CN104053743B - 从地下储层开采烃流体的组合物和方法 - Google Patents
从地下储层开采烃流体的组合物和方法 Download PDFInfo
- Publication number
- CN104053743B CN104053743B CN201380005495.0A CN201380005495A CN104053743B CN 104053743 B CN104053743 B CN 104053743B CN 201380005495 A CN201380005495 A CN 201380005495A CN 104053743 B CN104053743 B CN 104053743B
- Authority
- CN
- China
- Prior art keywords
- composition
- subsurface formations
- particulate
- monomer
- crosslinking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/02—Well-drilling compositions
- C09K8/04—Aqueous well-drilling compositions
- C09K8/06—Clay-free compositions
- C09K8/12—Clay-free compositions containing synthetic organic macromolecular compounds or their precursors
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/58—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
- C09K8/588—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/50—Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
- C09K8/504—Compositions based on water or polar solvents
- C09K8/506—Compositions based on water or polar solvents containing organic compounds
- C09K8/508—Compositions based on water or polar solvents containing organic compounds macromolecular compounds
- C09K8/512—Compositions based on water or polar solvents containing organic compounds macromolecular compounds containing cross-linking agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/58—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
- C09K8/594—Compositions used in combination with injected gas, e.g. CO2 orcarbonated gas
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/84—Compositions based on water or polar solvents
- C09K8/86—Compositions based on water or polar solvents containing organic compounds
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/164—Injecting CO2 or carbonated water
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/50—Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
- C09K8/516—Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/50—Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls
- C09K8/516—Compositions for plastering borehole walls, i.e. compositions for temporary consolidation of borehole walls characterised by their form or by the form of their components, e.g. encapsulated material
- C09K8/518—Foams
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Fluid Mechanics (AREA)
- Geochemistry & Mineralogy (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
公开和要求保护包含能够在等于或低于中性pH值下水解的交联的可膨胀聚合物微粒的组合物和通过将此种组合物导入地下地层中而改进地下地层透水性的方法。本发明进一步涉及从在低pH值下经历CO2或CO2水‑气交替驱油的地下储层或地层开采烃流体的组合物和方法并且提高所述地下地层中存在的烃流体的流通和/或开采率。
Description
技术领域
一般而言,本发明涉及从地下储层或地层开采烃流体的组合物和方法。更具体地说,本发明涉及从经历CO2或CO2水-气交替驱油的地下储层或地层开采烃流体的组合物和方法。本发明尤其涉及可膨胀的交联聚合物微粒组合物,该组合物改进地下地层在低pH值下的渗透性并增加存在于所述地下地层中的烃流体的流通和/或开采率。
发明背景
在烃开采的第一阶段中,允许储层中存在的能量源使油、气、冷凝物等移动到生产井,在那里,它们可以流动或被泵送到地上处理设施。地层的烃的相对较小部分通常能通过这种手段开采。对维持储层中的能量并确保将烃驱动到生产井的问题的最广泛使用的解决方案是将流体向下注入相邻的井中。这通常称为二次开采。通常使用的流体是水(例如含水层水、河水、海水或采出水),或气体(例如采出气、二氧化碳、烟道气和各种其它气体)。如果流体促进通常不动的残油或其它烃的移动,则该工艺通常称作三次开采。
二次和三次开采工程中存在的普遍问题与储层岩石层的不匀质性有关。注入流体的流动性通常和烃的流动性不同,且当其流动性更好时,已经使用各种流动控制工艺使储层的清扫更加均匀,随后的烃开采效率更高。当储层岩石内存在高渗性区(通常称作漏失区或条痕区)时,该工艺的作用是有限的。注入流体从注入点到生产井具有一条低阻力路线。在这种情况下,注入流体不能有效地从临近处的较低渗透性区清扫出烃。当再使用采出流体时,这可能导致流体穿过漏失区循环从而几乎没有利益,而在泵送系统的燃料和维护方面还将耗费大量的费用。结果,已经采用了大量的物理和化学方法将注入流体从漏失区中转向到生产和注入井内或其附近。当处理生产井时,它通常称作水(或气等)切断处理。当应用于注入井时,它称作轮廓控制或顺应控制处理。
在漏失层与附近的低渗透性区隔离开的情况下并且在油井中的完井与引起隔离的阻隔物(如页岩层或“低产井(stringer)”)形成良好密封时,则可以在井中设置机械密封或"塞子"来阻断注入流体的进入。如果流体从油井底进入或离开地层,则也可用水泥来填补入口区域上面的井孔。当油井的完井允许注入流体进入漏失层和附近区两者时,例如当靠着生产区注水泥保护层和注水泥完成得欠佳时,挤水泥通常是隔离出水区的合适方式。
某些情况不适用于这些方法,因为在储层岩石层间水泥不能到达的地方存在窜流。这种问题的典型实例包括在保护层后存在裂缝、碎石区和冲刷岩洞。在这些情况下,用能穿过储层岩石中的孔隙的化学凝胶密封扫除区。当此种方法失败时,剩下的备选方案就是以低的开采率产生井,远离过早扫除的区另钻新井,或放弃该井。有时候,将生产井转化成流体注入点,以提高油田注入速率到大于净烃提取速率并提高储层中的压力。这能提高总开采率,但值得注意的是,注入流体的大部分将在新的注入点进入漏失层,并很可能在附近的油井中引起类似的问题。上述所有这些都是造价很高的选择。
当漏失区与邻近的含烃较低渗透性区广泛接触时,在附近的井眼顺应控制方法通常失效。这种失效的原因在于注入流体可以绕过处理作业,并再次进入与剩余烃的非常小部分、或甚至根本不与剩余烃接触的漏失区。本领域中通常已知的是,此种井眼附近的处理不能成功地显著改进在区之间具有注入流体的交叉流动的储层中的开采。
为了降低漏失层的大部分区域的或距注入和生产井相当远处的渗透性,已经开发了一些工艺。这样的一个实例就是Morgan等人公开的深度转向凝胶工艺(英国专利申请号GB 2255360A)。这种技术已在油田得到应用,但受困于对试剂的不可避免的质量变动敏感,这导致差的扩散。该凝胶混合物是双组分配方,并认为这种特征造成处理物到地层中的差的扩散。
