and/or scan path has been selected as per number 507 , the printer actions are sequenced, via number 509 . For example, it should be noted that if the aggregate fill volume is the only consideration, a set of droplets can generally be deposited in any order. If printing is planned to minimize the number of scans or passes, the order of the geometric strides can also be chosen to minimize printhead/substrate motion; for example, if the acceptable scan in the example is assumed to involve {0, +3, Relative geometric strides of -2, +6 and -4}, then these scans can be reordered to minimize printhead/substrate motion and thus further improve printing speed, e.g. order scans as {0, +1 , +2, 0 and +4} stride sequence. The second sequence of geometric strides {0, +1, +2, 0 and +4} involved an aggregate stride increment of 7 compared to the first sequence of geometric strides involving an aggregate stride increment distance of 15 distance, which promotes a faster printer response.
如数字510所表示的,对于涉及到将接收相同目标填充的大量的成行目标区的应用而言,还可以将特定解表示为然后在基底的子集区域内再现的可重复图案。例如,如果在一个应用中存在布置成单行的128个喷嘴和1024行目标区,则可预期可以针对255行目标区或以下的子集区域去确定最佳扫描图案;因此,在本示例中,可以将同一打印图案应用于基底的四个或更多子集区域。某些实施例因此利用如可选处理方框510所表示的可重复图案。 As represented by numeral 510, for applications involving a large number of rows of target areas that will receive the same target population, a particular solution can also be represented as a repeatable pattern that is then reproduced within a subset of areas of the substrate. For example, if in an application there are 128 nozzles arranged in a single row and 1024 rows of targets, it is expected that the optimal scan pattern can be determined for a subset of the 255 rows of targets or less; thus, in this example, The same print pattern can be applied to four or more subset areas of the substrate. Certain embodiments thus utilize repeatable patterns as represented by optional processing block 510 .
注意非暂态机器可读介质图标511的使用;此图标表示上述方法可选地被实现为用于控制一个或多个机器的指令(例如,用于控制一个或多个处理器的软件或固件)。该非暂态介质可以包括任何机器可读物理介质,例如闪速驱动、软盘、磁带、服务器储存器或大容量储存器、动态随机存取存储器(DRAM)、紧凑式磁盘(CD)或其它本地或远程储存器。可以作为较大机器的一部分(例如,台式计算机或打印机中的常驻存储器)或者隔离地(例如,稍后将向另一计算机或打印机传输文件的闪速驱动或独立储存器)体现此储存器。可以将参考图5所述的每个功能实现为组合程序的一部分或者作为独立模块,一起存储在单个介质表达(例如,单个软盘)上或者在多个单独的存储设备上。 Note the use of the non-transitory machine-readable medium icon 511; this icon indicates that the methods described above are optionally implemented as instructions for controlling one or more machines (e.g., software or firmware for controlling one or more processors) ). The non-transitory media can include any machine-readable physical media such as flash drives, floppy disks, tape, server storage or mass storage, dynamic random access memory (DRAM), compact disks (CDs), or other local or remote storage. This storage can be embodied as part of a larger machine (such as resident memory in a desktop computer or printer) or isolated (such as a flash drive or standalone storage that will later transfer files to another computer or printer) . Each of the functions described with reference to FIG. 5 may be implemented as part of a combined program or as independent modules, stored together on a single media representation (eg, a single floppy disk) or on multiple separate storage devices.
如在图5中用数字513所表示的,一旦规划处理完成,将已生成有效地表示一组打印机指令的数据,包括用于打印头的喷嘴发射数据和用于将支持该发射图案的打印头与基底之间的相对移动的指令。有效地表示扫描路径、扫描顺序及其它数据的此数据是电子文件(513),其可以被存储以供稍后使用(例如,如非暂态机器可读介质图标515所描绘的),或者立即应用以控制打印机(517)沉积表示所选组合(每个目标区的喷嘴的特定集合)的油墨。例如,可以将该方法应用于独立计算机,指令数据被存储在RAM中以供稍后使用或下载到另一机器。替换地,可以由打印机实现该方法并动态地应用于“入向”数据,以根据打印机参数(诸如喷嘴-液滴-体积数据)而自动地规划扫描。可以有许多其它替换方案。 As represented by numeral 513 in FIG. 5, once the planning process is complete, data effectively representing a set of printer instructions will have been generated, including nozzle firing data for the printheads and printheads that will support the firing pattern. Instructions for moving relative to the base. Effectively representing scan paths, scan sequences, and other data, this data is an electronic file (513) that can be stored for later use (e.g., as depicted by non-transitory machine-readable medium icon 515), or immediately Applied to control the printer (517) to deposit ink representing the selected combination (specific set of nozzles per target zone). For example, the method could be applied to a stand-alone computer, with the instruction data being stored in RAM for later use or downloaded to another machine. Alternatively, the method can be implemented by the printer and dynamically applied to the "incoming" data to automatically plan scans based on printer parameters such as nozzle-drop-volume data. Many other alternatives are possible.
图6A—6D提供了一般地涉及喷嘴选择和扫描规划处理的示图。再次请注意,扫描在移动的方向或速度方面不必是连续或线性的,并且不必一直从基底的一侧前进至另一侧。 6A-6D provide diagrams generally related to the nozzle selection and scan planning process. Note again that the scan does not have to be continuous or linear in direction or speed of movement, and does not have to go all the way from one side of the substrate to the other.
在图6A中用数字601来表示第一框图;此图表示在先前叙述中讨论的许多示例性处理。该方法首先通过从存储器检索用于每个目标区的可接受液滴体积组合的集合开始,经由数字603。这些集合可以是动态计算的,或者可以是例如在不同机器上使用软件预先计算的。注意数据库图标605的使用,其表示本地存储数据库(例如,存储在本地RAM中)或远程数据库。该方法然后有效地针对每个目标区(607)选择可接受集合中的特定的一个。在许多实施例中,此选择是间接的,亦即,该方法处理可接受组合以选择特定扫描(例如,使用上文提到的技术),并且实际上定义所述特定集合的是这些扫描。然而,通过规划扫描,该方法针对每个相应目标区选择组合的特定集合。此数据然后被用来将扫描排序并最终确定运动和发射图案(609),如上文提到的。 A first block diagram is indicated by numeral 601 in FIG. 6A; this diagram represents many of the exemplary processes discussed in the preceding description. The method first begins by retrieving from memory a set of acceptable drop volume combinations for each target zone, via number 603 . These sets may be computed dynamically, or may be precomputed using software on different machines, for example. Note the use of a database icon 605, which represents a locally stored database (eg, stored in local RAM) or a remote database. The method then effectively selects for each target zone (607) a particular one of the acceptable sets. In many embodiments, this selection is indirect, that is, the method processes acceptable combinations to select specific scans (eg, using the techniques mentioned above), and it is these scans that actually define the specific set. However, by planning the scan, the method selects a specific set of combinations for each respective target zone. This data is then used to sequence scans and finalize motion and shot patterns (609), as mentioned above.
图6A的中间和右侧图示出用于规划扫描路径和喷嘴发射图案的几个处理选项,并且实际上,以表示打印优化的方式来选择用于每个目标区的特定液滴组合。如数字608所表示的,所示技术仅仅表示用于执行此任务的一个可能方法。经由数字611,分析可以涉及到确定采取可接受组合中的每个喷嘴(或者喷嘴-波形组合,在其中由超过一个发射波形来驱动喷嘴的那些情况下)的最小和最大使用。如果特定喷嘴是坏的(例如,不发射或者在不可接受的轨道处发射),则可以可选地针对使用(和考虑)排除该喷嘴。其次,如果喷嘴具有非常小或非常大的期望的液滴体积,则这可限制可以以可接受的组合从该喷嘴使用的液滴的数目;数字611表示减少将考虑的组合的数目的预先处理。如数字612所表示的,可以使用处理/捷径来限制将评估的液滴组合的集合的数目;例如,作为针对每个喷嘴考虑“所有”可能液滴组合的替代,可以将该方法配置成可选地排除涉及到少于一半的喷嘴(或者喷嘴的另一数量,诸如¼)的组合、其中超过一半的喷嘴来自任何特定喷嘴波形的组合或者表示液滴体积的高差异或表示跨目标区施加的同时液滴体积的大的差异的组合。还可以使用其它度量。 The middle and right diagrams of Figure 6A illustrate several processing options for planning scan paths and nozzle firing patterns, and indeed, selecting specific droplet combinations for each target zone in a manner indicative of print optimization. As represented by numeral 608, the illustrated technique represents only one possible method for performing this task. Via number 611 , the analysis may involve determining the minimum and maximum usage of each nozzle (or nozzle-waveform combination, in those cases where the nozzle is driven by more than one firing waveform) in acceptable combinations. If a particular nozzle is bad (eg, does not fire or fires at an unacceptable trajectory), that nozzle can optionally be excluded from use (and consideration). Second, if a nozzle has a very small or very large desired drop volume, this can limit the number of drops that can be used from that nozzle in acceptable combinations; numeral 611 represents a pre-processing that reduces the number of combinations that will be considered . As represented by numeral 612, processing/shortcuts may be used to limit the number of sets of droplet combinations to be evaluated; for example, instead of considering "all" possible droplet combinations for each nozzle, the method may be configured to Combinations involving less than half of the nozzles (or another number of nozzles, such as ¼), where more than half of the nozzles are from any particular nozzle waveform, are optionally excluded, or indicate high variance in droplet volume or indicate application of A combination of simultaneous large differences in droplet volume. Other metrics may also be used.
根据对要计算/考虑的集合数目的任何限制,该方法然后前进至计算和考虑可接受液滴组合,经由数字613。如用数字614和615提到的,可以使用各种处理来规划扫描和/或另外有效地选择每个目标区(TR)的液滴体积的特定集合。例如,如上文介绍的,一种方法采取扫描路径(例如,特定几何步幅选择),并且然后考虑跨正在考虑的所有TR的最少剩余集合选择的最大值;该方法可以有利地对使随后的扫描一次覆盖多个目标区的能力最大化的那些扫描路径(替换几何步幅)加权。替换地或另外,该方法可以有利地对使一次使用的喷嘴的数目最大化的几何步幅加权;返回上文所讨论的简化五喷嘴,与将在通过中仅使三个喷嘴发射的扫描或通过相比,可以更加有利地对将对目标区应用五个喷嘴的扫描加权。因此,在一个实施例中,可以由软件来应用以下算法: Subject to any limitations on the number of sets to be calculated/considered, the method then proceeds to calculate and consider acceptable droplet combinations, via number 613 . As mentioned with numbers 614 and 615, various processes may be used to plan the scan and/or otherwise efficiently select a particular set of droplet volumes per target region (TR). For example, as introduced above, one approach takes a scan path (e.g., a specific geometric stride selection) and then considers the maximum selected across the least remaining set of all TRs under consideration; this approach can be advantageous for making subsequent Those scan paths (alternative geometry strides) are weighted to maximize their ability to cover multiple target areas in one scan. Alternatively or additionally, the method may advantageously weight the geometric stride that maximizes the number of nozzles used at one time; returning to the simplified five-nozzle discussed above, versus a scan that would fire only three nozzles in a pass or By comparison, a scan that would apply five nozzles to a target zone can be more advantageously weighted. Therefore, in one embodiment, the following algorithm may be applied by software:
。 .
在此示例性等式中,“i”表示几何步幅或扫描路径的特定选择,w1表示一个凭经验确定的加权,w2表示第二凭经验确定的加权,#_RemCombsTR , i表示采取扫描路径i的每个目标区的剩余组合的数目,并且#_Simult.Nozzlesi表示被用于扫描路径i的喷嘴数目的度量;请注意,此后一个值不需要是整数,例如,如果每个TR的填充值改变(例如,以隐藏显示设备中的潜在地可见的伪像),则给定扫描路径可以以每列目标区所使用的变化数目的喷嘴为特征,例如可以使用平均值或某个其它度量。还请注意,这些因数和加权仅仅是说明性的,即可以使用与这些不同的加权和/或考虑,仅使用一个变量而不是另一个,或者使用完全不同的算法。 In this exemplary equation, "i" represents a particular choice of geometric stride or scan path, w 1 represents one empirically determined weight, w 2 represents a second empirically determined weight, #_RemCombs TR , i represents the The number of remaining combinations for each target zone for scan path i, and #_Simult.Nozzles i represents a measure of the number of nozzles used for scan path i; note that this latter value need not be an integer, e.g. if each TR (for example, to hide potentially visible artifacts in display devices), a given scan path can be characterized by a varying number of nozzles used per column of target areas, for example an average value or a certain other metrics. Note also that these factors and weightings are illustrative only, i.e. weightings and/or considerations different from these could be used, using only one variable instead of the other, or using completely different algorithms.
图6A还示出了许多其它选项。例如,经由数字617,根据等式/算法来执行一个实施方式中的液滴集合的考虑。可以将比较性度量表示为可以针对每个可能替换几何步幅计算以便选择特定步幅或偏移的分数。例如,另一可能算法逼近涉及到具有三个项的等式,如下所示: Figure 6A also shows many other options. For example, via numeral 617, the consideration of a collection of droplets in one embodiment is performed according to an equation/algorithm. The comparative measure can be expressed as a score that can be calculated for each possible alternative geometric stride in order to select a particular stride or offset. For example, another possible algorithmic approximation involves an equation with three terms, as follows:
Si = Wv(Sv,min/ Sv) + We(Se / Se,max) + Wd(Sd,min / Sd),S i = W v (S v,min / S v ) + W e (S e / S e,max ) + W d (S d,min / S d ),
其中,基于Sv 、Se 和Sd 的项是针对沉积液滴体积的差异、效率(每次通过所使用的最多喷嘴)和几何步幅的变化分别计算的分数。在一个公式中,项“(Sv,min/ Sv )”设法以取决于液滴总数的方式使填充体积方面的与每次通过目标值相比的变化最小化。 where the terms based on S v , Se and S d are fractions calculated for the difference in deposited droplet volume, efficiency (maximum number of nozzles used per pass) and change in geometric stride, respectively. In one formula, the term "( S v,min / S v )" seeks to minimize the variation in fill volume compared to the per-pass target value in a manner dependent on the total number of droplets.
图6A中的数字619表示在一个实施例中,可以使用矩阵数学来执行液滴组合选择,例如通过使用同时地考虑所有液滴体积组合且使用一种本征向量分析来选择扫描路径的数学技术。 Numeral 619 in FIG. 6A indicates that in one embodiment, drop combination selection may be performed using matrix mathematics, such as by using a mathematical technique that simultaneously considers all drop volume combinations and uses an eigenvector analysis to select scan paths. .
如数字621所表示的,可以应用迭代处理来减少所考虑液滴组合的数目。也就是说,例如,如一个可能处理技术的先前叙述所表示的,可以一次一个地计算几何步幅。每当规划特定扫描路径时,该方法确定在考虑中的每个目标区中仍需要的增量体积,并且然后继续确定最佳地适合于产生在期望容限内的每个目标区的聚合体积或填充体积的扫描或几何偏移。然后重复此处理作为各迭代直至已规划了所有扫描路径和喷嘴发射图案为止。 As represented by numeral 621, an iterative process may be applied to reduce the number of droplet combinations considered. That is, geometric strides can be calculated one at a time, for example, as indicated by the previous description of one possible processing technique. Whenever a particular scan path is planned, the method determines the incremental volume still required in each target zone under consideration, and then proceeds to determine the aggregate volume best suited to produce each target zone within desired tolerances Or scan or geometric offset of filled volumes. This process is then repeated for iterations until all scan paths and nozzle firing patterns have been planned.
经由数字622,还可以使用混合式处理。例如,在一个实施例中,可以选择并使用第一组的一个或多个扫描或几何步幅,例如基于每个喷嘴液滴体积方面的最小化偏差和最大效率(例如,每次扫描所使用的喷嘴)。一旦已经应用一定次数的扫描,例如1、2、3或更多,则可以调用例如使每次扫描所使用的喷嘴最大化(例如,无论所应用液滴体积方面的偏差如何)的不同算法。可以在此类混合式处理中对可选地应用上文所讨论的任何特定等式或技术(或其它技术)应用算法中的一个,并且本领域的技术人员无疑将想到其它变化。 Via number 622, hybrid processing can also be used. For example, in one embodiment, a first set of one or more scans or geometric strides may be selected and used, e.g., based on minimizing deviation and maximizing efficiency in terms of droplet volume per nozzle (e.g., the number of scans used per scan). nozzle). Once a certain number of scans have been applied, eg 1, 2, 3 or more, different algorithms may be invoked eg maximizing the nozzle used per scan (eg regardless of deviations in applied droplet volume). Any of the particular equations or techniques discussed above (or other techniques), optionally applying one of the algorithms, may be applied in such a hybrid process, and other variations will no doubt occur to those skilled in the art.
请注意,如先前提到的,在示例性显示器制造处理中,每个目标区填充体积可以具有故意地注入(623)以缓解线状花纹的规划随机化。在一个实施例中,可选地应用发生器函数(625)来以实现此规划随机化或其它效果的方式故意地改变目标填充体积(或使针对用于每个目标区的液滴组合产生的聚合体积偏斜)。如先前所述,在不同的实施例中,还可以将此类变化计算到目标填充体积和容限中,即甚至在分析液滴组合之前,并且例如应用如先前所指示的算法逼近来满足每个目标区填充要求。如以下将结合图8B所讨论的那样,也有可能考虑随机化作为概率分布并且以为了满足合成填充容限而计算的方式取决于该随机化来规划液滴测量(并且求得每喷嘴、每波形分布)。例如,如果所规划的填充的随机化待在目标合成填充的±0.2%之间正态地变化,并且所指定的容限是目标合成填充的±0.5%,则可以规划用于每个喷嘴和每个喷嘴波形组合的液滴测量,以产生处于目标的0.3%(0.2%+0.3%=0.5%)内的用于每个喷嘴/喷嘴波形的3σ值。 Note that, as previously mentioned, in the exemplary display fabrication process, each target area fill volume may have a deliberate implant (623) to ease planned randomization of the filiform pattern. In one embodiment, a generator function (625) is optionally applied to intentionally vary the target fill volume (or to make the number of drops generated for each target zone combination) in a manner that achieves this planning randomization or other effects. aggregate volume skew). As previously stated, in various embodiments, such variations can also be calculated into the target fill volume and tolerance, i.e. even before analyzing the droplet combination, and for example applying an algorithmic approximation as previously indicated to satisfy each target area filling requirements. As will be discussed below in conjunction with FIG. 8B , it is also possible to consider the randomization as a probability distribution and plan droplet measurements dependent on it (and find the per-nozzle, per-waveform distributed). For example, if the randomization of the planned fill is to vary normally between ±0.2% of the target composite fill, and the specified tolerance is ±0.5% of the target composite fill, then one can plan for each nozzle and Droplet measurements were combined for each nozzle waveform to yield 3σ values for each nozzle/nozzle waveform that were within 0.3% of the target (0.2%+0.3%=0.5%).
图6B和数字631指代与上文提到的迭代液滴组合选择处理有关的更详细框图。如数字633和635所表示的,首先,再一次适当地标识、存储并检索可能的液滴组合,以用于由软件评估。针对每个可能扫描路径(或几何步幅),经由数字637,该方法存储标识扫描路径(639)和应用的喷嘴的足迹,并且其从每个目标区几何中减去每个喷嘴发射(641)以确定用于每个目标区的剩余部分组合(643)。这些也被存储。然后,经由数字645,该方法根据预定义准则来评估存储数据。例如,如可选(短划线)方框647所指示的,设法使跨所有相关目标区的液滴组合的最小数目最大化的方法可以分配指示刚刚存储的组合是比先前考虑的替换方案更好还是更坏的分数。如果满足指定准则(645),则可以选择特定扫描或几何步幅,存储或者另外标记剩余部分组合以便在考虑另一打印头/基底扫描或通过使使用,如数字649和651所表示的。如果未满足该准则(或者考虑未完成),则可以考虑另一步幅和/或该方法可以调整在考虑中的几何步幅(或先前选择的部分)的考虑,经由数字653。再次地,可以有许多变化。 FIG. 6B and numeral 631 refer to a more detailed block diagram related to the above-mentioned iterative drop combination selection process. As represented by numerals 633 and 635, first, possible droplet combinations are again suitably identified, stored and retrieved for evaluation by the software. For each possible scan path (or geometry step), via number 637, the method stores a footprint identifying the scan path (639) and applied nozzle, and it subtracts each nozzle shot from each target zone geometry (641 ) to determine the remainder combination (643) for each target zone. These are also stored. Then, via numeral 645, the method evaluates the stored data according to predefined criteria. For example, as indicated by optional (dashed) block 647, a method that seeks to maximize the minimum number of droplet combinations across all relevant target regions may assign an indication that the combination just stored is better than the previously considered alternative. Better or worse scores. If specified criteria ( 645 ) are met, then a particular scan or geometric step may be selected, stored or otherwise marked for use in consideration of another printhead/substrate scan or by using the remainder of the combination, as represented by numerals 649 and 651 . If the criterion is not met (or the consideration is not complete), another stride may be considered and/or the method may adjust consideration of the geometric stride (or previously selected portion) under consideration, via number 653 . Again, many variations are possible.
先前注意到执行扫描或沉积液滴的顺序对于用于每个目标区的最终合成值而言不重要。虽然事实如此,但为了使打印速度和吞吐量最大化,优选地将扫描排序成从而导致可能的最快或最高效的打印。因此,如果先前并未计算到几何步幅分析中,则然后可以执行扫描或步幅的分类和/或排序。用图6C来表示此处理。 It was previously noted that the order in which the scans are performed or the droplets are deposited is not important to the final composite value for each target zone. While this is true, to maximize printing speed and throughput, scans are preferably ordered to result in the fastest or most efficient printing possible. Thus, classification and/or ordering of scans or strides can then be performed if not previously calculated into the geometric stride analysis. This processing is represented by Fig. 6C.
特别地,使用数字661来一般地指定图6C的方法。例如在适当机器上运行的软件引起处理器检索(663)所选几何步幅、特定集合或标识所选扫描路径的其它数据(以及适当的喷嘴发射图案,在其中可以由超过一个发射波形来驱动某些喷嘴的那些实施例中,其还可以包括指定多个发射波形中的哪一个将被用于每个液滴的数据)。然后以使增量步幅距离最小化的方式将这些步幅或扫描分类或排序。例如,再次地参考先前介绍的假定示例,如果所选步幅/扫描路径是{0,+3,-2,+6和-4},则这些可能会被重新排序以使每个增量步幅最小化且使由运动系统在扫描之间穿过的总(聚合)距离最小化。在例如没有重新排序的情况下,这些偏移之间的增量距离将等于3、2、6和4(使得在本示例中穿过的聚合距离将是“15”)。如果以所述的方式将扫描(例如,扫描“a”、“b”、“c”、“d”和“e”)重新排序(例如,按照“a”、“c”、“b”、“e”和“d”的顺序),则增量距离将是+1、+2、0和+4(使得穿过的聚合距离将是“7”)。如数字667所表示的,在这里,该方法可以向打印头运动系统和/或基底运动系统分配运动,并且使喷嘴发射的顺序反向(例如,如果使用交替的往返扫描路径方向的话,经由图3B的数字339和340)。如先前所述和可选处理方框669所表示的,在某些实施例中,可以针对目标区的子集执行规划和/或优化,然后在大的基底上以空间重复方式应用该解。 In particular, numeral 661 is used to generally designate the method of FIG. 6C. For example, software running on a suitable machine causes the processor to retrieve (663) the selected geometric step, specific set, or other data identifying the selected scan path (and the appropriate nozzle firing pattern, which may be driven by more than one firing waveform In those embodiments for certain nozzles, it may also include data specifying which of a plurality of firing waveforms is to be used for each droplet). These steps or scans are then sorted or ordered in such a way that the incremental step distance is minimized. For example, referring again to the hypothetical example presented earlier, if the chosen strides/sweep paths were {0, +3, -2, +6, and -4}, these might be reordered so that each incremental step Minimize the amplitude and minimize the total (aggregated) distance traversed by the motion system between scans. In the case of e.g. no reordering, the incremental distances between these offsets would be equal to 3, 2, 6 and 4 (so that in this example the aggregated distance traversed would be "15"). If the scans (for example, scans "a", "b", "c", "d", and "e") are reordered in the manner described (for example, by "a", "c", "b", "e" and "d" order), then the incremental distances would be +1, +2, 0, and +4 (so that the aggregated distance traversed would be "7"). Here, as indicated by numeral 667, the method may distribute motion to the printhead motion system and/or the substrate motion system, and reverse the order of nozzle firing (e.g., if alternate round-trip scan path directions are used, via FIG. 3B's numbers 339 and 340). As previously described and represented by optional processing block 669, in some embodiments, planning and/or optimization may be performed on a subset of the target region, and the solution then applied in a spatially iterative manner over a large base.
部分地用图6D来表示此重复。如图6D所暗示的,应针对本叙述假设期望制造平板设备阵列。用数字681来表示公共基底,并且诸如方框683之类的一组短划线方框表示用于每个平板设备的几何结构。在基底上形成具有二维特性的基准685并用来对各种制造处理进行定位和对准。在这些处理最终完成之后,使用切割或类似处理将每个面板683与公共基底分离。在面板阵列表示各OLED显示器的情况下,公共基底681通常将是玻璃,基底被沉积在玻璃的顶部上,后面是一个或多个密封层;然后将每个面板倒置,使得玻璃基底形成显示器的发光表面。对于某些应用而言,可以使用其它基底材料,例如透明或不透明的柔性材料。如所述,可以根据所述技术来制造许多其它类型的设备。可以针对平板683的特定子集687计算解。然后针对平板683的其它的类似尺寸的子集689重复此解,并且然后可以针对将由给定基底形成的每个面板重复整个解集。 This repetition is represented in part by Figure 6D. As implied by Figure 6D, it should be assumed for this description that it is desired to fabricate an array of flat panel devices. The common base is indicated by numeral 681, and a set of dashed boxes, such as box 683, represent the geometry for each tablet device. Fiducials 685 having a two-dimensional nature are formed on the substrate and used for positioning and alignment for various fabrication processes. After these processes are finally completed, each panel 683 is separated from the common base using cutting or similar process. Where the array of panels represents each OLED display, the common substrate 681 will typically be glass, with the substrate deposited on top of the glass, followed by one or more sealing layers; each panel is then inverted so that the glass substrate forms the back of the display. Glowing surface. For some applications, other substrate materials may be used, such as transparent or opaque flexible materials. As noted, many other types of devices can be fabricated from the techniques described. Solutions can be computed for a specific subset 687 of slabs 683 . This solution is then repeated for other similarly sized subsets 689 of panels 683, and then the entire set of solutions may be repeated for each panel to be formed from a given substrate.
回想上文介绍的各种技术和考虑,可以执行制造处理以快速地且以低的每单位成本大量生产产品。应用于显示设备制造(例如,平板显示器),这些技术使得能够实现快速的每个面板打印处理,从公共基底产生多个面板。通过提供快速的可重复打印技术(例如,在面板间使用公共油墨和打印头),可相信可以基本上改进打印,例如,将每个层打印时间减少至在没有上述技术的情况下将需要的时间的一小部分,全部在同时确保每个目标区填充体积在规范内。再次地返回到大型HD电视显示器的示例,可相信可以在一百八十秒或更少、或者甚至九十秒或者更少内针对大型基底(例如,产生8.5基底,其为约220cm×250cm)准确地且可靠地打印每个色彩部件层,代表着显著工艺改进。改进打印的效率和质量为显著地降低生产大型HD电视显示器的成本和因此的低端消费装置成本铺平道路。如先前所述,虽然显示器制造(和特别地OLED制造)是在本文中介绍的技术的一个应用,但这些技术可以应用于多种处理、计算机、打印机、软件、制造设备和最终设备,并且不限于显示面板。 Recalling the various techniques and considerations introduced above, a manufacturing process can be performed to mass produce products quickly and at low cost per unit. Applied to display device manufacturing (for example, flat panel displays), these techniques enable fast per-panel print processing, producing multiple panels from a common substrate. By providing fast repeatable printing techniques (for example, using common inks and printheads between panels), it is believed that printing can be substantially improved, for example, reducing the printing time per layer to what would be required without the above techniques A fraction of the time, all while ensuring each target zone fill volume is within specification. Returning again to the example of a large HD television display, it is believed possible in one hundred eighty seconds or less, or even ninety seconds or less, for large substrates (e.g., producing an 8.5 substrate, which is about 220cm x 250cm) Accurately and reliably printing each color part layer represents a significant process improvement. Improving the efficiency and quality of printing paves the way for a dramatic reduction in the cost of producing large HD television displays and thus the cost of low-end consumer devices. As previously stated, while display manufacturing (and OLED manufacturing in particular) is one application of the techniques presented in this paper, these techniques can be applied to a variety of processes, computers, printers, software, manufacturing equipment, and end devices, and do not Limited to display panels.
在容限内沉积精确的目标区体积(例如,阱体积)的能力的一个益处是能够如所述的那样在容限内注入故意变化。这些技术促进了显示器的显著质量改进,因为其提供了隐藏显示器的像素化伪像的能力,使得此类“线状花纹”对人眼不可感知。图7提供了与用于注入此变化的一个方法相关联的框图701。如上文所讨论的各种方法和框图一样,可以可选地将框图701和相关方法实现为软件,在独立介质上或者作为较大机器的一部分。 One benefit of the ability to deposit precise target region volumes (eg, well volumes) within tolerances is the ability to implant intentional variations within tolerances as described. These techniques facilitate significant quality improvements in displays because they provide the ability to hide pixelation artifacts of the display, making such "linework" imperceptible to the human eye. Figure 7 provides a block diagram 701 associated with one method for injecting this change. As with the various methods and block diagrams discussed above, block diagram 701 and related methods may optionally be implemented as software, on a stand-alone medium or as part of a larger machine.
如用数字703表示的,可以根据特定准则进行变化。例如,一般地应理解的是人眼对对比度变化的敏感度与亮度、预期观察距离、显示器分辨率、色彩及其它因素有关。作为指定的准则的一部分,使用一措施来确保给定对不同亮度水平之间的色彩之间的对比度方面的空间变化的典型人眼敏感度,此类变化将以对人眼不可见的方式被平滑化,例如以并不在(a)任何一个或多个方向上或(b)给定预期观察条件下的色彩部件之间贡献人可观察图案的方式改变。这可以可选地使用规划随机化函数来实现,如先前所提到的。在指定最小值准则的情况下,可以以适合于将任何可见伪像从人眼隐藏的方式来故意地改变用于每个色彩部件和每个像素的目标填充体积,如数字705所表示的。请注意,图7的右侧表示各种处理选项,例如该变化可以跨色彩部件是独立的(707),基于算法来应用针对可感知图案的测试以确保填充变化并未引起可感知图案。如用数字707所述,针对任何给定色彩部件(例如,任何给定油墨),还可以使得该变化在多个空间维度(例如,x和y维度)中的每一个上是独立的(709)。再次地,在一个实施例中,不仅针对每个维度/色彩部件对变化进行平滑化从而使其不可感知,而且还抑制这些维度中的每一个之间的差的任何图案从而使其不可见。经由数字711,可以应用一个或多个生成器函数来确保满足这些准则,例如通过可选地使用任何期望的准则在液滴体积分析之前向每个目标区的填充分配微小的目标填充变化。如数字713所表示的,在一个实施例中,可以可选地使得该变化是随机的。 As represented by numeral 703, changes may be made according to certain criteria. For example, it is generally understood that the sensitivity of the human eye to contrast changes is related to brightness, intended viewing distance, display resolution, color, and other factors. As part of the specified criteria, a measure is used to ensure that given the typical human eye sensitivity to spatial variations in contrast between colors between different brightness levels, such variations will be detected in a manner that is invisible to the human eye. Smoothing, such as changing in a manner that does not contribute to a human-observable pattern (a) in any one or more directions or (b) between color components given expected viewing conditions. This can optionally be achieved using a planning randomization function, as mentioned previously. Where a minimum criterion is specified, the target fill volume for each color component and each pixel, as represented by numeral 705 , can be intentionally varied in a manner suitable to hide any visible artifacts from the human eye. Note that the right side of Figure 7 represents various processing options, eg the variation can be independent across color components (707), based on an algorithm applying a test for a perceivable pattern to ensure that the fill variation did not cause a perceivable pattern. As described with numeral 707, for any given color component (e.g., any given ink), the variation can also be made independent (709) in each of a plurality of spatial dimensions (e.g., x and y dimensions). ). Again, in one embodiment, not only is the variation smoothed for each dimension/color component so that it is not perceptible, but any pattern of difference between each of these dimensions is suppressed so that it is not visible. Via number 711, one or more generator functions may be applied to ensure that these criteria are met, for example by assigning a small target fill variation to the fill of each target zone prior to droplet volume analysis, optionally using any desired criteria. As represented by numeral 713, in one embodiment, this variation can optionally be made random.