美国专利号5,465,792和5,735,349中公开了用可溶胀的交联超吸收聚合物微粒改进地下地层的渗透性。然而,其中描述的超吸收微粒的溶胀通过将载流体从烃改为水性或从高盐度水改为低盐度水而引起。因此工业上仍需要允许有效扩散穿过烃储层基质岩的孔结构的新型方法同时特别需要改进在低pH值下地下地层的渗透性。
发明概述
本发明因此提供新型聚合物微粒,其中该微粒的构造受限于可逆的(不稳定的)内交联(internal crosslinks)。微粒性能,如受限制的微粒的粒径分布和密度,经设计允许有效地扩散穿过烃储层基质岩,例如砂岩、碳酸盐及地下地层中出现的其它岩石的孔结构。与以前的发明不同,这些聚合物具体地针对已经经历或正在经历CO2或CO2水-气交替(WAG)驱油的储层。具体地选择不稳定交联剂以在低pH值条件下水解,从而允许颗粒通过吸收注入流体(通常水)而膨胀。
颗粒从其原始尺寸(在注入点)膨胀的能力依赖于引起不稳定交联剂断裂的条件的存在。本领域中以前的发明表明当储层等于或大于中性pH值时,丙烯酸酯型不稳定交联剂产生非常好的性能,而本发明在等于或低于中性pH值下显示优异的性能。这些颗粒的性能不依赖于载流体的性质或储层水的盐度。本发明的颗粒可以穿过储层的多孔结构,而无需使用指定的流体或盐度比储层流体高的流体。膨胀的颗粒经设计以具有允许它妨碍注入流体在孔结构中的流动的粒度分布和物理特性(例如,颗粒流变性)。如此以来,它能够将驱赶流体(chase fluid)转向到储层的不太彻底清扫的区中。
在一个方面中,本发明涉及包含高度交联的可膨胀聚合物微粒的组合物,该聚合物微粒具有大约0.05-大约2,000微米的未膨胀的体积平均粒度直径和大约50-大约200,000ppm不稳定交联剂和0-大约300ppm非不稳定交联剂的交联剂含量,基于总交联聚合物微米颗的摩尔比。
在另一个方面中,本发明涉及包含交联的可膨胀聚合物微粒的组合物,该聚合物微粒具有(i)大约0.05-大约1微米或大约0.05-大约2,000微米的未膨胀的体积平均粒度直径和(ii)大约50-大约200,000ppm的至少一种能够在等于或低于中性pH值下裂解(例如水解)的不稳定交联剂和0-大约900ppm至少一种非不稳定交联剂的交联剂含量,基于摩尔比。根据备选的实施方案,交联剂中的一种或多种可以是多官能交联剂。在实施方案中,交联的可膨胀聚合物微粒的至少一部分是高度交联的。
在另一个方面中,本发明提供改进地下地层的透水性的方法。该方法包括将包含交联的可膨胀聚合物微粒的组合物导入地下地层,所述微粒具有比所述地下地层的孔隙更小的直径和其中所述交联的可膨胀聚合物微粒中的不稳定交联剂在地下地层中的条件下断裂以形成膨胀的聚合物微粒。在实施方案中,将大约100ppm-大约10,000ppm添加到地下地层中,基于聚合物活性材料和注入地下地层中的流体的总量。
本发明的优点是提供包含颗粒的组合物,与不能远且深地穿入地下地层的常规封闭剂、例如聚合物溶液和聚合物凝胶不同,该颗粒具有低粘度和最佳尺寸以允许颗粒从注入点远远地传播直到遇到地下地层中的高温区。
本发明的另一个优点是提供具有高度交联性质的聚合物微粒,该聚合物微粒在不同盐度的溶液中不膨胀,而得到不受地下地层中遇到的流体的盐度影响的分散体并消除在处理期间对特殊载流体的需要。
本发明的进一步的优点是提供基于所使用的交联剂的类型和地下地层内的条件,具有可调膨胀率的聚合物微粒。
本发明又一个优点是提供具有增强的低pH值官能度的可膨胀高度交联聚合物微粒。
前述已经相当广泛地概括了本发明的特征和技术优势,以便随后的本发明详细说明可以更好地理解。将在下文中描述本发明的附加特征和优点,它们形成本发明权利要求的主题。本领域技术人员应该领会,所公开的构思和特定实施方案可以容易地用作改进或设计进行本发明相同目的的其它实施方案的基础。本领域技术人员还应认识到,这些等同的实施方案不脱离所附权利要求书所列出的本发明精神和范围。
附图简述
图1示出了可用于本发明的不稳定交联剂的示例性实例。
发明详述
以下定义旨在阐明且不希望有限制性。
“两性聚合物微粒”是指同时含阳离子取代基和阴离子取代基、但是不一定按相同化学计量比的交联聚合物微粒。代表性的两性聚合物微粒包括如本文所定义的非离子单体、阴离子单体和阳离子单体的三元共聚物。优选的两性聚合物微粒具有高于1:1的阴离子单体/阳离子单体摩尔比。
“两性离子对单体”是指碱性含氮单体如丙烯酸二甲氨基乙酯(DMAEA)、甲基丙烯酸二甲氨基乙酯(DMAEM)、2-甲基丙烯酰氧基乙基二乙胺和类似物,以及酸性单体如丙烯酸和磺酸如2-丙烯酰胺基-2-甲基丙磺酸、2-甲基丙烯酰氧基乙烷磺酸、乙烯基磺酸、苯乙烯磺酸和类似物,和它们的组合的酸-碱盐。
“阴离子单体”是指本文所限定的含有酸性官能团的单体及其碱性加成盐。代表性的阴离子单体包括丙烯酸、甲基丙烯酸、马来酸、衣康酸、2-丙烯酸、2-甲基-2-丙烯酸、2-丙烯酰胺基-2-甲基丙磺酸、磺丙基丙烯酸以及它们的其它水溶形式,或其它可聚合的羧酸或磺酸、磺甲基化的丙烯酰胺、烯丙基磺酸、乙烯基磺酸、丙烯酸和甲基丙烯酸的季盐如丙烯酸铵和甲基丙烯酸铵、类似物和它们的组合。优选的阴离子单体包括2-丙烯酰胺基-2-甲基丙磺酸钠盐、乙烯基磺酸钠盐和苯乙烯磺酸钠盐。更优选2-丙烯酰胺基-2-甲基丙磺酸钠盐。
“阴离子聚合物微粒”是指含有净负电荷的交联聚合物微粒。代表性的阴离子聚合物微粒包括:丙烯酰胺和2-丙烯酰胺基-2-甲基丙磺酸的共聚物,丙烯酰胺和丙烯酸钠的共聚物,丙烯酰胺、2-丙烯酰胺基-2-甲基丙磺酸和丙烯酸钠的三聚物,以及2-丙烯酰胺基-2-甲基丙磺酸的均聚物。优选的阴离子聚合物微粒由大约95-大约10摩尔%非离子单体和大约5-大约90摩尔%阴离子单体制备。更优选的阴离子聚合物微粒由大约95-大约10摩尔%丙烯酰胺和大约5-大约90摩尔%2-丙烯酰胺基-2-甲基丙磺酸制备。
“含甜菜碱聚合物微粒”是指由甜菜碱单体和一种或多种非离子单体聚合制备的交联聚合物微粒。
“甜菜碱单体”是指含有相同比例的阳离子和阴离子电荷官能度的单体,以致该单体总体上是净中性的。代表性的甜菜碱单体包括N,N-二甲基-N-丙烯酰氧基乙基-N-(3-磺丙基)-铵甜菜碱、N,N-二甲基-N-甲基丙烯酰氧基乙基-N-(3-磺丙基)-铵甜菜碱、N,N-二甲基-N-丙烯酰胺基丙基-N-(2-羧甲基)-铵甜菜碱、N,N-二甲基-N-丙烯酰胺基丙基-N-(2-羧甲基)-铵甜菜碱、N,N-二甲基-N-丙烯酰氧基乙基-N-(3-磺丙基)-铵甜菜碱、N,N-二甲基-N-丙烯酰胺基丙基-N-(2-羧甲基)-铵甜菜碱、N-3-磺丙基乙烯基吡啶铵甜菜碱、2-(甲基硫)乙基甲基丙烯酰基-S-(磺丙基)-锍甜菜碱、1-(3-磺丙基)-2-乙烯基吡啶鎓甜菜碱、N-(4-磺丁基)-N-甲基二烯丙基胺铵甜菜碱(MDABS)、N,N-二烯丙基-N-甲基-N-(2-磺乙基)铵甜菜碱、类似物和它们的组合。优选的甜菜碱单体是N,N-二甲基-N-甲基丙烯酰氧基乙基-N-(3-磺丙基)-铵甜菜碱。
“阳离子单体”是指这里所限定的含有净正电荷的单体单元。代表性的阳离子单体包括:丙烯酸二烷氨基烷基酯和甲基丙烯酸二烷氨基烷基酯的季盐和酸性盐,如丙烯酸二甲氨基乙酯甲基氯季盐(DMAEA.MCQ)、甲基丙烯酸二甲氨基乙酯甲基氯季盐(DMAEM.MCQ)、丙烯酸二甲氨基乙酯盐酸盐、丙烯酸二甲氨基乙酯硫酸盐、丙烯酸二甲氨基乙酯苄基氯季盐(DMAEA.BCQ)和丙烯酸二甲氨基乙酯甲基硫酸季盐;二烷氨基烷基丙烯酰胺和甲基丙烯酰胺的季或酸性盐例如二甲氨基丙基丙烯酰胺盐酸盐、二甲氨基丙基丙烯酰胺硫酸盐、二甲氨基丙基甲基丙烯酰胺盐酸盐和二甲氨基丙基甲基丙烯酰胺硫酸盐、甲基丙烯酰胺丙基三甲基氯化铵和丙烯酰胺基丙基三甲基氯化铵;以及N,N-二烯丙基二烷基卤化铵,如二烯丙基二甲基氯化铵(DADMAC)。优选的阳离子单体包括丙烯酸二甲氨基乙酯甲基氯季盐、甲基丙烯酸二甲氨基乙酯甲基氯季盐和二烯丙基二甲基氯化铵。更优选二烯丙基二甲基氯化铵。
“交联性单体”是指含至少两个烯属不饱和部位的烯属不饱和单体,其被添加以约束本发明聚合物微粒的微粒构造。与常规的超吸收性聚合物相比,为维持刚性非可膨胀微粒构造,这些聚合物微粒中使用的交联水平较高。根据本发明的交联性单体包括不稳定交联性单体和非不稳定交联性单体两者。
“乳液”、“微乳液”和“反向乳液”是指油包水型聚合物乳液,其包括水性相中的根据本发明的聚合物微粒、用作油相的烃油和一种或多种油包水型乳化剂。乳液聚合物是烃连续的,且水溶性聚合物分散在烃基体内。乳液聚合物可任选地使用剪切、稀释以及通常反转表面活性剂“反转”或转变为水连续形式(参见美国专利号3,734,873)。
“离子对聚合物微粒”是指通过聚合两性离子对单体和一种或多种阴离子或非离子单体制备的交联聚合物微粒。
“不稳定交联单体”是指该单体在引入到聚合物结构中后,可通过某些热和/或pH值条件降解,以降低本发明聚合物微粒的交联度的交联性单体。上述条件使得它们可以使“交联性单体”中的键裂解,而不会使聚合物主链的其余部分基本上地降解。在实施方案中,不稳定交联剂包含至少两个官能部位。在其它实施方案中,不稳定交联剂包含超过两个官能部位。可以用于本发明备选的实施方案中的代表性的不稳定交联性单体示于图1中。不稳定交联性单体按大约50-大约200,000ppm,优选大约50-大约100,000ppm,更优选大约50-大约60,000ppm的量存在于本发明的交联的可膨胀聚合物微粒中,基于交联聚合物的总重量。
“单体”是指可聚合的烯丙基、乙烯基或丙烯酸基化合物。单体可以是阴离子、阳离子、非离子或两性离子型单体。优选乙烯基单体,更优选丙烯酸基单体。
“非离子单体”是指本文所限定的电中性的单体。代表性的非离子单体包括:N-异丙基丙烯酰胺、N,N-二甲基丙烯酰胺、N,N-二乙基丙烯酰胺、二甲基氨丙基丙烯酰胺、二甲基氨丙基甲基丙烯酰胺、丙烯酰基吗啉、丙烯酸羟乙酯、丙烯酸羟丙酯、甲基丙烯酸羟乙酯、甲基丙烯酸羟丙酯、丙烯酸二甲氨基乙酯(DMAEA)、甲基丙烯酸二甲氨乙酯(DMAEM)、马来酸酐、N-乙烯基吡咯烷酮、乙酸乙烯酯和N-乙烯基甲酰胺。优选的非离子单体包括丙烯酰胺、N-甲基丙烯酰胺、N,N-二甲基丙烯酰胺和甲基丙烯酰胺。丙烯酰胺是更优选的。
“非不稳定交联性单体”是指在能够使结合的不稳定交联性单体分解的温度或/和pH条件下不降解的交联性单体。除了不稳定交联性单体之外,还添加非不稳定交联性单体,以控制聚合物微粒的膨胀的构造。代表性的非不稳定交联性单体包括亚甲基双丙烯酰胺、二烯丙基胺、三烯丙基胺、二乙烯基砜、二乙二醇二烯丙基醚、类似物和它们的组合。优选的非不稳定交联性单体是亚甲基二丙烯酰胺。非不稳定交联剂按0-大约300ppm,优选大约0-大约200ppm,更优选大约0-大约100ppm的量存在,基于交联聚合物微粒的摩尔比。在没有非不稳定交联剂的情况下,聚合物颗粒在不稳定交联剂的完全断裂后将转变成线性聚合物丝条的混合物。颗粒分散体因此改变成聚合物溶液。这种聚合物溶液由于它的粘度改变多孔介质中的流体的流动性。在少量的非不稳定交联剂存在下,从颗粒向线性分子的转化是不完全的。这些颗粒变成一个松散联接的网络,但仍保持某种“结构”。此种结构化颗粒可以会阻塞多孔介质的孔喉并造成流动堵塞。
在实施方案中,本发明的交联的可膨胀聚合物微粒组合物通过大约95-大约10摩尔%非离子单体和大约5-大约90摩尔%阴离子单体的自由基聚合制备。
在本发明的一个优选的实施方案中,使用反向乳液或微乳液工艺制备聚合物微粒以保证特定粒度范围。聚合物微粒的未膨胀的体积平均粒度直径优选为大约0.05-大约2,000微米。在实施方案中,未膨胀的体积平均粒度直径为大约0.05-大约10微米。在其它实施方案中,未膨胀的体积平均粒度直径为大约0.1-大约3微米,更优选大约0.1-大约1微米。
在反向乳液或微乳液工艺中,将单体和交联剂的水性溶液加入到含有合适的表面活性剂或表面活性剂混合物的烃液体中形成反向单体微乳液,该微乳液由分散在烃液体连续相中的小水性液滴组成并使该单体微乳液经历自由基聚合。除了单体和交联剂外,水性溶液还含有其它的添加剂,包括用来除去阻聚剂的螯合试剂、pH调节剂、引发剂和其它添加剂。烃液体相包含烃液体或烃液体的混合物。饱和烃或它们的混合物是优选的。通常,烃液体相包含苯、甲苯、燃料油、煤油、无臭矿油精、类似物和任何上述物质的混合物。可用于本文描述的微乳液聚合工艺的表面活性剂包括,例如,脂肪酸的脱水山梨糖醇酯、脂肪酸的乙氧基化脱水山梨糖醇酯、类似物或它们的任何混合物或组合。优选的乳化剂包括乙氧基化山梨糖醇油酸酯和脱水山梨糖醇倍半油酸酯。
在实施方案中,本发明的可膨胀聚合物微粒组合物包括以下性能中的至少一种:阴离子、两性、离子对、含甜菜碱和它们的组合。
乳液的聚合可以按本领域技术人员已知的任何方式进行。可使用各种热和氧化还原自由基引发剂来实现引发,包括:偶氮化合物,如偶氮二异丁腈;过氧化物,如叔丁基过氧化物;有机化合物,如过硫酸钾;以及氧化还原电对,如亚硫酸氢钠/溴酸钠。由乳液制备水性产物可通过利用将该乳液添加到可含反转表面活性剂的水中的反转来进行。
可选地,用不稳定交联剂交联的聚合物微粒可通过内部交联聚合物颗粒制备,该聚合物颗粒含有带羧酸和羟基侧基的聚合物。交联通过羧酸和羟基之间的酯形成来实现。酯化可用共沸蒸馏(参见例如,美国专利号4,599,379)或薄膜蒸发技术(参见例如美国专利号5,589,525)来完成以脱除水分。例如,由使用丙烯酸、2-羟乙基丙烯酸酯、丙烯酰胺和2-丙烯酰胺-2-甲基丙磺酸钠作为单体的反向乳液聚合工艺制备的聚合物微粒可通过上述提到的脱水工艺转化成交联的聚合物颗粒。
使用微乳液工艺的交联的聚合物微粒代表性制备描述在美国专利号4,956,400;4,968,435;5,171,808;5,465,792和5,73,5439中。
在实施方案中,通过将干聚合物再分散在水中制备聚合物微粒的水性悬浮液。
在实施方案中,本发明涉及改进地下地层的透水性的方法,包括将包含交联聚合物微粒的组合物注入地下地层中。该微粒具有大约0.9-大约20摩尔%(50-200,000ppm,按总交联聚合物的摩尔比计)的不稳定交联剂和按总交联聚合物的摩尔比计0-大约300ppm的非不稳定交联剂的交联剂含量。微粒通常具有比所述地下地层的孔隙更小的直径并且不稳定交联剂在地下地层中的温度和pH值条件下断裂而形成膨胀的微粒。该组合物然后在提高的温度条件下流过地下地层中的一个或多个较高渗透性的区,直到该组合物到达温度或pH值足够高以促使该微粒膨胀的位置。与不能远且深地穿入地下地层的常规封闭剂,例如聚合物溶液和聚合物凝胶不同,本发明微粒中的交联的性质导致低粘度和最佳尺寸以允许颗粒从注入点远远地传播直到遇到地下地层中的高温区。
此外,本发明的聚合物微粒由于它们的高度交联性质而在不同盐度的溶液不膨胀。因此,分散体的粘度不受地下地层中遇到的流体的盐度影响并且作为结果,对于处理不需要特殊载流体。只有当颗粒遇到足以降低交联密度的条件后,流体流变能力才发生改变,而达到预期的效果。
在其它因素当中,交联密度的降低依赖于不稳定交联剂的裂解速率(rate)。特别地,不同的不稳定交联剂在不同温度下具有不同的键裂解速率。温度和机理依赖于交联化学键的性质。例如,当不稳定交联剂是PEG二丙烯酸酯时,酯键的水解是去交联的机理。不同的醇具有略微不同的水解速率。一般而言,在相似条件下甲基丙烯酸酯的水解速率小于丙烯酸酯的水解速率。对于被偶氮基团分离的二乙烯基或二烯丙基化合物如2,2'-偶氮双(异丁酸(isbutyric acid))的二烯丙基酰胺,去交联的机理是氮分子的消除。如用于自由基聚合的各种偶氮引发剂证实的那样,不同的偶氮化合物确实对于分解具有不同的半衰期温度。
不希望受理论束缚,除了去交联的速率之外,还认为颗粒直径膨胀的速率也依赖于剩余的交联的总量。已观察到,随着交联量降低,起初颗粒逐渐膨胀。当交联总量低于某一临界密度时,其粘度爆发性地增加。因此,通过适当选择不稳定交联剂,可将温度和时间依赖的膨胀性能结合到聚合物颗粒中。
在膨胀之前的聚合颗粒粒度根据由最高渗透性漏失区的计算孔径来选择。交联剂的类型和浓度和因此注入的颗粒开始膨胀前的时间延迟基于以下因素:注入井附近及地层更深处的温度、注入颗粒穿过漏失区的预期的移动速率、以及其使水从漏失区交叉流出到相邻的含烃更低渗透性区的容易程度。考虑以上因素设计出的聚合物微粒组合物在颗粒膨胀后导致更好的水堵作用,以及在地层中更为最佳的位置。
在本发明的实施方案中,将组合物添加到注入水中,作为用于从地下地层开采烃的二次或三次工艺的一部分。在实施方案中,组合物用于三次采油工艺,其一种组分构成注水。在本发明的其它实施方案中,将注入水在比所述地下地层的温度低的温度下添加到地下地层中。
不言而喻的是,本发明在任何地下地层中具有应用性。在一个实施方案中,所述地下地层是砂岩或碳酸盐烃储层。
在实施方案中,所述膨胀的聚合物微粒的直径大于地下地层中的岩石孔隙的控制性孔喉半径的十分之一。在另一个实施方案中,所述膨胀的聚合物微粒的直径大于地下地层中的岩石孔隙的控制性孔喉半径的四分之一。
本发明对于具有中性或酸性pH值的地下地层尤其有用。在实施方案中,本发明用于具有pH值7的地层。在其它实施方案中,地层具有pH值小于7。优选地,地层的pH值在5-7的范围内。在备选的实施方案中,地层的pH值低于5或在4-5的范围内。
本发明的聚合物微粒可以作为乳液、干粉末或水性悬浮液应用于地下地层。在一个实施方案中,乳液是油包水型乳液。在另一个实施方案中,水性悬浮液是浓缩的水性悬浮液。
在实施方案中,本发明的组合物包含导入所述地下地层中的水性介质和其中所述水性介质包括大约100ppm-大约50,000ppm的聚合物微粒,基于所述水性介质的总重量。
在实施方案中,基于聚合物活性材料按大约100-10,000ppm,优选大约500-大约1,500ppm,更优选大约500-大约1,000ppm的量添加所述组合物,基于注入地下地层中的流体的总体积。
在另一个实施方案中,本发明涉及提高地下地层中的烃流体的流通或开采率的方法,包括将本文描述的包含聚合物微粒的组合物注入所述地下地层中。微粒通常具有比所述地下地层的孔隙更小的直径且所述不稳定交联剂在地下地层中的温度和pH值条件下断裂以降低所述组合物的活动性。
在实施方案中,本发明的组合物用于二氧化碳和水三次开采工程。在另一个实施方案中,将所述组合物添加到注入水中作为用于从地下地层开采烃的二次或三次工艺的一部分。
在另一个实施方案中,将所述组合物和注入水添加到生产井中。本发明的组合物在生产井中的应用提高采出流体的油与水之比。通过注入本发明的包含聚合物微粒的组合物并允许颗粒膨胀,可以选择性地封堵水产生区。
通过参照以下实施例可以更好理解上述内容,这些实施例旨在用于说明性目的并不希望以任何方式限制本发明的范围或其应用。
实施例1