经由数字715,因此有利于所选变化准则对用于每个目标区的特定液滴组合的选择进行加权。如所述,这可以经由目标填充变化或者在液滴(例如,扫描路径、喷嘴波形组合或两者)选择的时间执行。还存在用于赋予此变化的其它方法。例如,在一个设想实施方式中,经由数字717,以非线性方式改变扫描路径,有效地改变跨平均扫描路径方向的液滴体积。经由数字719,还可以改变喷嘴发射图案,例如通过调整发射脉冲上升时间、下降时间、电压、脉冲宽度或每个脉冲使用多个信号水平(或其它形式的脉冲成形技术)来提供微小的液滴体积变化;在一个实施例中,可以预先计算这些变化,并且在不同的实施例中,仅使用产生非常微小的体积变化的波形变化,采用其它措施以确保聚合填充保持在指定容限范围内。在一个实施例中,针对每个目标区,计算落在指定容限范围内的多个液滴组合,并且针对每个目标区,改变(例如,随机地或基于数学函数)在该目标区中使用哪个液滴组合的选择,或者针对贡献于所选择的组合的一个喷嘴来改变特定波形(即被用于产生给定体积的液滴),例如,提供少许的体积变化,从而有效地改变跨目标区的液滴体积而不改变所规划的扫描路径。可以在一行目标区上、在一列目标区上或在两者上沿着扫描路径方向实现此类变化。 Via number 715, the selected variation criteria are thus facilitated to weight the selection of a particular combination of droplets for each target zone. As noted, this can be performed via a target fill change or at a selected time of droplet (eg, scan path, nozzle waveform combination, or both). There are other methods for imparting this variation as well. For example, in one contemplated embodiment, via numeral 717, the scan path is varied in a non-linear fashion, effectively varying the droplet volume across the direction of the average scan path. Via number 719, it is also possible to vary the nozzle firing pattern, for example by adjusting the firing pulse rise time, fall time, voltage, pulse width or using multiple signal levels per pulse (or other forms of pulse shaping techniques) to provide tiny droplets Volume changes; in one embodiment, these changes can be pre-calculated, and in a different embodiment, only waveform changes that produce very small volume changes are used, with other measures taken to ensure aggregate fill remains within specified tolerances. In one embodiment, for each target zone, a number of droplet combinations that fall within a specified tolerance range are calculated, and for each target zone, a change (e.g., randomly or based on a mathematical function) The choice of which droplet combination to use, or to vary a particular waveform (i.e., used to produce a droplet of a given volume) for one nozzle contributing to the selected combination, for example, to provide a small change in volume, effectively changing the droplet volume in the target area without changing the planned scan path. Such variations can be effected along the scan path direction over a row of target areas, over a column of target areas, or both.
使用图8A-图8B被用于解释用于求得用于估计由每个喷嘴或喷嘴波形组合产生的液滴并且可选地根据从测量所确定的统计平均值来规划多个液滴的组合的统计模型的方法。注意,在图8A-图8B的示例中,针对可以从给定喷嘴驱动波形配对期待的液滴体积构建统计模型;在替换实施例中,可以对于液滴速度、液滴飞行轨迹(例如相对于正常)或对于某另外参数构建相似统计模型。 The use of Figures 8A-8B is used to explain the formula for estimating the drops produced by each nozzle or combination of nozzle waveforms and optionally planning the combination of multiple drops based on the statistical average determined from the measurements. approach to statistical modeling. Note that in the example of FIGS. 8A-8B , a statistical model is constructed for the drop volume that can be expected from a given pair of nozzle drive waveforms; normal) or construct a similar statistical model for some other parameter.
图8所描绘方法总体上由标号801指定。按功能框803,该实施例中的方法开始于建立规范范围(例如用于将接纳油墨的给定目标区的最大和最小填充)。在之前提出的示例中,该规范范围可以被表示为平均值加上或减去特定值(例如50.00pL±0.5%),但可以使用可接受的值的几乎任何范围或表达式。在一个预期的实现方式中,关于目标的所指定的容限是±0.5%,但也可以使用其它值(例如但不限于1.0%或2.0%)。在保持与先前示例一致方面,对于该实施例,将假定目标是50.00pL并且容限是±0.5%(从而可接受的范围是49.75pL-50.25pL),但可以使用几乎任何范围或接受准则。 The method depicted in FIG. 8 is generally designated by reference numeral 801 . Per functional block 803, the method in this embodiment begins by establishing specification ranges (eg, maximum and minimum fills for a given target area that will receive ink). In the example presented earlier, this specification range could be expressed as the mean plus or minus a specific value (eg, 50.00pL ± 0.5%), but almost any range or expression of acceptable values could be used. In one contemplated implementation, the specified tolerance on the target is ±0.5%, although other values (such as, but not limited to, 1.0% or 2.0%) may also be used. In keeping with the previous example, for this example it will be assumed that the target is 50.00pL and the tolerance is ±0.5% (so that the acceptable range is 49.75pL-50.25pL), although almost any range or acceptance criterion could be used.
按标号805,对于打印头或打印头组件的每个喷嘴选择一个或多个候选波形。在仅使用单个驱动波形(例如固定电压的正方形电压脉冲)的实施例中,不存在需要执行的选择。在允许所定制的波形定义的实施例中(见例如以下与图14B和图15A-图15B关联的讨论),典型地期望估计表示(例如可以在之间内插以最终标识用于在考虑之下的每个喷嘴的多个可接受的波形的)值的范围的若干可选择的波形。按标号809,可以根据人工设计处理来执行这种选择(807)(即,通过设计者所选择的并且预先编程到系统中的波形),或也可以使得选择处理自动化。 At reference numeral 805, one or more candidate waveforms are selected for each nozzle of a printhead or printhead assembly. In embodiments where only a single drive waveform is used (eg, a square voltage pulse of a fixed voltage), there is no selection that needs to be performed. In embodiments that allow for customized waveform definitions (see, for example, the discussion below in association with FIGS. Several selectable waveforms under the range of values of the multiple acceptable waveforms for each nozzle. At reference numeral 809, this selection (807) may be performed according to a manual design process (ie, through waveforms selected by the designer and pre-programmed into the system), or the selection process may be automated.
利用对于每个喷嘴所定义的一个或多个波形,对于用于给定喷嘴波形配对的不同液滴喷出来规划液滴测量。例如,在一个实施例中,每个喷嘴可能需要多个液滴(例如“24个”),对于各个液滴提供用于估计所测量的统计分布的基础。如在此所讨论的那样,为此目的,可以使用液滴测量设备(例如成像或非成像的)。可以对于即时测量或对于在相应的或多个测量周期或迭代中的运行而规划24次(或另外数量的)测量。此外,在一个实施例中,可以对于初始化来规划测量的阈值数量,其中,系统于是随着时间增加测量数据集合,以求得关于所测量的统计分布的强置信度;在替换实施例中,可以对于移动时间窗口来规划每个测量(例如可以“每3小时”规划重新测量,或可以仅对于针对分析而使用的某有限时间区间保留测量数据);因此,在一个实施例中,每个测量存储有时间戳,以在估计期间指示其有效性和超期。无论使用什么测量和/或测量保留准则,都可以为了统计分析的目的而对于每个喷嘴波配对形来规划测量的数量(811)。有利地,用于源自每个喷嘴波形配对的液滴的相应测量被分组为集合,并且以有助于利用用于数学处理(包括聚合)的良好理解的规则来求得已知的公共分布格式的方式来规划。例如,正态分布、Student's-T分布和泊松分布都具有可以根据已知数学处理来组合的关联参数,以预测将源自(用于相应喷嘴波形配对的)单独液滴的组合的填充体积的聚合或合成分布。可以因此根据在此所描述的技术来执行测量规划,以求得允许与潜在地不同的喷嘴波形配对关联的液滴的统计组合的液滴数据集合,以利用非常高的置信度程度(例如,按标号813,典型地大于99%置信度)在所指定的容限内实现精确填充。相应地,在所描述的技术的一个实现方式中,规划用于每个喷嘴波形组合的液滴测量,以满足描述已知的概率分布类型的参数集合(例如,在正态分布的情况下,测量或成员的数量n、统计平均值μ和标准偏差σ),其中,对于在考虑之下的每一可能喷嘴和喷嘴波形配对存储测量数据(一旦获得)。在一个实施例中,规划和测量可以是迭代的(即重复的),直到达到一些期望准则(例如原始测量的最小数量(n)、满足一些准则的测量的最小数量、最小统计扩展(例如满足一些准则或期望置信度区间的3σ值)或其它准则)。无论(例如通过软件)应用什么规划准则,包括在考虑之下的液滴测量设备和打印头组件的系统都然后经受单独地应用于每个喷嘴(以及用于给定喷嘴的每个驱动波形)的液滴测量,以求得液滴测量的统计上显著的数量(815)。如标号817和819所注记的那样,可选地原地(例如,可选地在存在受控气氛时,在打印机或OLED设备制备装置中)并且以足以求得统计置信度的方式来执行该测量。所收集的数据然后可以作为聚合概率分布(821)和/或可选地以保留单独测量数据(例如包括用于每喷嘴测量窗口的任何时间戳)的方式而被存储。 With one or more waveforms defined for each nozzle, drop measurements are planned for different drop ejections for a given nozzle waveform pairing. For example, in one embodiment, multiple droplets (eg, "24") may be required per nozzle, for each droplet to provide a basis for estimating the measured statistical distribution. As discussed herein, a droplet measurement device (eg, imaging or non-imaging) may be used for this purpose. The 24 (or another number) of measurements may be scheduled for immediate measurements or for runs in corresponding or multiple measurement cycles or iterations. Furthermore, in one embodiment, a threshold number of measurements may be programmed for initialization, wherein the system then increases the set of measurement data over time to obtain a strong confidence in the statistical distribution of the measurements; in an alternative embodiment, Each measurement may be scheduled for a moving window of time (e.g., a re-measurement may be scheduled "every 3 hours", or measurement data may only be retained for some limited time interval used for analysis); thus, in one embodiment, each Measurements are stored with timestamps to indicate their validity and expiration during estimation. Regardless of the measurements and/or measurement retention criteria used, the number of measurements can be programmed (811) for each nozzle wave pairing for purposes of statistical analysis. Advantageously, the corresponding measurements for droplets originating from each nozzle waveform pairing are grouped into sets and in a manner that facilitates finding a known common distribution using well-understood rules for mathematical processing (including aggregation) Formatted way to plan. For example, the normal distribution, the Student's-T distribution, and the Poisson distribution all have associated parameters that can be combined according to known mathematical treatments to predict the probability of a fill volume that will result from a combination of individual droplets (for corresponding nozzle waveform pairings). Aggregated or synthetic distributions. Measurement planning can thus be performed according to the techniques described herein to derive a droplet data set that allows a statistical combination of drops associated with potentially different nozzle waveform pairs to utilize a very high degree of confidence (e.g., Accurate filling is achieved within specified tolerances, reference numeral 813, typically greater than 99% confidence. Accordingly, in one implementation of the described technique, droplet measurements for each combination of nozzle waveforms are planned to satisfy a set of parameters describing a known type of probability distribution (e.g., in the case of a normal distribution, Number of measurements or members n, statistical mean μ and standard deviation σ), where the measurement data (once obtained) are stored for each possible nozzle and nozzle waveform pairing under consideration. In one embodiment, the planning and measurements may be iterative (i.e. repeated) until some desired criterion is reached (e.g. minimum number (n) of raw measurements, minimum number of measurements satisfying some criterion, minimum statistical extension (e.g. satisfying some criterion or the 3σ value of the desired confidence interval) or other criterion). Whatever planning criteria are applied (e.g. by software), the system comprising the drop measurement device and printhead assembly under consideration is then subjected to application to each nozzle (and each drive waveform for a given nozzle) individually The droplet measurements to find a statistically significant number of droplet measurements ( 815 ). As noted at 817 and 819, optionally performed in situ (e.g., optionally in a printer or OLED device fabrication facility in the presence of a controlled atmosphere) and in a manner sufficient to derive statistical confidence The measurement. The collected data may then be stored as an aggregated probability distribution ( 821 ) and/or optionally in a manner that retains individual measurement data (eg including any timestamps for the per-nozzle measurement windows).
如之前提到的,在一个实施例中,来自潜在地不同的喷嘴和/或喷嘴驱动波形的液滴被智能地组合,以获得高统计置信度程度内的精确填充。在对于每个喷嘴构建公共格式的概率分布的情况下,通过组合用于相应液滴的统计参数来实现这种组合(以及有关的规划),以获得精确填充(以及用于每个填充的良好理解的概率分布)。在图8A中由标号823、825和827表示该情况。更具体地说,液滴平均值在(例如与关联正态分布对应的)一个实施例中组合,以获得用于目标区的所预测的聚合填充。作为示例,如果对于给定第一和第二喷嘴波形配对,平均液滴体积分别被测量为9.98pL和10.03pL,则基于与每个配对关联的一个液滴的平均聚合填充期待为20.01pL(在涉及正态分布的情况下,μc = μ1 + μ2);如果在该同一假设示例中,标准偏差对于相应液滴是0.032pL(σ1)和0.035pL(σ2),则聚合的期待标准偏差将是0.0474pL(即基于σ2 c=σ2 1 + σ2 2),并且聚合的3σ值将近似是0.142pL(注意,1σ等于近似68.27%的置信度区间,而3σ等于近似99.73%的置信度区间)。相似技术可以经由作为独立随机变量的用于每个喷嘴波形配对的液滴测量的处理而应用于任何公共分布格式。因此,在此所采用的技术使用液滴测量技术以构建用于每个喷嘴波形配对的统计模型,基于框825所表示的聚合随机变量的分析对于各个液滴组合进行规划(在正态分布的情况下)。倘若概率分布类型对于随机变量聚合是服从的,那么可以使用几乎任何分布类型。如功能框827所指示的那样,鉴于期望规范范围(例如关于目标的0.5%),(例如由软件)分析所提出的组合,以确保满足具有高统计置信度程度的期望范围。例如,在一个实施例中,如提到的那样,测试期望置信度准则(例如表示99.73%置信度区间的3σ),以确保其在期望容限范围内适配。作为示例,如果期望容限按上面介绍示例是49.75pL-50.25pL,并且可能的液滴组合表示为具有等于0.07pL的3σ值的49.89pL的平均值,则这将转译为聚合填充将处于良好地在期望容限范围内的49.82pL至49.96pL之间并且特定组合将看作可接受的组合的99%置信度(如上所述,每液滴组合分析功能)。再一次,可以使用适配数据的任何期望统计准则或良好性;在另一实施例中,相对于期望容限范围分析4σ值(99.993666%)或其它值。在对于每个打印阱确定的可接受的液滴组合的情况下,可以然后规划用于每个阱的液滴的具体特定组合(表示打印头组件的多个喷嘴进行的同时沉积)(见图5-图7),其中,随后根据用于每个阱的预先规划的液滴组合进行打印(829)。 As previously mentioned, in one embodiment, drops from potentially different nozzles and/or nozzle drive waveforms are intelligently combined to obtain accurate fills within a high degree of statistical confidence. This combination (and the associated planning) is achieved by combining the statistical parameters for the corresponding droplets, with a probability distribution of common format constructed for each nozzle, to obtain an exact filling (and a good Probability distributions for understanding). This case is indicated by reference numerals 823, 825 and 827 in FIG. 8A. More specifically, droplet averages are combined in one embodiment (eg, corresponding to an associated normal distribution) to obtain a predicted aggregate fill for the target zone. As an example, if for a given pair of first and second nozzle waveforms, the average drop volume is measured to be 9.98 pL and 10.03 pL, respectively, then the average aggregate fill based on one drop associated with each pair is expected to be 20.01 pL ( In the case involving a normal distribution, μ c = μ 1 + μ 2 ); if in this same hypothetical example the standard deviations are 0.032pL (σ 1 ) and 0.035pL (σ 2 ) for the corresponding droplets, then the aggregation The expected standard deviation of will be 0.0474pL (i.e. based on σ 2 c = σ 2 1 + σ 2 2 ), and the aggregated 3σ value will be approximately 0.142pL (note that 1σ equals a confidence interval of approximately 68.27%, and 3σ equals Approximate 99.73% confidence interval). Similar techniques can be applied to any common distribution format via the processing of droplet measurements for each nozzle waveform pair as independent random variables. Accordingly, the technique employed herein uses drop measurement techniques to construct a statistical model for each nozzle waveform pairing, planning for each drop combination (in a normally distributed case). Almost any distribution type can be used, provided the type of probability distribution is amenable to aggregation of random variables. As indicated by functional block 827 , given a desired specification range (eg, about 0.5% of the target), the proposed combination is analyzed (eg, by software) to ensure that the desired range is met with a high degree of statistical confidence. For example, in one embodiment, as mentioned, an expected confidence criterion (eg, 3σ representing a 99.73% confidence interval) is tested to ensure that it fits within expected tolerances. As an example, if the desired tolerance is 49.75pL - 50.25pL as per the example presented above, and the possible droplet combinations are represented as an average of 49.89pL with a 3σ value equal to 0.07pL, this would translate to aggregate fill being at a good Between 49.82 pL and 49.96 pL within the desired tolerance range and with 99% confidence that the particular combination would be considered an acceptable combination (per-droplet combination analysis function as described above). Again, any desired statistical criterion or goodness of fit data may be used; in another embodiment, 4σ values (99.993666%) or other values are analyzed against desired tolerance ranges. With the acceptable drop combinations determined for each print well, a specific specific combination of drops for each well (representing simultaneous deposition by multiple nozzles of the printhead assembly) can then be planned (see Fig. 5-FIG. 7), where printing is then performed (829) according to the pre-planned drop combination for each well.
图8B提供用于根据期望准则来容纳故意的目标区填充变化并且可选地还用于按每喷嘴(或每喷嘴波形)来执行可变数量的液滴测量的另一方法851。更具体地说,所述方法可以再一次实现为非暂态机器可读介质上所存储的指令,其控制至少一个处理器以执行指令所命令的功能集合。按标号853,作为第一操作数“x”接收期望容限范围;例如,可以指定目标区(例如像素阱)填充应处于目标体积的给定百分比(例如50.00pL±0.5%)内。可以通过消费者或工业规范来命令该容限范围,如功能855所指示的那样。如果期望对于合成体积的故意变化进行规划(例如在小范围内的随机变化,以避免所制成的显示器中的线状效应或其它可注意的赝像),则按功能857,接收该范围作为第二操作数“y”。基于这两个操作数,按框859,所述方法计算有效的可允许的最大变化、标准偏差或其它测度。在一个实施例中,y如图中所描绘的那样从x被减去,并且等于有效的所允许的填充变化;例如,如果规范按上述示例要求±0.5%内的填充,并且±0.1%的故意随机变化注入到用于阱填充的所规划的合成平均值(例如49.95pL-50.05pL)中,则再次使用50.00pL±0.5%的目标的示例,所允许的变化(在随机变化之前)可以受限为49.80pL-50.20pL。注意,其它技术也是可能的,例如,替代简单地减去这些测度,可以例如基于与用于独立随机变量的标准偏差或方差的统计组合关联的数学来使用界限准则的另一集合;取决于实施例,可以应用很多其它准则。按框859,其余范围(例如目标的±0.4%)可以于是等于期望置信度区间(例如3σ区间或其它统计测度),并且用于评估可能液滴组合是可接受的还是按以上给出的示例要从考虑排除。 FIG. 8B provides another method 851 for accommodating intentional target zone fill variations according to desired criteria and optionally also for performing a variable number of droplet measurements per nozzle (or per nozzle waveform). More specifically, the methods may again be implemented as instructions stored on a non-transitory machine-readable medium that control at least one processor to perform the set of functions commanded by the instructions. At reference numeral 853, a desired tolerance range is received as a first operand "x"; for example, one can specify that the target area (eg, pixel well) fill should be within a given percentage of the target volume (eg, 50.00 pL ± 0.5%). This tolerance range may be dictated by consumer or industry specifications, as indicated by function 855 . If it is desired to plan for intentional variation of the composite volume (e.g. random variation over a small range to avoid line effects or other noticeable artifacts in the resulting display), then by function 857, this range is received as Second operand "y". Based on these two operands, at block 859, the method calculates the effective allowable maximum variation, standard deviation, or other measure. In one embodiment, y is subtracted from x as depicted in the figure and is equal to the effective allowable fill variation; for example, if the specification calls for fill within ±0.5% as in the example above, and ±0.1% of Injecting intentional random variation into the planned synthetic average for well filling (e.g. 49.95pL-50.05pL), then again using the example of a target of 50.00pL ± 0.5%, the allowed variation (before random variation) can be Restricted to 49.80pL-50.20pL. Note that other techniques are also possible, e.g. instead of simply subtracting these measures, another set of bound criteria may be used, e.g. based on mathematics associated with statistical combinations of standard deviations or variances for independent random variables; depends on implementation For example, many other criteria can be applied. Per block 859, the remaining range (e.g., ±0.4% of target) may then be equal to a desired confidence interval (e.g., a 3σ interval or other statistical measure) and used to assess whether a possible droplet combination is acceptable or per the example given above to be excluded from consideration.
替代地,如功能块861和863所指示的那样,其余范围和关联置信度区间可以应用为管控液滴测量的准则,以构建用于每个液滴的期望统计模型。例如,如框861所表示的那样,利用所定义的期望置信度区间(例如3σ<=目标的0.4%),可以标识期望方差或最大允许方差,有效地以对于产生满足期望统计准则的统计模型而计算的方式来定义需要对于每个喷嘴波形组合采取的液滴测量的基线数量n。例如,无论填充是否为故意变化的,都可以使用期望有效容限范围来标识对于产生将是严格的统计分布而计算的测量的数量(例如24、50或另一数量),并且因此导致可以用于打印规划的大量可能液滴组合。可以通过多种方式来应用这种计算,例如(a)标识要被应用于每个喷嘴波形组合的测量的阈值数量(例如对于每个,24个液滴测量),或(b)标识对于每个喷嘴波形组合必须满足的阈值统计准则(例如,其中,按每喷嘴或喷嘴波形执行潜在地变化的数量的测量,直到阈值准则(例如方差、标准偏差等)为止)。然后使用液滴测量设备来应用(863)液滴测试功能,以执行测量,其中,由在功能框865中所阐述的这种测试来表示各种示例性功能。例如,可以对于每个喷嘴(或喷嘴波形配对)“i”测量ni液滴,如框865中所指示的那样。对于每个测量,控制液滴测量设备的软件可以执行增量液滴体积测量(867)并且将数据存储在存储器中(869)。跟随每个测量(或在阈值数量的测量之后),可以聚合用于给定喷嘴波形组合的联合测量,以计算(871)用于特定喷嘴波形组合的统计参数(例如在正态分布类型的情况下,平均值和标准偏差μ和σ)。这些值可以然后存储在存储器中(873)。可选地,按功能框874,可以应用这些相同或不同测量技术以存储一个或多个用于速度v以及x和y维度轨迹(α和β)的液滴测量。如标号875所反映的那样,可以应用判断准则以确定是否已经对于用于特定喷嘴波形组合(i)的给定参数(例如体积)采取足够的测量,或附加测量是否为期望的。如果需要附加测量,则所述方法按流程箭头877循环,以产生这些附加测量,即,从而可以对于特定喷嘴波形组合构建满足期望鲁棒性准则的统计模型。如果不需要附加测量,则所述方法可以然后继续下一喷嘴879,按流程箭头881适当地循环,直到已经处理所有喷嘴和/或喷嘴波形组合。注意,并非所有实施例需要这种顺序;例如,循环877和881按顺序而改变(例如其中,相继对于每个喷嘴执行液滴测量),其中,该处理重复,直到已经获得足够鲁棒的数据;例如,针对要以对于其它系统处理堆叠的方式以增量方式执行液滴测量的实施例(见例如以下图19的讨论),该处理提供特定优点。按标号883,一旦已经充分测试所有喷嘴或喷嘴波形组合,所述方法就结束,或如果在断续的基础上运行,则临时暂停。对于所描述的液滴测试,所获得的包括所测量的数据和/或所计算的统计参数的数据存储在机器可读存储器885中,以用于例如如上面讨论那样在液滴组合规划中使用。也可以可选地以代替或外加不同液滴体积的智能混合的其它方式来使用所获取的数据。在一个实施例中,如所提到的那样,所存储的数据可以再次以单独测量和/或统计参数的形式来表示包括液滴体积、液滴体积和/或液滴轨迹中的一个或多个的任何期望液滴参数。 Alternatively, as indicated by function blocks 861 and 863, the remaining ranges and associated confidence intervals may be applied as criteria governing droplet measurements to construct a desired statistical model for each droplet. For example, as represented by block 861, with a defined desired confidence interval (e.g., 3σ <= 0.4% of target), the desired variance or maximum allowable variance can be identified, effectively to produce a statistical model that satisfies the desired statistical criteria Rather, it is calculated in a manner to define the number of baselines n of drop measurements that need to be taken for each combination of nozzle waveforms. For example, the desired effective tolerance range can be used to identify the number of measurements (such as 24, 50, or another number) computed to produce a statistical distribution that will be strict, regardless of whether the filling is intentionally varied, and thus result in a value that can be calculated with A large number of possible droplet combinations for printing planning. This calculation can be applied in a number of ways, such as (a) identifying a threshold number of measurements to be applied to each combination of nozzle waveforms (e.g., 24 droplet measurements for each), or (b) identifying the number of measurements for each A threshold statistical criterion that a combination of nozzle waveforms must satisfy (eg, where a potentially varying number of measurements are performed per nozzle or nozzle waveform, up to a threshold criterion (eg, variance, standard deviation, etc.)). A drop test function is then applied ( 863 ) using the drop measurement device to perform measurements, with various exemplary functions represented by such tests set forth in function block 865 . For example, ni drops may be measured for each nozzle (or nozzle waveform pair) “i”, as indicated in block 865 . For each measurement, the software controlling the drop measurement device may perform incremental drop volume measurements (867) and store the data in memory (869). Following each measurement (or after a threshold number of measurements), the joint measurements for a given combination of nozzle waveforms may be aggregated to compute (871) statistical parameters for a particular combination of nozzle waveforms (e.g. in the case of a normal distribution type Below, mean and standard deviation μ and σ). These values can then be stored in memory (873). Optionally, per functional block 874, these same or different measurement techniques may be applied to store one or more droplet measurements for velocity v and x- and y-dimensional trajectories (α and β). As reflected by reference numeral 875, a decision criterion may be applied to determine whether sufficient measurements have been taken for a given parameter (eg, volume) for a particular nozzle waveform combination (i), or whether additional measurements are desired. If additional measurements are required, the method loops by flow arrow 877 to generate these additional measurements, ie, so that a statistical model that satisfies the desired robustness criteria can be constructed for a particular combination of nozzle waveforms. If no additional measurements are required, the method may then continue to the next nozzle 879, looping appropriately at flow arrow 881 until all nozzles and/or nozzle waveform combinations have been processed. Note that not all embodiments require this order; for example, loops 877 and 881 are changed in order (e.g., where drop measurements are performed sequentially for each nozzle), where the process repeats until sufficiently robust data has been obtained ; for example, this process provides particular advantages for embodiments where droplet measurements are to be performed incrementally in the same way that stacking is handled for other systems (see eg discussion of FIG. 19 below). At reference numeral 883, once all nozzles or combinations of nozzle waveforms have been sufficiently tested, the method ends, or is temporarily paused if run on an intermittent basis. For the drop testing described, the data obtained, including measured data and/or calculated statistical parameters, is stored in machine readable memory 885 for use in drop combination planning, for example, as discussed above. . The acquired data may alternatively be used in other ways instead of or in addition to intelligent mixing of different droplet volumes. In one embodiment, as mentioned, the stored data may again be represented in the form of individual measured and/or statistical parameters including one or more of drop volume, drop volume, and/or drop trajectory. any desired droplet parameters.
使用图9A—10C来提供用于这里所讨论技术的模拟数据。图9A—9C表示基于五个液滴的期待的合成填充体积,而图10A—10C表示基于十个液滴的期待的合成填充体积。对于这些图中的每一个而言,字母命名“A”(例如,图9A和10A)表示其中在没有关于体积差的考虑的情况下使用喷嘴来沉积液滴的情况。相反地,字母命名“B”(例如,图9B和10B)表示其中将(5或10)个液滴的随机组合选择成对喷嘴之间的预期体积差“求平均”。最后,字母命名“C”(例如,图9C和10C)表示其中扫描和喷嘴发射取决于设法使跨目标区的聚合填充变化最小化的每个目标区特定聚合油墨体积。在这些不同的图中,假设每个喷嘴的变化将与在实际设备中观察到的变化一致,每个竖轴表示以pL为单位的聚合填充体积,并且每个横轴表示目标区的数目,例如像素阱或像素色彩部件。请注意,这些图的强调将示出聚合填充体积的变化,采取围绕着假设平均的随机分布液滴变化。对于图9A—9C而言,假设每个喷嘴的平均体积略微在每个喷嘴10.00pL以下,并且对于图10A—10C而言,假设每个喷嘴的平均液滴体积略微在每个喷嘴10.00pL以上。 Figures 9A-10C are used to provide simulation data for the techniques discussed here. 9A-9C represent the expected composite fill volume based on five droplets, while FIGS. 10A-10C represent the expected composite fill volume based on ten droplets. For each of these figures, the letter designation "A" (eg, FIGS. 9A and 10A ) indicates the case where a nozzle is used to deposit droplets without consideration regarding volume differences. Conversely, the letter designation "B" (eg, FIGS. 9B and 10B ) indicates that the expected volume difference between pairs of nozzles is "averaged" where random combinations of (5 or 10) droplets are selected. Finally, the letter designation "C" (eg, FIGS. 9C and 10C ) indicates where scanning and nozzle firing depend on each target zone specific aggregated ink volume trying to minimize aggregate fill variation across the target zone. In these various figures, each vertical axis represents the aggregate fill volume in pL and each horizontal axis represents the number of target zones, assuming that the variation for each nozzle will be consistent with that observed in the actual device, Examples are pixel wells or pixel color components. Note that the emphasis on these figures will show the change in the aggregate fill volume, taken around the assumed average random distribution of droplets. For Figures 9A-9C, assume the average volume per nozzle is slightly below 10.00 pL per nozzle, and for Figures 10A-10C, assume the average droplet volume per nozzle is slightly above 10.00 pL per nozzle .
在图9A中表示的第一图表901示出了采取喷嘴液滴体积中的差而不尝试缓解这些差的每个阱体积变化。请注意,这些变化可以是极端的(例如,每个峰值903),具有约±2.61%的聚合填充体积范围。如所述,五个液滴的平均值略微在50.00pL以下;图9A示出了以此平均值为中心的两组样本容限范围,包括表示以此值为中心的±1.00%的范围的第一范围905以及表示以此值为中心的±0.50%的范围的第二范围907。如用超过范围(例如,峰值903)的许多峰值和槽点所看到的,此类打印处理导致将不能满足规范(例如,这些范围中的一个或另一个)的许多阱。 A first graph 901 represented in FIG. 9A shows each well volume variation taking differences in nozzle droplet volumes without attempting to mitigate these differences. Note that these variations can be extreme (eg, 903 per peak), with an aggregate fill volume range of about ±2.61%. As noted, the mean of the five droplets was slightly below 50.00 pL; Figure 9A shows the tolerance ranges for the two sets of samples centered on this mean, including the range representing ±1.00% centered on this value. A first range 905 and a second range 907 representing a range of ±0.50% centered on this value. As seen with many peaks and troughs that exceed the range (eg, peak 903 ), such a printing process results in many wells that will not meet the specification (eg, one or the other of these ranges).
图9B中所表示的第二图表911示出了每个阱使用随机化的一组五个喷嘴的每个阱体积变化,以试图在统计上对液滴体积变化的效果求平均。请注意此类技术并不允许任何特定阱中的特定体积的油墨的精确产生,此类处理也不保证在范围内的聚合体积。例如,虽然落在规范之外的填充体积的百分比表示比图9A所表示的好得多的情况,但仍存在其中单独阱(诸如用槽点913标识的)落在规范范围之外的情况,例如分别地用数字905和907表示的±1.00%和±0.50%变化。在这种情况下,最小/最大误差是±1.01%,反映相对于在图9A中提出的数据而言而随机混合的情况下的改进。 A second graph 911 represented in FIG. 9B shows per-well volume changes using a randomized set of five nozzles per well in an attempt to statistically average the effect of drop volume changes. Note that such techniques do not allow for the precise generation of a specific volume of ink in any particular well, nor do such processes guarantee aggregated volumes within range. For example, while the percentage of fill volume that falls outside specification represents a much better case than that represented in FIG. For example ±1.00% and ±0.50% variations denoted by numerals 905 and 907, respectively. In this case, the min/max error was ±1.01%, reflecting an improvement over the case of random mixing relative to the data presented in Figure 9A.
图9C表示第三情况,使用根据上述技术的每个喷嘴液滴的特定组合。特别地,图表921显示变化完全在±1.00%范围内且相当接近于满足用于所有表示目标区的±0.50%范围;再次地,分别地用数字905和907来表示这些范围。在本示例中,使用五个具体选择的液滴体积填充每个扫描线中的阱,打印头/基底针对每次通过或扫描适当地移位。最小/最大误差是±0.595%,反映此形式的“智能混合”的情况下的进一步改进。 请注意,该改进和数据观察对于任何形式的智能液滴体积组合而言是一致的以实现特定填充或容限范围,例如在使用喷嘴行(或多个打印头)之间的偏移的情况下或者在使用多个预选驱动波形来允许具体选择的液滴体积的组合的情况下。 Figure 9C represents a third case, using a specific combination of drops per nozzle according to the technique described above. In particular, graph 921 shows that the variation is well within the ±1.00% range and fairly close to meeting the ±0.50% range for all indicated target regions; again, these ranges are denoted by numbers 905 and 907, respectively. In this example, five specifically selected drop volumes are used to fill the wells in each scanline, with the printhead/substrate shifted appropriately for each pass or scan. The min/max error is ±0.595%, reflecting a further improvement in the case of this form of "smart blending". Note that this improvement and data observation is consistent for any form of smart drop volume combination to achieve a specific fill or tolerance range, such as in the case of using offsets between nozzle rows (or multiple printheads) or where multiple preselected drive waveforms are used to allow for combinations of specifically selected droplet volumes.