这一实施例说明合成本发明聚合物微粒的反向乳液聚合技术。通过使由以下物质的水性混合物构成的单体乳液聚合制备代表性的乳液聚合物组合物:408.9g50%丙烯酰胺、125.1g58%丙烯酰胺基甲基丙磺酸钠(AMPS)、21.5g水、0.2g维尔烯晶体、0.5g亚甲基双丙烯酰胺(MBA)的1%溶液。将2.4g5%的溴酸钠溶液和各种水平和类型的不稳定交联剂添加到单体相中。将单体相分散在作为连续相的336g石油馏出物、80g乙氧基化山梨糖醇六油酸酯和20g脱水山梨糖醇倍半油酸酯的混合物中。
通过将水相和油相混合制备单体乳液。在用氮气脱氧30分钟后,通过使用亚硫酸氢钠/溴酸钠氧化还原对在室温下引发聚合。不调节聚合的温度。一般而言,聚合热将在不到5分钟内使温度从大约21℃上升到大约94℃。在温度峰值后,维持该反应混合物在大约75℃额外2小时。
如果需要的话,可以通过沉淀、过滤和用丙酮和异丙醇的混合物洗涤使聚合物微粒与胶乳离析。在干燥之后,可以将该不含油和表面活性剂的颗粒再分散在水性介质中。表1和2列出了根据这一实施例的方法制备的代表性的乳液聚合物。表1和2中列出的不稳定交联剂示于图1中。
表1
Exp.1 | Exp.2 | Exp.3 | Exp.4 | |
50%丙烯酰胺 | 408.9 | 408.9 | 408.9 | 408.9 |
58%Na AMPS | 125.1 | 125.1 | 125.1 | 125.1 |
去离子水 | 21.57 | 21.57 | 21.57 | 21.57 |
亚甲基双丙烯酰胺(1%) | 0.5 | 0.5 | 0.5 | 0.5 |
不稳定交联剂17 | 2.17 | - | - | - |
不稳定交联剂8 | - | 0.27 | - | - |
不稳定交联剂22 | - | - | 0.53 | - |
不稳定交联剂8 | - | - | - | 0.34 |
不稳定交联剂21 | - | - | - | 3.32 |
石油馏出物 | 336 | 336 | 336 | 336 |
乙氧基化山梨糖醇六油酸酯 | 80 | 80 | 80 | 80 |
脱水山梨糖醇倍半油酸酯 | 20.1 | 20.1 | 20.1 | 20.1 |
表2
Exp.5 | Exp.6 | Exp.7 | Exp.8 | |
50%丙烯酰胺 | 408.9 | 408.9 | 408.9 | 408.9 |
58%Na AMPS | 125.1 | 125.1 | 125.1 | 125.1 |
去离子水 | 21.57 | 21.57 | 21.57 | 21.57 |
亚甲基双丙烯酰胺(1%) | 0.5 | 0.5 | 0.5 | 0.5 |
不稳定交联剂17 | 2.17 | - | - | - |
不稳定交联剂8 | - | 0.27 | - | - |
不稳定交联剂22 | - | - | 0.53 | - |
不稳定交联剂26 | - | - | - | 1.67 |
石油馏出物 | 336 | 336 | 336 | 336 |
乙氧基化山梨糖醇六油酸酯 | 80 | 80 | 80 | 80 |
脱水山梨糖醇倍半油酸酯 | 20.1 | 20.1 | 20.1 | 20.1 |
实施例2
使用以下盐水组合物研究聚合物颗粒的膨胀。使用乙酸和乙酸钠缓冲物将盐水的pH值分别调节到表3、4和5中指示的pH值3、5或6。
去离子水 | 85.10 |
转向表面活性剂 | 0.66 |
硫代硫酸钠 | 0.15 |
NaCl | 10.78 |
CaCl2 2H2O | 0.80 |
MgCl2 6H2O | 0.45 |
无水硫酸钠 | 0.56 |
乙酸 | 0.50 |
乙酸钠 | 1.00 |
总计 | 100.00 |
在4盎司正方形瓶中用98.18g盐水溶液稀释1.82g聚合物。手摇样品并在该小时内测量粘度(以cP显示)以获得基准粘度读数。用Brookfiled DV-III ULTRA可编程流变仪在60和/或30rpm下使用心轴(spindle)#2c进行所有测量。将样品放置在50或70℃的烘箱中并用5,000ppm聚合物活性材料(polymer actives)培养数天。定期取出样品并冷却到室温并记录粘度然后放回烘箱以便进一步培养。表3-5示出了使用热将聚合物微粒激活。在首先的20天中观察到大多数样品的非常细微的膨胀,之后快速膨胀。表3(pH值=3.0,50℃)的实验中对于Exp.1、2、3、4使用的颗粒分别对应于表2中的Exp.5、6、7、8。表4(pH值=5.0,50℃)的实验中对于Exp.5、6、7、8使用的颗粒分别对应于表1中的Exp.1、2、3、4。表5(pH值=6.0,50℃)的实验中对于Exp.9、10、11、12使用的颗粒分别对应于表2中的Exp.5、6、7、8。
表3(pH值3.0,50℃)
天 | Exp.1 | Exp.2 | Exp.3 | Exp.4 |
0 | 1 | 0 | 0 | 0.5 |
1 | 7 | 0 | 0 | 10 |
3 | 10 | 0 | 0 | 18 |
7 | 10 | 0 | 0 | 20 |
12 | 10 | 0 | 0 | 26 |
16 | 10 | 1 | 1 | 32 |
21 | 11 | 1 | 1 | 38 |
表4(pH值5.0,50℃)
天 | Exp.5 | Exp.6 | Exp.7 | Exp.8 |
0 | 2.5 | 1 | 1 | 0.5 |
1 | 14 | 2 | 2.5 | 1.5 |
6 | 18.5 | 3.5 | 4 | 2.5 |
10 | 21 | 3.5 | 4 | 2.5 |
16 | 24 | 4 | 4.5 | 3 |
23 | 29 | 4.5 | 5 | 4 |
31 | 36 | 8 | 8.5 | 5 |
38 | 42.5 | 9.5 | 11.5 | 7 |
52 | 51 | 16.5 | 19.5 | 13 |
59 | 55 | 20 | 23 | 15.5 |
77 | 56.5 | 34 | 32 | 26 |
82 | 56.5 | 36.5 | 35.5 | 30.5 |
91 | 58 | 42.5 | 40 | 34.5 |
98 | 56 | 45 | 39 | 34.5 |
表5(pH值6.0,50℃)
天 | Exp.9 | Exp.10 | Exp.11 | Exp.12 |
0 | 1 | 0 | 0 | 0 |
1 | 7 | 0 | 0 | 17 |
3 | 10 | 4 | 6 | 32 |
7 | 13 | 14 | 16 | 36 |
12 | 26 | 26 | 25 | 40 |
16 | 31 | 30 | 27 | 43 |
21 | 33 | 30 | 27 | 45 |
根据本发明公开的内容,无需进行过度实验即可制备和实施此处公开和要求保护的所有组合物及方法。尽管本发明可以按许多不同的方式实施,但是在本文中详细描述的为本发明的具体优选的实施方案。本公开内容为本发明的原理的示例,而不是打算将本发明的范围限制为所示出的具体的实施方案。此外,除非特意相反地指出,使用的术语“一种/一个”旨在包括“至少一种/一个”或“一种或多种/一个或多个”。例如“一种装置”旨在包括“至少一种装置”或“一种或多种装置”。
在绝对项或大约项中给出的任何范围意在包括这二者,在本文中使用的任何定义将是阐明性的而不是限定性的。尽管给出本发明宽阔范围的数值范围和参数是近似值,但是具体实施例中给出的数值是尽可能精确报道的。然而,任何数值都不可避免地包括由于它们各自测试测量中出现的标准偏差而造成的某些误差。而且,在本文中公开的所有的范围应理解为包括归入到其中的任何和所有的子范围(包括所有的分数和整数值)。
此外,本发明包括任何和所有可能的一些或所有的在本文中描述的多种实施方案的组合。本申请中引用的任何和所有专利、专利申请、科学论文及其它参考文献,以及其中引用的任何参考文献全文在此引入供参考。还应该理解本文中描述的目前优选的实施方式的多种变化或改变将对于本领域的技术人员而言是显而易见的。在不偏离本发明的精神和范围的情况下,并且在不损害预期的优点的情况下可以做出这些变化和修改。因此,这些变化和修改意在被所附权利要求书涵盖。
Claims (17)
1.一种组合物,包含:交联的可膨胀聚合物微粒,该微粒具有(i)0.05-2,000微米的未膨胀的体积平均粒度直径和(ii)基于所述聚合物微粒的摩尔比50-200,000ppm的至少一种能够在pH值3-pH值6下裂解的不稳定交联剂和基于摩尔比0-900ppm的至少一种非不稳定交联剂的交联剂含量,其中所述不稳定交联剂选自以下结构中的至少一种:
2.权利要求1的组合物,其中所述交联的可膨胀聚合物微粒的至少一部分是高度交联的。
3.权利要求1的组合物,其中所述未膨胀的体积平均粒度直径为0.05-10微米。
4.权利要求1的组合物,其中所述未膨胀的体积平均粒度直径为0.05-1微米。
5.权利要求1的组合物,其中所述至少一种不稳定交联剂包含具有至少两个官能部位的交联剂。
6.权利要求1的组合物,其中所述可膨胀聚合物微粒包括以下性能中至少一种:阴离子、两性、离子对、含甜菜碱和它们的组合。
7.权利要求1的组合物,还包括乳液、干粉末或水性悬浮液。
8.权利要求1的组合物,其中所述交联的可膨胀聚合物微粒是通过95-10摩尔%非离子单体和5-90摩尔%阴离子单体的自由基聚合制备的。
9.权利要求8的组合物,其中所述阴离子单体是2-丙烯酰胺基-2-甲基-1-丙磺酸且所述非离子单体是丙烯酰胺。
10.一种改进地下地层的透水性的方法,该方法包括:
将根据权利要求1的包含交联的可膨胀聚合物微粒的组合物导入地下地层中,其中所述微粒具有比所述地下地层的孔隙更小的直径和其中所述不稳定交联剂在所述地下地层中的条件下断裂而形成膨胀的聚合物微粒。
11.权利要求10的方法,还包括其中所述组合物包含导入所述地下地层中的水性介质和其中所述水性介质包括100ppm-50,000ppm的所述微粒,基于所述水性介质的总重量。
12.权利要求10的方法,其中将所述组合物添加到注入水中作为用于从地下地层开采烃的二次或三次工艺的一部分。
13.权利要求10的方法,其中在比所述地下地层的温度低的温度下将所述注入水添加到地下地层中。
14.权利要求10的方法,其中所述膨胀的聚合物微粒的直径大于地下地层中的岩石孔隙的控制性孔喉半径的十分之一。
15.权利要求10的方法,其中所述地下地层是砂岩或碳酸盐烃储层。
16.权利要求10的方法,其中所述组合物用于二氧化碳和水三次开采工程。
17.权利要求10的方法,其中所述地下储层经历了CO2驱油或CO2气和水交替驱油。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610582802.7A CN106221689B (zh) | 2012-01-27 | 2013-01-24 | 从地下储层开采烃流体的组合物和方法 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/359,596 US9120965B2 (en) | 2012-01-27 | 2012-01-27 | Composition and method for recovering hydrocarbon fluids from a subterranean reservoir |
US13/359,596 | 2012-01-27 | ||
PCT/US2013/022857 WO2013112664A1 (en) | 2012-01-27 | 2013-01-24 | Composition and method for recovering hydrocarbon fluids from a subterranean reservoir |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610582802.7A Division CN106221689B (zh) | 2012-01-27 | 2013-01-24 | 从地下储层开采烃流体的组合物和方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104053743A CN104053743A (zh) | 2014-09-17 |
CN104053743B true CN104053743B (zh) | 2017-08-08 |
Family
ID=48869263
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610582802.7A Active CN106221689B (zh) | 2012-01-27 | 2013-01-24 | 从地下储层开采烃流体的组合物和方法 |
CN201380005495.0A Active CN104053743B (zh) | 2012-01-27 | 2013-01-24 | 从地下储层开采烃流体的组合物和方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610582802.7A Active CN106221689B (zh) | 2012-01-27 | 2013-01-24 | 从地下储层开采烃流体的组合物和方法 |
Country Status (12)
Country | Link |
---|---|
US (3) | US9120965B2 (zh) |
EP (2) | EP2807228B1 (zh) |
CN (2) | CN106221689B (zh) |
AR (2) | AR089816A1 (zh) |
AU (2) | AU2013212130B2 (zh) |
BR (1) | BR112014018245A8 (zh) |
CA (1) | CA2858435C (zh) |
DK (1) | DK3447104T3 (zh) |
NZ (1) | NZ625655A (zh) |
PL (1) | PL3447104T3 (zh) |
RU (2) | RU2618239C2 (zh) |
WO (1) | WO2013112664A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110644956A (zh) * | 2019-09-17 | 2020-01-03 | 中国石油天然气股份有限公司 | 一种提高低渗透油藏co2驱效果的方法 |
Families Citing this family (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9222013B1 (en) | 2008-11-13 | 2015-12-29 | Cesi Chemical, Inc. | Water-in-oil microemulsions for oilfield applications |
US20130292121A1 (en) | 2012-04-15 | 2013-11-07 | Cesi Chemical, Inc. | Surfactant formulations for foam flooding |
US9200192B2 (en) | 2012-05-08 | 2015-12-01 | Cesi Chemical, Inc. | Compositions and methods for enhancement of production of liquid and gaseous hydrocarbons |
US11407930B2 (en) | 2012-05-08 | 2022-08-09 | Flotek Chemistry, Llc | Compositions and methods for enhancement of production of liquid and gaseous hydrocarbons |
US10435496B2 (en) | 2013-01-31 | 2019-10-08 | Ecolab Usa Inc. | Enhanced oil recovery using mobility control crosslinked polymers |
US11254856B2 (en) | 2013-03-14 | 2022-02-22 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
US10941106B2 (en) | 2013-03-14 | 2021-03-09 | Flotek Chemistry, Llc | Methods and compositions incorporating alkyl polyglycoside surfactant for use in oil and/or gas wells |
US9464223B2 (en) | 2013-03-14 | 2016-10-11 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
US10717919B2 (en) | 2013-03-14 | 2020-07-21 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
US9884988B2 (en) | 2013-03-14 | 2018-02-06 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
US10287483B2 (en) | 2013-03-14 | 2019-05-14 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells comprising a terpene alcohol |
US9868893B2 (en) | 2013-03-14 | 2018-01-16 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
US10053619B2 (en) | 2013-03-14 | 2018-08-21 | Flotek Chemistry, Llc | Siloxane surfactant additives for oil and gas applications |
US9068108B2 (en) | 2013-03-14 | 2015-06-30 | Cesi Chemical, Inc. | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