如所述,图10A—10C呈现类似的数据,但是采取每个阱10个液滴的组合,具有每个喷嘴约10.30pL的平均液滴体积。特别地,图10A中的图表1001表示其中并未注意缓解液滴体积差的情况,图10B中的图表1011表示其中随机地施加液滴以试图在统计上对体积差“求平均”的情况,并且图10C中的图表1021表示特定液滴的规划混合(以实现图10A/10B的平均填充体积,即约103.10pL)的情况。这些不同的图示出了围绕此平均值的±1.00%和±0.50%变化的容限范围,分别地使用范围箭头1005和1007来表示。图中的每一个进一步示出了用变化表示的各峰值1003、1013和1023。然而请注意图10A表示围绕目标的±2.27%的变化,图10B表示围绕目标的±0.707%的变化,并且图10C表示围绕目标的±0.447%的变化。通过较大数目的液滴的求平均,看到图10B的“随机液滴”将实现围绕平均值的±1.00%容限而不是±0.50%范围。相反地,看到图10C所描述的解决方案将满足两个容限范围,说明可以在仍允许阱之间的液滴组合方面的变化的同时将变化约束为落在规范内。 As noted, Figures 10A-10C present similar data, but taking a combination of 10 droplets per well, with an average droplet volume of about 10.30 pL per nozzle. In particular, graph 1001 in FIG. 10A represents the case where no care has been taken to mitigate droplet volume differences, and graph 1011 in FIG. 10B represents the case where droplets are applied randomly in an attempt to statistically "average" the volume difference, And the graph 1021 in FIG. 10C represents the case of the planned mixing of a particular droplet (to achieve the average fill volume of FIGS. 10A/10B , ie about 103.10 pL). The various graphs show tolerance ranges around ±1.00% and ±0.50% variations of this mean value, indicated using range arrows 1005 and 1007, respectively. Each of the graphs further shows respective peaks 1003, 1013 and 1023 represented by changes. Note however that FIG. 10A represents a variation of ±2.27% around the target, FIG. 10B represents a variation of ±0.707% around the target, and FIG. 10C represents a variation of ±0.447% around the target. By averaging over a larger number of droplets, the "random droplets" seen in Figure 10B will achieve a ±1.00% tolerance around the mean rather than a ±0.50% range. Conversely, seeing that the solution described in Figure 10C will satisfy both tolerance ranges, illustrates that variation in droplet combination between wells can be constrained to fall within specification while still allowing for variation in droplet composition between wells.
在本公开中描述的技术的一个可选实施例如下。对于使用具有x%的液滴体积标准偏差的喷嘴以沉积具有±y%的最大变化的聚合填充体积的打印处理,常规的上,存在少数确保聚合填充体积将变化达±y%的手段。这提出潜在问题。(例如图9B和图10B中可见的数据所表示的)液滴聚合技术在统计上将跨目标区的聚合体积的标准偏差减少到x%/(n)1/2,其中,n是每目标区所需以实现期望填充体积液滴的平均数量。然而,甚至关于这种统计方法,尤其是如果y和n很小,则不存在用于可靠地确保实际目标区填充体积将实际上位于±y%的最大误差边界内的机制。在此所讨论的技术提供一种用于通过确保目标区的已知百分比来提供这种可靠性的机制,并且实现±y%内的合成填充。一个可选实施例因此提供一种生成控制数据或控制打印机的方法以及有关的装置、系统、软件和改进,其中,跨目标区的体积的标准偏差优于x%/(n)1/2(例如,实质上优于x%/(n)1/2)。在特定实现方式中,在同时使用打印头喷嘴以通过每次扫描在目标区的相应行(例如相应像素阱)中沉积液滴的情况下,该条件得以满足。 An alternative embodiment of the technology described in this disclosure is as follows. For printing processes that use nozzles with a standard deviation of drop volume of x% to deposit aggregated fill volumes with a maximum variation of ±y%, there are conventionally few means of ensuring that the aggregated fill volume will vary by ±y%. This presents potential problems. The droplet aggregation technique (such as represented by the data visible in FIGS. 9B and 10B ) statistically reduces the standard deviation of aggregated volumes across the target region to x%/(n) 1/2 , where n is the The average number of droplets required to achieve the desired fill volume. However, even with this statistical approach, especially if y and n are small, there is no mechanism for reliably ensuring that the actual target zone fill volume will actually lie within the maximum error bound of ±y%. The techniques discussed here provide a mechanism for providing this reliability by ensuring a known percentage of the target area, and achieving a resultant fill within ±y%. An alternative embodiment thus provides a method of generating control data or controlling a printer, and related devices, systems, software and improvements, wherein the standard deviation across the volume of the target zone is better than x%/(n) 1/2 ( For example, substantially better than x%/(n) 1/2 ). In a particular implementation, this condition is met in case the printhead nozzles are simultaneously used to deposit droplets in respective rows (eg respective pixel wells) of the target area with each scan.
利用用于将液滴组合使得其体积的和被具体地选择以满足这样描述的特定目标的一组基本技术,本文现在将转到可以受益于这些原理的特定设备和应用的更详细讨论。本讨论意图是非限制性的,即描述用于实施上文介绍的方法的少数具体设想的实施方式。 Using a basic set of techniques for combining droplets such that the sum of their volumes is specifically chosen to meet the specific goals thus described, this paper will now turn to a more detailed discussion of specific devices and applications that can benefit from these principles. This discussion is intended to be non-limiting, ie to describe a small number of specifically contemplated implementations for implementing the methods presented above.
如在图11中看到的,多室制造装置1101包括多个一般模块或子系统,其包括转印模块1103、打印模块1105和处理模块1107。每个模块保持受控环境,使得可以由打印模块1105在第一受控气氛中执行例如打印,并且可以在第二受控气氛中执行其它处理,例如诸如无机密封层沉积或固化处理(例如,对于已打印材料而言)之类的另一沉积处理。装置1101使用一个或多个机械搬运器来在模块之间移动基底而不使基底暴露于不受控气氛。在任何给定模块内,可以使用适合于要针对该模块执行的处理的其它基底搬运系统和/或特定设备和控制系统。 As seen in FIG. 11 , multi-chamber fabrication apparatus 1101 includes a number of general modules or subsystems, including transfer module 1103 , printing module 1105 , and processing module 1107 . Each module maintains a controlled environment such that printing, for example, can be performed by the printing module 1105 in a first controlled atmosphere, and other processing, such as, for example, inorganic sealing layer deposition or curing processes (e.g., Another deposition process such as for printed materials). Apparatus 1101 uses one or more mechanical handlers to move substrates between modules without exposing the substrates to an uncontrolled atmosphere. Within any given module, other substrate handling systems and/or specific equipment and control systems appropriate to the process to be performed for that module may be used.
转印模块1103的各种实施例可以包括输入装载锁1109(即,在保持受控气氛的同时提供不同环境之间的缓冲的室)、转印室1111(也具有用于传送基底的搬运器)以及气氛缓冲室1113。在打印模块1105内,可以在打印处理期间将诸如浮动台之类的其它基底搬运机构用于基底的稳定支撑。另外,可以将诸如分离轴或构台运动系统之类的xyz运动系统用于至少一个打印头相对于基底的精确定位以及提供用于基底通过打印模块1105的传送的y轴传送系统。还可以在打印室内将多个油墨用于打印,例如使用各打印头组件,使得例如可以在受控气氛中在打印模块内执行两个不同类型的沉积处理。打印模块1105可以包括容纳喷墨打印系统的气包体1115,具有用于引入惰性气氛(例如,氮气、稀有气体、另一类似气体或其组合)且另外针对环境规章(例如,温度和压力)、气体组成和颗粒存在而控制气氛的装置。 Various embodiments of the transfer module 1103 may include an input load lock 1109 (i.e., a chamber that provides a buffer between different environments while maintaining a controlled atmosphere), a transfer chamber 1111 (also having a carrier for transferring substrates) ) and the atmosphere buffer chamber 1113. Within the printing module 1105, other substrate handling mechanisms such as floating tables may be used for stable support of the substrate during the printing process. Additionally, an xyz motion system such as a split axis or gantry motion system may be used for precise positioning of at least one printhead relative to the substrate as well as providing a y-axis transport system for transport of the substrate through the printing module 1105 . It is also possible to use multiple inks for printing within the printing chamber, for example using individual printhead assemblies, so that for example two different types of deposition processes can be performed within the printing module in a controlled atmosphere. The printing module 1105 may include an air enclosure 1115 that houses the inkjet printing system, with features for introducing an inert atmosphere (e.g., nitrogen, a noble gas, another similar gas, or a combination thereof) and additionally for environmental regulations (e.g., temperature and pressure) , gas composition and particle presence to control the atmosphere of the device.
处理模块1107可以包括例如转印室1116;此转印室还具有用于传送基底的搬运器。另外,处理模块还可以包括输出装载锁1117、氮气堆缓冲器1119以及固化室1121。在某些应用中,可以使用固化室来将单体膜固化成均匀聚合物膜,例如使用热或UV辐射固化处理。 The processing module 1107 may include, for example, a transfer chamber 1116; this transfer chamber also has a handler for transferring substrates. In addition, the processing module may further include an output load lock 1117 , a nitrogen stack buffer 1119 and a curing chamber 1121 . In some applications, a curing chamber may be used to cure the monomeric film into a homogeneous polymeric film, for example using thermal or UV radiation curing processes.
在一个应用中,装置1101适合于大批的液晶显示屏或OLED显示屏的批量生产,例如一次在单个大基底上制造八个屏幕的阵列。这些屏幕可以用于电视并作为用于其它形式的电子设备的显示屏。在第二应用中,可以以大致相同的方式将该装置用于太阳能板的批量生产。 In one application, the apparatus 1101 is suitable for mass production of large volumes of LCD or OLED displays, for example an array of eight screens at a time on a single large substrate. These screens can be used in televisions and as display screens for other forms of electronic equipment. In a second application, the device can be used in much the same way for the mass production of solar panels.
应用于上述液滴体积组合技术,可以有利地在显示器面板制造中使用打印模块1105以沉积一个或多个层,诸如滤光层、发光层、阻挡层、导电层、有机或无机层、密封层及其它类型的材料。例如,可以为所描述装置1101装载基底,并且可以控制其以在各种室之间来回移动以沉积和/或固化或硬化一个或多个打印层,全部是以不被到不受控气氛的中间暴露所中断的方式。可选地,随着基底在任何腔室中移动或受处理,可以执行油墨液滴测量(如果结合所描述的系统而使用)。例如,可以经由输入负载锁定1109加载第一基底,并且在该处理期间,打印模块1105内的打印头组件可以与液滴测量设备接合,以对于打印喷嘴的子集执行液滴测量;在具有很多打印喷嘴的实施例中,可以使得液滴测量是周期性并且断续的,从而在各个打印周期之间中,校准表示打印组件的所有喷嘴的循序渐进(circular-progressive)子集的不同喷嘴,测量关联液滴以求得用于液滴体积、(相对于正常的)喷出的角度和速度中的每一个的统计模型。位于传送模块1103中的操控器可以将第一基底从输入负载锁定1109移动到打印模块1105,此时,液滴测量脱离,打印头组件移动到用于有效打印的位置。在完成打印处理之后,第一基底可以然后移动到处理模块1107,以用于固化。再一次,可以执行液滴测量的新周期,并且第二基底可以可选地加载到输入负载锁定1109中(如果受系统支持)。很多其它替换和处理组合是可能的。通过重复沉积后续层(例如通过前后移动第一基底,以用于打印和固化的重复迭代),每目标区受控体积、聚合层性质中的每一个可以被构建为适合任何期望应用。在替换实施例中,可以使用输出负载锁定1117以将第一基底传送到第二打印机(例如用于随后的流水线式打印新的层(例如新的OLED材料层或封装层或其它层))。再一次注意,上述技术不限于显示器面板制造工艺,可以使用很多不同类型的工具。例如,装置1101的配置可以变化,以通过不同的并置(juxtaposition)来放置各个模块1103、1105和1107;此外,也可以使用附加模块或更少的模块。如标号1121和1123所表示的那样,可以使用运行合适软件的计算设备(例如处理器),以控制各个处理并且与其它处理串行地执行上述可选液滴测量,即,使得装置的停工期最小化,在保持鲁棒统计模型的同时尽可能同时保持液滴测量,并且尽可能多地堆叠液滴测量以重叠其它系统处理。 Applied to the droplet volume combination technique described above, the print module 1105 can be advantageously used in display panel manufacturing to deposit one or more layers such as filter layers, light emitting layers, barrier layers, conductive layers, organic or inorganic layers, sealing layers and other types of materials. For example, the described apparatus 1101 can be loaded with a substrate and controlled to move back and forth between the various chambers to deposit and/or cure or harden one or more printed layers, all without being exposed to an uncontrolled atmosphere. The way interrupted by the middle exposure. Optionally, ink droplet measurement (if used in conjunction with the described system) can be performed as the substrate is moved or processed in any chamber. For example, a first substrate may be loaded via input load lock 1109, and during this process, a printhead assembly within print module 1105 may engage a drop measurement device to perform drop measurement for a subset of print nozzles; In the print nozzle embodiment, the drop measurement can be made periodic and intermittent, so that between each printing cycle, different nozzles representing a circular-progressive subset of all nozzles of the printing assembly are calibrated, measuring Droplets are correlated to derive statistical models for each of droplet volume, angle of ejection (relative to normal), and velocity. A manipulator located in the transfer module 1103 can move the first substrate from the input load lock 1109 to the print module 1105 at which point the drop measurement is disengaged and the printhead assembly is moved into position for active printing. After the printing process is complete, the first substrate may then move to the processing module 1107 for curing. Again, a new cycle of droplet measurement can be performed, and a second substrate can optionally be loaded into the input load lock 1109 (if supported by the system). Many other alternatives and combinations of treatments are possible. By repeatedly depositing subsequent layers (eg, by moving the first substrate back and forth for repeated iterations of printing and curing), each of the controlled volume per target area, polymeric layer properties can be tailored to suit any desired application. In an alternative embodiment, an output load lock 1117 may be used to transfer the first substrate to a second printer (eg for subsequent in-line printing of new layers (eg new layers of OLED material or encapsulation or other layers)). Note again that the techniques described above are not limited to display panel manufacturing processes, and many different types of tools can be used. For example, the configuration of apparatus 1101 may be varied to place individual modules 1103, 1105, and 1107 in different juxtapositions; furthermore, additional modules or fewer modules may be used. As indicated by reference numerals 1121 and 1123, a computing device (such as a processor) running suitable software may be used to control the individual processes and to perform the optional droplet measurements described above in series with other processes, i.e., to enable downtime of the device. Minimize, keep droplet measurements as simultaneously as possible while maintaining a robust statistical model, and stack as many droplet measurements as possible to overlap other system processing.
虽然图11提供了一组链接室或制造部件的一个示例,但很明显存在许多其它可能性。上文介绍的墨滴测量和沉积技术可以与在图11中描述的设备一起使用,或者事实上,用来控制由任何其它类型的沉积设备执行的制造处理。 While Figure 11 provides one example of a set of linked chambers or fabrication components, it is apparent that many other possibilities exist. The drop measurement and deposition techniques described above can be used with the apparatus described in Figure 11, or indeed, to control the manufacturing process performed by any other type of deposition apparatus.
图12提供了示出可以用来制造具有如在本文中指定的一个或多个层的制造设备的一个装置的各种子系统的框图。针对各种子系统的协调由处理器1203提供,按照由软件(在图12中未示出)提供的指令行动。在制备处理期间,处理器向打印头1205馈送数据以引起打印头根据喷嘴发射指令而喷射各种体积的油墨。打印头1205通常具有布置成行(或各行阵列)的多个喷墨喷嘴以及关联储器,其响应于每个喷嘴的压电或其它换能器的激活而允许油墨的喷射;此类换能器引起喷嘴以由施加于相应压电换能器的电子喷嘴驱动波形信号控制的量喷射受控量的油墨。如果存在多个打印头,则可以存在用于每个打印头的处理器,或一个处理器可以控制整个打印头组件。还可以使用其它发射机制。每个打印头在与各种打印单元内的网格坐标相对应的各种x-y位置处向基底1207施加油墨,如半色调打印图像所表示的。位置的变化由打印头运动系统1209和基底搬运系统1211(例如,引起打印跨基底描绘一个或多个刈幅)两者实现。在一个实施例中,打印头运动系统1209使(多个)打印头沿着滑环来回移动,同时基底搬运系统提供稳定的基底支撑和基底的“y”维度传送以使得能够实现基底的任何部分的“分离轴”打印;基底搬运系统提供相对快速的y维度传送,同时打印头运动系统1209提供相对缓慢的x维度传送。在另一实施例中,基底搬运系统1211可以提供x和y维度两者传送。在另一实施例中,主要传送可以完全由基底搬运系统1211提供。可以使用图像捕获设备1213来对任何基准进行定位并帮助对准和/或误差检测。 Figure 12 provides a block diagram illustrating various subsystems of one apparatus that may be used to fabricate a fabrication apparatus having one or more layers as specified herein. Coordination for the various subsystems is provided by the processor 1203, acting on instructions provided by software (not shown in Figure 12). During the preparation process, the processor feeds data to the printhead 1205 to cause the printhead to eject various volumes of ink according to nozzle firing instructions. Printhead 1205 typically has a plurality of inkjet nozzles arranged in rows (or arrays of rows) and associated reservoirs that allow ejection of ink in response to activation of piezoelectric or other transducers for each nozzle; such transducers The nozzles are caused to eject a controlled amount of ink in an amount controlled by an electronic nozzle drive waveform signal applied to a corresponding piezoelectric transducer. If there are multiple printheads, there may be a processor for each printhead, or one processor may control the entire printhead assembly. Other transmission mechanisms may also be used. Each printhead applies ink to substrate 1207 at various x-y positions corresponding to grid coordinates within various printing units, as represented by the halftone printed image. Changes in position are accomplished by both the printhead motion system 1209 and the substrate handling system 1211 (eg, causing printing to trace one or more swaths across the substrate). In one embodiment, the printhead motion system 1209 moves the printhead(s) back and forth along the slip ring, while the substrate handling system provides stable substrate support and "y" dimension transport of the substrate to enable any portion of the substrate to "Separate axis" printing; the substrate handling system provides relatively fast y-dimension transport, while the printhead motion system 1209 provides relatively slow x-dimension transport. In another embodiment, the substrate handling system 1211 can provide transport in both x and y dimensions. In another embodiment, the primary transport may be provided entirely by the substrate handling system 1211. Image capture device 1213 may be used to locate any fiducials and aid in alignment and/or error detection.
所述装置还包括油墨输送系统1215和打印头维护系统1217以帮助打印操作。可以周期性地对打印头进行校准或使其经受维护处理;为此,在维护序列期间,使用打印头维护系统1217来执行适当的上底漆、油墨或气体的清洗、测试和校准以及其它操作,视特定处理的情况而定。 The apparatus also includes an ink delivery system 1215 and a printhead maintenance system 1217 to aid in printing operations. Printheads may be periodically calibrated or subjected to maintenance treatments; to this end, during the maintenance sequence, printhead maintenance system 1217 is used to perform appropriate priming, ink or gas purges, testing and calibration, and other operations , depending on the specific processing.
如先前介绍的,可以在受控环境中、亦即以呈现出可能降低沉积层的有效性的污染物的降低的风险的方式来执行打印处理。为此,所述装置包括腔室控制系统1219,其控制室内的气氛,如功能框1221所表示的。如所述的可选处理变化可以包括在存在环境氮气气氛的情况下执行沉积材料的喷射。 As previously introduced, the printing process can be performed in a controlled environment, ie in a manner that presents a reduced risk of contamination that might reduce the effectiveness of the deposited layer. To this end, the apparatus includes a chamber control system 1219 that controls the atmosphere within the chamber, as represented by functional block 1221 . An optional process variation as described may include performing the sparging of the deposition material in the presence of an ambient nitrogen atmosphere.
如前所述,在本文公开的实施例中,将单独液滴体积组合以实现根据目标填充体积选择的每个目标区的特定填充体积。可以针对每个目标区规划特定填充体积,填充值在可接受容限范围内围绕目标值变化。针对此类实施例,以取决于油墨、喷嘴、驱动波形及其它因素的方式具体地测量液滴体积。为此,参考标号1223表示可选液滴体积测量系统,其中,针对每个喷嘴且针对每个驱动波形测量液滴体积1225,并且然后存储在存储器1227中。此类液滴测量系统如前所述可以是被结合到商用打印设备中的光学频闪照相机或激光扫描设备(或其它体积测量工具)。在一个实施例中,该设备使用非成像技术(例如使用简单光学检测器而非对像素进行操作的图像处理软件)以实现单独液滴体积、沉积飞行角度或轨迹以及液滴速度的实时或几乎实时测量。。此数据在打印期间或在一次性、间歇或周期性校准操作期间被提供给(多个)处理器1203。如数字1229所指示的,还可以可选地使预先布置的一组发射波形与每个喷嘴相关联,以供稍后在产生特定每个目标区液滴组合时使用;如果此类的一组波形被用于本实施例,则有利地针对每个波形使用用于每个喷嘴的液滴测量系统1223在校准期间计算液滴体积测量结果。提供实时或近实时液滴体积测量系统大大地增强了在期望容限范围内提供目标区体积填充时的可靠性,因为可以根据需要获取测量结果并进行处理(例如,求平均)以使统计体积测量误差最小化。 As previously stated, in embodiments disclosed herein, the individual droplet volumes are combined to achieve a specific fill volume for each target zone selected according to the target fill volume. Specific fill volumes can be planned for each target zone, with fill values varying around target values within acceptable tolerances. For such embodiments, drop volume is specifically measured in a manner that depends on ink, nozzle, drive waveform, and other factors. To this end, reference numeral 1223 denotes an optional drop volume measurement system in which drop volume 1225 is measured for each nozzle and for each drive waveform and then stored in memory 1227 . Such a drop measurement system could be an optical strobe camera or a laser scanning device (or other volumetric measurement tool) incorporated into a commercial printing device as previously described. In one embodiment, the device uses non-imaging techniques (such as image processing software that uses simple optical detectors rather than operating on pixels) to achieve real-time or near-real-time measurements of individual droplet volume, deposition flight angle or trajectory, and droplet velocity. Measured in real time. . This data is provided to processor(s) 1203 during printing or during one-time, intermittent or periodic calibration operations. As indicated by numeral 1229, a prearranged set of firing waveforms may also optionally be associated with each nozzle for later use in generating specific per-target-zone droplet combinations; if such a set Waveforms are used in this embodiment, then drop volume measurements are advantageously calculated during calibration for each waveform using the drop measurement system 1223 for each nozzle. Providing a real-time or near-real-time drop volume measurement system greatly enhances reliability in providing target zone volume fill within desired tolerances, as measurements can be taken and processed (e.g., averaged) as needed to make the statistical volume Measurement errors are minimized.
数字1231指代在处理器1203上运行的打印优化软件的使用。更具体地,此软件基于液滴体积1225的统计模型(就地测量或另外提供)而使用此信息来以适当地将液滴体积组合以获得每个目标区特定填充体积的方式规划打印。在一个实施例中,按照以上实施例,尽管液滴测量设备可以具有与单独的液滴测量关联的更低的精度,但可以将聚合体积规划至0.01pL或更好的分辨率,在某个误差容限内;也就是说,通过使用在此所使用的技术来构建每喷嘴和每喷嘴/波形组合的液滴体积的统计模型,统计精准度可以被推导,而非由液滴测量系统的精度表示。一旦已经规划了打印,则(多个)处理器计算打印参数,诸如扫描的次数和序列、液滴尺寸、相对液滴发射时间以及类似信息,并且构建用来确定用于每次扫描的喷嘴发射的打印图像。在一个实施例中,该打印图像是半色调图像。在另一实施例中,打印头具有多个喷嘴,多达10,000个。如下面将描述的,可根据时间值和发射值来描述每个液滴(例如,描述发射波形的数据或指示是否将“以数字方式”发射墨滴的数据)。在其中依赖于几何步幅和二元喷嘴发射判定来改变每个阱的液滴体积的实施例中,可以由一位数据、步幅值(或扫描次数)和指示液滴将被放置在哪里的位置值来定义每个液滴。在其中扫描表示连续运动的实施方式中,可以使用时间值作为位置值的等价物。无论是在于时间/距离还是绝对位置,该值相对于精确地指定应使喷嘴发射的位置和时间的参考(例如,同步标记、位置或脉冲)来描述位置。在某些实施例中,可以使用多个值。例如,在一个具体设想的实施例中,以对应于扫描期间的每微米的相对打印头/基底运动的方式针对每个喷嘴生成同步脉冲;相对于每个同步脉冲,用以下各项对每个喷嘴进行编程:(a)描述使喷嘴发射之前的整数时钟循环延迟的偏移值,(b)4位波形选择信号,以描述被编程到专用于特定喷嘴驱动器的存储器中的十五个波形选择中的一个(即,十六个可能值中的一个指定喷嘴的“关”或非发射状态),以及(c)可重复性值,其指定应使喷嘴发射仅一次,针对每个同步脉冲一次或者针对每n个同步脉冲一次。在这种情况下,由(多个)处理器1203使用于每个喷嘴的地址和波形选择与存储在存储器1227中的特定液滴体积数据相关联,来自特定喷嘴的特定波形的发射表示将使用特定的相应液滴体积来向基底的特定目标区供应聚合油墨的规划判定。 Numeral 1231 refers to the use of print optimization software running on processor 1203 . More specifically, this software uses this information based on a statistical model of drop volume 1225 (measured in situ or otherwise provided) to plan printing in such a way that the drop volumes are appropriately combined to obtain a specific fill volume for each target zone. In one embodiment, the aggregated volume can be programmed to a resolution of 0.01 pL or better, at a certain within a margin of error; that is, by using the technique used here to construct a statistical model of drop volume per nozzle and per nozzle/waveform combination, statistical accuracy can be derived rather than determined by the droplet measurement system's Accuracy representation. Once printing has been planned, the processor(s) calculates printing parameters such as number and sequence of scans, drop size, relative drop firing times, and similar information, and builds the nozzle firing for each scan of the printed image. In one embodiment, the printed image is a halftone image. In another embodiment, the printhead has multiple nozzles, up to 10,000. As will be described below, each droplet may be described in terms of a time value and a firing value (eg, data describing a firing waveform or data indicating whether a droplet is to be fired "digitally"). In embodiments where the drop volume per well is varied in dependence on the geometric stride and binary nozzle firing decisions, it can be determined by one bit of data, the stride value (or number of scans), and The position value to define each droplet. In implementations where a scan represents continuous motion, a time value may be used as the equivalent of a position value. Whether in time/distance or absolute position, this value describes position relative to a reference (eg, sync mark, position, or pulse) that specifies exactly where and when the nozzle should be fired. In some embodiments, multiple values may be used. For example, in one specifically contemplated embodiment, synchronization pulses are generated for each nozzle in a manner corresponding to each micron of relative printhead/substrate motion during scanning; with respect to each synchronization pulse, each The nozzle is programmed with: (a) an offset value describing the delay of an integer number of clock cycles before the nozzle fires, (b) a 4-bit waveform select signal to describe the fifteen waveform selections programmed into memory dedicated to a particular nozzle driver (i.e., one of sixteen possible values specifying the "off" or non-firing state of the nozzle), and (c) a repeatability value specifying that the nozzle should fire only once, once for each sync pulse Or once for every n sync pulses. In this case, the address and waveform selection for each nozzle is associated by the processor(s) 1203 with the specific drop volume data stored in the memory 1227, the firing representation of the specific waveform from the specific nozzle will use Specific corresponding droplet volumes are used to plan decisions for supplying polymeric ink to specific target areas of the substrate.
图13A—15D将用来介绍可以用来将不同的液滴体积组合以获得用于每个目标区的精确容限内填充体积的其它技术。在第一技术中,可以在打印期间(例如,在扫描之间)选择性地使各行喷嘴在打印头组件内相对于彼此偏移。参考图13A—13B来介绍这种技术。在第二技术中,可以使用喷嘴驱动波形来调整压电换能器发射和因此每个喷射液滴的属性(包括体积)。图14A—14B用来讨论多个选项。最后,在一个实施例中,预先计算一组的多个替换液滴发射波形并使得其可用于每个打印喷嘴。参考图15A—15B来讨论这种技术和相关电路。 Figures 13A-15D will serve to introduce other techniques that can be used to combine different droplet volumes to obtain precise in-tolerance fill volumes for each target zone. In a first technique, rows of nozzles can be selectively offset relative to each other within the printhead assembly during printing (eg, between scans). This technique is described with reference to Figures 13A-13B. In a second technique, the nozzle drive waveform can be used to adjust the piezoelectric transducer firing and thus the properties (including volume) of each ejected droplet. Figures 14A-14B are used to discuss several options. Finally, in one embodiment, a set of multiple alternate drop firing waveforms is precomputed and made available for each print nozzle. This technique and associated circuitry is discussed with reference to Figures 15A-15B.
图13A提供了在箭头1307所指示的扫描方向上穿过基底1305的打印头1303的规划图1301。在这里看到基底将由许多像素1309组成,每个像素具有与各色彩部件相关联的阱1309-R、1309-G和1309-B。再次地请注意本描述仅仅是示例,即可以将如在本文中使用的技术应用于显示器的任何层(例如,不限于单独色彩部件且不限于色彩赋予层);这些技术还可以用来制造除显示设备之外的东西。在这种情况下,意图在于打印头每次沉积一个油墨,并且假设油墨是色彩部件特定的,将针对显示器的各阱执行单独打印处理,每个针对色彩部件中的一个。因此,如果正在使用第一处理来沉积红光发生所特定的油墨,则在第一打印处理中将只有每个像素的第一阱接收到油墨,诸如像素1309的阱1309-R和像素1311的类似阱。在第二打印处理中,只有像素1309的第二阱(1309-G)和像素1311的类似阱将接收到第二油墨等等。因此将各种阱示为目标区的三个不同重叠阵列(在这种情况下为流体容器或阱)。 FIG. 13A provides a layout 1301 of a printhead 1303 across a substrate 1305 in the scan direction indicated by arrow 1307 . Here it is seen that the substrate will consist of a number of pixels 1309, each pixel having wells 1309-R, 1309-G and 1309-B associated with respective color components. Note again that this description is merely an example, that the techniques as used herein can be applied to any layer of the display (e.g., not limited to individual color components and not limited to color-imparting layers); these techniques can also be used to make Display something outside of the device. In this case, the intent is that the printhead deposits one ink at a time, and assuming the ink is color part specific, a separate print process will be performed for each well of the display, one for each of the color parts. Thus, if the first process is being used to deposit ink specific to red light generation, only the first well of each pixel will receive ink in the first print process, such as well 1309-R for pixel 1309 and well 1309-R for pixel 1311. Similar to a well. In the second printing process, only the second well (1309-G) of pixel 1309 and a similar well of pixel 1311 will receive the second ink, and so on. The various wells are thus shown as three different overlapping arrays of target regions (in this case fluidic containers or wells).
打印头1303包括许多喷嘴,诸如使用数字1313、1315、和1317所表示的。在这种情况下,每个数字指代单独的一行喷嘴,各行沿着基底的列轴1318延伸。看到喷嘴1313、1315和1317将相对于基底1305形成第一列的喷嘴,并且喷嘴1329表示第二列的喷嘴。如用图13A所描述的,喷嘴并不与像素对准,并且随着打印头在扫描中穿过基底,某些喷嘴将在目标区上通过而其它喷嘴将不会。此外,在图中,虽然打印喷嘴1313、1315和1317将精确地对准到从像素1309开始的一行像素的中心,并且同时打印喷嘴1329也将在从像素1311开始的像素行上通过,打印喷嘴1319的对准并非精确地到像素1311及其相关的行的中心。这种喷嘴的列与阱的行的对准/失准分别由表示待接纳油墨的打印阱的中心的直线1325和1327描述。在许多应用中,在该处在目标区内沉积液滴的精确位置并不重要,并且此类不对准是可接受的(例如,可以期望将多个喷嘴的某组与每个行粗略地对准,如结合图1B和图4D所讨论的那样)。 Printhead 1303 includes a number of nozzles, such as indicated using numerals 1313 , 1315 , and 1317 . In this case, each number refers to a separate row of nozzles, with each row extending along the column axis 1318 of the substrate. It is seen that nozzles 1313, 1315, and 1317 will form a first column of nozzles relative to substrate 1305, and nozzle 1329 represents a second column of nozzles. As described with Figure 13A, the nozzles are not aligned with the pixels, and as the printhead scans across the substrate, some nozzles will pass over the target area while others will not. Also, in the figure, while print nozzles 1313, 1315, and 1317 will be aligned exactly to the center of a row of pixels starting at pixel 1309, and at the same time print nozzle 1329 will also pass over the row of pixels starting at pixel 1311, the print nozzles The alignment of 1319 is not exactly to the center of pixel 1311 and its associated row. This alignment/misalignment of columns of nozzles with rows of wells is described by lines 1325 and 1327, respectively, representing the centers of the printed wells to receive ink. In many applications, where the precise location of the deposited droplet within the target zone is not critical, and such misalignment is acceptable (for example, it may be desirable to align a certain group of multiple nozzles with each row roughly standard, as discussed in conjunction with Figure 1B and Figure 4D).
图13B提供第二视图1331,其中看到全部的三行喷嘴(或单独打印头)已经相对于轴1218旋转约三十度。先前在图3B中用数字338来参考此可选能力。更具体地,由于旋转,喷嘴沿着列轴1318的间距现在已经改变,每列喷嘴与阱中心1325和1327对准,或否则被调整,从而增加在扫描期间每目标打印区域的喷嘴直观密度。然而,请注意,由于这样的旋转和扫描运动1307,来自每列喷嘴的喷嘴将在不同的相对时间穿过一列像素(例如,1309和1311),并且因此潜在地具有不同的位置发射数据(例如,用于发射液滴的不同定时)。以下将结合图15A-图15B来讨论用于调整用于每个喷嘴的发射数据的方法。 FIG. 13B provides a second view 1331 where it is seen that all three rows of nozzles (or individual printheads) have been rotated about thirty degrees relative to axis 1218 . This optional capability was previously referenced by numeral 338 in FIG. 3B. More specifically, as a result of the rotation, the spacing of the nozzles along the column axis 1318 has now changed, with each column of nozzles aligned with well centers 1325 and 1327, or otherwise adjusted to increase the apparent density of nozzles per target print area during scanning. Note, however, that due to such rotational and scanning motion 1307, the nozzles from each column of nozzles will pass through a column of pixels at different relative times (e.g., 1309 and 1311), and thus potentially have different positions to emit data (e.g. , for different timings of firing droplets). Methods for adjusting the firing data for each nozzle are discussed below in conjunction with FIGS. 15A-15B .