US9321955B2 (en) | 2013-06-14 | 2016-04-26 | Flotek Chemistry, Llc | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
US10577531B2 (en) | 2013-03-14 | 2020-03-03 | Flotek Chemistry, Llc | Polymers and emulsions for use in oil and/or gas wells |
US9428683B2 (en) | 2013-03-14 | 2016-08-30 | Flotek Chemistry, Llc | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
US10421707B2 (en) | 2013-03-14 | 2019-09-24 | Flotek Chemistry, Llc | Methods and compositions incorporating alkyl polyglycoside surfactant for use in oil and/or gas wells |
US10000693B2 (en) | 2013-03-14 | 2018-06-19 | Flotek Chemistry, Llc | Methods and compositions for use in oil and/or gas wells |
US11180690B2 (en) | 2013-03-14 | 2021-11-23 | Flotek Chemistry, Llc | Diluted microemulsions with low surface tensions |
US10590332B2 (en) | 2013-03-14 | 2020-03-17 | Flotek Chemistry, Llc | Siloxane surfactant additives for oil and gas applications |
GB201318681D0 (en) * | 2013-10-22 | 2013-12-04 | Bp Exploration Operating | Compositions and methods for recovering hydrocarbon fluids from a subterranean formation |
US9890624B2 (en) | 2014-02-28 | 2018-02-13 | Eclipse Ior Services, Llc | Systems and methods for the treatment of oil and/or gas wells with a polymeric material |
US9890625B2 (en) | 2014-02-28 | 2018-02-13 | Eclipse Ior Services, Llc | Systems and methods for the treatment of oil and/or gas wells with an obstruction material |
CA2891278C (en) | 2014-05-14 | 2018-11-06 | Cesi Chemical, Inc. | Methods and compositions for use in oil and / or gas wells |
US9957779B2 (en) | 2014-07-28 | 2018-05-01 | Flotek Chemistry, Llc | Methods and compositions related to gelled layers in oil and/or gas wells |
US10442980B2 (en) | 2014-07-29 | 2019-10-15 | Ecolab Usa Inc. | Polymer emulsions for use in crude oil recovery |
US10696890B2 (en) | 2014-09-30 | 2020-06-30 | Nippon Shokubai Co., Ltd. | Methods of liquefying and shrinking water-absorbable resins in a water-containing state |
CN104531115B (zh) * | 2014-12-30 | 2017-07-28 | 中国石油天然气股份有限公司 | 一种水平井控水用暂堵剂、制备方法及其应用 |
US10081758B2 (en) | 2015-12-04 | 2018-09-25 | Ecolab Usa Inc. | Controlled release solid scale inhibitors |
WO2017147277A1 (en) | 2016-02-23 | 2017-08-31 | Ecolab Usa Inc. | Hydrazide crosslinked polymer emulsions for use in crude oil recovery |
GB201607910D0 (en) * | 2016-05-06 | 2016-06-22 | Bp Exploration Operating | Microparticles and composition |
US10865339B2 (en) | 2016-05-16 | 2020-12-15 | Championx Usa Inc. | Slow-release scale inhibiting compositions |
US11549048B2 (en) | 2016-06-02 | 2023-01-10 | The Curators Of The University Of Missouri | Re-assembling polymer particle package for conformance control and fluid loss control |
US11268009B2 (en) | 2016-06-02 | 2022-03-08 | The Curators Of The University Of Missouri | Fiber assisted re-crosslinkable polymer gel and preformed particle gels for fluid loss and conformance control |
EP3464504B1 (en) * | 2016-06-02 | 2022-11-16 | The Curators of the University of Missouri | Re-assembling polymer particle package for conformance control and fluid loss control |
CN106566484B (zh) * | 2016-10-31 | 2018-08-28 | 中国石油大学(华东) | 裂缝性储层保护剂组合物、含有该裂缝性储层保护剂组合物的钻井液及其应用 |
CN106543357B (zh) * | 2016-10-31 | 2018-10-16 | 中国石油大学(华东) | 聚合物弹性颗粒储层保护剂及其制备方法和应用 |
US11142680B2 (en) | 2016-12-23 | 2021-10-12 | Championx Usa Inc. | Controlled release solid scale inhibitors |
CA3061408A1 (en) * | 2017-04-27 | 2018-11-01 | Bp Exploration Operating Company Limited | Microparticles and method for modifying the permeability of a reservoir zone |
CN109384888B (zh) * | 2017-08-02 | 2020-12-18 | 中国石油化工股份有限公司 | 具有选择性堵水功能的聚合物及其制备方法和应用 |
US10934472B2 (en) | 2017-08-18 | 2021-03-02 | Flotek Chemistry, Llc | Compositions comprising non-halogenated solvents for use in oil and/or gas wells and related methods |
CN109748996B (zh) * | 2017-11-03 | 2021-05-11 | 中国石油化工股份有限公司 | 具有选择性堵水功能的聚合物及其制备方法和应用 |
CA3082801A1 (en) | 2017-11-28 | 2019-06-06 | Ecolab Usa Inc. | Diverter composition comprising deformable and non-deformable particles |
WO2019108971A1 (en) | 2017-12-01 | 2019-06-06 | Flotek Chemistry, Llc | Methods and compositions for stimulating the production of hydrocarbons from subterranean formations |
CA3111214C (en) | 2018-08-31 | 2023-08-22 | The Curators Of The University Of Missouri | Re-crosslinking particle gel for co2 conformance control and co2 leakage blocking |
CN110396399A (zh) * | 2019-06-18 | 2019-11-01 | 中国石油天然气股份有限公司 | 一种油水井大漏失套损段封堵材料及封堵方法 |
US11827848B2 (en) | 2019-09-20 | 2023-11-28 | Halliburton Energy Services, Inc. | Treating subterranean formations using salt tolerant superabsorbent polymer particles |
US11104843B2 (en) | 2019-10-10 | 2021-08-31 | Flotek Chemistry, Llc | Well treatment compositions and methods comprising certain microemulsions and certain clay control additives exhibiting synergistic effect of enhancing clay swelling protection and persistency |
AU2020421493A1 (en) | 2020-01-10 | 2022-08-04 | The Curators Of The University Of Missouri | Re-crosslinkable particle for conformance control and temporary plugging |
US11512243B2 (en) | 2020-10-23 | 2022-11-29 | Flotek Chemistry, Llc | Microemulsions comprising an alkyl propoxylated sulfate surfactant, and related methods |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1434893A (zh) * | 2000-06-14 | 2003-08-06 | 翁德奥纳尔科能源服务有限公司 | 从地下储藏田开采液态烃的组合物及方法 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3734873A (en) | 1970-12-15 | 1973-05-22 | Nalco Chemical Co | Rapid dissolving water-soluble polymers |
US4052353B1 (en) * | 1974-01-02 | 1990-01-30 | Dispersions of water soluble polymers in oil | |
GB8401206D0 (en) | 1984-01-17 | 1984-02-22 | Allied Colloids Ltd | Polymers and aqueous solutions |
US4968435A (en) | 1988-12-19 | 1990-11-06 | American Cyanamid Company | Cross-linked cationic polymeric microparticles |
US4956400A (en) | 1988-12-19 | 1990-09-11 | American Cyanamid Company | Microemulsified functionalized polymers |
US5171808A (en) | 1990-06-11 | 1992-12-15 | American Cyanamid Company | Cross-linked anionic and amphoteric polymeric microparticles |
GB2255360A (en) * | 1991-05-03 | 1992-11-04 | British Petroleum Co Plc | Method for the production of oil |
CA2111297A1 (en) | 1992-12-21 | 1994-06-22 | Calgon Corporation | Process for preparing novel high solids non-aqueous polymer compositions |
US5465792A (en) * | 1994-07-20 | 1995-11-14 | Bj Services Company | Method of controlling production of excess water in oil and gas wells |
US5735349A (en) * | 1996-08-16 | 1998-04-07 | Bj Services Company | Compositions and methods for modifying the permeability of subterranean formations |
BR9904294B1 (pt) * | 1999-09-22 | 2012-12-11 | processo para a redução seletiva e controlada da permeabilidade relativa à água em formações petrolìferas. | |
JP4511668B2 (ja) * | 2000-02-02 | 2010-07-28 | 本田技研工業株式会社 | 車両用無段変速機 |
US7690429B2 (en) * | 2004-10-21 | 2010-04-06 | Halliburton Energy Services, Inc. | Methods of using a swelling agent in a wellbore |
US7870903B2 (en) | 2005-07-13 | 2011-01-18 | Halliburton Energy Services Inc. | Inverse emulsion polymers as lost circulation material |
BRPI0504019B1 (pt) * | 2005-08-04 | 2017-05-09 | Petroleo Brasileiro S A - Petrobras | processo de redução seletiva e controlada da permeabilidade relativa à água em formações petrolíferas de alta permeabilidade |
AU2009239586B2 (en) | 2008-04-21 | 2013-10-03 | Championx Llc | Composition and method for recovering hydrocarbon fluids from a subterranean reservoir |
AU2009238422B2 (en) | 2008-04-21 | 2013-12-12 | Championx Llc | Compositions and methods for diverting injected fluids to achieve improved hydrocarbon fluid recovery |
US7989401B2 (en) * | 2008-04-21 | 2011-08-02 | Nalco Company | Block copolymers for recovering hydrocarbon fluids from a subterranean reservoir |
US20100048430A1 (en) * | 2008-08-19 | 2010-02-25 | Halliburton Energy Services, Inc. | Delayed crosslinking agents for high-temperature fracturing |
WO2010105070A1 (en) | 2009-03-12 | 2010-09-16 | Conocophillips Company | Crosslinked swellable polymer |