如在图13C中所表示的,在一个实施例中,可选地被赋予多个打印头或多行喷嘴的打印头组件可以使此类各行选择性地相互偏移。也就是说,图13C提供了另一平面图,其中,打印头(或喷嘴行)1319、1321和1323中的每一个相对于彼此偏移,如偏移箭头1353和1355所表示的。这些行表示可选运动机制的使用,每行喷嘴一个,以允许相应行相对于打印头组件的选择性偏移。这随着每次扫描且因此针对不同的特定液滴组合(例如,经由数字1307)而提供喷嘴(和关联的特定液滴体积)的不同组合。例如,在此类实施例中,并且如用图13C所描绘的,此类偏移允许喷嘴1313和1357两者与中心线1325对准,并且因此其各液滴体积在单次通过中被组合。请注意,本实施例被视为改变几何步幅的实施例的特定实例,例如,即使打印头组件1303相对于基底1305的连续扫描之间的几何步幅尺寸是固定的,给定行的喷嘴的每次此类扫描运动也在其它扫描中使用相对于给定行的位置的运动机制而有效地位于可变偏移或步幅处。另外或替换地,可以执行这样的偏移,以调整有效打印网格,以提供所沉积的各液滴之间的变化的间距。与之前介绍的原理一致,使用可选的偏移允许针对每个阱以特定的组合(或液滴集合)将单独的每个喷嘴液滴体积聚合,但是用数目减少的扫描或通过。例如,用在图13C中描绘的实施例,可以随着每次扫描在每个目标区(例如,用于红色部件的阱)中沉积三个液滴,并且此外,该偏移允许液滴体积和/或空间组合的规划变化。 As represented in Figure 13C, in one embodiment, a printhead assembly optionally endowed with multiple printheads or rows of nozzles may selectively offset such rows from one another. That is, FIG. 13C provides another plan view in which each of printheads (or nozzle rows) 1319 , 1321 , and 1323 are offset relative to one another, as indicated by offset arrows 1353 and 1355 . These rows represent the use of optional motion mechanisms, one nozzle per row, to allow selective offsetting of the corresponding row relative to the printhead assembly. This provides a different combination of nozzles (and associated specific drop volumes) with each scan and thus for a different specific drop combination (eg, via numeral 1307 ). For example, in such an embodiment, and as depicted with FIG. 13C , such an offset allows both nozzles 1313 and 1357 to be aligned with centerline 1325 and thus their respective drop volumes to be combined in a single pass. . Note that this embodiment is considered a specific example of an embodiment that varies the geometric stride, e.g. even if the geometric stride size between successive scans of the printhead assembly 1303 relative to the substrate 1305 is fixed, a given row of nozzles Each such scan movement is also effectively at a variable offset or stride in the other scans using a motion mechanism relative to the position of a given row. Additionally or alternatively, such offsets may be performed to adjust the effective printing grid to provide varying spacing between deposited droplets. Consistent with the principles presented previously, the use of optional offsets allows individual per-nozzle drop volumes to be aggregated in specific combinations (or sets of drops) for each well, but with a reduced number of scans or passes. For example, with the embodiment depicted in Figure 13C, three droplets can be deposited in each target region (e.g., a well for the red component) with each scan, and furthermore, the offset allows the droplet volume and/or planning changes in space mix.
图13D图示出在扫描方向上截取的用于一个阱(例如,来自图13A的阱1309-R)的成品显示器的截面。特别地,此视图示出平板显示器、特别是OLED设备的基底1352。所描绘的截面示出了活性区1353和将接收电信号以控制显示器(包括每个像素的色彩)的导电端子1355。看到视图的小椭圆形区域1361在图的右侧处被放大以图示出基底1352之上的活性区中的层。这些层分别地包括阳极层1369、空穴注入层(“HIL”)1371、空穴传输层(“HTL”)1373、发射或发光层(“EML”)1375、电子传输层(“ETL”)1377和阴极层1378。还可以包括附加层,诸如起偏器、阻挡层、底漆及其它材料。在某些情况下,OLED设备可仅包括这些层的子集。当最终在制造之后操作所描绘的堆时,电流引起EML中的电子和“空穴”的重新组合,导致光的发射。阳极层1369可以包括为多个色彩部件和/或像素所共用的一个或多个透明电极;例如,阳极可由氧化铟锡(ITO)形成。阳极层1369还可以是反射或不透明的,并且可以使用其它材料。阴极层1378通常由图案化电极组成以向用于每个像素的色彩部件提供选择性控制。阴极层可以包括反射金属层,诸如铝。阴极层还可以包括不透明层或透明层,诸如与一层ITO组合的金属薄层。阴极和阳极一起用于供应并收集进入和/或通过OLED堆中的电子和空穴。HIL 1371通常用于将空穴从阳极传送到HTL中。HTL 1373通常用于将空穴从HIL传送到EML中,同时还阻止电子从EML到HTL中的传送。ETL 1377通常用于将电子从阴极传送至EML中,同时还阻止电子从EML到ETL中的传送。这些层从而一起用于向EML 1375中供应电子和空穴,并且将那些电子和空穴约束在该层中,使得其可以重新组合而产生光。通常,EML由用于显示器的每个像素的用于三原色、红色、绿色和蓝色中的每一个的单独控制的活性材料组成,并且如所述,在这种情况下用产生红光的材料来表示。 Figure 13D illustrates a cross-section of the finished display for one well (eg, well 1309-R from Figure 13A) taken in the scan direction. In particular, this view shows the substrate 1352 of a flat panel display, particularly an OLED device. The cross-section depicted shows active region 1353 and conductive terminals 1355 that will receive electrical signals to control the display, including the color of each pixel. The small oval area 1361 where the view is seen is enlarged at the right side of the figure to illustrate the layers in the active area above the substrate 1352 . These layers include, respectively, an anode layer 1369, a hole injection layer ("HIL") 1371, a hole transport layer ("HTL") 1373, an emissive or light emitting layer ("EML") 1375, an electron transport layer ("ETL") 1377 and cathode layer 1378. Additional layers such as polarizers, barrier layers, primers, and other materials may also be included. In some cases, OLED devices may only include a subset of these layers. When the depicted stack is finally manipulated after fabrication, the electrical current causes a recombination of electrons and "holes" in the EML, resulting in the emission of light. Anode layer 1369 may include one or more transparent electrodes common to multiple color components and/or pixels; for example, the anode may be formed from indium tin oxide (ITO). The anode layer 1369 can also be reflective or opaque, and other materials can be used. Cathode layer 1378 typically consists of patterned electrodes to provide selective control of the color components for each pixel. The cathode layer may include a reflective metal layer, such as aluminum. The cathode layer may also comprise an opaque or transparent layer, such as a thin layer of metal combined with a layer of ITO. Together, the cathode and anode serve to supply and collect electrons and holes entering and/or passing through the OLED stack. HIL 1371 is commonly used to transport holes from the anode into the HTL. HTL 1373 is typically used to transport holes from the HIL into the EML, while also blocking the transport of electrons from the EML into the HTL. The ETL 1377 is typically used to transport electrons from the cathode into the EML while also blocking electron transport from the EML into the ETL. These layers are thus used together to supply electrons and holes into the EML 1375 and to confine those electrons and holes in the layer so that they can recombine to produce light. Typically, an EML consists of individually controlled active materials for each of the three primary colors, red, green, and blue, for each pixel of the display, and, as mentioned, in this case with a material that produces red light To represent.
可以通过暴露于氧气和/或湿气而使活性区中的层退化。因此期望通过在与基底相对的那些层的面和侧面(1362/1363)以及横向边缘上将这些层密封来增强OLED寿命。密封的目的是提供耐氧气和/或湿气阻挡层。此类密封可以完全地或部分地经由一个或多个薄膜层的沉积来形成。 Layers in the active region can be degraded by exposure to oxygen and/or moisture. It is therefore desirable to enhance OLED lifetime by sealing those layers on their faces and sides (1362/1363) and lateral edges opposite the substrate. The purpose of the seal is to provide an oxygen and/or moisture resistant barrier. Such a seal may be formed wholly or partly via the deposition of one or more thin film layers.
本文所讨论的技术可以用来沉积这些层中的任何一个以及此类层的组合。因此,在一个设想应用中,本文所讨论的技术针对三原色中的每一个提供用于EML层的油墨体积。在另一应用中,使用本文所讨论的技术来提供用于HIL层的油墨体积等等。在另一应用中,本文所讨论的技术用来提供用于一个或多个OLED密封层的油墨体积。本文所讨论的打印技术可以用来沉积有机或无机层(视处理技术的情况而定)以及用于其它类型的显示器和非显示器设备的层。 The techniques discussed herein can be used to deposit any of these layers and combinations of such layers. Thus, in one contemplated application, the techniques discussed herein provide ink volumes for the EML layer for each of the three primary colors. In another application, the techniques discussed herein are used to provide ink volumes for HIL layers, among other things. In another application, the techniques discussed herein are used to provide an ink volume for one or more OLED encapsulation layers. The printing techniques discussed here can be used to deposit organic or inorganic layers (depending on the process technology) as well as layers for other types of display and non-display devices.
图13A用来介绍喷嘴驱动波形调整和将从打印头的每个喷嘴提供不同喷射液滴体积的替换喷嘴驱动波形的使用。第一波形1403被视为单个脉冲,由静止间隔1405(0伏)、与将在时间t2使喷嘴发射的判定相关联的上升斜率1413、电压脉冲或信号电平1407以及在时间t3的下降斜率1411组成。用数字1409表示的有效脉宽具有近似等于t3 - t2的持续时间,取决于脉冲的上升斜率和下降斜率之间的差。在一个实施例中,可以改变这些参数(例如,上升斜率、电压、下降斜率、脉冲持续时间)中的任何一个以潜在地改变用于给定喷嘴的液滴体积喷射特性。第二波形1423类似于第一波形1403,只是其表示相对于第一波形1403的信号电平1407而言的较大驱动电压1425。由于较大的脉冲电压和有限的上升斜率1427,要达到此较高电压将花费更长时间,并且同样地,下降斜率1429通常相对于来自第一波形的类似斜率1411而言滞后。第三波形1433也类似地第一波形1403,只是在这种情况下可以使用不同的上升斜率1435和或不同的下降斜率1437来代替斜率1413和1411(例如,通过喷嘴发射路径阻抗的调整)。可以使得不同的斜率更陡或更浅(在所描绘的情形,更陡)。相反地,在第四波形1443的情况下,使得脉冲更长,例如使用延迟电路(例如,电压控制延迟线)来增加给定信号电平下的脉冲的时间(如用数字1445所表示的)和延迟脉冲的下降沿(如数字1447所表示的)二者。最后,第五波形1453表示也提供脉冲成形手段的多个离散信号电平的使用。例如,看到此波形将包括处于第一所述信号电平1407的时间,但是然后在时间t3和t2之间的半途中施加上升到第二信号电平1455的斜率。由于较大电压,看到此波形1457的后沿滞后于下降沿1411。 Figure 13A is used to illustrate nozzle drive waveform adjustments and the use of alternate nozzle drive waveforms that will provide different ejected drop volumes from each nozzle of the printhead. The first waveform 1403 is viewed as a single pulse consisting of a rest interval 1405 (0 volts), a rising slope 1413 associated with the determination that the nozzle will be fired at time t2, a voltage pulse or signal level 1407, and a falling slope at time t3 1411 composed. The effective pulse width, represented by numeral 1409, has a duration approximately equal to t3 - t2, depending on the difference between the rising slope and falling slope of the pulse. In one embodiment, any of these parameters (eg, ramp up slope, voltage, down ramp, pulse duration) can be varied to potentially change the drop volume ejection characteristics for a given nozzle. The second waveform 1423 is similar to the first waveform 1403 except that it represents a larger drive voltage 1425 relative to the signal level 1407 of the first waveform 1403 . It will take longer to reach this higher voltage due to the larger pulse voltage and limited rising slope 1427, and as such, the falling slope 1429 typically lags relative to the similar slope 1411 from the first waveform. Third waveform 1433 is also similar to first waveform 1403, except that in this case a different rising slope 1435 and or a different falling slope 1437 may be used instead of slopes 1413 and 1411 (eg, by adjustment of nozzle firing path impedance). The different slopes can be made steeper or shallower (in the depicted case, steeper). Conversely, in the case of the fourth waveform 1443, the pulse is made longer, such as using a delay circuit (eg, a voltage controlled delay line) to increase the time of the pulse at a given signal level (as represented by numeral 1445) and the falling edge of the delayed pulse (as represented by numeral 1447). Finally, fifth waveform 1453 represents the use of multiple discrete signal levels which also provides a means of pulse shaping. For example, seeing that this waveform would include time at the first described signal level 1407, but then apply a ramp up to the second signal level 1455 halfway between times t3 and t2. The trailing edge of this waveform 1457 is seen to lag behind the falling edge 1411 due to the larger voltage.
可以与本文所讨论的任何实施例相组合地使用这些技术中的任何一个。例如,可以在已经规划扫描运动和喷嘴发射之后可选地使用驱动波形调整技术来在小范围内改变液滴体积,以缓解线状花纹。以使得第二容限符合规范的方式来设计波形变化促进了以规划非随机或规划随机变化进行高质量层的沉积。例如,返回到其中电视制造商指定50.00pL±0.50%的填充体积的先前介绍的假定,可以在50.00pL±0.25%(49.785pL - 50.125pL)的第一范围内计算每个区域填充体积,将非随机或随机技术应用于波形变化,其中该变化在统计上贡献每个液滴不超过±0.025pL的体积变化(给定达到聚合填充体积所需的5个液滴)。替换地或附加地,可以使用驱动波形变化来影响所喷出的液滴的速度或轨迹(飞行角度)。例如,在一个处理中,要求液滴满足关于体积和/或速度和/或轨迹的准则的预定集合;如果液滴落在所接受的标准之外,则可以调整喷嘴驱动波形,直到实现顺应性。替换地,可以测量预定波形的集合,其中,基于对于所期望的标准的顺应性来选择这些波形的子集。很明显,存在许多变化。 Any of these techniques may be used in combination with any of the embodiments discussed herein. For example, drive waveform adjustment techniques may optionally be used to vary droplet volume over a small range to alleviate line patterning after the scanning motion and nozzle firing have been planned. Designing the waveform variation in such a way that the second tolerance is within specification facilitates deposition of high quality layers with programmed non-random or programmed random variation. For example, returning to the previously introduced assumptions where the TV manufacturer specifies a fill volume of 50.00pL ± 0.50%, it is possible to have 50.125pL), applying non-stochastic or stochastic techniques to waveform changes where the change statistically contributes no more than ±0.025pL volume change per droplet (given that the aggregation achieved 5 droplets required to fill the volume). Alternatively or additionally, drive waveform variations may be used to affect the velocity or trajectory (angle of flight) of the ejected droplets. For example, in one process, droplets are required to meet a predetermined set of criteria regarding volume and/or velocity and/or trajectory; if the droplet falls outside the accepted criteria, the nozzle drive waveform may be adjusted until compliance is achieved . Alternatively, a set of predetermined waveforms may be measured, wherein a subset of these waveforms is selected based on compliance with a desired standard. Obviously, there are many variations.
如上所述,在来自图14A的第五波形1453所表示的一个实施例中,可以使用多个信号电平来对脉冲进行成形。参考图14B来进一步讨论这种技术。 As noted above, in one embodiment represented by the fifth waveform 1453 from Figure 14A, multiple signal levels may be used to shape the pulse. This technique is discussed further with reference to Figure 14B.
也就是说,在一个实施例中,可以将波形预定义为例如由数字数据定义离散信号电平序列,驱动波形由数模转换器(DAC)生成。图14B中的数字1451指代具有离散信号电平1455、1457、1459、1461、1463、1465和1467的波形1453。在本实施例中,每个喷嘴驱动器包括接收并存储多达十六个不同信号波形的电路,每个波形被定义一系列的多达十六个信号电平,每个表示为多位电压和持续时间。也就是说,在此类实施例中,可以通过定义用于一个或多个信号电平的不同持续时间来有效地改变脉冲宽度,并且以被选择为提供微小液滴尺寸变化的方式对驱动电压进行波形成形,例如,将液滴体积测定为提供诸如以0.10pL为单位的特定体积等级增量。因此,用此类实施例,波形成形提供了将液滴体积修整为接近于目标液滴体积值的能力;当与其它特定液滴体积组合时,诸如使用上文举例说明的技术,这些技术促进每个目标区的精确填充体积。然而,另外,这些波形成形技术还促进了用于减少或消除线状花纹的策略;例如,在一个可选实施例中,将特定体积的液滴组合,如上文所讨论的,但是以相对于期望容限范围的边界提供变化的方式来选择最后的液滴(或多个液滴)。在另一实施例中,可以在适当地应用可选的进一步波形成形或定时以调整液滴体积、速度和/或轨迹的情况下应用预定波形。在另一示例中,喷组驱动波形替换方案的使用提供了用以规划体积、使得不需要进一步波形成形的机制。 That is, in one embodiment, the waveform may be predefined as, for example, a sequence of discrete signal levels defined by digital data, the driving waveform being generated by a digital-to-analog converter (DAC). Numeral 1451 in FIG. 14B refers to waveform 1453 having discrete signal levels 1455 , 1457 , 1459 , 1461 , 1463 , 1465 , and 1467 . In this embodiment, each nozzle driver includes circuitry to receive and store up to sixteen different signal waveforms, each waveform being defined by a series of up to sixteen signal levels, each represented as a multi-bit voltage and duration. That is, in such embodiments, the pulse width can be effectively varied by defining different durations for one or more signal levels, and the drive voltage can be varied in a manner selected to provide microdroplet size variation. Waveforming is performed, eg, drop volume is measured to provide specific volume-level increments, such as in units of 0.10 pL. Thus, with such embodiments, waveform shaping provides the ability to shape droplet volumes close to target droplet volume values; when combined with other specific droplet volumes, such as using the techniques exemplified above, these techniques facilitate Exact fill volume for each target zone. In addition, however, these wave-shaping techniques also facilitate strategies for reducing or eliminating stringing; for example, in an alternative embodiment, specific volumes of droplets are combined, as discussed above, but in an order relative to The bounds of the desired tolerance range provide varying ways to select the last droplet (or drops). In another embodiment, a predetermined waveform may be applied with optional further waveform shaping or timing applied as appropriate to adjust droplet volume, velocity and/or trajectory. In another example, the use of jet group drive waveform alternatives provides a mechanism to plan volumes such that no further waveform shaping is required.
通常,预先测量不同驱动波形和结果得到的液滴体积的效果。针对每个喷嘴,然后将多达十六个不同的驱动波形存储在每个喷嘴的1k同步随机存取存储器(SRAM)中以便稍后在提供由软件选择的离散体积变化时选择性地使用。在手头有不同驱动波形的情况下,然后经由实现特定驱动波形的数据编程来关于要应用哪个波形而逐个液滴地命令每个喷嘴。 Typically, the effect of different drive waveforms and the resulting droplet volume is measured in advance. For each nozzle, up to sixteen different drive waveforms are then stored in each nozzle's 1k synchronous random access memory (SRAM) for later selective use when providing software-selected discrete volume changes. With different drive waveforms at hand, each nozzle is then commanded drop by drop as to which waveform to apply via data programming implementing a particular drive waveform.
图15A图示出一般地用数字1501表示的此类实施例。特别地,针对要被打印的特定的材料层,使用处理器1503来接收定义每个目标区的预定填充体积的数据。如数字1505所表示的,此数据可以是布局文件或位图文件,其定义每个网格点或位置地址的液滴体积。一系列压电换能器1507、1508和1509产生分别地取决于许多因素的关联喷射液滴体积1511、1512和1513,所述许多因素包括喷嘴驱动波形和打印头间制造变化。在校准操作期间,针对一组变量中的每一个对液滴体积的影响对其进行测试,包括喷嘴间变化和不同驱动波形的使用,假定将使用特定油墨;如果期望的话,可以使此校准操作是动态的,例如以对温度变化、喷嘴堵塞或其它参数进行响应。用液滴测量设备1515来表示此校准,其向处理器1503提供测量数据以供在管理打印规划和后续打印时使用。在一个实施例中,在耗费差不多数分钟(例如对于几千个喷嘴三十分钟并且优选地远更少(例如对于几千个打印头喷嘴以及潜在地几十个可能的喷嘴发射波形))的操作期间计算测量数据。在另一实施例中,如所述那样,可以迭代地执行该测量,也就是说,在不同时间点更新喷嘴的不同子集。可以可选地如上所述使用非成像(例如干涉仪)技术,潜在地造成每喷嘴几十次液滴测量,每秒覆盖几十至几百个喷嘴。可以将此数据与任何相关联的统计模型(和平均值)存储在存储器1517中以便在接收到布局或位图数据1505时在对其进行处理时使用。在一个实施方式中,处理器1503是远离实际打印机的计算机的一部分,而在第二实施方式中,处理器1503与用于产品的制造机构(例如,用于制造显示器的系统)或与打印机集成。 Such an embodiment, generally indicated by numeral 1501, is illustrated in FIG. 15A. In particular, processor 1503 is used to receive data defining predetermined fill volumes for each target zone for the particular layer of material to be printed. As represented by numeral 1505, this data may be a layout file or a bitmap file that defines the droplet volume for each grid point or location address. A series of piezoelectric transducers 1507, 1508, and 1509 produce associated ejected drop volumes 1511, 1512, and 1513, respectively, that depend on a number of factors, including nozzle drive waveforms and printhead-to-print manufacturing variations. During a calibration operation, each of a set of variables is tested for their effect on drop volume, including nozzle-to-nozzle variation and the use of different drive waveforms, assuming a particular ink will be used; this calibration operation can be made if desired Is dynamic, for example in response to temperature changes, nozzle clogging, or other parameters. This calibration is represented by a drop measurement device 1515, which provides measurement data to the processor 1503 for use in managing print planning and subsequent printing. In one embodiment, after taking as much as several minutes (e.g., thirty minutes for a few thousand nozzles and preferably much less (e.g., for a few thousand printhead nozzles and potentially dozens of possible nozzle firing waveforms)) Measured data are calculated during operation. In another embodiment, as described, the measurement may be performed iteratively, that is, different subsets of nozzles are updated at different points in time. Non-imaging (eg interferometer) techniques can optionally be used as described above, potentially resulting in dozens of droplet measurements per nozzle, covering tens to hundreds of nozzles per second. This data and any associated statistical models (and averages) may be stored in memory 1517 for use in processing layout or bitmap data 1505 as it is received. In one embodiment, the processor 1503 is part of a computer remote from the actual printer, while in a second embodiment, the processor 1503 is integrated with the manufacturing facility for the product (e.g., a system for manufacturing a display) or with the printer .
为了执行液滴的发射,接收一组的一个或多个定时或同步信号1519以便用作参考,并且使这些通过时钟树1521以便分配给每个喷嘴驱动器1523、1524和1525以生成用于特定喷嘴(分别地1527、1528和1529)的驱动波形。每个喷嘴驱动器分别地具有一个或多个寄存器1531、1532和1533,其从处理器1503接收多位编程数据和定时信息。每个喷嘴驱动器及其关联寄存器出于分别地对寄存器1531、1532和1533进行编程的目的接收一个或多个专用写入使能信号(wen)。在一个实施例中,寄存器中的每一个包括大量存储器,包括将存储多个预定波形的1k SRAM以及用以在那些波形和另外的控制波形生成之间进行选择的可编程寄存器。来自处理器的数据和定时信息被描述为多位信息,并且但是可以经由串行或并行位连接将此信息提供给每个喷嘴(如在图15B中将看到的,下面讨论的,在一个实施例中,此连接是串行的,与在图15A中看到的并行信号表示相反)。 To perform droplet firing, a set of one or more timing or synchronization signals 1519 is received for use as a reference, and these are passed through a clock tree 1521 for distribution to each nozzle driver 1523, 1524, and 1525 to generate (1527, 1528 and 1529, respectively) driving waveforms. Each nozzle driver has one or more registers 1531 , 1532 and 1533 respectively, which receive multi-bit programming data and timing information from processor 1503 . Each nozzle driver and its associated registers receive one or more dedicated write enable signals (we n ) for the purpose of programming registers 1531 , 1532 and 1533 respectively. In one embodiment, each of the registers includes a large amount of memory including Ik SRAM to store a number of predetermined waveforms and programmable registers to select between those waveforms and additionally control waveform generation. The data and timing information from the processor is described as multi-bit information, and this information can however be provided to each nozzle via serial or parallel bit connections (as will be seen in Figure 15B, discussed below, in a In an embodiment, this connection is serial, as opposed to the parallel signal representation seen in Figure 15A).
针对给定沉积、打印头或油墨,处理器针对每个喷嘴选择可以选择性地应用于产生液滴的一组十六个驱动波形;请注意,此数字是任意的,例如在一个设计中可以使用四个波形,而在另一个中可以使用四千个。这些波形被有利地选择成针对每个喷嘴提供输出液滴体积方面的期望变化,例如以引起每个喷嘴具有产生近理想液滴体积(例如,10.00pL的平均液滴体积)的至少一个波形选择并为每个喷嘴提供一定范围的故意体积变化。在各种实施例中,将同一组的十六个驱动波形用于所有喷嘴,但是在所描绘的实施例中,预先针对每个喷嘴单独地定义十六个可能唯一的波形中的每一个,每个波形带来各液滴体积特性。 For a given deposit, printhead, or ink, the processor selects, per nozzle, a set of sixteen drive waveforms that can be selectively applied to droplet generation; note that this number is arbitrary, e.g. Four waveforms are used, and four thousand can be used in another. These waveforms are advantageously selected to provide a desired variation in output drop volume for each nozzle, for example to cause each nozzle to have at least one waveform selection that produces a near-ideal drop volume (e.g., an average drop volume of 10.00 pL) And provide a range of intentional volume changes for each nozzle. In various embodiments, the same set of sixteen drive waveforms is used for all nozzles, but in the depicted embodiment, each of the sixteen potentially unique waveforms is pre-defined individually for each nozzle, Each waveform yields individual droplet volume characteristics.
在打印期间,为了控制每个液滴的沉积,然后将选择预定义波形中的一个的数据逐个喷嘴地编程到每个喷嘴的各寄存器1531、1532或1533中。例如,给定10.00pL的目标体积,可以通过数据到寄存器1431中的写入来配置喷嘴驱动器1423以设定与十六个不同液滴体积中的一个相对应的十六个波形中的一个。将已经用液滴测量设备1515来测量由每个喷嘴产生的体积,其中,喷嘴接喷嘴(以及波形接波形)液滴体积以及关联分布由处理器1503寄存并且存储在存储器中,以协助产生期望目标填充。处理器可以通过对寄存器1531进行编程来定义其是否想要特定喷嘴驱动器1523输出十六个波形中的处理器选择的一个。另外,处理器可以将寄存器编程为针对给定扫描线具有针对喷嘴发射的每个喷嘴延迟或偏移(例如,以将每个喷嘴与打印头所横穿的网格对准,校正包括速度或轨迹误差的误差,并且用于其它目的);此偏移由针对每次扫描使特定喷嘴偏离(或发射波形)可编程数目的定时脉冲的计数器实现。为了提供示例,如果液滴测量的结果指示一个特定液滴倾向于具有比期待速度更低,则可以更早地(例如通过在对于压电激励所使用的有效信号电平之前减少死区时间而在时间上超前)触发对应喷嘴波形;反之,如果液滴测量的结果指示一个特定液滴具有相对高的速度,则可以更晚地触发波形,依此类推。其它示例显然是可能的——例如,在一些实施例中,可以通过增加驱动强度(即用于驱动给定喷嘴的压电激励器的信号电平和关联电压)来对抗慢的液滴速度。在一个实施例中,为了同步的目的,分配给所有喷嘴的同步信号以定义的时间间隔(例如,一微秒)发生,并且在另一实施例中,相对于打印机运动和基底布局来调整该同步信号,例如针对打印头与基底之间的每微米的增量相对运动而发射。高速时钟(φ hs )运行比同步信号快数千倍,例如处于100兆赫、33兆赫等;在一个实施例中,可以以组合方式使用多个不同的时钟或其它定时信号(例如,选通信号)。该处理器还对定义网格间距的值进行编程;在一个实施方式中,网格间距为可用喷嘴的整个池所共有,但并非对于每个实施方式而言都需要情况如此。例如,在某些情况下,可以定义规则网格,其中每个喷嘴将“每五微米”进行发射。 该网格可以对于打印系统、基底或二者是唯一的。因此,在一个可选实施例中,可以对于具有同步频率或为了有效地变换网格以匹配先验未知的基底地理而使用的喷嘴发射图案的特定打印机定义网格。在另一个设想实施例中,跨所有喷嘴共享存储器,其允许处理器预先存储跨所有喷嘴共享的许多不同网格间距(例如,16个),使得处理器可以(按需要)选择新的网格间距,其然后被读出到所有喷嘴(例如,以定义不规则网格)。例如,在其中喷嘴将针对OLED的每个色彩部件阱进行发射(例如以沉积非色彩特定层)的实施方式中,可以由处理器以循环的方式连续地施加三个或更多不同的网格间距。很明显,可以有许多设计替换方案。请注意,处理器1403还可以在操作期间动态地对每个喷嘴的寄存器进行重新编程,即应用同步脉冲作为触发器以启动在其寄存器中设定的任何已编程波形脉冲,并且如果在下一同步脉冲之前异步地接收到新数据,则将随着该下一同步脉冲而应用新数据。除设定用于同步脉冲发生的参数之外(1536),处理器1503还控制扫描的发起和速度(1535)。另外,处理器出于上文所述的各种目的而控制打印头的旋转(1537)。这样,每个喷嘴可以在任何时间(即,用任何“下一”同步脉冲)针对每个喷嘴并发地(或同时地)使用十六个不同波形中的任何一个进行发射,并且可以用十六个不同波形中的任何其它的动态地、在发射之间、在单次扫描期间切换所选发射波形。 During printing, data to select one of the predefined waveforms is then programmed into each nozzle's respective register 1531, 1532 or 1533 on a nozzle-by-nozzle basis in order to control the deposition of each droplet. For example, given a target volume of 10.00 pL, nozzle driver 1423 may be configured by writing data into register 1431 to set one of sixteen waveforms corresponding to one of sixteen different drop volumes. The volume produced by each nozzle will have been measured with the drop measurement device 1515, wherein the nozzle-by-nozzle (and waveform-by-waveform) droplet volumes and associated distributions are registered by the processor 1503 and stored in memory to assist in generating the desired Target fill. The processor can define by programming register 1531 whether it wants a particular nozzle driver 1523 to output a processor-selected one of sixteen waveforms. Additionally, the processor can program the registers to have a per-nozzle delay or offset for nozzle firing for a given scanline (e.g., to align each nozzle with the grid traversed by the printhead, corrections include velocity or trajectory error, and for other purposes); this offset is implemented by a counter that deviates a specific nozzle (or firing waveform) by a programmable number of timing pulses per scan. To provide an example, if the results of the droplet measurements indicate that one particular droplet tends to have a lower than expected velocity, then it may be possible earlier (e.g. by reducing the dead time before the effective signal level used for piezoelectric excitation) earlier in time) trigger the corresponding nozzle waveform; conversely, if the results of the droplet measurement indicate that a particular droplet has a relatively high velocity, the waveform can be triggered later, and so on. Other examples are obviously possible—for example, in some embodiments, slow droplet velocities can be combated by increasing the drive strength (ie, the signal level and associated voltage used to drive the piezo actuator for a given nozzle). In one embodiment, synchronization signals distributed to all nozzles occur at defined time intervals (e.g., one microsecond) for synchronization purposes, and in another embodiment, this is adjusted relative to printer motion and substrate layout. Synchronization signals, eg, are emitted for every micron of incremental relative motion between the printhead and substrate. The high-speed clock ( φ hs ) runs thousands of times faster than the sync signal, e.g. at 100 MHz, 33 MHz, etc.; in one embodiment, multiple different clocks or other timing signals (e.g., strobe signals ). The processor also programs values defining the grid spacing; in one embodiment, the grid spacing is common to the entire pool of available nozzles, although this need not be the case for every implementation. For example, in some cases it is possible to define a regular grid where each nozzle will fire "every five microns". The grid can be unique to the printing system, the substrate, or both. Thus, in an alternative embodiment, the grid can be defined for a particular printer with a synchronous frequency or nozzle firing pattern to efficiently transform the grid to match the a priori unknown substrate geography. In another contemplated embodiment, the memory is shared across all nozzles, which allows the processor to pre-store a number of different grid pitches (eg, 16) shared across all nozzles, so that the processor can (on demand) select a new grid spacing, which is then read out to all nozzles (eg to define an irregular grid). For example, in an embodiment where the nozzle will fire for each color component well of the OLED (e.g. to deposit a non-color specific layer), three or more different grids may be applied consecutively in a cyclic fashion by the processor spacing. Clearly, many design alternatives are possible. Note that the processor 1403 can also dynamically reprogram each nozzle's registers during operation, i.e. apply the sync pulse as a trigger to start any programmed waveform pulses set in its registers, and if at the next sync If new data is received asynchronously prior to a sync pulse, the new data will be applied with the next sync pulse. In addition to setting parameters for sync pulse generation (1536), processor 1503 also controls the initiation and speed of scanning (1535). In addition, the processor controls the rotation of the printhead (1537) for various purposes described above. This way, each nozzle can fire concurrently (or simultaneously) with any of sixteen different waveforms for each nozzle at any time (i.e., with any "next" sync pulse), and can use sixteen any other of the two different waveforms dynamically, between shots, during a single sweep to switch the selected shot waveform.
图15B示出了在此类实施例中用来针对每个喷嘴生成输出喷嘴驱动波形的电路(1541)的附加细节;在图15B中将输出波形表示为“nzzl-drv. wvfm”。更具体地,电路1541接收同步信号的输入、载送串行数据(“数据”)的单位线、专用写入使能信号(we)和高速时钟(φ hs )。寄存器文件1543为至少三个寄存器提供数据,其分别地传达初始偏移、网格定义值和驱动波形ID。该初始偏移是调整每个喷嘴以与网格的起始点对准的可编程值,如所述。例如,给定诸如多个打印头、多行喷嘴、不同打印头旋转、喷嘴发射速度和图案及其它因素之类的实施方式变量,可以使用初始偏移来使每个喷嘴的液滴图案与网格的起始点对准,以计及延迟及其它因素。偏移可以跨多个喷嘴而被不同地应用以例如相对于基底地理而旋转网格或网纹板图案或校正基底失准。相似地,如所提到的那样,也可以使用偏移以校正异常速度或其它效果。该网格定义值是表示在已编程波形被触发之前“计数”的同步脉冲的数目的数;在打印平板显示器(例如,OLED面板)的实施方式的情况下,大概要在其中进行打印的目标区相对于不同的打印头喷嘴具有一个或多个规则间距,对应于规则(恒定间距)或不规则(多间距)网格。如先前所述,在一个实施方式中,处理器保持其自己的十六条目SRAM以定义可以在需要时读出到用于所有喷嘴的寄存器电路的多达十六个不同网格间距。因此,如果网格间距值被设定成两个(例如,每微米两个),则每个喷嘴将以此间隔发射。驱动波形ID表示用于每个喷嘴的预存储驱动波形中的一个的选择,并且可以根据实施例以许多方式编程和存储。在一个实施例中 ,驱动波形ID是四位选择值,并且每个喷嘴具有其自己的专用1k字节SRAM以存储多达十六个预定喷嘴驱动波形,存储为16×16×4B个条目。简要地,用于每个波形的十六个条目中的每一个包含表示可编程信号电平的四个字节,这四个字节表示两字节分辨率电压水平和两字节可编程持续时间,用来计算高速时钟的脉冲数。每个可编程波形因此可以由(零至一个)离散脉冲至多达十六个离散脉冲组成,每个具有可编程电压和持续时间(例如,具有等于33兆赫时钟的1—255个脉冲的持续时间)。 Figure 15B shows additional details of the circuitry (1541) used in such an embodiment to generate output nozzle drive waveforms for each nozzle; the output waveforms are denoted " nzzl-drv.wvfm " in Figure 15B. More specifically, circuit 1541 receives inputs of synchronization signals, unit lines carrying serial data ("data"), a dedicated write enable signal (we), and a high speed clock ( φ hs ). Register file 1543 provides data for at least three registers, which convey initial offsets, mesh definition values, and drive waveform IDs, respectively. This initial offset is a programmable value that adjusts each nozzle to align with the starting point of the grid, as described. For example, given implementation variables such as multiple printheads, multiple rows of nozzles, different printhead rotations, nozzle firing speeds and patterns, and other factors, an initial offset can be used to align each nozzle's drop pattern with the web The starting point of the grid is aligned to account for delays and other factors. Offsets can be applied differently across multiple nozzles, for example to rotate a grid or anilox pattern relative to substrate geography or to correct for substrate misalignment. Similarly, as mentioned, offsets may also be used to correct for abnormal speeds or other effects. This grid definition value is a number that represents the number of sync pulses that "count" before the programmed waveform is triggered; in the case of an implementation that prints a flat panel display (e.g., an OLED panel), presumably the target in which to print The zones have one or more regular pitches with respect to the different printhead nozzles, corresponding to a regular (constant pitch) or irregular (multiple pitch) grid. As previously stated, in one embodiment, the processor maintains its own sixteen-entry SRAM to define up to sixteen different grid pitches that can be read out to the register circuits for all nozzles as needed. So, if the Grid Spacing value is set to two (for example, two per micron), each nozzle will fire at this interval. The drive waveform ID represents a selection of one of the pre-stored drive waveforms for each nozzle, and can be programmed and stored in a number of ways depending on the embodiment. In one embodiment, the drive waveform ID is a four-bit select value, and each nozzle has its own dedicated 1 kbyte SRAM to store up to sixteen predetermined nozzle drive waveforms, stored as 16x16x4B entries. Briefly, each of the sixteen entries for each waveform contains four bytes representing the programmable signal level, the four bytes representing the two-byte resolution voltage level and the two-byte programmable duration Time, used to count the number of pulses of the high-speed clock. Each programmable waveform can thus consist of (zero to one) discrete pulses up to sixteen discrete pulses, each with programmable voltage and duration (e.g., with a duration equal to 1-255 pulses of a 33 MHz clock ).
数字1545、1546和1547指定显示如何可以针对给定的喷嘴生成指定波形的电路的一个实施例。第一计数器1545接收同步脉冲,以发起由新扫描线的开始触发的初始偏移的递减计数;第一计数器1545以微米增量进行递减计数,并且当达到零时,从第一计数器1545向第二计数器1546输出触发信号;此触发信号本质上针对每个扫描线开始用于每个喷嘴的发射处理。第二计数器1546然后以微米的增量实现可编程网格间距。结合新的扫描线来重置第一计数器1545,同时使用在其输出触发器之后的高速时钟的下一边沿来重置第二计数器1546。第二计数器1546在被触发时激活波形电路发生器1547,其生成用于特定喷嘴的所选驱动波形形状。如在发生器电路下面看到的短划线方框1548—1550所表示的,此后一个电路是基于根据高速时钟(φ hs )定时的高速数模转换器1548、计数器1549以及高压放大器1550。随着接收到来自第二计数器1546的触发器,波形发生器电路检索驱动波形ID对所表示的数字对(信号电平和持续时间),并根据该信号电平值而生成给定输出模拟电压,计数器1549有效地根据计数器而保持DAC输出达一定的持续时间。然后对高压放大器1550施加相关输出电压水平并作为喷嘴驱动波形而输出。然后从寄存器1543锁存输出下一数字对以定义下一信号电平值/持续时间等。 Numerals 1545, 1546 and 1547 designate one embodiment of a circuit showing how a given waveform may be generated for a given nozzle. The first counter 1545 receives a sync pulse to initiate a countdown of the initial offset triggered by the start of a new scan line; the first counter 1545 counts down in micron increments and when zero is reached, the The second counter 1546 outputs a trigger signal; this trigger signal essentially starts the firing process for each nozzle for each scan line. The second counter 1546 then implements a programmable grid pitch in micron increments. The first counter 1545 is reset in conjunction with a new scan line, while the second counter 1546 is reset with the next edge of the high-speed clock following its output flip-flop. The second counter 1546, when triggered, activates the waveform circuit generator 1547, which generates the selected drive waveform shape for the particular nozzle. This latter circuit is based on a high speed digital to analog converter 1548, counter 1549 and high voltage amplifier 1550, as represented by dashed boxes 1548-1550 seen below the generator circuit. Upon receipt of a trigger from the second counter 1546, the waveform generator circuit retrieves the digital pair (signal level and duration) represented by the drive waveform ID pair and generates a given output analog voltage according to the signal level value, The counter 1549 effectively holds the DAC output for a certain duration according to the counter. The relevant output voltage level is then applied to the high voltage amplifier 1550 and output as a nozzle drive waveform. The next digital pair is then latched out from register 1543 to define the next signal level value/duration etc.
所描绘的电路提供了根据由处理器1503提供的数据来定义任何期望波形的有效手段。如果必须服从网格几何或缓和具有异常速度或飞行角度的喷嘴,则可以调整与任何特定信号电平(例如定义相对于同步的偏移的第一“零”信号电平)关联的持续时间和/或电压电平。如所述,在一个实施例中,处理器预先判定一组波形(例如,每个喷嘴16个可能波形),并且然后其将用于这些所选波形中的每一个的定义写入到用于每个喷嘴的驱动器电路的SRAM中,然后通过将四位驱动波形ID写入到每个喷嘴寄存器中来实现可编程波形的“发射时间”判定。 The depicted circuitry provides an efficient means of defining any desired waveform from data provided by processor 1503 . The duration and / or voltage level. As mentioned, in one embodiment, the processor predetermines a set of waveforms (e.g., 16 possible waveforms per nozzle), and then it writes the definitions for each of these selected waveforms into the In the SRAM of the driver circuit of each nozzle, the "firing time" judgment of the programmable waveform is realized by writing the four-bit driving waveform ID into each nozzle register.
图15C提供了讨论使用每个喷嘴不同的波形和不同的配置选项的方法的流程图1551。如用1553所表示的,一种系统(例如,根据来自适当软件的指令行动的一个或多个处理器)选择一组预定喷嘴驱动波形。针对每个波形且针对每个喷嘴(1555),具体地例如使用例如激光测量设备或CCD照相机来测量液滴体积并且建立统计模型。这些体积被存储在处理器可访问的存储器中,诸如存储器1557。再次地,测量参数可以根据油墨的选择及许多其它因素而改变;因此,根据那些因素和规划沉积活动来执行校准。例如,在一个实施例1561中,可以在制造打印头或打印机的工厂处执行校准,并且可以将此数据编程到出售设备(例如,打印机)中或使得其可用于下载。替换地,对于拥有可选液滴测量设备或系统的打印机而言,可以在第一次使用时执行这些体积测量(1562),例如在初始设备配置时。在另一实施例中,随着每次功率循环而执行测量(1563),例如每当打印机被开启或从低功率状态唤醒或者另外进入其中其准备好打印的状态时。如前所述,对于其中喷射液滴体积受到温度或其它动态因素影响的实施例而言,可以间歇性地或周期性地执行校准(1564),例如在定义时间间隔到期之后、当检测到错误时、在每个新基底操作的状态下(例如在基底加载和/或加载期间)、每天或者以某个其它方式。还可以使用其它校准技术和调度表(1565)。 Figure 15C provides a flowchart 1551 discussing a method of using different waveforms and different configuration options for each nozzle. As indicated at 1553, a system (eg, one or more processors acting upon instructions from appropriate software) selects a set of predetermined nozzle drive waveforms. For each waveform and for each nozzle ( 1555 ), the droplet volume is measured and a statistical model is built, in particular eg using eg a laser measuring device or a CCD camera. These volumes are stored in processor-accessible memory, such as memory 1557 . Again, measurement parameters may vary depending on the choice of ink and many other factors; therefore, calibration is performed based on those factors and planning deposition activities. For example, in one embodiment 1561, calibration may be performed at the factory where the printhead or printer is manufactured, and this data may be programmed into the vending device (eg, printer) or made available for download. Alternatively, for printers having an optional droplet measurement device or system, these volume measurements (1562) may be performed on first use, such as during initial device configuration. In another embodiment, the measurement (1563) is performed with every power cycle, eg, whenever the printer is turned on or wakes from a low power state or otherwise enters a state where it is ready to print. As previously mentioned, for embodiments where ejected droplet volume is affected by temperature or other dynamic factors, calibration ( 1564 ) may be performed intermittently or periodically, such as after expiration of a defined time interval, when detected On error, at the state of each new substrate operation (eg, during substrate loading and/or loading), daily, or in some other way. Other calibration techniques and schedules (1565) may also be used.
可以可选地在离线处理中或者在校准模式期间执行校准技术,如处理分离线1556所表示的。如所述,在一个实施例中,潜在地针对数千个打印喷嘴和一个或多个关联喷嘴发射波形,在少于三十分钟内完成此类处理。在此处理分离线1556下面表示的在线操作期间(或者在打印模式期间),在基于特定的测量液滴体积选择每个目标区的各组液滴时使用测量液滴体积,使得用于每组的液滴体积在定义容限范围内总计达到特定聚合体积,经由1567。可以基于布局文件、位图数据或某个其它表示来选择每个区域的体积,如数字1568所表示的。基于这些液滴体积和用于每个目标区的液滴体积的允许组合,选择发射图案和/或扫描路径,有效地表示将被用于沉积处理的用于每个目标区的液滴的特定组合(即,可接受的各组组合中的一个),如数字1569所表示的。作为此选择或规划处理1569的一部分,可以可选地采用优化功能1570,例如以将扫描或通过的次数减少至少于每个目标区的平均液滴数目乘以目标区的行(或列)的数目的乘积(例如,小于转到90度的一行喷嘴将需要的,使得可以针对每个受影响的目标区在每次扫描中使用该行中的所有喷嘴,并且针对每行目标区在多次通过中沉积液滴,每次前进一行)。针对每次扫描,可以移动打印头,并且可以将每个喷嘴波形数据编程到喷嘴中以根据位图或布局文件实现液滴沉积指令;在图15C中用数字1571、1573和1575来不同地表示这些功能。在每次扫描之后,针对后续的扫描重复该处理,经由数字1577。可选地,这些技术及其实现方式可以实施在稍后所求得的或在特定时间在控制油墨的喷出中可重复使用的打印机控制文件1579中. Calibration techniques may optionally be performed in offline processing or during a calibration mode, as represented by processing separation line 1556 . As noted, in one embodiment, such processing is accomplished in less than thirty minutes for potentially thousands of print nozzles and one or more associated nozzle firing waveforms. During online operation (or during print mode) represented below this process separation line 1556, the measured drop volumes are used in selecting groups of drops for each target zone based on specific measured drop volumes such that for each group The droplet volumes total up to the specified aggregate volume within defined tolerances, via 1567. The volume of each region, as represented by numeral 1568, may be selected based on a layout file, bitmap data, or some other representation. Based on these drop volumes and the allowable combinations of drop volumes for each target zone, a shot pattern and/or scan path is selected that effectively represents the specific pattern of droplets for each target zone that will be used in the deposition process. combination (i.e., one of an acceptable set of combinations), as indicated by the number 1569. As part of this selection or planning process 1569, an optimization function 1570 may optionally be employed, e.g., to reduce the number of scans or passes to less than the average number of droplets per target zone multiplied by the number of rows (or columns) of target zones. The product of the number (e.g., less than a row of nozzles turned 90 degrees would be required so that all nozzles in the row can be used in each scan for each affected target zone, and multiple times for each row of target zones depositing droplets in the pass, advancing one row at a time). For each scan, the printhead can be moved and each nozzle waveform data can be programmed into the nozzles to implement drop deposition instructions from a bitmap or layout file; variously represented by numerals 1571, 1573 and 1575 in FIG. 15C these functions. After each scan, the process is repeated for subsequent scans, via number 1577 . Optionally, these techniques and their implementations may be implemented in a printer control file 1579 that is later derived or reused in controlling the ejection of ink at a specific time.
再次地请注意,上文已描述了多个不同的实施方式,其相对于彼此而言是可选的。首先,在一个实施例中,不改变驱动波形,而是针对每个喷嘴保持恒定。根据需要,通过使用表示打印头/基底偏移的可变几何步幅来用不同的各行目标区覆盖不同的喷嘴而产生液滴体积组合。在可以在期望容限内容纳任何液滴体积变化的高置信度的情况下,使用测量的每个喷嘴液滴体积,此处理允许特定液滴体积平均值的组合实现每个目标区的非常特定的填充体积(例如,达到0.01pL分辨率)。可以规划此处理,使得随着每次通过而使用多个喷嘴来在不同的各行目标区中沉积油墨。在一个实施例中,优化打印解决方案以产生可能的最少扫描和可能的最快打印时间。其次,在另一实施例中,可以再次地使用具体测量的液滴体积而针对每个喷嘴使用不同的驱动波形。打印处理控制这些波形,使得特定液滴体积被以特定组合聚合。再次地,使用测量的每个喷嘴液滴体积,此处理允许特定液滴体积平均值的组合以实现每个目标区的非常特定的填充体积(例如,达到0.01pL分辨率)。可以规划此处理,使得随着每次通过而使用多个喷嘴来在不同的各行目标区中沉积油墨。在这两个实施例中,可以使用单行的喷嘴或者可以使用多行的喷嘴,布置为打印头组件的一个或多个打印头;例如,在一个设想实施方式中,可以使用三十个打印头,每个打印头具有单行的喷嘴,每行具有256个喷嘴。还可以将该打印头组织成各种不同的分组;例如,可以将这些打印头组织成均具有被机械地安装在一起的五个打印头的打印头组件,并且可以将这些结果得到的六个组件分离地安装到打印系统中。在另一实施例中,使用具有可以进一步相互在位置上偏移的多行喷嘴的聚合打印头组件。本实施例类似于上述第一实施例,因为可以使用可变的有效位置偏移或几何步幅将不同的液滴体积组合。再次地,使用测量的每个喷嘴液滴体积,此处理允许特定液滴体积平均值的组合以实现每个目标区的非常特定的填充体积(例如,达到0.05pL、或者甚至0.01pL分辨率)。这不一定意味着测量结果没有统计不确定性,诸如测量误差;在一个实施例中,此类误差是小的并在目标区填充规划中被考虑到。例如,如果液滴体积测量误差是±a%,则可以将跨目标区的填充体积变化规划成在目标填充的容限范围± (b-an-1/2)%内,其中,± (b)%表示规范容限范围,并且n1/2 表示每个目标区或阱的液滴的平均数的平方根。除非另外说明,可以规划小于规范容限的范围,使得当将预期测量误差考虑在内时,可以预期用于目标区的结果得到的聚合填充体积将落在规范容限范围内,例如,如以上结合图8A-图8B所描述的那样。自然地,可以可选地将本文所述的技术与其它统计处理组合。 Note again that a number of different embodiments have been described above, which are optional with respect to each other. First, in one embodiment, the drive waveform is not changed, but kept constant for each nozzle. Combinations of drop volumes are created by covering different nozzles with different rows of target areas, as desired, using variable geometric steps representing printhead/substrate offsets. Using the measured drop volumes for each nozzle with high confidence that any drop volume variation can be accommodated within the desired tolerance, this process allows the combination of specific drop volume averages to achieve very specific values for each target zone Fill volumes (e.g., to 0.01pL resolution). The process can be planned so that with each pass multiple nozzles are used to deposit ink in different rows of target areas. In one embodiment, the printing solution is optimized to produce the fewest scans possible and the fastest possible print time. Second, in another embodiment, again using specific measured droplet volumes, different drive waveforms may be used for each nozzle. The printing process controls these waveforms so that specific drop volumes are polymerized in specific combinations. Again, using the measured per-nozzle drop volumes, this process allows the combination of specific drop volume averages to achieve very specific fill volumes for each target zone (eg, to 0.01 pL resolution). The process can be planned so that with each pass multiple nozzles are used to deposit ink in different rows of target areas. In both embodiments, a single row of nozzles may be used or multiple rows of nozzles may be used, arranged as one or more printheads of a printhead assembly; for example, in one contemplated embodiment, thirty printheads may be used , each printhead has a single row of nozzles, each row has 256 nozzles. The printheads can also be organized into various groupings; for example, the printheads can be organized into printhead assemblies each having five printheads mechanically mounted together, and the resulting six The components are separately installed into the printing system. In another embodiment, a converging printhead assembly is used having multiple rows of nozzles that may be further offset in position from one another. This embodiment is similar to the first embodiment described above in that different droplet volumes can be combined using variable effective positional offsets or geometric strides. Again, using the measured per-nozzle drop volumes, this process allows the combination of specific drop volume averages to achieve very specific fill volumes per target zone (eg, to 0.05pL, or even 0.01pL resolution) . This does not necessarily mean that the measurement results are free of statistical uncertainties, such as measurement errors; in one embodiment, such errors are small and accounted for in the target zone fill planning. For example, if the droplet volume measurement error is ± a%, then the fill volume variation across the target zone can be programmed to be within ± (b-an -1/2 )% of the target fill tolerance, where ± (b ) % represents the specification tolerance range, and n 1/2 represents the square root of the mean number of droplets per target zone or well. Unless otherwise stated, ranges smaller than the specification tolerances can be planned such that the resulting aggregated fill volume for the target zone can be expected to fall within the specification tolerances when accounting for expected measurement errors, e.g., as above As described in conjunction with FIG. 8A-FIG. 8B. Naturally, the techniques described herein can optionally be combined with other statistical treatments.
可以可选地规划液滴沉积,使得随着每次通过而使用多个喷嘴来在不同的各行目标区中沉积油墨,可选地优化打印解决方案以产生可能的最少扫描和可能的最快打印时间。如先前所述,还可以采用这些技术相互的和/或与其它技术的任何组合。例如,在一个具体设想的情形中,将可变几何步幅与每个喷嘴驱动波形变化和每个喷嘴、每个驱动波形体积测量一起使用以实现每个目标区规划的非常特定的体积组合。例如,在一个具体设想的情形中,将固定几何步幅与每个喷嘴驱动波形变化和每个喷嘴、每个驱动波形体积测量一起使用以实现每个目标区规划的非常特定的体积组合。 Droplet deposition can optionally be planned so that with each pass multiple nozzles are used to deposit ink in different rows of target areas, optionally optimizing the print solution to produce the fewest scans possible and the fastest print possible time. As previously stated, any combination of these techniques with each other and/or with other techniques may also be employed. For example, in one specifically envisioned situation, variable geometry steps are used with per-nozzle drive waveform changes and per-nozzle, per-drive waveform volume measurements to achieve very specific volume combinations per target zone plan. For example, in one specifically envisioned situation, fixed geometry steps are used with per nozzle drive waveform variation and per nozzle, per drive waveform volumetric measurements to achieve a very specific combination of volumes per target zone plan.
通过使在每次扫描期间可以同时地使用的喷嘴的数目最大化并通过规划液滴体积组合使得其一定满足规范,这些实施例保证高质量的显示器;通过还减少打印时间,这些实施例帮助促进超低的每单位打印成本,并且因此降低给最终消费者的价格点。 These embodiments ensure a high-quality display by maximizing the number of nozzles that can be used simultaneously during each scan and by planning drop volume combinations such that they must meet specifications; by also reducing print time, these embodiments help facilitate Ultra-low printing cost per unit, and thus a lower price point for the end consumer.
图15D提供与喷嘴资格有关的流程图。在一个实施例中,执行液滴测量以产生用于每个喷嘴以及用于应用于任何给定喷嘴的每个波形的统计模型(例如分布和平均值),以用于液滴体积、速度和轨迹中的任一个和/或每一个。因此,例如,如果存在用于十二个喷嘴中的每一个的波形的两个选项,则存在达到24个波形喷嘴组合或配对;在一个实施例中,对于足以求得鲁棒统计模型的每个喷嘴或波形喷嘴配对采取用于每个参数(例如体积)的测量。注意的是,对于沉积规划,在概念上有可能的是,给定喷嘴或喷嘴波形配对可以产生例外地宽的分布或其应该具体地处理的足够异常的平均值。图15D概念性地表示一个实施例中所应用的这种特殊处理。 Figure 15D provides a flow chart related to nozzle qualification. In one embodiment, drop measurements are performed to generate statistical models (e.g., distributions and averages) for each nozzle and for each waveform applied to any given nozzle for drop volume, velocity, and Any and/or each of the trajectories. Thus, for example, if there are two options for waveforms for each of twelve nozzles, there are up to 24 combinations or pairs of waveform nozzles; Measurements for each parameter (eg volume) are taken in pairs of nozzles or wave nozzles. Note that, for deposition planning, it is conceptually possible that a given nozzle or pairing of nozzle waveforms may produce exceptionally wide distributions or sufficiently unusual averages that they should be specifically addressed. Figure 15D conceptually represents this special processing applied in one embodiment.
更具体地说,使用标号1581来表示总体方法。液滴测量设备所生成的数据存储在存储器1585中,以用于稍后使用。在应用方法1581期间,从存储器重新调用该数据,并且提取而且单独地处理用于每个喷嘴或喷嘴波形配对的数据(1583)。在一个实施例中,如所提到那样,对于要被赋予资格的每个变量,构建如由测量的液滴(n)的平均值、标准偏差和数量所描述的、或者使用等效测度的正态随机分布。再次注意,可以使用其它分布格式(例如Student's-T、泊松等)。所测量的参数与一个或多个范围比较(1587),以确定是否可以在实践中使用贴切的液滴。在一个实施例中,至少一个范围应用于使得液滴在使用上失去资格(例如,如果液滴相对于期望目标具有足够大或小的体积,则该喷嘴或喷嘴波形配对可以被排除于短期使用)。为了提供示例,如果期望10.00pL液滴,则链接到远离该目标大于例如1.5%的液滴平均值(例如<9.85pL或>10.15pL)的喷嘴或喷嘴波形可以排除于使用。可以也使用或替代使用范围、标准偏差、方差或另一扩展测度。例如,如果期望具有带有窄分布(例如3σ<平均值的1.005%)的液滴统计模型,则可以排除具有不满足该准则的测量的液滴。还有可能使用考虑多个因素的准则的精致/复杂集合。例如,与非常窄的扩展组合的异常平均值可以是好的,例如,如果远离所测量的(例如异常)平均值μ的扩展(例如3σ)处于1.005%内,则可以使用关联的液滴。例如,如果期望使用具有10.00pL±0.1pL内的3σ体积的液滴,则可以排除产生具有±0.8pL3σ值的9.96pL平均值的喷嘴波形配对,但产生具有±0.3pL3σ值的9.93pL的喷嘴波形配对可以是可接受的。显然,很多可能性根据任何期望的拒绝/异常准则是可能的(1589)。注意,该相同类型的处理可以应用于每液滴飞行角度和速度,即,期待按每喷嘴波形配对的飞行角度和速度将展现统计分布,并且取决于从液滴测量设备推导的测量和统计模型,可以排除一些液滴。例如,具有正常值的5%之外的平均速度或飞行轨迹或特定目标之外的速度的方差的液滴可以假设被排除于使用。不同范围和/或估计准则可以应用于所测量的并且由存储体1585提供的每个液滴参数。 More specifically, reference numeral 1581 is used to denote the overall method. Data generated by the droplet measurement device is stored in memory 1585 for later use. During the apply method 1581, the data is recalled from memory, and the data for each nozzle or pair of nozzle waveforms is extracted and processed individually (1583). In one embodiment, as mentioned, for each variable to be qualified, construct the Normal random distribution. Note again that other distribution formats (eg, Student's-T, Poisson, etc.) can be used. The measured parameters are compared ( 1587 ) to one or more ranges to determine whether the appropriate droplet can be used in practice. In one embodiment, at least one range is applied to disqualify the droplet from use (e.g., if the droplet has a sufficiently large or small volume relative to the desired target, the nozzle or nozzle waveform pairing may be excluded from short-term use ). To provide an example, if 10.00 pL droplets are desired, nozzles or nozzle waveforms linked to a droplet average greater than, eg, 1.5% away from that target (eg, <9.85pL or >10.15pL) may be excluded from use. Range, standard deviation, variance, or another measure of spread may also or instead be used. For example, if it is desired to have a statistical model of droplets with a narrow distribution (eg, 3σ < 1.005% of mean), then droplets with measurements that do not meet this criterion can be excluded. It is also possible to use an elaborate/complex set of criteria that takes into account multiple factors. For example, an unusual mean combined with a very narrow spread may be good, eg if the spread (eg 3σ) away from the measured (eg abnormal) mean μ is within 1.005% then the associated droplet may be used. For example, if it is desired to use droplets with a 3σ volume within 10.00pL ± 0.1pL, one can exclude nozzle waveform pairs that produce a 9.96pL average value with a 3σ value of ± 0.8pL, but nozzles that produce 9.93pL with a 3σ value of ± 0.3pL Waveform pairing may be acceptable. Clearly, many possibilities are possible according to any desired rejection/exception criterion (1589). Note that this same type of processing can be applied to per-droplet flight angles and velocities, i.e., it is expected that flight angles and velocities paired per nozzle waveform will exhibit a statistical distribution and depend on measurements and statistical models derived from droplet measurement devices , some droplets can be excluded. For example, droplets with an average velocity outside 5% of normal or a variance in flight trajectory or velocity outside a specific target may be assumed to be excluded from use. Different ranges and/or estimation criteria may be applied to each drop parameter measured and provided by storage 1585 .
注意,取决于拒绝/异常准则1589,可以通过不同方式来处理和/或处置液滴(以及喷嘴波形组合)。例如,如提到那样,可以排除不满足期望标准的特定液滴(1591)。替代地,有可能对于特定喷嘴波形配对的下一测量迭代有选择地执行附加测量;作为示例,如果统计分布太宽,则有可能对于特定喷嘴波形配对特殊地执行附加测量,从而通过附加测量改进统计分布的严密性(例如方差和标准偏差取决于所测量的数据点的数量)。按标号1593,还有可能调整喷嘴驱动波形,例如,以使用更高或更低的电压电平(例如以提供更大或更小的速度或更一致的飞行角度),或对波形进行重新整形,从而产生满足所指定的标准的所调整的喷嘴波形配对。按标号1594,也可以调整波形的定时(例如,以补偿与特定喷嘴波形配对关联的异常平均速度)。作为(先前所提及的)示例,缓慢液滴可以相对于其它喷嘴在更早的时间受发射,并且快速液滴可以在时间上更晚地受发射,以补偿更快的飞行时间。很多这样的替换是可能的。最后,按标号1595,可以存储任何所调整的参数(例如发射时间、波形电压电平或形状),并且可选地,如果期望,则所调整的参数可以应用于重新测量一个或多个关联液滴。在使得(修改的或另外的)每个喷嘴波形配对具有资格(通过或拒绝)之后,按标号1597,所述方法然后继续下一喷嘴波形配对。 Note that depending on the rejection/exception criteria 1589, droplets (and nozzle waveform combinations) may be handled and/or disposed of in different ways. For example, as mentioned, specific droplets that do not meet desired criteria can be excluded (1591). Alternatively, it is possible to perform additional measurements selectively for the next measurement iteration of a particular pair of nozzle waveforms; as an example, if the statistical distribution is too broad, it is possible to perform additional measurements specifically for a particular pair of nozzle waveforms, thereby improving The tightness of the statistical distribution (such as variance and standard deviation depending on the number of data points being measured). According to reference number 1593, it is also possible to adjust the nozzle drive waveform, for example, to use higher or lower voltage levels (for example, to provide greater or less speed or a more consistent flight angle), or to reshape the waveform , resulting in an adjusted nozzle waveform pair that satisfies the specified criteria. At reference numeral 1594, the timing of the waveforms may also be adjusted (eg, to compensate for abnormal average velocities associated with particular nozzle waveform pairs). As an example (mentioned previously), slow droplets may be fired earlier in time relative to other nozzles, and fast droplets may be fired later in time to compensate for faster flight times. Many such substitutions are possible. Finally, at reference numeral 1595, any adjusted parameters (such as firing time, waveform voltage level or shape) can be stored, and optionally, if desired, the adjusted parameters can be applied to re-measure one or more associated liquids. drop. After each nozzle waveform pair (modified or otherwise) is qualified (passed or rejected), the method then proceeds to the next nozzle waveform pair at reference numeral 1597 .
如应领会那样,恰所描述的喷嘴驱动结构提供打印不同大小的液滴方面的灵活性。使用按每目标区的精度填充体积、液滴体积、液滴速度和液滴轨迹使得能够使用根据所定义的准则(在规范内)关于喷嘴/波形和/或液滴使用来改变填充体积和规划的高级技术。这样提供相对于常规的方法的进一步质量改进。 As should be appreciated, the nozzle drive structure just described provides flexibility in printing different sized droplets. Use of fill volumes, drop volumes, drop velocities, and drop trajectories with precision per target zone enables use of defined criteria (within specification) with respect to nozzle/waveform and/or drop usage to vary fill volume and planning advanced technology. This provides a further quality improvement over conventional methods.
现将使用图16-图18B来提供关于两个预期的液滴测量设备(或系统)(即分别关于阴影图和干涉法所预测的)的进一步的细节。将使用图16-图17来示出具有液滴测量系统的打印机的一个实施例,而将使用图18A和图18B来分别讨论阴影图和干涉法。 Figures 16-18B will now be used to provide further details on two contemplated droplet measurement devices (or systems) (ie predicted with respect to shadow plots and interferometry, respectively). Figures 16-17 will be used to illustrate one embodiment of a printer with a drop measurement system, while Figures 18A and 18B will be used to discuss shadow graphics and interferometry, respectively.
如前面提到那样,本教导公开包括集成到打印系统中的液滴测量装置的工业喷墨薄膜打印系统的各个实施例。本教导的喷墨薄膜打印系统的各个实施例可以利用成像技术(例如阴影图)或非成像技术(例如相位多普勒分析(PDA)(基于干涉法的技术)),其可以对于喷墨打印头的多个喷嘴的快速测量提供明显优点,其中,根据本教导的薄膜喷墨打印系统中所使用的打印头组件的各个实施例可以具有多个打印头。这种快速测量可以在打印处理期间在任何时间原地执行,并且可以提供可以包括用于来自每个打印头的每个喷嘴的每个液滴的体积、速度和轨迹的数据。可以利用从集成到喷墨薄膜打印系统中的液滴测量装置获得的联合数据来提供输送到OLED面板显示器上的几百万个像素中的每一个的油墨体积的均匀性。 As mentioned previously, the present teachings disclose various embodiments of an industrial inkjet thin film printing system that includes a drop measurement device integrated into the printing system. Various embodiments of inkjet thin film printing systems of the present teachings may utilize imaging techniques such as shadow mapping or non-imaging techniques such as Phase Doppler Analysis (PDA) (an interferometry-based technique) that may be useful for inkjet printing Rapid measurement of multiple nozzles of a head provides a distinct advantage in that various embodiments of printhead assemblies used in thin film inkjet printing systems according to the present teachings may have multiple printheads. This rapid measurement can be performed in situ at any time during the printing process and can provide data that can include volume, velocity and trajectory for each droplet from each nozzle of each printhead. Joint data obtained from drop measurement devices integrated into inkjet thin film printing systems can be utilized to provide uniformity of ink volume delivered to each of the millions of pixels on an OLED panel display.
当在OLED面板的制造中沉积膜时,一般期望跨面板沉积具有均匀厚度的膜材料,因为所沉积的膜材料的厚度一般影响到面板性能,并且良好的显示器均匀性是良好的OLED面板的重要属性。当使用喷墨打印方法来沉积膜时,油墨的液滴从打印装置喷出到面板基底上,并且面板的每个区中的所沉积的膜的厚度典型地与面板的该区上所分配的油墨的体积有关,其进一步与液滴在面板表面上的体积和放置有关。因此一般期望跨OLED面板显示器关于所分配的液滴的体积和位置来均匀地分配油墨的体积。 When depositing films in the manufacture of OLED panels, it is generally desirable to deposit a film material with a uniform thickness across the panel, as the thickness of the deposited film material generally affects panel performance, and good display uniformity is important for a good OLED panel Attributes. When inkjet printing methods are used to deposit films, droplets of ink are ejected from the printing device onto the panel substrate, and the thickness of the deposited film in each area of the panel is typically the same as the thickness of the film dispensed on that area of the panel. The volume of the ink is related, which is further related to the volume and placement of the droplets on the panel surface. It is therefore generally desirable to distribute the volume of ink evenly across the OLED panel display with respect to the volume and location of the dispensed droplets.
如上所述,喷墨打印系统可以典型地具有带有多个喷墨喷嘴的至少一个打印头,每个喷嘴能够将油墨的液滴分配到面板表面上。典型地,存在跨打印头的多个喷嘴的关于所分配的液滴的体积、轨迹和速度的变化。这种变化可以出自多个源,包括但不限于喷嘴工作条件的变化、包括压电喷嘴驱动器的老化的固有的喷嘴激励器行为的变化、油墨的变化以及固有的喷嘴大小和形状的变化。这些变化的影响可能造成跨面板的体积负载方面的不均匀性。例如,液滴体积的变化可能直接导致所沉积的体积的变化,而液滴速度和轨迹的变化可能通过引起液滴在OLED面板表面上的放置的变化而间接导致油墨的沉积体积的变化。理论上,可以通过当打印时仅使用单个喷嘴来避免这些变化,但利用单个喷嘴进行打印太慢而在现实世界制造应用中是不实际的。按照从不同喷嘴分配的油墨液滴的这些变化以及当使用用于制造应用的喷墨打印时使用多个喷嘴来得到合理的处理速度的设计必要性,期望具有用于提供跨OLED面板区分配均匀的油墨的体积的方法和关联的装置,而无论这些喷嘴间液滴变化如何。 As noted above, an inkjet printing system may typically have at least one printhead with a plurality of inkjet nozzles, each nozzle capable of dispensing droplets of ink onto the panel surface. Typically, there are variations across the multiple nozzles of the printhead with respect to the volume, trajectory and velocity of the dispensed droplets. Such variations can arise from a number of sources including, but not limited to, variations in nozzle operating conditions, variations in inherent nozzle actuator behavior including aging of piezoelectric nozzle drivers, variations in ink, and variations in inherent nozzle size and shape. The effects of these variations may cause non-uniformity in volume loading across the panels. For example, a change in droplet volume may directly result in a change in the deposited volume, while a change in droplet velocity and trajectory may indirectly cause a change in the deposited volume of ink by causing a change in droplet placement on the OLED panel surface. In theory, these variations could be avoided by using only a single nozzle when printing, but printing with a single nozzle is too slow to be practical in real world manufacturing applications. In light of these variations in ink droplets dispensed from different nozzles and the design necessity of using multiple nozzles to obtain reasonable process speeds when using inkjet printing for manufacturing applications, it is desirable to have a method for providing uniform distribution across the OLED panel area. methods and associated devices for the volume of ink, regardless of the droplet variation between these nozzles.
可以使用根据本教导的集成到薄膜喷墨打印系统中的测量装置以在打印处理的运行期间或在对于打印处理的运行的中断时的任何时间提供用于喷墨打印头的每个喷嘴的体积、速度和轨迹的实际测量。这样的测量可以提供喷嘴间液滴变化的缓和,从而使用喷墨方法来实现膜材料的更均匀沉积。在一些实施例中,可以使用这样的测量以通过调整用于单独喷嘴中的每一个的驱动波形来调谐打印头性能,从而直接减少喷嘴间液滴变化。在一些实施例中,这样的测量可以用作对打印图案优化系统的输入,打印图案优化系统可以通过调整用于液滴沉积的喷嘴选择来减少喷嘴间变化,从而平均掉所沉积的膜中的喷嘴间液滴变化。集成到本教导的薄膜喷墨打印系统中的测量装置的各个实施例可以利用各种成像技术(例如阴影图)或非成像技术(例如PDA)。PDA特别是可以提供快速分析喷墨打印头的多个喷嘴的明显优点,对于具有很多喷嘴和/或打印头的系统尤其有用。 A measurement device integrated into a thin film inkjet printing system according to the present teachings can be used to provide the volume for each nozzle of an inkjet printhead at any time during the run of the print process or upon interruption to the run of the print process , actual measurement of velocity and trajectory. Such measurements can provide mitigation of droplet-to-nozzle variation, allowing inkjet methods to achieve more uniform deposition of film materials. In some embodiments, such measurements can be used to tune printhead performance by adjusting the drive waveforms for each of the individual nozzles to directly reduce nozzle-to-nozzle drop variation. In some embodiments, such measurements can be used as input to a print pattern optimization system that can reduce nozzle-to-nozzle variation by adjusting nozzle selection for droplet deposition, thereby averaging out nozzle-to-nozzle variation in the deposited film. droplet changes. Various embodiments of measurement devices integrated into thin film inkjet printing systems of the present teachings may utilize various imaging techniques (eg, shadow mapping) or non-imaging techniques (eg, PDA). PDAs in particular can offer the distinct advantage of rapidly analyzing multiple nozzles of inkjet printheads, especially useful for systems with many nozzles and/or printheads.
在这点上,根据本教导的各个实施例的喷墨薄膜打印系统可以包括允许将油墨液滴可靠地放置到基底上的特定位置上的若干设备和装置。这些设备和装置通过非限定性示例的方式可以包括打印头组件、油墨输送系统、运动系统、基底支撑装置(例如漂浮台或卡盘)、基底加载和卸载系统、打印头维护系统和打印头测量装置。附加地,喷墨薄膜打印系统可以安装在可以包括例如花岗岩或金属底座的稳定支撑组件上。打印头组件可以包括至少一个喷墨打印头,其中,至少一个孔洞能够以受控速率来喷出油墨的液滴;这种所喷出的液滴进一步由它们的体积、速度和轨迹表征。 In this regard, inkjet thin film printing systems according to various embodiments of the present teachings may include several devices and devices that allow for the reliable placement of ink droplets onto specific locations on a substrate. These devices and devices may include, by way of non-limiting example, printhead assemblies, ink delivery systems, motion systems, substrate support devices (such as floating tables or chucks), substrate loading and unloading systems, printhead maintenance systems, and printhead measurement systems. device. Additionally, the inkjet thin film printing system may be mounted on a stable support assembly which may include, for example, a granite or metal base. The printhead assembly may include at least one inkjet printhead wherein at least one orifice is capable of ejecting droplets of ink at a controlled rate; such ejected droplets are further characterized by their volume, velocity and trajectory.
由于打印要求打印头组件与基底之间的相对运动,因此打印系统可以包括运动系统(例如台架或分离轴XYZ系统)。要么打印头组件可以在固定基底上移动(台架风格),要么打印头和基底都可以例如在分离轴配置中移动。在另一实施例中,打印站可以是固定的,并且基底可以相对于打印头在X轴和Y轴上移动,其中,在基底或打印头处提供Z轴运动。随着打印头相对于基底移动,油墨的液滴在正确时间喷出以沉积在基底上的期望位置。使用基底加载和卸载系统从打印机插入并且移除基底。取决于打印机配置,可以利用机械传送器、基底漂浮台或具有端受动器(effector)的机器人来完成该操作。打印头测量和维护系统可以包括允许测量(例如液滴体积验证、液滴体积、速度和轨迹测量)以及打印头维护过程(例如喷墨喷嘴表面的擦拭、用于将油墨喷出到废物盆的底物)的若干子系统。给定可以包括喷墨薄膜打印系统的各种部件,根据本教导的各个实施例的喷墨薄膜打印系统的各个实施例可以具有各种足迹以及形成因素。 Since printing requires relative motion between the printhead assembly and the substrate, the printing system may include a motion system (such as a gantry or split-axis XYZ system). Either the printhead assembly can move on a fixed substrate (gantry style), or both the printhead and substrate can move eg in a split-axis configuration. In another embodiment, the print station may be stationary and the substrate movable in the X-axis and Y-axis relative to the printhead, with Z-axis motion provided at either the substrate or the printhead. As the printhead moves relative to the substrate, droplets of ink are ejected at the correct time to deposit at the desired location on the substrate. Substrates are inserted and removed from the printer using the substrate loading and unloading system. Depending on the printer configuration, this can be done with mechanical conveyors, substrate floating stages, or robots with end effectors. Printhead measurement and maintenance systems can include permit measurements (e.g. drop volume verification, drop volume, velocity and trajectory measurements) as well as printhead maintenance procedures (e.g. wiping of inkjet nozzle surfaces, Substrates) of several subsystems. Given the various components that can be included in an inkjet thin film printing system, various embodiments of inkjet thin film printing systems according to various embodiments of the present teachings can have various footprints and form factors.
作为非限定性示例,图16描绘根据各个实施例的喷墨薄膜打印系统,其可以用于打印基底(例如比如但不限于OLED面板)。在图16中,喷墨薄膜打印系统1600利用分离轴运动系统。喷墨薄膜打印系统1600可以安装在打印系统支撑组件1610上,打印系统支撑组件1610可以包括由支撑框1614所承载的盘1612。底座1616安装在盘上,其中,底座可以可选地构造自花岗岩或金属。喷墨薄膜打印系统可以包括运动系统1620,例如所指示的分离轴运动系统。 As a non-limiting example, FIG. 16 depicts an inkjet thin film printing system that may be used to print substrates such as, but not limited to, OLED panels, according to various embodiments. In FIG. 16, an inkjet thin film printing system 1600 utilizes a split axis motion system. Inkjet thin film printing system 1600 may be mounted on printing system support assembly 1610 , which may include tray 1612 carried by support frame 1614 . A base 1616 is mounted on the pan, wherein the base may optionally be constructed from granite or metal. An inkjet thin film printing system may include a motion system 1620, such as the indicated split axis motion system.
运动系统1620可见为包括桥1622,其支撑X轴台架1624,X轴台架1624进而安装Z轴安装板1626。Z轴安装板进而支持用于安装可互换打印头组件1640的打印头安装和钳夹组件1628。对于分离轴运动系统1620而言,Y轴轨道1623可以安装在底座1616上,从而对于Y轴台架1625提供支撑,Y轴台架1625进而承载基底支撑组件1630;这些各个部件提供安装于基底支撑组件1630上的基底的Y轴行进。如图16所示,对于薄膜打印系统的各个实施例,基底支撑组件1630可以是卡盘。基底支撑组件可以由漂浮台提供,例如,如美国专利No.8,383,202中详细描述的那样,其被通过引用合并到此。喷墨薄膜打印系统1600可以利用支撑一个或多个模块化喷墨打印头组件(例如安装在工具转盘1645中的所示的各个打印头组件)的系统组件。提供各个打印头组件的选择性互换可以为端用户提供关于在打印处理期间(例如在OLED面板基底的打印期间)各个配方的各种油墨在基底上的有效率的顺序打印的灵活性。注意,并非所有实施例要求这样,即,其它实施例可以表征在不同打印处理之间中并不改变的单个打印头组件。例如,一个所预期的实施例表征均(例如使用相应油墨)执行相应打印处理的多个打印机的组件线;在此所描述的技术可以应用于每个这样的打印机。 The motion system 1620 can be seen to include a bridge 1622 supporting an X-axis gantry 1624 which in turn mounts a Z-axis mounting plate 1626 . The Z-axis mounting plate in turn supports a printhead mount and clamp assembly 1628 for mounting an interchangeable printhead assembly 1640 . For the split-axis motion system 1620, the Y-axis rail 1623 may be mounted on the base 1616 to provide support for the Y-axis stage 1625, which in turn carries the base support assembly 1630; these various components provide support for mounting on the base Y-axis travel of the substrate on assembly 1630. As shown in FIG. 16, for various embodiments of the thin film printing system, the substrate support assembly 1630 may be a chuck. The substrate support assembly may be provided by a flotation table, for example, as described in detail in US Patent No. 8,383,202, which is hereby incorporated by reference. Inkjet thin film printing system 1600 may utilize system components that support one or more modular inkjet printhead assemblies, such as the individual printhead assemblies shown mounted in tool carousel 1645 . Providing for selective interchange of individual printhead assemblies can provide end users with flexibility regarding efficient sequential printing of various inks of various formulations on substrates during the printing process, such as during printing of OLED panel substrates. Note that this is not required for all embodiments, ie, other embodiments may feature a single printhead assembly that does not change between different printing processes. For example, one contemplated embodiment features component lines of multiple printers each performing a corresponding print process (eg, using a corresponding ink); the techniques described herein may be applied to each such printer.
打印头组件可以包括流控系统,其具有与至少一个喷墨打印头流体连通的油墨库,以用于例如将OLED膜形成材料输送到基底上。在这点上,如图16所示,打印头组件1640可以包括至少一个打印头1642。在各个实施例中,打印头组件可以可选地包括对于每个打印头的流控和电子连接。每个打印头进而可以具有能够以可测量的液滴体积、速度和轨迹按被控制的速率来喷出油墨液滴的多个喷嘴或孔洞。打印头组件1640的各个实施例可以具有每打印头组件大约1至大约30个打印头之间。打印头1642可以具有大约16至大约2048个喷嘴之间,其中的每一个可以排出大约0.10pL至大约200.00pL之间的液滴体积。 The printhead assembly can include a fluidics system having an ink reservoir in fluid communication with at least one inkjet printhead for, for example, delivering OLED film-forming material to a substrate. In this regard, as shown in FIG. 16 , printhead assembly 1640 may include at least one printhead 1642 . In various embodiments, the printhead assembly may optionally include fluidic and electrical connections for each printhead. Each printhead in turn may have a plurality of nozzles or orifices capable of ejecting ink droplets at a controlled rate with measurable drop volume, velocity and trajectory. Various embodiments of printhead assembly 1640 may have between about 1 and about 30 printheads per printhead assembly. The printhead 1642 can have between about 16 and about 2048 nozzles, each of which can eject a drop volume between about 0.10 pL and about 200.00 pL.
测量给定打印头的每个喷嘴的性能可以包括:检查喷嘴发射,以及测量液滴体积、速度和轨迹。如之前提到的,具有这样的测量数据可以提供在进行打印之前调谐头,以对于每个喷嘴提供更均匀的性能,或使用测量数据以提供可以在打印期间补偿差异的打印算法或这些方法的组合。显然,具有可靠的并且达到测量数据的数据集合可以提供各种可以使用测量数据来补偿喷嘴间液滴体积变化的方法,并且允许组合(来自使用不同驱动波形的同一喷嘴或来自相应喷嘴的)不同体积的液滴的所规划的打印处理。如上所述,有利地收集测量数据,以求得表示用于每个喷嘴的分布的测量的布居,从而在用于每个这种液滴参数的期待变化的良好形成的理解的情况下,平均液滴体积、轨迹和速度的期望可以被求得并且用在打印规划中。 Measuring the performance of each nozzle of a given printhead can include checking nozzle firing, and measuring drop volume, velocity, and trajectory. As mentioned before, having such measurement data can provide the ability to tune the head before printing to provide more uniform performance for each nozzle, or use the measurement data to provide printing algorithms that can compensate for differences during printing or these methods combination. Clearly, having a reliable and attainable data set of measured data provides a variety of ways in which the measured data can be used to compensate for droplet volume variations between nozzles, and allows combinations (from the same nozzle or from corresponding nozzles using different drive waveforms) of different The planned printing process of the volume of droplets. As mentioned above, measurement data is advantageously collected to derive a measured population representing the distribution for each nozzle, so that with a well-formed understanding of the expected variation for each such droplet parameter, Expectations for mean drop volume, trajectory and velocity can be derived and used in print planning.
在这点上,所描绘的喷墨薄膜打印系统可以包括液滴测量设备或系统1650,其可以安装在支撑体1655上。预期的是,液滴测量系统1650的各个实施例可以基于所提到的成像或非成像技术(例如基于阴影图或干涉法的方法)。利用非成像PDA技术的实施例可以提供每个打印头(例如打印头1642)的大约16至大约2048个喷嘴之间的快速分析的明显优点(例如,其比典型成像技术更快近似50倍)。回想起打印头组件可以包括例如三十个打印头(即,其中,打印系统使用多于10,000个的喷嘴),这以每2-24小时或更频繁地液滴重新校准来允许所有喷嘴(以及如果对于实施例贴切,则所有替换的驱动波形)的打印机内的快速原地动态测量。此外,根据本教导的系统和方法的各个实施例可以利用集成到可以容纳打印装置的气包体组件和系统的PDA测量设备。利用集成到容纳打印装置的气包体组件和系统的PDA测量设备的这些系统和方法可以提供打印头中的多个喷嘴的快速原地测量。这对于确保在例如具有一个或多个OLED设备的大基底上的均匀沉积体积以及减少任何斑效应是尤其有用的。 In this regard, the depicted inkjet thin film printing system may include a drop measurement device or system 1650 , which may be mounted on a support 1655 . It is contemplated that various embodiments of the droplet measurement system 1650 may be based on the mentioned imaging or non-imaging techniques (such as shadow map or interferometry based methods). Embodiments utilizing non-imaging PDA technology may provide the distinct advantage of rapid analysis of between about 16 and about 2048 nozzles per printhead (eg, printhead 1642) (eg, approximately 50 times faster than typical imaging techniques) . Recalling that a printhead assembly may include, for example, thirty printheads (i.e., where the printing system uses more than 10,000 nozzles), this allows for all nozzles (and Fast in-situ dynamic measurements within the printer of all alternative drive waveforms, if appropriate for the embodiment. Additionally, various embodiments of systems and methods according to the present teachings may utilize PDA measurement devices integrated into air enclosure assemblies and systems that may house printing devices. These systems and methods utilizing PDA measurement devices integrated into air enclosure assemblies and systems housing printing devices can provide rapid in-situ measurement of multiple nozzles in a printhead. This is especially useful to ensure uniform deposition volumes on large substrates eg with one or more OLED devices, and to reduce any speckle effects.
标号1617用于指定与液滴测量系统1650关联的喷墨打印装置的区。在图17中以放大的细节来示出该区域。 Reference numeral 1617 is used to designate the zone of the inkjet printing device associated with the drop measurement system 1650 . This area is shown in enlarged detail in FIG. 17 .
如图17所示,自身再一次由运动系统的Z轴安装1726承载的打印头安装和钳夹组件1728可以在打印期间保持打印头组件1740。在这点上,使用运动系统来将用于测量的打印头组件1740定位在液滴测量系统1750附近(例如服务区域或服务站中)。如前所述,液滴测量系统1750可以被设计用于在打印头组件1740处于该位置中的同时的选择性接合和脱离。在(例如具有几千喷嘴的)大打印头组件的情况下,这种结构允许液滴测量系统在打印头组件1740“停泊”的同时执行测试,其中,其它测试或校准装备或处理(未示出)同时执行其它测试。例如,通过使用应用于有助于使得整个喷墨打印系统的任何停工期最小化的同时处理,可以清理、清洁或另外管理打印头喷嘴;这有助于使得制造生产力最大化。如前所述(并且如以下相对于图19所解释的那样),在传送、干燥、固化、加载或卸载基底的同时,可以执行液滴测量(以及其它服务),进一步通过对于与打印/制造操作关联的其它不可避免的任务堆叠液滴测量来使得任何系统停工期最小化。打印头组件1740的打印头1742的每个喷嘴可以被调整到测量区1756,以用于使用液滴测量系统1750来测量从每个喷嘴喷出的液滴。注意,在该实施例中,单独打印头1742可以相对于其它打印头移动,以用于分析,但再一次,并非所有实施例要求如此。例如,也有可能的是,使得在测量期间静态地安装每个打印头,其中,液滴测量系统推进到每个打印头位置和给定打印头内的每个喷嘴位置;如前所述,这样允许在打印头组件停泊的同时多个服务操作的同时处理或“堆叠”。还有可能的是,使用多个液滴测量系统来独立地测量例如不同的空间分离的打印头的不同喷嘴。 As shown in FIG. 17, a printhead mount and jaw assembly 1728, itself again carried by the motion system's Z-axis mount 1726, can hold the printhead assembly 1740 during printing. In this regard, the motion system is used to position the printhead assembly 1740 for measurement near the drop measurement system 1750 (eg, in a service area or station). As previously described, drop measurement system 1750 can be designed for selective engagement and disengagement while printhead assembly 1740 is in this position. In the case of large printhead assemblies (e.g., with several thousand nozzles), this configuration allows the drop measurement system to perform tests while the printhead assembly 1740 is "parked" with other testing or calibration equipment or processing (not shown). out) while performing other tests. For example, the printhead nozzles can be purged, cleaned or otherwise managed using a simultaneous process applied to help minimize any downtime of the entire inkjet printing system; this helps to maximize manufacturing productivity. As previously described (and as explained below with respect to FIG. Other unavoidable tasks associated with the operation stack the droplet measurement to minimize any system downtime. Each nozzle of printhead 1742 of printhead assembly 1740 may be aligned to measurement zone 1756 for measuring droplets ejected from each nozzle using drop measurement system 1750 . Note that in this embodiment, individual printheads 1742 may move relative to the other printheads for analysis, but again, this is not required for all embodiments. For example, it is also possible to have each printhead mounted statically during measurement, wherein the drop measurement system advances to each printhead position and to each nozzle position within a given printhead; as previously described, such Allows simultaneous processing or "stacking" of multiple servicing operations while the printhead assembly is parked. It is also possible to use multiple drop measurement systems to independently measure eg different nozzles of different spatially separated print heads.
为了说明的目的,应假定液滴测量系统是具有光源(例如激光源和光透射光器件波束划分器和透射透镜)的PDA装置(即基于干涉法的设备)。附加地,这样的PDA装置也可以具有包括接收透镜和多个光电检测器的接收光器件。例如,液滴测量系统1750的第一光学侧1752可以发源用于测量的一个或多个光波束,并且在测量区1756上汇聚光,如虚线所指示的那样,而第二光学侧1754可以将已经从测量区1756中的液滴散射的测量光传送到接收光器件以及一个或多个光检测器。 For illustration purposes, it should be assumed that the droplet measurement system is a PDA device (i.e., an interferometry-based device) with a light source (such as a laser source and light-transmitting optics beam splitter and transmissive lens). In addition, such a PDA device can also have a light-receiving means with a receiving lens and a plurality of photodetectors. For example, first optical side 1752 of droplet measurement system 1750 can source one or more light beams for measurement and focus light on measurement region 1756, as indicated by dashed lines, while second optical side 1754 can place The measurement light that has been scattered from the droplets in the measurement region 1756 is passed to the light receiving device and one or more photodetectors.
液滴测量系统1750可以直接地或远程地接口到计算机或计算设备(未示出)。这样的计算设备可以被配置为从打印头组件1740的每个打印头1742接收表示用于喷嘴(或喷嘴波形组合)所产生的每个液滴的所测量的液滴体积、速度和轨迹的信号。再一次,有利地执行来自每个喷嘴/喷嘴波形配对的很多液滴的多次测量,以求得表示各个可产生的液滴的统计布居。 Droplet measurement system 1750 may interface directly or remotely to a computer or computing device (not shown). Such a computing device may be configured to receive signals from each printhead 1742 of printhead assembly 1740 representing the measured drop volume, velocity, and trajectory for each drop produced by a nozzle (or combination of nozzle waveforms) . Again, multiple measurements of many drops from each nozzle/nozzle waveform pairing are advantageously performed to derive a statistical population representative of each producible drop.
如之前结合图11和图12所述那样,打印系统的各个实施例可以被容纳于提供惰性低颗粒环境的气包体中,其中,液滴测量优选地发生在这样的环境中。在一个实施例中,在用于打印的普通气氛中(例如在相同普通(闭合)腔室中)执行液滴测量。在第二实施例中,作为服务站区域的部分,针对测量使用分离的流控式隔离的腔室。 As previously described in connection with Figures 11 and 12, various embodiments of the printing system may be housed in an air enclosure that provides an inert, low particle environment in which droplet measurement preferably occurs. In one embodiment, the droplet measurement is performed in the normal atmosphere used for printing, eg in the same normal (closed) chamber. In a second embodiment, a separate fluidically isolated chamber is used for the measurements as part of the service station area.
图18A示出具体地被配置为使用阴影图技术的液滴测量系统1801的布局。特别是,打印头1803可见为处于其将把液滴1805喷射到器皿(图18A中未示出)中的位置处。在液滴1805的飞行期间,液滴横穿液滴被光源照射的测量区;在图18A中,光源可见为包括:频闪光1807;以及可选光源光器件1809,用于例如将光从频闪光1807引导到测量区(例如从结合图2A-图2E或图16-图17如先前所例示的测量平面之下)。光器件引导光以照射聚焦或重定向路径1811所表示的相对大的区域,以在不同位置处接连快速地重复地暴露液滴,以用于单个图像帧中的捕获。图18A因此示出一起联合地成像的表示频闪的不同闪烁的相同液滴的三个不同位置。因此,例如,在分析之下的图像帧将示出显现为在不同位置处的多个液滴(即按标号1805的多个实例),但这些实际上是沿着飞行轨迹在不同位置处的相同液滴。光器件1813的第二集合提供光收集和聚焦,从而所捕获的图像清楚地描绘由图像处理软件用于计算液滴体积的液滴轮廓和表示液滴直径的可变量的阴影。如应领会的那样,通过在多个位置处在其飞行期间对相同液滴进行成像,液滴测量系统可以使用得来的一个图像以计算液滴体积、速度和轨迹;使用阴影参数以计算液滴质量,并且因此,使用液滴的体积和相对位置来计算速度和轨迹两者。例如,在所捕获的图像帧内的“更低位置”处明显的在直径上增加的液滴正朝向光接收光器件1813行进,并且相反地,在直径上减少的液滴正行进远离。光接收光器件1813进而将所捕获的光输送到相机1815(例如对图形1817所描绘的液滴轮廓和阴影进行成像的高分辨率CCD相机)。液滴测量系统可选地提供关于接收光器件的变焦/聚焦(1819)和/或XY位置(1821)的控制,全都在管控计算机系统1823(以及在用于这种控制的计算机系统的一个或多个处理器所使用的非暂态机器可读介质上所存储的指令)的控制之下。在一个实施例中,如之前提到那样,接收光器件和光源安装到公共底盘并且被一起传送,提供固定的焦距路径,但并非对于每个实施例需要如此。在然后由计算机系统1823运行的图像处理应用软件1825来计算液滴参数的同时,所描绘的系统在几微秒中捕获每个液滴的行进。作为示例,计算机可以提供液滴和/或所测量的参数的显示和可视化(1827),并且可以计算用于各个参数(例如体积、速度和轨迹(1829、1831和1833)或其它参数)的值。注意,计算机系统1823可以是喷墨打印系统的部分,或其也可以是远程的(例如由局域网“LAN”或广域网“WAN”(例如互联网)连接,以在远程的基础上收集数据);相似地,也可以还经由LAN或WAN在距计算机系统1823远程的位置处提供显示和可视化1827。如标号1835所指示的那样,计算机系统1823编译所测量的参数,以形成用于产生液滴的给定喷嘴(以及如果打印系统的特定实施例使用替换的驱动波形,则用于给定喷嘴波形配对)的测量的统计布居。计算机系统1823可选地在数据库1837中存储单独的测量本身和/或统计概要(例如在正态分布的情况下的平均值和标准偏差或方差、以及如果支持其它分布类型,则可比较的度量)。利用足够鲁棒的所测量的布居,数据库可以于是应用在上述打印处理的规划和/或优化中,例如使用液滴平均值的特定组合以获得每目标区的合成填充,其中,合成填充可以基于(例如来自不同喷嘴和/或驱动波形的)不同液滴体积。 Figure 18A shows the layout of a droplet measurement system 1801 specifically configured to use the shadow map technique. In particular, printhead 1803 is seen at a position where it will eject droplets 1805 into vessels (not shown in Figure 18A). During the flight of the droplet 1805, the droplet traverses the measurement region where the droplet is illuminated by a light source; in FIG. A flash of light 1807 is directed into the measurement region (eg, from below the measurement plane as previously exemplified in connection with FIGS. 2A-2E or 16-17 ). The optics direct light to illuminate a relatively large area represented by focus or redirection path 1811 to repeatedly expose droplets at different locations in rapid succession for capture in a single image frame. Figure 18A thus shows three different positions of the same droplet jointly imaged together representing different flickers of the strobe. So, for example, the image frame under analysis will show multiple droplets that appear to be at different locations (i.e., multiple instances by reference numeral 1805), but these are actually at different locations along the flight trajectory same droplet. A second set of optics 1813 provides light collection and focusing so that the captured image clearly depicts the droplet outlines used by the image processing software to calculate the droplet volume and the shading that represents the variable amount of droplet diameter. As should be appreciated, by imaging the same drop during its flight at multiple locations, a drop measurement system can use the resulting one image to calculate drop volume, velocity, and trajectory; The drop mass, and therefore, the volume and relative position of the drop is used to calculate both velocity and trajectory. For example, at a "lower position" within the captured image frame, a droplet that is apparently increasing in diameter is traveling towards the light receiving light device 1813, and conversely, a droplet that is decreasing in diameter is traveling away. The light-receiving light device 1813 in turn delivers the captured light to a camera 1815 (eg, a high-resolution CCD camera that images the drop outline and shadow depicted by graphic 1817). The droplet measurement system optionally provides control over the zoom/focus (1819) and/or XY position (1821) of the light receiving device, all within the supervisory computer system 1823 (and in one or more of the computer systems used for such control under the control of instructions stored on a non-transitory machine-readable medium used by multiple processors). In one embodiment, as previously mentioned, the light receiving device and light source are mounted to a common chassis and transported together, providing a fixed focal length path, but this is not required for every embodiment. The depicted system captures the travel of each droplet in microseconds while the droplet parameters are then calculated by image processing application software 1825 run by computer system 1823 . As an example, the computer may provide display and visualization (1827) of droplets and/or measured parameters, and may calculate values for various parameters such as volume, velocity, and trajectory (1829, 1831, and 1833) or other parameters . Note that computer system 1823 may be part of an inkjet printing system, or it may also be remote (e.g., connected by a local area network "LAN" or wide area network "WAN" (e.g., the Internet) to collect data on a remote basis); similar Alternatively, display and visualization 1827 may also be provided at a location remote from computer system 1823 via a LAN or WAN. As indicated by reference numeral 1835, the computer system 1823 compiles the measured parameters to form a given nozzle (and a waveform for a given nozzle if a particular embodiment of the printing system uses an alternate drive waveform) for producing droplets. paired) measure the statistical population. Computer system 1823 optionally stores in database 1837 the individual measurements themselves and/or statistical summaries (e.g., mean and standard deviation or variance in the case of a normal distribution, and comparable metrics if other distribution types are supported) ). With sufficiently robust measured populations, the database can then be used in the planning and/or optimization of the printing process described above, for example using a specific combination of droplet averages to obtain a composite fill per target area, wherein the composite fill can be Based on different droplet volumes (eg from different nozzles and/or drive waveforms).
图18B示出具体地被配置为使用PDA(干涉法)技术的液滴测量系统1851的布局。打印头示出处于标号1853所指代的用于测量的位置中。打印头将把液滴(例如使用特定驱动波形)从特定喷嘴向下喷射到液滴测量区中,如标号1855所指示的那样。至于前面的实施例,液滴测量系统可以可选地被设计用于相对于所停泊的打印头的三维传送,从而液滴测量区被有效地“带入到”特定喷嘴的液滴飞行路径。光源(在此情况下激光1857)生成光束1859,其被引导以变为在波束划分器1861上入射。波束划分器产生两个或更多个光波束1863和1864(图18B中仅示出两个),光器件1865然后以汇聚方式对其进行重定向,即,从而波束在入射到飞行中的液滴的位置处如标号1866和1867表示的那样相交。注意,光器件1865可选地提供要被安装在测量平面之下的激光1857(见以上图2D和图2E的讨论),并且可选地重定向光路径1859或1863/1864,从而(例如通过在器皿的外围周围重定向光路径中的一个或多个)到达测量区处。注意,使用标号1869来表示照射光器件的一般连续维度(例如光路径1866和1867)。如之前所述,利用基于干涉法的技术,从对于该连续的维度1869偏移的方向角度捕获衍射图案,如由角度测量1873所表示的那样。这种角度偏离典型地是九十度,但也可以使用其它捕获方向。相应地,测量光1871由光器件1875(标记为“光器件2”)的第二集合从入射光以该角度偏离而接收,并且由非成像检测器1877关于沉积平面下测量而重定向。这些检测器产生表示衍射图案的数据,如图形1879所示;如应领会的那样(例如,通过将该图形1879与来自图18A的图形1817对比),衍射图案中的线的间距提供液滴体积的测度,其中,该间距比在图18A所表示的成像技术的情况下远更快得多地被处理以测量液滴体积。注意,虽然图18B示出一个光源1857和两个入射波束1866和1867的使用,但其它实施例使用多于一个的光源和多于一个的入射波束,例如,以捕获液滴速度、轨迹和其它参数。至于图18A的实施例,在图18B中,计算机(1881)可选地提供测量光器件的变焦/聚焦(1883)和XY传送,运行合适的软件(1887)以计算各个液滴参数,并且提供显示和可视化(1889)。恰如之前那样,这些各个元件可以与打印机或制造设备集成,或可以跨WAN或LAN而分散,受控于相应计算机或服务器的多个分离的处理器。如之前那样,所测量的参数可以包括液滴体积(1891)、速度(1893)和轨迹(1895),其中,数据表示为了扫描规划的目的而存储在数据库(1899)中的统计布居(1897)。该扫描规划可以再一次组合来自不同喷嘴和/或波形的液滴参数,以执行故意地基于多个不同液滴体积的目标区的精确填充。 Figure 18B shows the layout of a droplet measurement system 1851 specifically configured to use PDA (interferometry) technology. The printhead is shown in the position for the measurement indicated at 1853 . The printhead will eject a drop (eg, using a particular drive waveform) from a particular nozzle down into the drop measurement zone, as indicated by reference numeral 1855 . As with the previous embodiments, the drop measurement system may optionally be designed for three-dimensional transport relative to the parked printhead so that the drop measurement region is effectively "brought into" the drop flight path of a particular nozzle. A light source (in this case a laser 1857 ) generates a beam of light 1859 which is directed to become incident on a beam splitter 1861 . The beam splitter generates two or more optical beams 1863 and 1864 (only two are shown in FIG. 18B ), which the optical device 1865 then redirects in a converging manner, i.e. The locations of the drops intersect as indicated by reference numerals 1866 and 1867 . Note that optics 1865 optionally provide laser light 1857 to be mounted below the measurement plane (see discussion of FIGS. One or more of the light paths) are redirected around the periphery of the vessel to the measurement region. Note that reference numeral 1869 is used to denote the generally continuous dimension of the illuminating optics (eg, light paths 1866 and 1867). As previously described, using interferometry-based techniques, the diffraction pattern is captured from a directional angle offset to the continuous dimension 1869 , as represented by the angle measurement 1873 . This angular offset is typically ninety degrees, but other capture orientations may also be used. Accordingly, measurement light 1871 is received by a second set of optics 1875 (labeled "Optics 2") offset at this angle from the incident light, and redirected by non-imaging detector 1877 with respect to the deposition-plane measurement. These detectors produce data representing a diffraction pattern, as shown in graph 1879; as will be appreciated (e.g., by comparing this graph 1879 with graph 1817 from FIG. 18A ), the spacing of the lines in the diffraction pattern provides the droplet volume where the spacing is processed to measure droplet volume much more quickly than in the case of the imaging technique represented in Figure 18A. Note that while FIG. 18B shows the use of one light source 1857 and two incident beams 1866 and 1867, other embodiments use more than one light source and more than one incident beam, for example, to capture droplet velocity, trajectory and other parameter. As for the embodiment of Figure 18A, in Figure 18B the computer (1881) optionally provides the zoom/focus (1883) and XY transport of the measurement optics, runs the appropriate software (1887) to calculate the various droplet parameters, and provides Display and Visualization (1889). As before, these various elements may be integrated with the printer or manufacturing equipment, or may be distributed across a WAN or LAN, controlled by separate processors of respective computers or servers. As before, measured parameters may include droplet volume (1891), velocity (1893) and trajectory (1895), where the data represent statistical population (1897) stored in a database (1899) for scan planning purposes ). The scan plan can again combine drop parameters from different nozzles and/or waveforms to perform precise filling of the target zone intentionally based on multiple different drop volumes.
之前提到的是,液滴参数可以例如根据系统参数、周围条件或油墨特性而随着时间改变。工业打印系统因此有利地在相对频繁的基础上更新不仅单个液滴而且用于每个液滴(以及每个液滴的期待平均体积/速度和轨迹)的统计布居的液滴测量;这有助于确保总是精准的并且最新的精确液滴数据,允许可靠地遵守用于合成油墨填充的最大容限的所规划的液滴组合。已经发现,液滴参数实际上例如以每2至12小时的可检测的变化而稍微缓慢地改变。使用原地液滴测量使得有可能在该时间范围内重复地执行所测量的参数的新统计布居的动态测量和构建;注意,在常规技术的情况下,可能耗费很多小时来测量大规模打印头或打印头组件;通过使用快速技术(例如上述PDA),甚至在涉及几千个打印喷嘴的情况下,在非常快速的基础上(例如在30分钟前导时间或更少的情况下)更新所有统计测量变得可能。利用一些或所有上述技术的系统因此促进在所提到的2至12小时时间帧内基于统计分布的具有重新校准的液滴测量参数的工业打印机并且使得其成为可能,而且因此促进用于目标区填充变化的最大容限内的更精准的打印。 It was mentioned before that the droplet parameters may change over time, eg depending on system parameters, ambient conditions or ink properties. Industrial printing systems therefore advantageously update drop measurements not only for individual drops but also for the statistical population of each drop (and the expected average volume/velocity and trajectory of each drop) on a relatively frequent basis; this has Helps ensure always accurate and up-to-date precise drop data, allowing reliable adherence to planned drop combinations for maximum tolerances for synthetic ink fills. It has been found that the droplet parameters actually change somewhat slowly, for example with a detectable change every 2 to 12 hours. The use of in situ droplet measurements makes it possible to repeatedly perform dynamic measurements and construction of new statistical populations of the measured parameters in this time frame; note that with conventional techniques many hours may be consumed to measure large-scale printing head or printhead assembly; by using rapid technology (such as the PDA described above), update all Statistical measurements become possible. A system utilizing some or all of the above techniques thus facilitates and enables industrial printers with recalibrated droplet measurement parameters based on statistical distribution within the mentioned 2 to 12 hour time frame, and thus facilitates use in target zones More accurate printing within the maximum tolerance of fill variations.
如前面所述,在一个预期的实施例中,打印机断续地或连续地被控制,以在打印机并非正主动打印的任何时间执行液滴参数测量。这有助于使得制造线的开工期最大化。如所述那样,在一个实施例中,在打印机的打印头组件不处于使用中的任何时间,打印头组件可以转向,以用于液滴参数测量。例如,在基底被加载或卸载、在各腔室之间前进、或被干燥、固化或另外地被处理的任何时间,打印台架可以将打印头组件传送到服务站,以用于液滴测量和/或其它服务操作。这样的操作有助于进一步提供用于每个喷嘴的液滴统计布居的频繁动态更新,恰如所述的那样;可选地采用为基于PDA的液滴测量设备(例如基于干涉法的技术),这样的控制方案可以将液滴测量任务呈现为对任何期望打印操作是透明的。注意,在所预期的系统中,该控制由在管理打印处理的至少一个处理器上运行的控制软件来实现;注意,此外,该软件可以驻留在打印机、一个或多个计算机或服务器或二者上。 As previously stated, in one contemplated embodiment, the printer is controlled intermittently or continuously to perform drop parameter measurements any time the printer is not actively printing. This helps to maximize the uptime of the manufacturing line. As noted, in one embodiment, the printhead assembly may be diverted for drop parameter measurements any time the printhead assembly of the printer is not in use. For example, any time a substrate is loaded or unloaded, advanced between chambers, or dried, cured, or otherwise processed, the print gantry can transport the printhead assembly to the service station for drop measurement and/or other service operations. Such operation helps further to provide frequent dynamic updates of the droplet statistical population for each nozzle, as described; optionally employed as a PDA-based droplet measurement device (e.g. interferometry-based techniques) , such a control scheme can render the drop measurement task transparent to any desired printing operation. Note that in contemplated systems, this control is effected by control software running on at least one processor that manages the print process; up.
图19示出用于这种控制处理的流程的一个示例1901。如所提到那样,该处理可以可选地由非暂态机器可读介质上所存储的指令来实现,其当运行时引起至少一个处理器执行/提供所列举的步骤。 FIG. 19 shows an example 1901 of a flow for such control processing. As mentioned, the process may optionally be implemented by instructions stored on a non-transitory machine-readable medium, which when executed cause at least one processor to perform/provide the recited steps.
图19划分为分别表示启动和离线初始化处理、在线打印以及离线特殊操作的三个一般区域1903、1905和1907。随着系统被通电,系统典型地经受初始化处理1909,其中,对于每个喷嘴采取新测量,以求得统计布居,如以上已经描述的那样。同时,也可以调用校准处理(未示出)以选择用于每个喷嘴的多个喷嘴发射波形(例如,使用前述迭代处理以选择产生在目标液滴体积的±10.0%内的液滴体积的16个波形)。统计布居因此得以求得,以用于包括平均液滴体积以及期望扩展的每个这样的波形和/或喷嘴。如前述那样,在一个实施例中,对于每个液滴执行固定数量的测量,而在另一实施例中,数量可以随着喷嘴间(或按每喷嘴波形配对)而变化,以实现足够严格的统计扩展;此外,在一个实施例中,可以可选地应用验证或赋予资格处理,其中,可以使不产生具有期望参数的液滴的喷嘴(或喷嘴波形配对)对于打印规划中的使用失去资格。如可应用的那样,然后存储测量和/或统计测度(1911),以用于每个喷嘴并且用于每个喷嘴波形配对。注意,可以恰在首次接通系统时(或在一次的基础上)执行该启动校准,并且在其它实施例中,每次系统重新加电就执行校准。例如,可能有利的是(如果生产线仅在每天的一部分期间运行),存储先前所计算的液滴参数(并且然后根据下面讨论的处理来更新这些参数)。替换地,可以利用每个通电周期重新计算新的参数。 Figure 19 is divided into three general areas 1903, 1905, and 1907 representing startup and offline initialization processing, online printing, and offline special operations, respectively. As the system is powered on, the system typically undergoes an initialization process 1909 in which new measurements are taken for each nozzle to find the statistical population, as already described above. At the same time, a calibration process (not shown) may also be invoked to select multiple nozzle firing waveforms for each nozzle (e.g., using the aforementioned iterative process to select the one that yields drop volumes within ±10.0% of the target drop volume). 16 waveforms). A statistical population is thus derived for each such waveform and/or nozzle including the mean drop volume and expected spread. As before, in one embodiment a fixed number of measurements are performed per droplet, while in another embodiment the number can vary from nozzle to nozzle (or per nozzle waveform pair) to achieve a sufficiently stringent In addition, in one embodiment, a validation or qualification process may optionally be applied, wherein nozzles (or nozzle waveform pairs) that do not produce drops with the desired parameters may be disqualified from use in print planning qualifications. Measurements and/or statistics are then stored ( 1911 ), as applicable, for each nozzle and for each nozzle waveform pairing. Note that this startup calibration can be performed right when the system is first turned on (or on a one-time basis), and in other embodiments, the calibration is performed every time the system is powered up again. For example, it may be advantageous (if the production line is only running during a part of the day) to store previously calculated droplet parameters (and then update these parameters according to the process discussed below). Alternatively, new parameters can be recalculated with each power cycle.
系统还可选地接收定义打印处理的参数和基底参数(1913),并且如之前描述那样自动地规划液滴组合和扫描处理(1915)。在其它预期的实现方式中,例如,在打印机是用于特定OLED显示器产品的组件线的一部分的情况下,这些参数和规划可以是不变的。然而,如果液滴参数可以改变,则打印规划也可以改变,并且因此在统计参数改变的任何时间(例如,每次液滴测量系统接合就作为自动化背景处理)可选地重新执行处理1915(如标号1917所指示的那样)。 The system also optionally receives parameters defining the printing process and substrate parameters (1913), and automatically plans the drop combination and scanning process (1915) as previously described. In other contemplated implementations, such as where the printer is part of a component line for a particular OLED display product, these parameters and schedules may be constant. However, if the droplet parameters may change, the print schedule may also change, and thus process 1915 may optionally be re-executed any time the statistical parameters change (e.g., each time the droplet measurement system is engaged as an automated background process) (eg, as indicated by designation 1917).
利用系统打印参数和用于可用的液滴参数(即用于每个喷嘴或喷嘴波形配对)的平均值,按标号1919,系统可以于是进入在线模式,其中,其按期望那样执行打印。也就是说,可以加载基底或将其传送到打印机中,并且然后可以根据期望那样来执行一个或多个OLED设备薄膜层的打印。然而,为了使设备停工期最小化,每次打印停止(例如以加载或卸载基底),各个打印头喷嘴就经受更新的液滴测量,以在断续或周期性的基础上更新统计液滴布居。例如,期待可以在大约90秒中完成用于大HDTV基底(表示若干大的大小的TV屏幕)的典型打印处理,其中,所完成的基底然后在耗费例如15-30秒的处理期间被卸载或前进到另一腔室(1920)。在该15-30秒间歇期间,打印机并不用于打印,并且相应地,可以在该时间期间执行液滴测量。例如,用于打印机的控制软件控制基底传送机构将旧的基底从打印头台架的限度(reach)之外移出,并且同时,控制软件将打印头组件移动到服务站,以用于液滴测量和/或其它服务功能。一旦打印头组件停泊(1921),按标号1923,控制软件就有选择地接合液滴测量系统,以执行液滴测量。如之前所述,测量可以求得用于由不同喷嘴或不同喷嘴波形配对所产生的液滴的统计布居。为了补充任何先前所存储的测量,使液滴测量系统循环操作,其中,采用尽可能多的液滴测量,直到加载下一基底,或者另外地到了重新开始打印的时间。例如,按功能块1925、1927、1929和1931,液滴测量系统:(1)测量用于给定喷嘴或喷嘴/波形配对的多个液滴;(2)在存储器中存储或更新结果(即,要么存储新的附加测量数据作为原始数据,要么存储更新的平均值或统计概要,或进行这二者);(3)标识喷嘴地址(或用于后续测量周期的喷嘴波形标识符);以及(4)然后适当地继续另一喷嘴或喷嘴波形配对,以用于另一测量集合。加载/卸载基底的处理可能有可能会耗费可变的时间量,并且因此,当系统准备新的打印周期时,控制软件发出中断或功能调用(1933),以适当地脱离服务操作(1935)(例如包括液滴测量系统),并且将打印头组件返回到有效打印(1919)。如所提到那样,控制软件还透明地更新或重新计算归因于每喷嘴液滴平均值的更新而可能不再有效的液滴组合。注意,因为液滴测量循环存储用于后续测量周期的地址或位置(1930),所以系统对于喷嘴/液滴的小窗口有效地执行液滴测量,在循环的基础上继续通过对于在产生液滴中的使用而言可用的几千个不同喷嘴/喷嘴波形配对。然后执行打印,直到完成下一基底迭代为止,此时,基底被卸载,并且测量/服务周期继续。通过如所描述那样在其它打印机操作之后堆叠液滴测量,这些技术有助于实质上减少任何系统停工期,再一次使得制造吞吐量最大化。注意,虽然所描绘的方法在每个加载周期接合液滴测量系统,但并非所有实施例需要如此,即可能期望按特定速率(例如每8小时)更新液滴测量,并且因此,如果使用所提到的堆叠操作来更快地构建液滴统计布居,则可能期望在基底加载和/或传送和/或居里操作期间替代地运行不同的服务操作。图19还示出例如需要改变打印头或另一离线处理的与特殊ad-hoc动作关联的特殊维护框1937。 Using the system print parameters and averages for available drop parameters (ie, for each nozzle or pair of nozzle waveforms), at reference numeral 1919, the system can then enter an online mode where it performs printing as desired. That is, the substrate can be loaded or transferred into a printer, and printing of one or more thin film layers of the OLED device can then be performed as desired. However, to minimize equipment downtime, each printhead nozzle is subjected to updated drop measurements each time printing is stopped (eg, to load or unload a substrate) to update the statistical drop pattern on an intermittent or periodic basis. live. For example, it is expected that a typical print process for a large HDTV substrate (representing several large sized TV screens) can be completed in about 90 seconds, where the completed substrate is then unloaded or Proceed to another chamber (1920). During this 15-30 second interval, the printer is not used for printing, and accordingly drop measurements can be performed during this time. For example, the control software for the printer controls the substrate transport mechanism to move the old substrate out of reach of the printhead carriage, and at the same time, the control software moves the printhead assembly to the service station for drop measurement and/or other service functions. Once the printhead assembly is parked (1921), the control software selectively engages the drop measurement system at reference numeral 1923 to perform drop measurement. As previously described, the measurements can yield statistical populations for droplets produced by different nozzles or pairs of different nozzle waveforms. To replenish any previously stored measurements, the drop measurement system is cycled, taking as many drop measurements as possible until the next substrate is loaded, or otherwise it is time to restart printing. For example, per function blocks 1925, 1927, 1929, and 1931, the drop measurement system: (1) measures multiple drops for a given nozzle or nozzle/waveform pairing; (2) stores or updates the results in memory (i.e. , either store new additional measurement data as raw data, or store updated averages or statistical summaries, or both); (3) identify the nozzle address (or nozzle waveform identifier for subsequent measurement cycles); and (4) Then continue with another nozzle or pair of nozzle waveforms as appropriate for another set of measurements. The process of loading/unloading substrates may potentially take a variable amount of time, and therefore, when the system is ready for a new print cycle, the control software issues an interrupt or function call (1933) to appropriately break out of service operations (1935) ( For example including a drop measurement system), and return the printhead assembly to active printing (1919). As mentioned, the control software also transparently updates or recalculates drop combinations that may no longer be valid due to updates to the drop per nozzle average. Note that since the drop measurement cycle stores the address or position (1930) for subsequent measurement cycles, the system effectively performs drop measurement for a small window of nozzles/droplets, continuing on a loop basis through the Thousands of different nozzle/nozzle waveform pairs are available for use in . Printing is then performed until the next substrate iteration is complete, at which point the substrate is unloaded and the measurement/service cycle continues. By stacking drop measurements as described after other printer operations, these techniques help to substantially reduce any system downtime, again maximizing manufacturing throughput. Note that while the depicted method engages the droplet measurement system every loading cycle, not all embodiments require this, i.e. it may be desirable to update the droplet measurement at a certain rate (e.g., every 8 hours), and thus, if using the proposed To more quickly build a statistical population of droplets due to a given stacking operation, it may be desirable to instead run a different service operation during substrate loading and/or transfer and/or Curie operations. Figure 19 also shows a special maintenance box 1937 associated with special ad-hoc actions, such as requiring a printhead change or another off-line process.
如应当领会的那样,所提到的技术促进制造处理(尤其是OLED设备制造处理)上的高均匀度,并且因此增强可靠性。使用使得能够通过使用不相似的喷嘴组合和液滴体积组合来进行精确的液滴组合和斑抑制的液滴测量技术来至少部分地促进一些实施例中的这些技术。此外,通过以计算为减少总体系统停工期的方式,特别是关于液滴测量的速度以及这样的测量对于其它系统处理的堆叠来提供控制效率,以上提出的教导有助于提供为了提供制备处理上的灵活性和精度这二者而设计的更快的更廉价的制造处理。 As should be appreciated, the mentioned techniques facilitate high uniformity over the fabrication process, especially the OLED device fabrication process, and thus enhance reliability. These techniques in some embodiments are facilitated, at least in part, using drop measurement techniques that enable precise drop combination and spot suppression by using dissimilar combinations of nozzles and drop volumes. Furthermore, the teachings set forth above help to provide control efficiencies in a manner that is calculated to reduce overall system downtime, particularly with regard to the speed of droplet measurements and the stacking of such measurements for other system processes. Faster and cheaper manufacturing processes designed for both flexibility and precision.
在前述描述和附图中,阐述特定术语和制图符号是为了提供公开实施例的透彻理解。在某些情况下,术语和符号可暗示实施那些实施例所不需要的特定细节。术语“示例性”和“实施例”用来表示示例而不是偏好或要求。 In the foregoing description and drawings, specific terms and drawing symbols have been set forth to provide a thorough understanding of the disclosed embodiments. In some cases, the terms and symbols may imply specific details not required to practice those embodiments. The terms "exemplary" and "embodiment" are used to indicate an example rather than a preference or requirement.
如所指示的,在不脱离本公开的更宽泛精神和范围的情况下可对本文中提出的实施例进行各种修改和变更。例如,可至少在切合实际的情况下与任何其它实施例相组合或者代替其对等物特征或方面而应用任何实施例的特征或方面。因此例如并非在每个图中都示出了所有特征,并且例如应将根据一个图的实施例示出的特征或技术假设为可选地可用作任何其它图或实施例的特征的元素或组合,即使在本说明书中并未具体地指明。因此,应在说明性而不是限制性意义上考虑本说明书和附图。 As indicated, various modifications and changes may be made to the embodiments presented herein without departing from the broader spirit and scope of the disclosure. For example, a feature or aspect of any embodiment may be applied in combination with any other embodiment or in place of an equivalent feature or aspect thereof, at least where practicable. Thus, for example, not all features are shown in every figure and, for example, a feature or technique shown according to an embodiment of one figure should be assumed to be alternatively usable as an element or combination of features of any other figure or embodiment , even if not specifically indicated in this specification. Accordingly, the specification and drawings are to be considered in an illustrative rather than a restrictive sense.
权利要求书(按照条约第19条的修改)Claims (as amended under Article 19 of the Treaty)
1.一种生成用于打印头的喷嘴的控制数据以在基底的至少一个目标区中沉积油墨的聚合体积的方法,所述聚合体积处于预定的体积容限范围内,所述喷嘴中的每一个生成至少一个相应的液滴体积,所述方法包括: 1. A method of generating control data for nozzles of a printhead to deposit an aggregated volume of ink in at least one target area of a substrate, said aggregated volume being within a predetermined volume tolerance, each of said nozzles A method of generating at least one corresponding droplet volume, the method comprising:
接收表示统计布居的信息,统计布居表示每个相应的液滴体积; receiving information indicative of a statistical population representing the volume of each corresponding droplet;
计算液滴组合,对其而言表示对应的液滴体积的平均值总计为被局限于所述预定的容限范围内的值;以及 computing droplet combinations for which mean values representing corresponding droplet volumes sum to a value confined within said predetermined tolerance range; and
取决于所述组合来生成控制数据,所述控制数据足以命令打印头与基底之间的相对运动以使与所述组合相关联的喷嘴的每个与所述至少一个目标区中的第一目标区接近,并且命令与所述组合相关联的喷嘴的每个进行发射以在第一目标区中沉积与该组合相关联的每个液滴体积。 generating control data dependent on the combination, the control data being sufficient to command relative movement between the printhead and the substrate such that each of the nozzles associated with the combination aligns with the first target in the at least one target zone The zones are approached, and each of the nozzles associated with the combination is commanded to fire to deposit each droplet volume associated with the combination in the first target zone.
2.如权利要求1所述的方法,其中,所述预定的容限范围包括以目标体积为中心的范围,其中,所述范围被由目标体积表示的范围加减目标体积的百分之二所涵盖,并且其中,生成控制数据包括以适合于使用来自喷嘴中的至少两个的液滴的组合的方式来生成控制数据以产生用于所述至少一个目标区的目标区的聚合目标体积。 2. The method of claim 1, wherein the predetermined tolerance range comprises a range centered on the target volume, wherein the range is represented by the target volume plus or minus two percent of the target volume Contemplated is, and wherein, generating control data comprises generating control data in a manner suitable for using a combination of droplets from at least two of the nozzles to produce an aggregated target volume for a target zone of said at least one target zone.
3.如权利要求2所述的方法,其中,所述方法被体现为控制喷墨打印机构的方法,其中,所述方法进一步包括控制喷墨打印机构以取决于所述控制数据来执行与所述组合相关联的喷嘴的发射和相对运动。 3. The method of claim 2, wherein the method is embodied as a method of controlling an inkjet printing mechanism, wherein the method further comprises controlling the inkjet printing mechanism to perform the same operation as the control data depending on the control data. The firing and relative movement of the nozzles associated with the above combinations.
4.如权利要求3所述的方法,其中,所述喷墨式打印机构包括液滴测量设备,并且其中,接收该信息包括接合液滴测量设备以凭经验确定液滴体积中的每个,并且其中,接收信息包括利用液滴测量设备从针对每个喷嘴的多个测量来接收信息。 4. The method of claim 3, wherein the inkjet printing mechanism includes a drop measurement device, and wherein receiving the information includes engaging the drop measurement device to empirically determine each of the drop volumes, And wherein receiving information includes receiving information from a plurality of measurements for each nozzle with the drop measurement device.
5.如权利要求1所述的方法,被体现为如下的方法:生成用于打印头的喷嘴的控制数据,以在所述基底的相应的目标区中沉积在所述预定的容限范围内的油墨的聚合体积,其中: 5. The method of claim 1 embodied as a method of generating control data for nozzles of a printhead to deposit within said predetermined tolerances in respective target areas of said substrate The aggregated volume of the ink, where:
针对相应的目标区中的每个执行组合的计算;以及 performing a combined calculation for each of the corresponding target zones; and
执行控制数据的生成,来以与每个组合相关的方式生成所述控制数据,所述控制数据足以命令所述打印头与所述基底之间的相对运动,以同时地使与每个组合相关联的至少一个喷嘴与相应的目标区接近,并且足以命令与每个组合相关联的至少一个喷嘴进行发射,以同时地在相应的目标区中沉积液滴体积。 performing generation of control data to generate said control data in relation to each combination, said control data being sufficient to command relative movement between said printhead and said substrate to simultaneously correlate with each combination The at least one nozzle associated with each combination is proximate to the corresponding target zone and is sufficient to command the at least one nozzle associated with each combination to fire to simultaneously deposit a drop volume in the corresponding target zone.
6.如权利要求1所述的方法,其中: 6. The method of claim 1, wherein:
所述方法进一步包括:标识预定的喷嘴控制波形的集合,每个预定的喷嘴控制波形当被应用于喷嘴时产生相应的油墨液滴体积;以及 The method further includes: identifying a set of predetermined nozzle control waveforms, each predetermined nozzle control waveform, when applied to the nozzle, produces a corresponding ink drop volume; and
用于相应的目标区中的每个的组合与液滴的整数相关联,并且适合于涵盖喷嘴中的至少两个不同喷嘴和所述预定的喷嘴控制波形中的至少两个不同的喷嘴控制波形。 The combination for each of the respective target zones is associated with an integer number of droplets and is adapted to cover at least two different ones of the nozzles and at least two different ones of the predetermined nozzle control waveforms .
7.如权利要求1所述的方法,其中,所述至少一个目标区包括各目标区,各目标区中的每个用以实现预定的体积容限范围,其中,各目标区在第一轴的方向上相互偏移,其中,相对运动包括每个基本上在与第一轴垂直的方向上的至少两次扫描,所述至少两次扫描根据至少一个几何步幅的序列而相互偏移,其中,所述喷嘴中的每个相对于彼此具有位置关系,并且其中: 7. The method of claim 1, wherein the at least one target zone comprises target zones, each of the target zones is configured to achieve a predetermined volume tolerance range, wherein each target zone is on a first axis wherein the relative motion comprises at least two scans each in a direction substantially perpendicular to the first axis, the at least two scans being mutually offset according to a sequence of at least one geometric step, wherein each of said nozzles has a positional relationship relative to each other, and wherein:
所述方法进一步包括:计算液滴的至少一个组合,对于其而言对应的液滴体积平均值总计为被局限于在用于各目标区中的每个的预定的容限范围内的值; The method further comprises calculating at least one combination of droplets for which corresponding droplet volume averages sum to a value confined within a predetermined tolerance range for each of the target zones;
以与用于各目标区中的每个的特定液滴组合相关的方式来执行生成控制数据;以及 generating control data is performed in a manner associated with a particular combination of droplets for each of the target zones; and
所述方法进一步包括以可变大小的并且与特定组合相关的方式选择每个几何步幅。 The method further includes selecting each geometric stride in a variable-sized and combination-specific manner.
8.如权利要求1所述的方法,其中: 8. The method of claim 1, wherein:
所述打印头具有不少于一百二十八个打印喷嘴; said printhead has not less than one hundred and twenty-eight print nozzles;
所述方法进一步被体现为一种控制分离轴喷墨打印机构的方法,分离轴喷墨打印机构包括打印头、打印头运动控制机构以及基底运动控制机构;以及 The method is further embodied as a method of controlling a split-axis inkjet printing mechanism including a printhead, a printhead motion control mechanism, and a substrate motion control mechanism; and
生成控制数据进一步包括引起机器控制喷墨打印机构以执行打印头与基底之间的相对运动,以使得基底运动控制机构使基底在第一方向上相对于打印头移动,并且打印头运动控制机构使打印头在独立于第一方向的第二方向上相对于基底移动。 Generating the control data further includes causing the machine to control the inkjet printing mechanism to perform relative motion between the printhead and the substrate such that the substrate motion control mechanism moves the substrate in a first direction relative to the printhead, and the printhead motion control mechanism causes The printhead moves relative to the substrate in a second direction independent of the first direction.
9.如权利要求1所述的方法,被体现为一种形成用于电子设备的有机发光层的方法,其中,所述油墨包括由溶剂、有机单体或有机聚合物承载的有机材料中的至少一种。 9. The method of claim 1, embodied as a method of forming an organic light-emitting layer for an electronic device, wherein the ink comprises an organic material carried by a solvent, an organic monomer or an organic polymer at least one.
10.一种打印机,包括: 10. A printer, comprising:
具有用以向基底的目标区阵列上打印油墨的喷嘴的打印头; a printhead having nozzles for printing ink onto an array of target areas on a substrate;
至少一个运动机构,用以提供打印头与基底之间的相对移动,包括对打印头与基底之间的基本上连续的运动中的每个的扫描; at least one motion mechanism to provide relative movement between the printhead and the substrate, including scanning for each of the substantially continuous movements between the printhead and the substrate;
储存器,用以存储标识用于喷嘴中的每个的液滴体积平均值的数据;以及 storage to store data identifying drop volume averages for each of the nozzles; and
存储在非暂态机器可读介质上的指令,该指令在被执行时引起打印机 Instructions stored on a non-transitory machine-readable medium that, when executed, cause the printer to
接收电子文件,其定义用于每个目标区的期望填充体积,每个目标区的期望填充体积将在关联体积容限范围内实现,以及 receiving an electronic file defining a desired fill volume for each target zone that will be achieved within associated volume tolerances for each target zone, and
控制运动机构和打印头基于标识用于每个喷嘴的液滴体积平均值的数据和定义用于每个目标区的填充体积的文件来针对每个目标区从喷嘴中的一个或多个打印液滴组合,其中,对应的液滴体积平均值总计为在关联的体积容限范围内的填充值; Controlling the kinematics and printhead to extract one or more print fluids from one or more nozzles for each target zone based on data identifying drop volume averages for each nozzle and a file defining a fill volume for each target zone. drop combinations, wherein the corresponding drop volume averages sum to fill values within the associated volume tolerance;
其中,所述指令将控制运动机构和打印头针对相应的目标区沉积填充值,以填充所有目标区。 Wherein, the instructions will control the motion mechanism and the print head to deposit fill values for corresponding target areas, so as to fill all target areas.
11.如权利要求10所述的打印机,进一步包括:用以包含所述打印头和所述基底的气包体以及用以在打印期间向气包体中注入受控气氛的气氛控制系统。 11. The printer of claim 10, further comprising an air enclosure to contain the printhead and the substrate, and an atmosphere control system to inject a controlled atmosphere into the air enclosure during printing.
12.如权利要求10所述的打印机,其中,所述基底将形成显示设备,并且具有基底的目标区的三个阵列,每个阵列的目标区表示阵列的像素的相应的色彩部件,并且其中,所述打印机包括至少三个打印头,每个色彩部件包括至少一个,以向三个阵列中的对应的一个的目标区上打印相应的油墨。 12. A printer as claimed in claim 10, wherein the substrate is to form a display device and has three arrays of target areas of the substrate, each array of target areas representing a corresponding color component of a pixel of the array, and wherein , the printer includes at least three print heads, each color component includes at least one, to print a corresponding ink onto a target area of a corresponding one of the three arrays.
13.如权利要求10所述的打印机,进一步包括:液滴测量设备,所述指令当被运行时进一步引起所述打印机接合所述液滴测量设备,以针对所述喷嘴中的每个给定喷嘴多次测量液滴体积,以求得针对所述喷嘴中的给定的喷嘴的统计布居,这一数据标识从所述液滴测量设备针对所述喷嘴中的每个进行测量而获得的液滴体积平均值。 13. The printer of claim 10 , further comprising: a drop measurement device, the instructions, when executed, further cause the printer to engage the drop measurement device for each of the nozzles for a given The nozzles measure the drop volume a plurality of times to obtain a statistical population for a given one of the nozzles, this data identifying measurements obtained from the drop measurement device for each of the nozzles Droplet volume average.
14.如权利要求13所述的打印机,其中,所述指令当被运行时进一步引起所述打印机在断续的基础上接合所述液滴测量设备,以更新用于所述喷嘴中的每个的液滴体积平均值。 14. The printer of claim 13 , wherein the instructions, when executed, further cause the printer to engage the drop measurement device on an intermittent basis to update the average droplet volume.
15.一种控制具有带有被控制为喷出油墨的相应液滴的喷嘴的打印头的喷墨打印机的方法,所述方法包括: 15. A method of controlling an inkjet printer having a printhead having nozzles controlled to eject respective droplets of ink, the method comprising:
测量与来自所述喷嘴中的一个的多个相应液滴关联的参数,以求出用于所述喷嘴中的所述一个的参数的统计布居; measuring a parameter associated with a plurality of corresponding droplets from one of the nozzles to find a statistical population of parameters for the one of the nozzles;
重复测量用于其它喷嘴中的每个的参数,以求出用于所述喷嘴中的每个的相应统计布居;以及 repeatedly measuring the parameters for each of the other nozzles to find a corresponding statistical population for each of the nozzles; and
处理每个统计布居,以把用于所述参数的相应平均值和表示所述参数的分布的相应扩展测度相关联。 Each statistical population is processed to associate a corresponding mean value for the parameter and a corresponding spread measure representing the distribution of the parameter.
16.如权利要求15所述的方法,其中,所述参数是液滴体积、液滴速度或液滴轨迹角度中的一个。 16. The method of claim 15, wherein the parameter is one of drop volume, drop velocity, or drop trajectory angle.
17.如权利要求15所述的方法,其中,所述喷墨打印机适用于针对每个喷嘴使用多个替换的发射驱动波形,其中: 17. The method of claim 15, wherein the inkjet printer is adapted to use a plurality of alternate firing drive waveforms per nozzle, wherein:
针对可用于与所述喷嘴中的一个喷嘴一起使用的多个替换的发射驱动波形中的特定的一个替换的发射驱动波形,针对所述喷嘴中的所述一个喷嘴执行所述参数的测量,以求出与所述喷嘴中的所述一个喷嘴和所述特定的替换的发射驱动波形相应的统计布居;以及 performing the measurement of said parameter for said one of said nozzles for a particular one of a plurality of alternative fire drive waveforms available for use with said one of said nozzles, to finding a statistical population corresponding to said one of said nozzles and said particular alternate firing drive waveform; and
所述方法进一步包括:针对可用于与所述喷嘴中的一个喷嘴一起使用的所述多个替换的发射驱动波形中的每个另外一个替换的发射驱动波形,重复测量所述参数,以求出相应的统计布居; The method further includes repeatedly measuring the parameter for each other of the plurality of alternative fire drive waveforms available for use with one of the nozzles to find Corresponding statistical population;
针对其它喷嘴中的每一个重复测量所述参数包括:针对可用于与所述喷嘴中的每个另外一个喷嘴一起使用的所述多个替换的发射驱动波形中的每个另外一个替换的发射驱动波形,重复测量所述参数,以求出各个统计布居;以及 Repeating measuring the parameter for each of the other nozzles includes: for each other of the plurality of alternative fire drive waveforms available for use with each other of the nozzles. waveforms, repeatedly measuring said parameters to find individual statistical populations; and
针对可用于与所述喷嘴中的每个相应的喷嘴一起使用的所述多个替换的发射驱动波形中的每个波形,执行对每个统计布居的处理,以把用于所述参数的平均值与用于分布的扩展测度相关联。 For each of the plurality of alternative firing drive waveforms available for use with each respective one of the nozzles, processing each statistical population is performed to combine the Means are associated with extended measures for distributions.
18.如权利要求15所述的方法,其中,所述方法进一步包括:控制打印,以在给定的基底目标区内沉积来自相应的喷嘴的挑选的多个液滴,所述挑选的多个液滴被选择为产生等于与由所述喷嘴中的相应的各喷嘴产生的液滴关联的平均值之和的用于所述目标区的合成油墨填充体积。 18. The method of claim 15, wherein the method further comprises: controlling printing to deposit a selected plurality of droplets from corresponding nozzles within a given substrate target area, the selected plurality of droplets The droplets are selected to produce a composite ink fill volume for the target zone equal to the sum of the average values associated with the droplets produced by respective ones of the nozzles.
19.如权利要求15所述的方法,其中,执行所述测量和重复,以获得用于所述喷嘴中的每个喷嘴的测量的阈值布居,并且其中,所述测量的阈值布居表示至少24个测量。 19. The method of claim 15, wherein the measuring and repeating are performed to obtain a measured threshold population for each of the nozzles, and wherein the measured threshold population represents At least 24 measurements.
20.一种喷墨打印机,包括: 20. An inkjet printer comprising:
打印头,具有用以喷出油墨的相应液滴的喷嘴; a print head having nozzles for ejecting corresponding droplets of ink;
液滴测量设备,用以通过收集来自油墨的液滴行进所通过的测量区的光,来测量与由相应的喷嘴喷出的油墨的液滴关联的参数; a drop measurement device for measuring a parameter associated with a drop of ink ejected from a corresponding nozzle by collecting light from a measurement zone through which the drop of ink travels;
其中,所述喷墨打印机包括服务站以及用于选择将所述打印头移动到服务站的部件;以及 wherein the inkjet printer includes a service station and means for selectively moving the printhead to the service station; and
其中,所述喷墨打印机进一步包括用于有选择地在三个维度中的每个中独立地移动所述测量区的部件。 Wherein the inkjet printer further comprises means for selectively moving the measurement zone in each of the three dimensions independently.
21.一种喷墨打印机,包括: 21. An inkjet printer comprising:
打印头,具有用以喷出油墨的相应的液滴的喷嘴; a printhead having nozzles for ejecting respective droplets of ink;
服务区域、以及用于有选择地将所述打印头移动到所述服务区的打印头传送机构;以及 a service area, and a printhead transport mechanism for selectively moving the printhead to the service area; and
液滴测量设备,用以当所述打印头处于所述服务区域中时有选择地接合所述打印头,所述液滴测量设备用以通过收集来自油墨的液滴行进所通过的测量区的光,来测量与由相应的喷嘴喷出的油墨的液滴关联的参数,所述液滴测量设备进一步包括移动机构,可操作为在三个维度中的每一个中连结所述测量区,从而在所述打印头已经被移动到所述服务区域之后将所述测量区定位为与所述喷嘴中的任何一个相邻。 a drop measurement device for selectively engaging the printhead when the printhead is in the service zone, the drop measurement device for collecting the flow from the measurement zone through which a droplet of ink travels light to measure parameters associated with droplets of ink ejected from corresponding nozzles, the droplet measurement device further comprising a movement mechanism operable to link the measurement zones in each of three dimensions, thereby The measurement zone is positioned adjacent to any of the nozzles after the printhead has been moved into the service area.
22.如权利要求21所述的喷墨打印机,其中,所述液滴测量设备包括至少一个光学检测器以及用以测量由所述至少一个光学检测器检测到的光的干涉图案的硬件或软件中的至少一个。 22. The inkjet printer of claim 21 , wherein the drop measurement device includes at least one optical detector and hardware or software to measure an interference pattern of light detected by the at least one optical detector at least one of the
23.如权利要求21所述的喷墨打印机,其中,所述液滴测量设备包括至少一个图像传感器以及用以测量由所述至少一个光学检测器检测到的阴影的硬件或软件中的至少一个。 23. The inkjet printer of claim 21 , wherein the drop measurement device includes at least one image sensor and at least one of hardware or software to measure shadows detected by the at least one optical detector .
24.如权利要求21所述的喷墨打印机,其中,所述打印头当被移动到所述服务区域时被定位在停泊位置,其中,所述打印头的所述喷嘴适用于在相对于停泊位置的距离h内喷出油墨的液滴,其中,所述移动机构适用于有选择地在基本上与所述距离h的维度平行的方向上移动所述测量区,以使所述测量区处于所述距离h内,以执行液滴测量,并且其中,所述移动机构可操作为有选择地在与所述打印头的喷嘴承载表面平行并且基本上与所述距离h的维度正交的两个维度中的每一个中独立地移动所述测量区,以测量来自相应的喷嘴的液滴。 24. The inkjet printer of claim 21 , wherein the printhead is positioned in a parked position when moved to the service area, wherein the nozzles of the printhead are adapted to A droplet of ink is ejected within a distance h of a position, wherein the moving mechanism is adapted to selectively move the measurement zone in a direction substantially parallel to the dimension of the distance h, such that the measurement zone is at within said distance h to perform drop measurement, and wherein said movement mechanism is operable to selectively move between two dimensions parallel to a nozzle bearing surface of said printhead and substantially orthogonal to said distance h The measurement zone is moved independently in each of the three dimensions to measure droplets from the corresponding nozzles.
25.如权利要求24所述的喷墨打印机,其中,所述液滴测量设备包括至少一个光路径路由机构,用以把来自行进通过所述测量区的液滴的测量光远离于所述喷嘴承载表面地导向到位于大于距离h的沿着距离h的维度的距离处的光学检测器,其中,所述液滴测量设备包括至少一个光路径路由机构,用以将源光从光源导向到行进通过所述测量区的液滴,所述光源也位于大于距离h的沿着距离h的维度的距离处,并且其中,每个光路径路由机构包括镜子、棱镜或光纤缆线中的一个。 25. The inkjet printer of claim 24, wherein said drop measurement device includes at least one light path routing mechanism to direct measurement light from a drop traveling through said measurement zone away from said nozzle bearing surface-directed to an optical detector located at a distance along a dimension of distance h greater than distance h, wherein the droplet measurement apparatus includes at least one optical path routing mechanism to direct source light from a light source to a traveling The light source is also located at a distance along the dimension of distance h greater than distance h through the droplet of the measurement zone, and wherein each light path routing mechanism comprises one of a mirror, a prism or a fiber optic cable.
26.一种喷墨打印机,包括: 26. An inkjet printer comprising:
打印头,用以将油墨打印到基底上,所述打印头具有喷嘴; a printhead for printing ink onto a substrate, the printhead having nozzles;
服务区域以及用以有选择地将所述打印头传送到所述服务区域的打印头传送机构; a service area and a printhead transport mechanism for selectively transporting the printheads to the service area;
液滴测量设备;以及 Droplet measuring equipment; and
控制机构,用以引起所述打印机在连续的基础上将油墨作为薄膜打印到所述基底上,并且在当引起所述打印头将油墨打印到所述基底上时的各时段之间,引起所述打印头传送机构将所述打印头传送到所述服务区域,并且引起所述液滴测量设备从所述喷嘴中的每一个测量相应的液滴体积; a control mechanism for causing the printer to print ink as a thin film onto the substrate on a continuous basis, and between periods when the printhead is caused to print ink onto the substrate, causing the the printhead transport mechanism transports the printhead to the service area and causes the drop measurement device to measure a corresponding drop volume from each of the nozzles;
其中,所述控制机构用于控制所述液滴测量设备,从而构建表示所述基底中的相继的基底之间中的每个相应的液滴体积的统计布居,并且至少由此计算表示每个液滴布居的统计参数。 Wherein said control mechanism is adapted to control said droplet measurement device so as to construct a statistical population representing each respective droplet volume in between successive ones of said substrates, and thereby calculate at least one representative of each Statistical parameter of droplet population.
27. 如权利要求26所述的喷墨打印机,其中,所述喷墨打印机被体现为适用于根据公共打印指令集合在所述基底中的相应的基底上制备相同产品的一个或多个层的生产装置,并且取决于来自已经在所述基底中的相继的基底之间中测量的来自所述的液滴测量设备的液滴体积的更新后的统计布居来调整所述公共打印指令集合。 27. The inkjet printer of claim 26, wherein the inkjet printer is embodied as adapted to produce one or more layers of the same product on respective ones of the substrates according to a common set of printing instructions production apparatus, and adjusts said common set of print instructions in dependence on an updated statistical population of drop volumes from said drop measurement device that have been measured between successive ones of said substrates.
27.一种控制具有带有喷嘴的打印头的喷墨打印机的方法,包括: 27. A method of controlling an inkjet printer having a printhead with nozzles, comprising:
使用所述喷墨打印机的液滴测量设备来经由对由所述喷嘴中的每一个产生的液滴的重复测量而构建用于所述喷嘴中的每一个的液滴参数的统计分布; using a drop measurement device of the inkjet printer to construct a statistical distribution of drop parameters for each of the nozzles via repeated measurements of drops produced by each of the nozzles;
把与用于所述喷嘴中的每一个的所述统计分布关联的至少一个统计测度与阈值进行比较; comparing at least one statistical measure associated with said statistical distribution for each of said nozzles to a threshold;
取决于比较结果,验证或拒绝由所述喷嘴中的相应的各喷嘴产生的液滴;以及 validating or rejecting droplets produced by respective ones of the nozzles depending on the comparison; and
规划排除对由被拒绝的所述喷嘴中的相应的各喷嘴产生的液滴的使用的打印处理。 A print process is planned that excludes use of drops produced by respective ones of the rejected nozzles.
Claims (27)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710770926.2A CN107364237B (en) | 2013-04-26 | 2014-04-23 | For the method and apparatus to pad-ink the drop measurement and control of deposits fluid in precision tolerances |
Applications Claiming Priority (21)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361816696P | 2013-04-26 | 2013-04-26 | |
US61/816696 | 2013-04-26 | ||
US201361822855P | 2013-05-13 | 2013-05-13 | |
US61/822855 | 2013-05-13 | ||
US201361842351P | 2013-07-02 | 2013-07-02 | |
US61/842351 | 2013-07-02 | ||
US201361857298P | 2013-07-23 | 2013-07-23 | |
US61/857298 | 2013-07-23 | ||
US201361866031P | 2013-08-14 | 2013-08-14 | |
US61/866031 | 2013-08-14 | ||
US201361898769P | 2013-11-01 | 2013-11-01 | |
US61/898769 | 2013-11-01 | ||
US201361920715P | 2013-12-24 | 2013-12-24 | |
USPCT/US2013/077720 | 2013-12-24 | ||
PCT/US2013/077720 WO2014105915A1 (en) | 2012-12-27 | 2013-12-24 | Techniques for print ink volume control to deposit fluids within precise tolerances |
US61/920715 | 2013-12-24 | ||
US14/162525 | 2014-01-23 | ||
US14/162,525 US9010899B2 (en) | 2012-12-27 | 2014-01-23 | Techniques for print ink volume control to deposit fluids within precise tolerances |
US201461950820P | 2014-03-10 | 2014-03-10 | |
US61/950820 | 2014-03-10 | ||
PCT/US2014/035193 WO2014176365A2 (en) | 2013-04-26 | 2014-04-23 | Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710770926.2A Division CN107364237B (en) | 2013-04-26 | 2014-04-23 | For the method and apparatus to pad-ink the drop measurement and control of deposits fluid in precision tolerances |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105142913A true CN105142913A (en) | 2015-12-09 |
CN105142913B CN105142913B (en) | 2017-10-27 |
Family
ID=53186549
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710770926.2A Active CN107364237B (en) | 2013-04-26 | 2014-04-23 | For the method and apparatus to pad-ink the drop measurement and control of deposits fluid in precision tolerances |
CN201480023530.6A Active CN105142913B (en) | 2013-04-26 | 2014-04-23 | For the method and apparatus to the measurement of pad-ink drop and control of deposits fluid in precision tolerances |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710770926.2A Active CN107364237B (en) | 2013-04-26 | 2014-04-23 | For the method and apparatus to pad-ink the drop measurement and control of deposits fluid in precision tolerances |
Country Status (4)
Country | Link |
---|---|
JP (2) | JP6781733B2 (en) |
KR (1) | KR20190138705A (en) |
CN (2) | CN107364237B (en) |
TW (2) | TWI670184B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106555186A (en) * | 2016-11-28 | 2017-04-05 | 惠州市宏赫精密模具有限公司 | A kind of etching cutting die setting-out processing method |
CN108340679A (en) * | 2017-01-24 | 2018-07-31 | 京东方科技集团股份有限公司 | The regulating device and adjusting method of droplet size |
CN109476158A (en) * | 2016-10-25 | 2019-03-15 | 惠普发展公司,有限责任合伙企业 | Maintain the print quality parameters in printer |
CN109823051A (en) * | 2018-12-29 | 2019-05-31 | 华中科技大学 | A method, system and printer for volume control in the whole process of droplet jet fusion |
CN110091604A (en) * | 2018-04-13 | 2019-08-06 | 广东聚华印刷显示技术有限公司 | Method for controlling ink-jet printing, ink jet printing control device and ink-jet print system |
CN111093837A (en) * | 2017-09-19 | 2020-05-01 | 爱信精机株式会社 | Inspection apparatus |
CN111601496A (en) * | 2018-01-26 | 2020-08-28 | 精密种植有限责任公司 | Method for graphical representation of droplet size for agricultural sprinklers |
CN111746123A (en) * | 2020-06-08 | 2020-10-09 | 深圳圣德京粤科技有限公司 | Multi-nozzle printing device and printing method thereof |
CN111905982A (en) * | 2020-07-16 | 2020-11-10 | 苏州小蜂视觉科技有限公司 | Real-time measuring equipment for glue spraying amount based on optical fiber sensor |
CN112517928A (en) * | 2019-08-28 | 2021-03-19 | 北京梦之墨科技有限公司 | Printing path planning method and printing device |
CN113571447A (en) * | 2016-07-08 | 2021-10-29 | 科迪华公司 | Transmission path correction techniques and related systems, methods, and apparatus |
CN113771493A (en) * | 2021-09-10 | 2021-12-10 | Tcl华星光电技术有限公司 | Inkjet print head, inkjet printing apparatus, method and device |
CN114074478A (en) * | 2020-12-28 | 2022-02-22 | 广东聚华印刷显示技术有限公司 | Ink jet printing control method, control device and ink jet printing system |
CN114670547A (en) * | 2022-03-04 | 2022-06-28 | 华中科技大学 | Method for controlling patterning film thickness of inkjet printing TFE |
CN115135505A (en) * | 2020-01-08 | 2022-09-30 | Lg电子株式会社 | Thin-film pattern manufacturing method for display |
TWI785844B (en) * | 2020-10-28 | 2022-12-01 | 德商博斯特比勒費爾德有限公司 | Printing system |
WO2023226296A1 (en) * | 2022-05-25 | 2023-11-30 | 复旦大学 | Efficient oled pixel layer printing method and apparatus, and storage medium |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6659532B2 (en) * | 2013-04-26 | 2020-03-04 | カティーバ, インコーポレイテッド | Techniques for printing ink droplet measurement and control of fluid deposition within tight tolerances |
CN108944045B (en) * | 2017-12-25 | 2019-12-10 | 广东聚华印刷显示技术有限公司 | Ink jet printing method, ink jet printing apparatus, storage medium, and computer device |
CN108287899B (en) * | 2018-01-23 | 2022-07-01 | 巫协森 | System and method for making materials for two-color wiring labels |
CN108031573A (en) * | 2018-01-28 | 2018-05-15 | 北京工业大学 | The regulation and control method of single drop electrostatic spraying system steady operation |
US10321002B1 (en) * | 2018-02-14 | 2019-06-11 | Xerox Corporation | Variable data vector graphic pattern ink pantograph |
CN108646470A (en) * | 2018-05-04 | 2018-10-12 | 京东方科技集团股份有限公司 | Spacer material production method and system, display panel and display device |
US11305284B2 (en) * | 2018-11-26 | 2022-04-19 | Tokitae, LLC | Determining a bulk concentration of a target in a sample using a digital assay with compartments having nonuniform volumes |
US11135854B2 (en) * | 2018-12-06 | 2021-10-05 | Kateeva, Inc. | Ejection control using imager |
CN110455203B (en) * | 2019-09-18 | 2020-12-15 | 中北大学 | A method for automatic detection and correction of coating thickness of solid rocket motor straight section |
CN110455204B (en) * | 2019-09-18 | 2020-11-20 | 中北大学 | A method for automatic detection and correction of coating thickness of solid rocket motor head section |
JP7446854B2 (en) * | 2020-03-02 | 2024-03-11 | 住友重機械工業株式会社 | Ink coating device, ink coating device control device, and ink coating method |
CN112387552B (en) * | 2020-11-05 | 2022-05-17 | 大连交通大学 | Method for self-adjusting spraying parameters of putty coating robot |
KR20220075009A (en) | 2020-11-26 | 2022-06-07 | 삼성디스플레이 주식회사 | Inspection apparatus |
JP7122451B1 (en) | 2021-07-08 | 2022-08-19 | アーベーベー・シュバイツ・アーゲー | Coating determination device for coating head and coating system |
JP7044932B1 (en) * | 2021-07-08 | 2022-03-30 | アーベーベー・シュバイツ・アーゲー | Painting judgment device and painting system for painting heads |
KR102641818B1 (en) | 2021-08-24 | 2024-02-27 | 세메스 주식회사 | Substrate processing apparatus and the method thereof |
CN114801477B (en) * | 2022-03-11 | 2023-01-06 | 华中科技大学 | A patterned planning method, printing method and system for printing display |
US11820140B2 (en) * | 2022-03-21 | 2023-11-21 | Funai Electric Co., Ltd | Dispense modes for multi-mode capable device |
CN116899820B (en) * | 2023-09-14 | 2024-01-02 | 常州银河世纪微电子股份有限公司 | Double-hole dispensing head for chip and dispensing method thereof |
CN119056678B (en) * | 2024-11-06 | 2025-02-11 | 常州铭赛机器人科技股份有限公司 | Glue amount distribution compensation method and compensation system thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0744292A3 (en) * | 1995-05-16 | 1997-07-23 | Videojet Systems Int | Method and apparatus for automatic setting of nozzle drive voltage in an ink jet printer |
CN1669628A (en) * | 2004-01-27 | 2005-09-21 | 惠普开发有限公司 | Method of making microcapsules utilizing a fluid ejector |
WO2008059276A3 (en) * | 2006-11-15 | 2008-07-03 | Cambridge Display Tech Ltd | Droplet volume control |
US20080259107A1 (en) * | 2007-04-23 | 2008-10-23 | Hewlett-Packard Development Company Lp | Sensing of fluid ejected by drop-on-demand nozzles |
WO2010014061A1 (en) * | 2008-07-30 | 2010-02-04 | Hewlett-Packard Development Company, L.P. | Method of dispensing liquid |
CN101734010A (en) * | 2008-11-19 | 2010-06-16 | 富士施乐株式会社 | Liquid droplet ejecting apparatus and liquid droplet ejecting method |
CN102112317A (en) * | 2008-06-06 | 2011-06-29 | 富士胶卷迪马蒂克斯股份有限公司 | Sensing objects for printing |
Family Cites Families (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0427552A (en) * | 1990-05-22 | 1992-01-30 | Canon Inc | Liquid injection recorder |
US6513906B1 (en) * | 1991-06-06 | 2003-02-04 | Canon Kabushiki Kaisha | Recording apparatus and recording method |
JP2963072B2 (en) * | 1996-09-30 | 1999-10-12 | キヤノン株式会社 | INK JET RECORDING METHOD AND DEVICE, COLOR FILTER, DISPLAY DEVICE, AND DEVICE WITH THE DISPLAY DEVICE |
JP3346454B2 (en) * | 1997-01-08 | 2002-11-18 | セイコーエプソン株式会社 | Ink jet printing apparatus and printing method |
JP2001071476A (en) * | 1999-09-03 | 2001-03-21 | Canon Inc | Apparatus and method for evaluating discharged liquid drop |
US6495917B1 (en) * | 2000-03-17 | 2002-12-17 | International Business Machines Corporation | Method and structure of column interconnect |
JP2003014442A (en) * | 2001-07-03 | 2003-01-15 | Canon Inc | Droplet volume measuring apparatus |
JP3838964B2 (en) * | 2002-03-13 | 2006-10-25 | 株式会社リコー | Functional element substrate manufacturing equipment |
JP3951765B2 (en) * | 2002-03-20 | 2007-08-01 | セイコーエプソン株式会社 | Chamber device operating method, chamber device, electro-optical device and organic EL device including the same |
US7188919B2 (en) * | 2002-07-08 | 2007-03-13 | Canon Kabushiki Kaisha | Liquid discharge method and apparatus using individually controllable nozzles |
JP4040543B2 (en) * | 2002-07-08 | 2008-01-30 | キヤノン株式会社 | Liquid ejecting apparatus and method, panel manufacturing apparatus and manufacturing method, color filter manufacturing method, liquid crystal display panel manufacturing method, and liquid crystal display panel manufacturing method |
US7111755B2 (en) * | 2002-07-08 | 2006-09-26 | Canon Kabushiki Kaisha | Liquid discharge method and apparatus and display device panel manufacturing method and apparatus |
JP4323879B2 (en) * | 2002-07-08 | 2009-09-02 | キヤノン株式会社 | Liquid ejection apparatus and liquid ejection method |
JP2004058627A (en) * | 2002-07-31 | 2004-02-26 | Canon Inc | Method and device for measuring liquid drop |
JP4168788B2 (en) * | 2003-03-06 | 2008-10-22 | セイコーエプソン株式会社 | Film forming method, color filter substrate manufacturing method, electroluminescent device substrate manufacturing method, display device manufacturing method |
CN100581822C (en) * | 2003-05-02 | 2010-01-20 | 统宝光电股份有限公司 | Method for controlling drop volume of printing liquid and control system for printing head action |
JP4580706B2 (en) * | 2004-07-08 | 2010-11-17 | 株式会社東芝 | Ink coating device and display device manufacturing method |
WO2006017800A2 (en) * | 2004-08-06 | 2006-02-16 | Secocmbe S Dana | Means for higher speed inkjet printing |
KR101256424B1 (en) * | 2004-08-23 | 2013-04-19 | 이시이 효키 가부시키가이샤 | Ink jet printer discharge amount control method, ink droplet spread check method, and orientation film formation method |
JP4568800B2 (en) * | 2004-12-17 | 2010-10-27 | 国立大学法人埼玉大学 | Droplet state measuring apparatus and camera calibration method in the apparatus |
JP2007117833A (en) * | 2005-10-26 | 2007-05-17 | Seiko Epson Corp | Thin film forming method and thin film forming apparatus |
JP2007315976A (en) * | 2006-05-26 | 2007-12-06 | Japan Aerospace Exploration Agency | Method and apparatus for measuring the position, particle size, and velocity of microdroplets, bubbles, and particles |
US20080024532A1 (en) * | 2006-07-26 | 2008-01-31 | Si-Kyoung Kim | Methods and apparatus for inkjet printing system maintenance |
JP2008183529A (en) * | 2007-01-31 | 2008-08-14 | Seiko Epson Corp | Droplet discharge device |
JP4840186B2 (en) * | 2007-02-19 | 2011-12-21 | セイコーエプソン株式会社 | Chamber equipment |
JP4888346B2 (en) * | 2007-11-06 | 2012-02-29 | セイコーエプソン株式会社 | Liquid coating method, organic EL device manufacturing method |
WO2009076249A2 (en) * | 2007-12-06 | 2009-06-18 | Applied Materials, Inc. | Methods and apparatus for measuring deposited ink in pixel wells on a substrate using a line scan camera |
JP2009189954A (en) * | 2008-02-14 | 2009-08-27 | Seiko Epson Corp | Drive signal setting method |
JP2009093189A (en) * | 2008-11-17 | 2009-04-30 | Seiko Epson Corp | Manufacturing method of display device |
JP2010227762A (en) * | 2009-03-26 | 2010-10-14 | Seiko Epson Corp | Droplet ejection apparatus and thin film forming method |
JP2012139655A (en) * | 2011-01-05 | 2012-07-26 | Seiko Epson Corp | Printing apparatus |
JP5754225B2 (en) * | 2011-04-19 | 2015-07-29 | 株式会社リコー | Toner manufacturing method and toner manufacturing apparatus |
JP5785935B2 (en) * | 2011-06-03 | 2015-09-30 | 株式会社Joled | Organic EL display panel manufacturing method and organic EL display panel manufacturing apparatus |
JP5936294B2 (en) * | 2012-12-27 | 2016-06-22 | カティーバ, インコーポレイテッド | Techniques for controlling the amount of printing ink that deposits fluid within close tolerances |
JP6659532B2 (en) * | 2013-04-26 | 2020-03-04 | カティーバ, インコーポレイテッド | Techniques for printing ink droplet measurement and control of fluid deposition within tight tolerances |
-
2014
- 2014-04-23 CN CN201710770926.2A patent/CN107364237B/en active Active
- 2014-04-23 CN CN201480023530.6A patent/CN105142913B/en active Active
- 2014-04-23 KR KR1020197036003A patent/KR20190138705A/en not_active Ceased
- 2014-04-25 TW TW107141748A patent/TWI670184B/en active
- 2014-04-25 TW TW103114950A patent/TWI645984B/en active
-
2018
- 2018-05-07 JP JP2018089271A patent/JP6781733B2/en active Active
-
2019
- 2019-11-01 JP JP2019199806A patent/JP6905761B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0744292A3 (en) * | 1995-05-16 | 1997-07-23 | Videojet Systems Int | Method and apparatus for automatic setting of nozzle drive voltage in an ink jet printer |
CN1669628A (en) * | 2004-01-27 | 2005-09-21 | 惠普开发有限公司 | Method of making microcapsules utilizing a fluid ejector |
WO2008059276A3 (en) * | 2006-11-15 | 2008-07-03 | Cambridge Display Tech Ltd | Droplet volume control |
US20080259107A1 (en) * | 2007-04-23 | 2008-10-23 | Hewlett-Packard Development Company Lp | Sensing of fluid ejected by drop-on-demand nozzles |
CN102112317A (en) * | 2008-06-06 | 2011-06-29 | 富士胶卷迪马蒂克斯股份有限公司 | Sensing objects for printing |
WO2010014061A1 (en) * | 2008-07-30 | 2010-02-04 | Hewlett-Packard Development Company, L.P. | Method of dispensing liquid |
CN101734010A (en) * | 2008-11-19 | 2010-06-16 | 富士施乐株式会社 | Liquid droplet ejecting apparatus and liquid droplet ejecting method |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113658884B (en) * | 2016-07-08 | 2023-08-08 | 科迪华公司 | Transmission path correction technique and related systems, methods, and apparatus |
CN113571445A (en) * | 2016-07-08 | 2021-10-29 | 科迪华公司 | Guided transfer path correction |
CN113658883B (en) * | 2016-07-08 | 2023-08-08 | 科迪华公司 | Transmission path correction technology and related systems, methods and devices |
CN113571445B (en) * | 2016-07-08 | 2023-08-01 | 科迪华公司 | Guided Transfer Path Correction |
CN113571447B (en) * | 2016-07-08 | 2023-08-08 | 科迪华公司 | Transmission path correction technique and related systems, methods, and apparatus |
CN113658883A (en) * | 2016-07-08 | 2021-11-16 | 科迪华公司 | Transmission path correction technology and related systems, methods and apparatus |
CN113571447A (en) * | 2016-07-08 | 2021-10-29 | 科迪华公司 | Transmission path correction techniques and related systems, methods, and apparatus |
CN113658884A (en) * | 2016-07-08 | 2021-11-16 | 科迪华公司 | Transmission path correction technology and related systems, methods and apparatus |
CN109476158A (en) * | 2016-10-25 | 2019-03-15 | 惠普发展公司,有限责任合伙企业 | Maintain the print quality parameters in printer |
US11407221B2 (en) | 2016-10-25 | 2022-08-09 | Hewlett-Packard Development Company, L.P. | Maintaining a print quality parameter in a printer |
CN106555186A (en) * | 2016-11-28 | 2017-04-05 | 惠州市宏赫精密模具有限公司 | A kind of etching cutting die setting-out processing method |
CN108340679A (en) * | 2017-01-24 | 2018-07-31 | 京东方科技集团股份有限公司 | The regulating device and adjusting method of droplet size |
CN111093837A (en) * | 2017-09-19 | 2020-05-01 | 爱信精机株式会社 | Inspection apparatus |
CN111601496A (en) * | 2018-01-26 | 2020-08-28 | 精密种植有限责任公司 | Method for graphical representation of droplet size for agricultural sprinklers |
CN110091604A (en) * | 2018-04-13 | 2019-08-06 | 广东聚华印刷显示技术有限公司 | Method for controlling ink-jet printing, ink jet printing control device and ink-jet print system |
CN109823051A (en) * | 2018-12-29 | 2019-05-31 | 华中科技大学 | A method, system and printer for volume control in the whole process of droplet jet fusion |
CN112517928A (en) * | 2019-08-28 | 2021-03-19 | 北京梦之墨科技有限公司 | Printing path planning method and printing device |
CN112517928B (en) * | 2019-08-28 | 2022-11-04 | 北京梦之墨科技有限公司 | Printing path planning method and printing device |
CN115135505B (en) * | 2020-01-08 | 2023-10-31 | Lg电子株式会社 | Thin film pattern manufacturing method for display |
CN115135505A (en) * | 2020-01-08 | 2022-09-30 | Lg电子株式会社 | Thin-film pattern manufacturing method for display |
CN111746123A (en) * | 2020-06-08 | 2020-10-09 | 深圳圣德京粤科技有限公司 | Multi-nozzle printing device and printing method thereof |
CN111746123B (en) * | 2020-06-08 | 2024-03-26 | 深圳圣德京粤科技有限公司 | Multi-nozzle printing device and printing method thereof |
CN111905982A (en) * | 2020-07-16 | 2020-11-10 | 苏州小蜂视觉科技有限公司 | Real-time measuring equipment for glue spraying amount based on optical fiber sensor |
TWI785844B (en) * | 2020-10-28 | 2022-12-01 | 德商博斯特比勒費爾德有限公司 | Printing system |
CN114074478A (en) * | 2020-12-28 | 2022-02-22 | 广东聚华印刷显示技术有限公司 | Ink jet printing control method, control device and ink jet printing system |
CN113771493A (en) * | 2021-09-10 | 2021-12-10 | Tcl华星光电技术有限公司 | Inkjet print head, inkjet printing apparatus, method and device |
CN114670547A (en) * | 2022-03-04 | 2022-06-28 | 华中科技大学 | Method for controlling patterning film thickness of inkjet printing TFE |
WO2023226296A1 (en) * | 2022-05-25 | 2023-11-30 | 复旦大学 | Efficient oled pixel layer printing method and apparatus, and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN107364237A (en) | 2017-11-21 |
TW201509691A (en) | 2015-03-16 |
JP6905761B2 (en) | 2021-07-21 |
TW201906741A (en) | 2019-02-16 |
CN105142913B (en) | 2017-10-27 |
KR20190138705A (en) | 2019-12-13 |
TWI645984B (en) | 2019-01-01 |
TWI670184B (en) | 2019-09-01 |
JP2018120874A (en) | 2018-08-02 |
JP6781733B2 (en) | 2020-11-04 |
CN107364237B (en) | 2019-09-10 |
JP2020024943A (en) | 2020-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105142913B (en) | For the method and apparatus to the measurement of pad-ink drop and control of deposits fluid in precision tolerances | |
US11489146B2 (en) | Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances | |
JP7587861B2 (en) | Techniques for printing ink drop measurement and control to deposit fluid within precise tolerances | |
US9802403B2 (en) | Techniques for print ink droplet measurement and control to deposit fluids within precise tolerances |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: Method and apparatus for measuring and controlling print ink droplets for depositing fluids within precise tolerances Effective date of registration: 20210112 Granted publication date: 20171027 Pledgee: Shaoxing Binhai New Area integrated circuit industry equity investment fund partnership (L.P.) Pledgor: KATEEVA, Inc. Registration number: Y2021990000035 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PC01 | Cancellation of the registration of the contract for pledge of patent right |
Date of cancellation: 20221210 Granted publication date: 20171027 Pledgee: Shaoxing Binhai New Area integrated circuit industry equity investment fund partnership (L.P.) Pledgor: KATEEVA, Inc. Registration number: Y2021990000035 |
|
PC01 | Cancellation of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: Method and equipment for measuring and controlling printing ink droplets for depositing fluids within precise tolerances Effective date of registration: 20230625 Granted publication date: 20171027 Pledgee: Xinji Co.,Ltd. Pledgor: KATEEVA, Inc. Registration number: Y2023990000311 |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right |