MX347441B (es) | 2009-06-10 | 2017-04-25 | Conocophillips Co | Polímero expandible con sitios aniónicos. |
CN102471470B (zh) * | 2009-07-15 | 2014-05-21 | 巴斯夫欧洲公司 | 包含支化低聚或聚合化合物的混合物及其制备方法和用途 |
WO2012061147A1 (en) * | 2010-10-25 | 2012-05-10 | Isp Investments Inc. | Salt-tolerant, thermally-stable rheology modifiers |
EA201390769A1 (ru) * | 2010-11-24 | 2013-12-30 | Басф Се | Способ добычи нефти с применением гидрофобно-ассоциированных полимеров |
-
2012
- 2012-01-27 US US13/359,596 patent/US9120965B2/en active Active
-
2013
- 2013-01-24 AU AU2013212130A patent/AU2013212130B2/en not_active Ceased
- 2013-01-24 RU RU2014134878A patent/RU2618239C2/ru active
- 2013-01-24 CA CA2858435A patent/CA2858435C/en active Active
- 2013-01-24 EP EP13740621.1A patent/EP2807228B1/en active Active
- 2013-01-24 BR BR112014018245A patent/BR112014018245A8/pt not_active Application Discontinuation
- 2013-01-24 EP EP18199297.5A patent/EP3447104B1/en active Active
- 2013-01-24 CN CN201610582802.7A patent/CN106221689B/zh active Active
- 2013-01-24 WO PCT/US2013/022857 patent/WO2013112664A1/en active Application Filing
- 2013-01-24 DK DK18199297.5T patent/DK3447104T3/da active
- 2013-01-24 PL PL18199297T patent/PL3447104T3/pl unknown
- 2013-01-24 RU RU2017113352A patent/RU2670295C1/ru active
- 2013-01-24 NZ NZ625655A patent/NZ625655A/en not_active IP Right Cessation
- 2013-01-24 CN CN201380005495.0A patent/CN104053743B/zh active Active
- 2013-01-25 AR ARP130100239 patent/AR089816A1/es active IP Right Grant
-
2015
- 2015-07-21 US US14/804,973 patent/US10214679B2/en active Active
-
2016
- 2016-06-16 AU AU2016204046A patent/AU2016204046B2/en not_active Ceased
- 2016-06-28 AR ARP160101932A patent/AR105157A2/es active IP Right Grant
-
2018
- 2018-12-04 US US16/208,775 patent/US10889749B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1434893A (zh) * | 2000-06-14 | 2003-08-06 | 翁德奥纳尔科能源服务有限公司 | 从地下储藏田开采液态烃的组合物及方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110644956A (zh) * | 2019-09-17 | 2020-01-03 | 中国石油天然气股份有限公司 | 一种提高低渗透油藏co2驱效果的方法 |
Also Published As
Publication number | Publication date |
---|---|
CA2858435A1 (en) | 2013-08-01 |
CA2858435C (en) | 2020-06-02 |
CN106221689B (zh) | 2019-03-01 |
PL3447104T3 (pl) | 2021-06-28 |
BR112014018245A8 (pt) | 2017-07-11 |
US20190100690A1 (en) | 2019-04-04 |
US10214679B2 (en) | 2019-02-26 |
US20150322333A1 (en) | 2015-11-12 |
RU2618239C2 (ru) | 2017-05-03 |
RU2670295C1 (ru) | 2018-10-22 |
BR112014018245A2 (zh) | 2017-06-20 |
EP3447104A1 (en) | 2019-02-27 |
US10889749B2 (en) | 2021-01-12 |
EP2807228A4 (en) | 2015-07-29 |
US20130192826A1 (en) | 2013-08-01 |
EP2807228B1 (en) | 2019-03-27 |
US9120965B2 (en) | 2015-09-01 |
NZ625655A (en) | 2016-04-29 |
AU2016204046B2 (en) | 2018-01-18 |
AU2013212130B2 (en) | 2016-03-31 |
AR089816A1 (es) | 2014-09-17 |
WO2013112664A1 (en) | 2013-08-01 |
CN106221689A (zh) | 2016-12-14 |
AU2016204046A1 (en) | 2016-06-30 |
EP2807228A1 (en) | 2014-12-03 |
EP3447104B1 (en) | 2020-11-18 |
RU2014134878A (ru) | 2016-03-20 |
AR105157A2 (es) | 2017-09-13 |
AU2013212130A1 (en) | 2014-06-19 |
DK3447104T3 (da) | 2021-02-08 |
CN104053743A (zh) | 2014-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104053743B (zh) | 从地下储层开采烃流体的组合物和方法 | |
US7947630B2 (en) | Compositions comprising at least two different polymeric microparticles and methods for recovering hydrocarbon fluids from a subterranean reservoir | |
CA2721949C (en) | Block copolymers for recovering hydrocarbon fluids from a subterranean reservoir | |
US6729402B2 (en) | Method of recovering hydrocarbon fluids from a subterranean reservoir | |
US8263533B2 (en) | Method of treating underground formations or cavities by microgels | |
Seright | Use of polymers to recover viscous oil from unconventional reservoirs | |
US11149186B2 (en) | Method for enhanced oil recovery by injecting an aqueous polymeric composition containing microgels | |
NZ722950A (en) | Injection fluid, composition and method for recovering hydrocarbon fluids from a subterranean reservoir |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |