CN104001491B - A kind of CeO2/TiO2 nanocomposite hollow sphere catalyst and preparation method thereof - Google Patents
A kind of CeO2/TiO2 nanocomposite hollow sphere catalyst and preparation method thereof Download PDFInfo
- Publication number
- CN104001491B CN104001491B CN201410203860.5A CN201410203860A CN104001491B CN 104001491 B CN104001491 B CN 104001491B CN 201410203860 A CN201410203860 A CN 201410203860A CN 104001491 B CN104001491 B CN 104001491B
- Authority
- CN
- China
- Prior art keywords
- tio
- ceo
- hollow sphere
- mol
- polystyrene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002114 nanocomposite Substances 0.000 title claims abstract description 55
- 239000003054 catalyst Substances 0.000 title claims abstract description 53
- 238000002360 preparation method Methods 0.000 title abstract description 17
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title description 26
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 title description 12
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 title description 12
- 229910010413 TiO 2 Inorganic materials 0.000 claims abstract description 79
- 239000004793 Polystyrene Substances 0.000 claims abstract description 47
- 229920002223 polystyrene Polymers 0.000 claims abstract description 47
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 claims abstract description 32
- QQZMWMKOWKGPQY-UHFFFAOYSA-N cerium(3+);trinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O QQZMWMKOWKGPQY-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000002131 composite material Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 13
- 239000004005 microsphere Substances 0.000 claims abstract description 11
- 238000003980 solgel method Methods 0.000 claims abstract description 10
- 238000001556 precipitation Methods 0.000 claims abstract description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 64
- 238000006243 chemical reaction Methods 0.000 claims description 52
- 239000002245 particle Substances 0.000 claims description 21
- 239000000843 powder Substances 0.000 claims description 15
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 12
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 8
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- NWUFJQVFUNSFOR-UHFFFAOYSA-N [Ce+3].CCO.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O Chemical compound [Ce+3].CCO.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O NWUFJQVFUNSFOR-UHFFFAOYSA-N 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 7
- 229910021641 deionized water Inorganic materials 0.000 claims description 7
- 239000002244 precipitate Substances 0.000 claims description 7
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 229910052684 Cerium Inorganic materials 0.000 claims 1
- OQUOOEBLAKQCOP-UHFFFAOYSA-N nitric acid;hexahydrate Chemical compound O.O.O.O.O.O.O[N+]([O-])=O OQUOOEBLAKQCOP-UHFFFAOYSA-N 0.000 claims 1
- 230000001699 photocatalysis Effects 0.000 abstract description 6
- 238000007146 photocatalysis Methods 0.000 abstract description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 abstract 1
- 239000005977 Ethylene Substances 0.000 abstract 1
- 150000004687 hexahydrates Chemical class 0.000 abstract 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 9
- 229940043267 rhodamine b Drugs 0.000 description 9
- 239000000203 mixture Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000001782 photodegradation Methods 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 238000012512 characterization method Methods 0.000 description 4
- 238000003306 harvesting Methods 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 229910000420 cerium oxide Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000004729 solvothermal method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 150000000703 Cerium Chemical class 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000001045 blue dye Substances 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- -1 oxygen ion Chemical class 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 150000003608 titanium Chemical class 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Catalysts (AREA)
Abstract
本发明公开一种CeO2/TiO2纳米复合空心球催化剂及制备方法,所述CeO2/TiO2纳米复合空心球催化剂,即首先以聚苯乙烯为模板,以钛酸四丁酯和六水合硝酸铈为壁材原料,通过溶胶‑凝胶法和沉淀法相结合制备CeO2/TiO2包覆聚苯乙烯的复合微球,然后煅烧得到CeO2/TiO2纳米复合空心球催化剂;其中聚苯乙烯、钛酸四丁酯和六水合硝酸铈的用量,按聚苯乙烯:钛酸四丁酯:六水合硝酸铈为0.1‑0.3g:0.2‑8×10‑3mol:1‑6×10‑3mol。本发明制备的CeO2/TiO2纳米复合空心球催化剂,其尺寸均匀、具有良好的光催化性和热稳定性。
The invention discloses a CeO 2 /TiO 2 nanocomposite hollow sphere catalyst and a preparation method thereof. The CeO 2 /TiO 2 nanocomposite hollow sphere catalyst first uses polystyrene as a template, and tetrabutyl titanate and hexahydrate CeO 2 /TiO 2 coated polystyrene composite microspheres were prepared by combining sol-gel method and precipitation method, and then calcined to obtain CeO 2 /TiO 2 nanocomposite hollow sphere catalysts; the polystyrene The amount of ethylene, tetrabutyl titanate and cerium nitrate hexahydrate, according to polystyrene: tetrabutyl titanate: cerium nitrate hexahydrate is 0.1‑0.3g: 0.2‑8×10 ‑3 mol: 1‑6×10 -3 mol. The CeO 2 /TiO 2 nanocomposite hollow sphere catalyst prepared by the invention has uniform size and good photocatalysis and thermal stability.
Description
技术领域technical field
本发明涉及一种无机复合空心球催化剂及其制备方法,特别涉及一种粒径可控的CeO2/TiO2纳米复合空心球催化剂及其制备方法。The invention relates to an inorganic composite hollow sphere catalyst and a preparation method thereof, in particular to a CeO 2 /TiO 2 nanometer composite hollow sphere catalyst with controllable particle size and a preparation method thereof.
背景技术Background technique
TiO2是具有良好热稳定性、氧化能力强、廉价易得的光催化剂和环境催化剂。具有空心结构的TiO2微球由于具有密度低、比表面积大、表面渗透性好、光捕获率高的结构特点以及TiO2自身的特性而被广泛地用于光催化领域。然而TiO2只能吸收波长小于387nm的紫外光,对太阳能利用率低,而且TiO2中光生载流子复合率较高,量子效率低,限制了TiO2空心微球的实际应用。将其他半导体与TiO2 进行复合,可以利用两者之间的界面耦合效应,使光响应范围拓宽,而且能够抑制光生载流子的复合,提高光催化活性。目前已有关于TiO2复合空心球制备的专利报道。如公开号为CN101905153A的专利以碳球为模板制备了一种氧化锌和氧化钛复合空心球并将其应用于光降解阳离子蓝染料;公开号为CN101623644A的专利采用水热法、二步浸渍法和溶胶凝胶法制备硫化镉和氧化钛复合空心球并将其应用于光降解水制氢。TiO 2 is a photocatalyst and environmental catalyst with good thermal stability, strong oxidation ability, low cost and easy availability. TiO2 microspheres with a hollow structure are widely used in the field of photocatalysis due to their structural characteristics of low density, large specific surface area, good surface permeability, high light harvesting rate and the characteristics of TiO2 itself. However, TiO 2 can only absorb ultraviolet light with a wavelength of less than 387nm, which has a low utilization rate of solar energy. Moreover, the recombination rate of photogenerated carriers in TiO 2 is high, and the quantum efficiency is low, which limits the practical application of TiO 2 hollow microspheres. Combining other semiconductors with TiO 2 can take advantage of the interface coupling effect between the two to broaden the photoresponse range, and can inhibit the recombination of photogenerated carriers and improve photocatalytic activity. There have been patent reports on the preparation of TiO2 composite hollow spheres. For example, the patent with the publication number CN101905153A uses carbon spheres as a template to prepare a composite hollow sphere of zinc oxide and titanium oxide and applies it to photodegradable cationic blue dyes; the patent with the publication number CN101623644A uses hydrothermal method and two-step dipping method Composite hollow spheres of cadmium sulfide and titanium oxide were prepared by sol-gel method and applied to photodegradation of water for hydrogen production.
二氧化铈作为一种重要的稀土氧化物由于具有较高的储氧释氧和氧离子传导能力以及较强的氧化还原能力而被广泛应用于燃料电池、废水废气处理和光催化领域。然而,二氧化铈的优良储氧性能与其热阻抗、低温反应活性和结构稳定性有关,这些影响因素使二氧化铈不能满足高温应用的要求。将CeO2与TiO2进行复合通过钛与铈原子之间的相互作用和结构的调控能够改善CeO2的热稳定性、结构和电子特性。目前,已有文献报道了采用溶胶凝胶法、均相共沉淀法和溶剂热法制备CeO2与TiO2 纳米颗粒。(Chiara G, et al.Structural and spectroscopic characterization of CeO2–TiO2 mixed oxides[J].Journal of Materials Chemistry A,2013,1,10918-10926; Benjaram M R andAtaullah K. Structural Characterization of CeO2-TiO2and V2O5/CeO2-TiO2Catalysts by Raman and XPS Techniques[J]. The Journal of Chemical Physics B,2003,107,5162-5167; Chockalingam K and Paramasivan G. Solvothermal Synthesisof CeO2-TiO2 Nanocomposite for VisibleLight Photocatalytic Detoxification ofCyanide[J]. Sustainable Chemistry & Engineering,2013,1,1555-1563)。As an important rare earth oxide, ceria has been widely used in the fields of fuel cells, waste water and gas treatment, and photocatalysis due to its high oxygen storage and release, oxygen ion conductivity, and strong redox ability. However, the excellent oxygen storage performance of ceria is related to its thermal resistance, low-temperature reactivity, and structural stability, and these influencing factors make ceria unable to meet the requirements of high-temperature applications. Combining CeO 2 and TiO 2 can improve the thermal stability, structure and electronic properties of CeO 2 through the interaction between titanium and cerium atoms and the regulation of structure. At present, the literature has reported the preparation of CeO 2 and TiO 2 nanoparticles by sol-gel method, homogeneous co-precipitation method and solvothermal method. (Chiara G, et al.Structural and spectroscopic characterization of CeO 2 -TiO 2 mixed oxides[J].Journal of Materials Chemistry A,2013,1,10918-10926; Benjaram MR and Ataullah K. Structural Characterization of CeO 2 -TiO 2 and V 2 O 5 /CeO 2 -TiO 2 Catalysts by Raman and XPS Techniques[J]. The Journal of Chemical Physics B,2003,107,5162-5167; Chockalingam K and Paramasivan G. Solvothermal Synthesis of CeO 2 -TiO 2 Nanocomposite for VisibleLight Photocatalytic Detoxification of Cyanide [J]. Sustainable Chemistry & Engineering, 2013, 1, 1555-1563).
发明内容Contents of the invention
本发明的目的之一是提供一种CeO2/TiO2纳米复合空心球催化剂,兼具空心球状结构和普通CeO2/TiO2复合氧化物颗粒的特点,具有高热稳定性、高比表面积、优良的光捕获效率和储释氧能力。One of the objectives of the present invention is to provide a CeO 2 /TiO 2 nanocomposite hollow sphere catalyst, which has the characteristics of hollow spherical structure and ordinary CeO 2 /TiO 2 composite oxide particles, and has high thermal stability, high specific surface area, excellent Light harvesting efficiency and oxygen storage and release capacity.
本发明的目的之二是提供上述的一种CeO2/TiO2纳米复合空心球催化剂的制备方法。The second object of the present invention is to provide a method for preparing the aforementioned CeO 2 /TiO 2 nanocomposite hollow sphere catalyst.
本发明的技术原理Technical principle of the present invention
空心纳米颗粒作为一种特殊的纳米结构,是近年来化学和材料科学前沿的一个日益重要的研究领域,其明显特征在于具有较大的内部孔隙。空心微纳米结构具有许多独特性质如较大的比表面积、稳定性高、密度低、高折射率、良好的表面化学性质及渗透性而被广泛应用于微化学反应器、传感器以及催化材料等方面。Hollow nanoparticles, as a special kind of nanostructure, are an increasingly important research area at the frontiers of chemistry and materials science in recent years, which are clearly characterized by large internal pores. Hollow micro-nanostructures have many unique properties such as large specific surface area, high stability, low density, high refractive index, good surface chemical properties and permeability, and are widely used in microchemical reactors, sensors and catalytic materials. .
以聚苯乙烯球为模板制备出的CeO2/TiO2纳米复合空心球尺寸均一、分散性好且形貌可控。CeO2/TiO2纳米复合空心球不仅具有高热稳定性,且其较高的比表面积有利于改善氧化铈的储放性能。CeO 2 /TiO 2 nanocomposite hollow spheres prepared with polystyrene spheres as templates have uniform size, good dispersion and controllable morphology. CeO 2 /TiO 2 nanocomposite hollow spheres not only have high thermal stability, but also have a higher specific surface area, which is beneficial to improve the storage performance of cerium oxide.
本发明的技术方案Technical scheme of the present invention
一种CeO2/TiO2纳米复合空心球催化剂,即首先以聚苯乙烯为模板,以钛酸四丁酯和六水合硝酸铈为原料,通过溶胶-凝胶法和沉淀法相结合制备CeO2/TiO2包覆聚苯乙烯的复合微球,然后煅烧得到CeO2/TiO2纳米复合空心球催化剂;A CeO 2 /TiO 2 nanocomposite hollow sphere catalyst, that is, firstly using polystyrene as a template, using tetrabutyl titanate and cerium nitrate hexahydrate as raw materials, and preparing CeO 2 /TiO 2 by combining sol-gel method and precipitation method TiO 2 coated polystyrene composite microspheres, and then calcined to obtain CeO 2 /TiO 2 nanocomposite hollow sphere catalysts;
其中聚苯乙烯、钛酸四丁酯和六水合硝酸铈的用量,按聚苯乙烯:钛酸四丁酯:六水合硝酸铈为0.1-0.3g:0.2-8×10-3mol:1-6×10-3mol。Among them, the amount of polystyrene, tetrabutyl titanate and cerium nitrate hexahydrate is 0.1-0.3g:0.2-8×10 -3 mol:1- 6×10 -3 mol.
上述的CeO2/TiO2纳米复合空心球催化剂的制备方法,具体包括如下步骤:The above - mentioned CeO2/ TiO2 nanocomposite hollow sphere catalyst preparation method specifically includes the following steps:
(1)、将0.1-0.3g聚苯乙烯、0.5-2g去离子水、10-50μL浓氨水和20mL无水乙醇混合均匀后,控制温度为60-75℃、转速300-500r/min进行反应2-4h后,得反应液1;(1) After mixing 0.1-0.3g polystyrene, 0.5-2g deionized water, 10-50μL concentrated ammonia water and 20mL absolute ethanol, control the temperature at 60-75℃ and the speed of 300-500r/min for reaction After 2-4h, the reaction solution 1 was obtained;
所述聚苯乙烯球粒径约为200-500nm;The particle size of the polystyrene balls is about 200-500nm;
(2)、将0.2-8×10-3mol钛酸四丁酯溶于20mL无水乙醇,配制成浓度为0.01-0.40mol/L钛酸四正丁酯乙醇溶液;(2) Dissolve 0.2-8×10 -3 mol tetrabutyl titanate in 20 mL of absolute ethanol to prepare a 0.01-0.40 mol/L tetra-n-butyl titanate ethanol solution;
将浓度为0.01-0.40mol/L钛酸四正丁酯乙醇溶液在0.5-1h内加入步骤(1)所得反应液1中,控制温度为60-75℃、转速为300-500r/min进行反应2-4h,得到反应液2;Add the ethanol solution of tetra-n-butyl titanate with a concentration of 0.01-0.40mol/L into the reaction solution 1 obtained in step (1) within 0.5-1h, control the temperature at 60-75°C and the rotation speed at 300-500r/min for reaction 2-4h, to obtain the reaction solution 2;
(3)、将1-6×10-3mol六水合硝酸铈溶于20mL无水乙醇,配制成浓度为0.05-0.3mol/L硝酸铈乙醇溶液;(3) Dissolve 1-6×10 -3 mol of cerium nitrate hexahydrate in 20 mL of absolute ethanol to prepare a 0.05-0.3 mol/L cerium nitrate ethanol solution;
将浓度为0.05-0.3mol/L硝酸铈乙醇溶液在0.5-1h内加入步骤(2)所得反应液2中,控制温度为60-75℃、转速为300-500r/min进行反应2-4h,得到反应液3;Add the ethanol solution of cerium nitrate with a concentration of 0.05-0.3mol/L into the reaction solution 2 obtained in step (2) within 0.5-1h, control the temperature at 60-75°C, and carry out the reaction at 300-500r/min for 2-4h, Obtain reaction solution 3;
将所得的反应液3离心分离,所得沉淀物在60-80℃下干燥8-10 h得到淡黄色粉体;The obtained reaction solution 3 was centrifuged, and the obtained precipitate was dried at 60-80° C. for 8-10 h to obtain a light yellow powder;
将淡黄色粉体在500-800℃煅烧3-5h,自然冷却到室温即得CeO2/TiO2纳米复合空心球催化剂。The light yellow powder is calcined at 500-800°C for 3-5h, and naturally cooled to room temperature to obtain the CeO 2 /TiO 2 nanocomposite hollow sphere catalyst.
上述所得的CeO2/TiO2纳米复合空心球催化剂,其粒径尺寸均匀、分散性好、粒径为216nm-580nm,具有较好的光催化降解能力,特别是光催化降解罗丹明B。The CeO 2 /TiO 2 nanocomposite hollow sphere catalyst obtained above has a uniform particle size, good dispersion, and a particle size of 216nm-580nm, and has good photocatalytic degradation ability, especially photocatalytic degradation of Rhodamine B.
本发明的有益效果Beneficial effects of the present invention
本发明的一种CeO2/TiO2纳米复合空心球催化剂,兼具空心球状结构和普通CeO2/TiO2复合氧化物颗粒的特点,因此具有高热稳定性、高比表面积、优良的光捕获效率和储释氧能力,在催化、燃料电池和吸附材料领域具有潜在的应用前景。A CeO 2 /TiO 2 nanocomposite hollow sphere catalyst of the present invention has both the characteristics of a hollow spherical structure and ordinary CeO 2 /TiO 2 composite oxide particles, so it has high thermal stability, high specific surface area, and excellent light harvesting efficiency and oxygen storage and release capabilities, and has potential application prospects in the fields of catalysis, fuel cells and adsorption materials.
进一步,本发明的一种CeO2/TiO2纳米复合空心球催化剂的制备方法,由于其制备过程采用聚苯乙烯为模板,用有机溶剂使钛盐和铈盐溶解,利用静电吸附使纳米氧化钛和氧化铈沉积,煅烧除去模板得到CeO2/TiO2纳米复合空心球,因此本发明的制备方法具有制备过程简单,反应条件温和,并能有效控制CeO2/TiO2纳米复合空心球的微观形貌等特点,且最终所得CeO2/TiO2纳米复合空心球催化剂的尺寸均匀,分散性好。Further, the preparation method of a CeO 2 /TiO 2 nanocomposite hollow sphere catalyst of the present invention, because its preparation process adopts polystyrene as template, dissolves titanium salt and cerium salt with organic solvent, utilizes electrostatic adsorption to make nano-titanium oxide and cerium oxide deposition, calcining to remove the template to obtain CeO2/ TiO2 nanocomposite hollow spheres, so the preparation method of the present invention has simple preparation process, mild reaction conditions, and can effectively control the microscopic shape of CeO2 / TiO2 nanocomposite hollow spheres appearance and other characteristics, and the finally obtained CeO 2 /TiO 2 nanocomposite hollow sphere catalyst has uniform size and good dispersibility.
附图说明Description of drawings
图1、实施例5所得的CeO2/TiO2纳米复合空心球催化剂的TEM图;Fig. 1, the CeO of embodiment 5 gained CeO 2 / TiO TEM figure of nanocomposite hollow sphere catalyst;
图2、实施例5所得的CeO2/TiO2纳米复合空心球催化剂的SEM图;Fig. 2, the CeO of embodiment 5 gained CeO 2 / TiO The SEM figure of nanocomposite hollow sphere catalyst;
图3、实施例5所得的CeO2/TiO2纳米复合空心球催化剂对罗丹明B的光降解情况。Fig. 3 , photodegradation of rhodamine B by the CeO 2 /TiO 2 nanocomposite hollow sphere catalyst obtained in Example 5.
具体实施方式detailed description
下面通过实施例并结合附图对本发明进一步详细描述,但并不限制本发明。The present invention will be further described in detail below by means of embodiments and in conjunction with the accompanying drawings, but the present invention is not limited.
本发明的各实施例中所用的试剂如无特别说明,均为市售。The reagents used in the various examples of the present invention are commercially available unless otherwise specified.
聚苯乙烯球,浓度为2.5% w/v,阿拉丁试剂有限公司;钛酸四丁酯,六水合硝酸铈,无水乙醇,浓氨水均为分析纯级,来自国药化学试剂有限公司;Polystyrene balls, the concentration is 2.5% w/v, Aladdin Reagent Co., Ltd.; tetrabutyl titanate, cerium nitrate hexahydrate, absolute ethanol, concentrated ammonia water are of analytical grade, from Sinopharm Chemical Reagent Co., Ltd.;
现有技术的CeO2-TiO2复合氧化物根据文献(Chiara G, et al. Structural andspectroscopic characterization of CeO2–TiO2 mixed oxides[J]. Journal ofMaterials Chemistry A,2013,1,10918-10926)进行制备。The CeO 2 -TiO 2 composite oxides in the prior art are carried out according to the literature (Chiara G, et al. Structural and spectroscopic characterization of CeO 2 –TiO 2 mixed oxides[J]. Journal of Materials Chemistry A, 2013, 1, 10918-10926) preparation.
实施例1Example 1
一种CeO2/TiO2纳米复合空心球催化剂,即首先以聚苯乙烯为模板,以钛酸四丁酯和六水合硝酸铈为壁材原料,通过溶胶-凝胶法和沉淀法相结合制备CeO2/TiO2包覆聚苯乙烯的复合微球,然后煅烧得到CeO2/TiO2纳米复合空心微球催化剂;A CeO 2 /TiO 2 nanocomposite hollow sphere catalyst, that is, firstly using polystyrene as a template, using tetrabutyl titanate and cerium nitrate hexahydrate as wall materials, and preparing CeO by combining sol-gel method and precipitation method 2 /TiO 2 coated polystyrene composite microspheres, and then calcined to obtain CeO 2 /TiO 2 nanocomposite hollow microsphere catalysts;
其中聚苯乙烯、钛酸四丁酯和六水合硝酸铈的用量,按聚苯乙烯:钛酸四丁酯:六水合硝酸铈为0.1g:0.2×10-3mol:1×10-3mol。Among them, the amount of polystyrene, tetrabutyl titanate and cerium nitrate hexahydrate is 0.1g: 0.2×10 -3 mol: 1×10 -3 mol for polystyrene: tetrabutyl titanate: cerium nitrate hexahydrate .
上述的CeO2/TiO2纳米复合空心球催化剂的制备方法,具体包括如下步骤:The above - mentioned CeO2/ TiO2 nanocomposite hollow sphere catalyst preparation method specifically includes the following steps:
(1)、将0.1g聚苯乙烯、0.5g去离子水、50μL浓氨水和20mL无水乙醇混合均匀,然后控制温度为60℃,转速为300r/min进行反应2h后得到反应液1;(1) Mix 0.1g polystyrene, 0.5g deionized water, 50μL concentrated ammonia water and 20mL absolute ethanol evenly, then control the temperature at 60°C and the rotation speed at 300r/min for 2 hours to obtain the reaction solution 1;
所述聚苯乙烯球粒径约为200nm;The particle size of the polystyrene sphere is about 200nm;
(2)、将0.2×10-3mol钛酸四丁酯溶于20mL无水乙醇,配制成浓度为0.01mol/L钛酸四正丁酯乙醇溶液;(2) Dissolve 0.2×10 -3 mol tetrabutyl titanate in 20 mL of absolute ethanol to prepare a 0.01 mol/L tetra-n-butyl titanate ethanol solution;
将浓度为0.01mol/L钛酸四正丁酯乙醇溶液在0.5h内加入步骤(1)所得反应液1中,控制温度为60℃、转速为300r/min时进行反应2h,得到反应液2;Add the tetra-n-butyl titanate ethanol solution with a concentration of 0.01mol/L to the reaction solution 1 obtained in step (1) within 0.5h, and react for 2h at a temperature of 60°C and a rotation speed of 300r/min to obtain a reaction solution 2 ;
(3)、将1×10-3mol六水合硝酸铈溶于20mL无水乙醇,配制成浓度为0.05mol/L硝酸铈乙醇溶液;(3) Dissolve 1×10 -3 mol of cerium nitrate hexahydrate in 20 mL of absolute ethanol to prepare a 0.05 mol/L cerium nitrate ethanol solution;
将浓度为0.05mol/L硝酸铈乙醇溶液在0.5h内加入步骤(2)所得反应液2中,控制温度为60℃、转速为300r/min时进行反应2h,得到反应液3;Add the ethanol solution of cerium nitrate with a concentration of 0.05mol/L to the reaction solution 2 obtained in step (2) within 0.5h, and carry out the reaction for 2h at a controlled temperature of 60°C and a rotation speed of 300r/min to obtain the reaction solution 3;
将所得的反应液3离心分离,所得沉淀物在60℃下干燥8h得到淡黄色粉体;The obtained reaction solution 3 was centrifuged, and the obtained precipitate was dried at 60° C. for 8 hours to obtain a light yellow powder;
将淡黄色粉体在500℃煅烧3h,自然冷却到室温即得粒径为216nm的CeO2/TiO2纳米复合空心球催化剂。The light yellow powder was calcined at 500° C. for 3 hours, and cooled naturally to room temperature to obtain a CeO 2 /TiO 2 nanocomposite hollow sphere catalyst with a particle size of 216 nm.
实施例2Example 2
一种CeO2/TiO2纳米复合空心球催化剂,即首先以聚苯乙烯为模板,以钛酸四丁酯和六水合硝酸铈为壁材原料,通过溶胶-凝胶法和沉淀法相结合制备CeO2/TiO2包覆聚苯乙烯的复合微球,然后煅烧得到CeO2/TiO2纳米复合空心球催化剂;A CeO 2 /TiO 2 nanocomposite hollow sphere catalyst, that is, firstly using polystyrene as a template, using tetrabutyl titanate and cerium nitrate hexahydrate as wall materials, and preparing CeO by combining sol-gel method and precipitation method 2 /TiO 2 coated polystyrene composite microspheres, and then calcined to obtain CeO 2 /TiO 2 nanocomposite hollow sphere catalysts;
其中聚苯乙烯、钛酸四丁酯和六水合硝酸铈的用量,按聚苯乙烯:钛酸四丁酯:六水合硝酸铈为0.3g:8×10-3mol:4×10-3mol。Among them, the amount of polystyrene, tetrabutyl titanate and cerium nitrate hexahydrate is 0.3g: 8×10 -3 mol: 4×10 -3 mol for polystyrene: tetrabutyl titanate: cerium nitrate hexahydrate .
上述的CeO2/TiO2纳米复合空心球催化剂的制备方法,具体包括如下步骤:The above - mentioned CeO2/ TiO2 nanocomposite hollow sphere catalyst preparation method specifically includes the following steps:
(1)、将0.3g聚苯乙烯、2g去离子水、10μL浓氨水和20mL无水乙醇混合均匀,控制温度为70℃,转速为400r/min进行反应4h后,得到反应液1;(1) Mix 0.3g polystyrene, 2g deionized water, 10μL concentrated ammonia water and 20mL absolute ethanol evenly, control the temperature at 70°C, and react at a speed of 400r/min for 4 hours to obtain the reaction solution 1;
所述聚苯乙烯球粒径约为400nm;The particle size of the polystyrene sphere is about 400nm;
(2)、将8×10-3mol钛酸四丁酯溶于20mL无水乙醇,配制成浓度为0.40mol/L钛酸四正丁酯乙醇溶液;(2) Dissolve 8×10 -3 mol tetrabutyl titanate in 20 mL of absolute ethanol to prepare a 0.40 mol/L tetra-n-butyl titanate ethanol solution;
将浓度为0.40mol/L钛酸四正丁酯乙醇溶液在1h内加入步骤(1)所得反应液1中,控制温度为70℃、转速为400r/min时进行反应4h,得到反应液2;Add the tetra-n-butyl titanate ethanol solution with a concentration of 0.40 mol/L to the reaction solution 1 obtained in step (1) within 1 hour, and carry out the reaction for 4 hours at a controlled temperature of 70°C and a rotation speed of 400 r/min to obtain a reaction solution 2;
(3)、将4×10-3mol六水合硝酸铈溶于20mL无水乙醇,配制成浓度为0.2mol/L硝酸铈乙醇溶液;(3) Dissolve 4×10 -3 mol of cerium nitrate hexahydrate in 20 mL of absolute ethanol to prepare a 0.2 mol/L cerium nitrate ethanol solution;
将浓度为0.2mol/L硝酸铈乙醇溶液在1h内加入步骤(2)所得反应液2中,控制温度为70℃、转速为400r/min时进行反应4h,得到反应液3;Add the ethanol solution of cerium nitrate with a concentration of 0.2mol/L to the reaction solution 2 obtained in step (2) within 1 hour, and carry out the reaction for 4 hours at a controlled temperature of 70°C and a rotation speed of 400r/min to obtain the reaction solution 3;
将所得的反应液3离心分离,所得沉淀物在80℃下干燥9h得到淡黄色粉体;The obtained reaction solution 3 was centrifuged, and the obtained precipitate was dried at 80° C. for 9 hours to obtain a light yellow powder;
将淡黄色粉体在500℃煅烧5h,自然冷却到室温即得粒径为440nm的CeO2/TiO2纳米复合空心球催化剂。The pale yellow powder was calcined at 500° C. for 5 hours, and cooled naturally to room temperature to obtain a CeO 2 /TiO 2 nanocomposite hollow sphere catalyst with a particle size of 440 nm.
实施例3Example 3
一种CeO2/TiO2纳米复合空心球催化剂,即首先以聚苯乙烯为模板,以钛酸四丁酯和六水合硝酸铈为壁材原料,通过溶胶-凝胶法和沉淀法相结合制备CeO2/TiO2包覆聚苯乙烯的复合微球,然后煅烧得到CeO2/TiO2纳米复合空心球催化剂;A CeO 2 /TiO 2 nanocomposite hollow sphere catalyst, that is, firstly using polystyrene as a template, using tetrabutyl titanate and cerium nitrate hexahydrate as wall materials, and preparing CeO by combining sol-gel method and precipitation method 2 /TiO 2 coated polystyrene composite microspheres, and then calcined to obtain CeO 2 /TiO 2 nanocomposite hollow sphere catalysts;
其中聚苯乙烯、钛酸四丁酯和六水合硝酸铈的用量,按聚苯乙烯:钛酸四丁酯:六水合硝酸铈为0.2g: 4×10-3mol: 6×10-3mol。Among them, the amount of polystyrene, tetrabutyl titanate and cerium nitrate hexahydrate, according to polystyrene: tetrabutyl titanate: cerium nitrate hexahydrate is 0.2g: 4×10 -3 mol: 6×10 -3 mol .
上述的CeO2/TiO2纳米复合空心球催化剂的制备方法,具体包括如下步骤:The above - mentioned CeO2/ TiO2 nanocomposite hollow sphere catalyst preparation method specifically includes the following steps:
(1)、将0.2g聚苯乙烯、1g去离子水、30μL浓氨水和20mL无水乙醇混合均匀,控制温度为75℃,转速为500r/min进行反应3h后,得到反应液1;(1) Mix 0.2g polystyrene, 1g deionized water, 30μL concentrated ammonia water and 20mL absolute ethanol evenly, control the temperature at 75°C, and react at a speed of 500r/min for 3 hours to obtain the reaction solution 1;
所述聚苯乙烯球粒径约为500nm;The particle diameter of the polystyrene sphere is about 500nm;
(2)、将4×10-3mol钛酸四丁酯溶于20mL无水乙醇,配制成浓度为0.2mol/L钛酸四正丁酯乙醇溶液;(2) Dissolve 4×10 -3 mol tetrabutyl titanate in 20 mL of absolute ethanol to prepare a 0.2 mol/L tetra-n-butyl titanate ethanol solution;
将浓度为0.2mol/L钛酸四正丁酯乙醇溶液在0.8h内加入步骤(1)所得溶液1中,控制温度为75℃、转速为500r/min时进行反应3h,得到反应液2;Add the tetra-n-butyl titanate ethanol solution with a concentration of 0.2 mol/L into the solution 1 obtained in step (1) within 0.8 hours, and react for 3 hours at a controlled temperature of 75°C and a rotation speed of 500r/min to obtain a reaction solution 2;
(3)、将6×10-3mol六水合硝酸铈溶于20mL无水乙醇,配制成浓度为0.3mol/L硝酸铈乙醇溶液;(3) Dissolve 6×10 -3 mol of cerium nitrate hexahydrate in 20 mL of absolute ethanol to prepare a 0.3 mol/L cerium nitrate ethanol solution;
将浓度为0.3mol/L硝酸铈乙醇溶液在0.8h内加入步骤(2)所得溶液2中,控制温度为75℃、转速为500r/min时进行反应3h,得到反应液3;Add the ethanol solution of cerium nitrate with a concentration of 0.3mol/L to the solution 2 obtained in step (2) within 0.8h, and react for 3h at a temperature of 75°C and a rotation speed of 500r/min to obtain a reaction solution 3;
然后将所得的反应液3离心分离,所得沉淀物在70℃下干燥10 h得到淡黄色粉体;Then the obtained reaction solution 3 was centrifuged, and the obtained precipitate was dried at 70° C. for 10 h to obtain a light yellow powder;
然后将淡黄色粉体在800℃煅烧4h,自然冷却到室温即得粒径为580nm的CeO2/TiO2纳米复合空心球催化剂。Then the light yellow powder was calcined at 800° C. for 4 hours, and naturally cooled to room temperature to obtain a CeO 2 /TiO 2 nanocomposite hollow sphere catalyst with a particle size of 580 nm.
实施例4Example 4
一种CeO2/TiO2纳米复合空心球催化剂,即首先以聚苯乙烯为模板,以钛酸四丁酯和六水合硝酸铈为壁材原料,通过溶胶-凝胶法和沉淀法相结合制备CeO2/TiO2包覆聚苯乙烯的复合微球,然后煅烧得到CeO2/TiO2纳米复合空心球催化剂;A CeO 2 /TiO 2 nanocomposite hollow sphere catalyst, that is, firstly using polystyrene as a template, using tetrabutyl titanate and cerium nitrate hexahydrate as wall materials, and preparing CeO by combining sol-gel method and precipitation method 2 /TiO 2 coated polystyrene composite microspheres, and then calcined to obtain CeO 2 /TiO 2 nanocomposite hollow sphere catalysts;
其中聚苯乙烯、钛酸四丁酯和六水合硝酸铈的用量,按聚苯乙烯:钛酸四丁酯:六水合硝酸铈为0.3g: 2×10-3mol: 3×10-3mol。Among them, the amount of polystyrene, tetrabutyl titanate and cerium nitrate hexahydrate, according to polystyrene: tetrabutyl titanate: cerium nitrate hexahydrate is 0.3g: 2×10 -3 mol: 3×10 -3 mol .
上述的CeO2/TiO2纳米复合空心球催化剂的制备方法,具体包括如下步骤:The above - mentioned CeO2/ TiO2 nanocomposite hollow sphere catalyst preparation method specifically includes the following steps:
(1)、将0.3g聚苯乙烯、0.5g去离子水、40μL浓氨水和20mL无水乙醇混合均匀,控制温度为65℃,转速为400r/min进行反应2h后,得到反应液1;(1) Mix 0.3g polystyrene, 0.5g deionized water, 40μL concentrated ammonia water and 20mL absolute ethanol evenly, control the temperature at 65°C, and react at a speed of 400r/min for 2 hours to obtain the reaction solution 1;
所述聚苯乙烯球粒径约为300nm;The particle diameter of the polystyrene sphere is about 300nm;
(2)、将2×10-3mol钛酸四丁酯溶于20mL无水乙醇,配制成浓度为0.10mol/L钛酸四正丁酯乙醇溶液;(2) Dissolve 2×10 -3 mol tetrabutyl titanate in 20 mL of absolute ethanol to prepare a 0.10 mol/L tetra-n-butyl titanate ethanol solution;
将浓度为0.10mol/L钛酸四正丁酯乙醇溶液1h内加入步骤(1)所得溶液1中,控制温度为65℃、转速为400r/min时进行反应3h,得到反应液2;Add the tetra-n-butyl titanate ethanol solution with a concentration of 0.10 mol/L into the solution 1 obtained in step (1) within 1 hour, and react for 3 hours at a temperature of 65°C and a rotation speed of 400 r/min to obtain a reaction solution 2;
(3)、将3×10-3mol六水合硝酸铈溶于20mL无水乙醇,配制成浓度为0.15mol/L硝酸铈乙醇溶液;(3) Dissolve 3×10 -3 mol of cerium nitrate hexahydrate in 20 mL of absolute ethanol to prepare a 0.15 mol/L cerium nitrate ethanol solution;
将浓度为0.15mol/L硝酸铈乙醇溶液在1h内加入步骤(2)所得反应液2中,控制温度为65℃、转速为400r/min时进行反应2-4h,得到反应液3;Add the ethanol solution of cerium nitrate with a concentration of 0.15mol/L to the reaction solution 2 obtained in step (2) within 1 hour, and carry out the reaction at a temperature of 65°C and a rotation speed of 400r/min for 2-4 hours to obtain the reaction solution 3;
将所得的反应液3离心分离,所得沉淀物在70℃下干燥8 h得到淡黄色粉体;The obtained reaction solution 3 was centrifuged, and the obtained precipitate was dried at 70° C. for 8 h to obtain a light yellow powder;
将淡黄色粉体在600℃煅烧4h,自然冷却到室温即得粒径为326nm的CeO2/TiO2纳米复合空心球催化剂。The light yellow powder was calcined at 600° C. for 4 hours, and naturally cooled to room temperature to obtain a CeO 2 /TiO 2 nanocomposite hollow sphere catalyst with a particle size of 326 nm.
实施例5Example 5
一种CeO2-TiO2纳米复合空心球催化剂,即首先以聚苯乙烯为模板,以钛酸四丁酯和六水合硝酸铈为壁材原料,通过溶胶-凝胶法和沉淀法相结合制备CeO2/TiO2包覆聚苯乙烯的复合微球,然后煅烧得到CeO2/TiO2纳米复合空心球催化剂;A CeO 2 -TiO 2 nanocomposite hollow sphere catalyst, that is, firstly using polystyrene as a template, using tetrabutyl titanate and cerium nitrate hexahydrate as wall materials, and preparing CeO by combining sol-gel method and precipitation method 2 /TiO 2 coated polystyrene composite microspheres, and then calcined to obtain CeO 2 /TiO 2 nanocomposite hollow sphere catalysts;
其中聚苯乙烯、钛酸四丁酯和六水合硝酸铈的用量,按聚苯乙烯:钛酸四丁酯:六水合硝酸铈为0.2g:1×10-3mol:1×10-3mol。Among them, the amount of polystyrene, tetrabutyl titanate and cerium nitrate hexahydrate is 0.2g: 1×10 -3 mol: 1×10 -3 mol for polystyrene: tetrabutyl titanate: cerium nitrate hexahydrate .
上述的CeO2/TiO2纳米复合空心球催化剂的制备方法,具体包括如下步骤:The above - mentioned CeO2/ TiO2 nanocomposite hollow sphere catalyst preparation method specifically includes the following steps:
(1)、将0.2g聚苯乙烯、1g去离子水、40μL浓氨水和20mL无水乙醇混合均匀,控制温度为60℃,转速为300r/min进行反应2h后,得到反应液1;(1) Mix 0.2g polystyrene, 1g deionized water, 40μL concentrated ammonia water and 20mL absolute ethanol evenly, control the temperature at 60°C, and react at a speed of 300r/min for 2 hours to obtain reaction solution 1;
所述聚苯乙烯球粒径约为200nm;The particle size of the polystyrene sphere is about 200nm;
(2)、将1×10-3mol钛酸四丁酯溶于20mL无水乙醇,配制成浓度为0.05mol/L钛酸四正丁酯乙醇溶液;(2) Dissolve 1×10 -3 mol tetrabutyl titanate in 20 mL of absolute ethanol to prepare a 0.05 mol/L tetra-n-butyl titanate ethanol solution;
将浓度为0.05mol/L钛酸四正丁酯乙醇溶液在1h内加入步骤(1)所得反应液1中,控制温度为60℃、转速为300r/min时进行反应4h,得到反应液2;Add the tetra-n-butyl titanate ethanol solution with a concentration of 0.05 mol/L into the reaction solution 1 obtained in step (1) within 1 hour, and carry out the reaction for 4 hours at a controlled temperature of 60°C and a rotation speed of 300 r/min to obtain a reaction solution 2;
(3)、将1×10-3mol六水合硝酸铈溶于20mL无水乙醇,配制成浓度为0.05mol/L硝酸铈乙醇溶液;(3) Dissolve 1×10 -3 mol of cerium nitrate hexahydrate in 20 mL of absolute ethanol to prepare a 0.05 mol/L cerium nitrate ethanol solution;
将浓度为0.05mol/L硝酸铈乙醇溶液在1h内加入步骤(2)所得溶液2中,控制温度为60℃、转速为300r/min时进行反应2h,得到反应液3;Add the ethanol solution of cerium nitrate with a concentration of 0.05mol/L to the solution 2 obtained in step (2) within 1 hour, and carry out the reaction for 2 hours at a controlled temperature of 60°C and a rotational speed of 300r/min to obtain the reaction solution 3;
将所得的反应液3离心分离,所得沉淀物在60℃下干燥9h得到淡黄色粉体;The obtained reaction solution 3 was centrifuged, and the obtained precipitate was dried at 60° C. for 9 hours to obtain a light yellow powder;
将淡黄色粉体在500℃煅烧3h,自然冷却到室温即得粒径为220nm的CeO2/TiO2纳米复合空心球催化剂。The pale yellow powder was calcined at 500° C. for 3 hours, and cooled naturally to room temperature to obtain a CeO 2 /TiO 2 nanocomposite hollow sphere catalyst with a particle size of 220 nm.
采用透射电镜仪器(Hitachi H-600,日立高新技术公司)对上述所得的CeO2/TiO2纳米复合空心球进行测试,所得的TEM图如图1所示,从图1中可以看出CeO2/TiO2纳米复合空心球粒径为220nm。The CeO 2 / TiO 2 nanocomposite hollow spheres obtained above were tested with a transmission electron microscope (Hitachi H-600, Hitachi High-Tech Co., Ltd.). /TiO 2 nanocomposite hollow spheres with a particle size of 220nm.
采用扫描电镜仪器(Hitachi S-3400N,日立高新技术公司)对上述所得的CeO2/TiO2纳米复合空心球进行测试,所得的SEM图如图2所示,从图2中可以看出本发明所得产物的是空心球结构,即其结构与现有技术的CeO2-TiO2复合氧化物的结构不同。Adopt scanning electron microscope instrument (Hitachi S-3400N, Hitachi high-tech company) to test the CeO 2 /TiO 2 nanocomposite hollow spheres obtained above, the SEM figure of gained is shown in Figure 2, can find out the present invention from Figure 2 The obtained product has a hollow spherical structure, that is, its structure is different from that of the CeO 2 -TiO 2 composite oxide in the prior art.
应用实施例1Application Example 1
取25mL浓度为20mg/L罗丹明B溶液置于50ml石英套管中,向石英套管中加入20mg实施例5所得的CeO2/TiO2复合空心球催化剂,采用SB-5200超声波清洗机,300W超声5min。Get 25mL concentration and be that 20mg/L Rhodamine B solution is placed in the 50ml quartz sleeve, add 20mg embodiment 5 CeO in the quartz sleeve Ultrasound for 5min.
另取25mL浓度为20mg/L罗丹明B溶液置于50ml石英套管中,不加入CeO2/TiO2复合空心球,做空白实验。Take another 25mL rhodamine B solution with a concentration of 20mg/L and place it in a 50ml quartz sleeve without adding CeO 2 /TiO 2 composite hollow spheres to do a blank experiment.
另取25mL浓度为20mg/L罗丹明B溶液置于50ml石英套管中,加入现有技术的CeO2-TiO2复合氧化物,做对照实验。Another 25mL rhodamine B solution with a concentration of 20mg/L was placed in a 50ml quartz tube, and the CeO 2 -TiO 2 composite oxide of the prior art was added for a control experiment.
将石英套管置于BL-GHX光化学反应仪中,黑暗中吸附30min后,取样5ml。吸附完毕后,在600W紫外光源下光降解反应60min,每10min取样5ml。Place the quartz sleeve in the BL-GHX photochemical reaction instrument, absorb in the dark for 30min, and take 5ml of the sample. After the adsorption is completed, the photodegradation reaction is carried out under a 600W ultraviolet light source for 60 minutes, and 5ml of samples are taken every 10 minutes.
将所取样品10000r/min离心5min后取上层清液,采用UV-2100紫外分光光度计测试吸光度。CeO2/TiO2纳米复合空心球催化剂和现有技术的CeO2-TiO2复合氧化物的光催化活性如图3所示,图3中复合空心球为CeO2/TiO2纳米复合空心球催化剂,复合粉体为根据文献(Chiara G, et al. Structural and spectroscopic characterization of CeO2–TiO2mixed oxides[J]. Journal of Materials Chemistry A,2013,1,10918-10926)进行制备的现有技术的CeO2-TiO2复合氧化物。从图3中可以看出本发明制备的CeO2/TiO2纳米复合空心球具有较强的光降解罗丹明B的能力。After centrifuging the sample at 10000r/min for 5min, the supernatant was taken, and the absorbance was measured with a UV-2100 ultraviolet spectrophotometer. The photocatalytic activity of the CeO 2 /TiO 2 nanocomposite hollow sphere catalyst and the CeO 2 -TiO 2 composite oxide of the prior art is shown in Figure 3, and the composite hollow sphere in Figure 3 is the CeO 2 /TiO 2 nanocomposite hollow sphere catalyst , the composite powder is an existing technology prepared according to the literature (Chiara G, et al. Structural and spectroscopic characterization of CeO 2 –TiO 2 mixed oxides[J]. Journal of Materials Chemistry A, 2013, 1, 10918-10926) CeO 2 -TiO 2 composite oxide. It can be seen from Fig. 3 that the CeO 2 /TiO 2 nanocomposite hollow spheres prepared by the present invention have a strong ability to photodegrade rhodamine B.
综上所述,本发明的一种CeO2/TiO2纳米复合空心球催化剂粒径均匀,平均粒径为216nm-580nm,空腔明显,在600W紫外光源下60min内,本发明的CeO2/TiO2纳米复合空心球催化剂对20mg/L罗丹明B溶液的光降解效率为30%,而现有技术的CeO2-TiO2复合氧化物对20mg/L罗丹明B溶液的光降解效率为20%,即本发明的一种CeO2/TiO2复合空心球催化剂,由于其是空心结构,比CeO2-TiO2复合氧化物的实心结构对罗丹明B的降解能力提高了10%。In summary, a CeO 2 /TiO 2 nanocomposite hollow sphere catalyst of the present invention has a uniform particle size, an average particle size of 216nm-580nm, and obvious cavities. Within 60 minutes under a 600W ultraviolet light source, the CeO 2 / The photodegradation efficiency of TiO 2 nanocomposite hollow sphere catalyst to 20mg/L rhodamine B solution is 30%, while the photodegradation efficiency of CeO 2 -TiO 2 composite oxide in the prior art to 20mg/L rhodamine B solution is 20%. %, that is, a CeO 2 /TiO 2 composite hollow sphere catalyst of the present invention, due to its hollow structure, has a 10% improvement in the degradation ability of rhodamine B compared with the solid structure of CeO 2 -TiO 2 composite oxide.
以上所述内容仅为本发明构思下的基本说明,而依据本发明的技术方案所作的任何等效变换,均应属于本发明的保护范围。The above content is only a basic description of the concept of the present invention, and any equivalent transformation made according to the technical solution of the present invention shall fall within the scope of protection of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410203860.5A CN104001491B (en) | 2014-05-15 | 2014-05-15 | A kind of CeO2/TiO2 nanocomposite hollow sphere catalyst and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410203860.5A CN104001491B (en) | 2014-05-15 | 2014-05-15 | A kind of CeO2/TiO2 nanocomposite hollow sphere catalyst and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104001491A CN104001491A (en) | 2014-08-27 |
CN104001491B true CN104001491B (en) | 2016-12-07 |
Family
ID=51362567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410203860.5A Expired - Fee Related CN104001491B (en) | 2014-05-15 | 2014-05-15 | A kind of CeO2/TiO2 nanocomposite hollow sphere catalyst and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104001491B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105642332B (en) * | 2016-03-15 | 2018-09-21 | 辽宁大学 | A kind of g-C3N4/TiO2Composite photo-catalyst and preparation method thereof |
CN105869897B (en) * | 2016-06-29 | 2017-12-08 | 扬州大学 | A kind of hollow material CeO2@TiO2Preparation method and applications |
CN107159182A (en) * | 2017-05-31 | 2017-09-15 | 中盐金坛盐化有限责任公司 | A kind of preparation method of hollow microsphere SCR denitration |
CN112295515B (en) * | 2020-11-30 | 2022-03-25 | 江南大学 | Preparation method of zinc oxide/cerium oxide hollow microspheres with inverted blueberry-shaped structures |
CN116747154B (en) * | 2023-08-15 | 2023-10-17 | 广东碧茜生物科技有限公司 | A cerium oxide-based sunscreen material that can resist blue light and its preparation method |
-
2014
- 2014-05-15 CN CN201410203860.5A patent/CN104001491B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN104001491A (en) | 2014-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101791565B (en) | A TiO2@Graphite Phase Carbon Nitride Heterojunction Composite Photocatalyst and Its Preparation Method | |
Ren et al. | Amphiphilic block copolymer templated synthesis of mesoporous indium oxides with nanosheet-assembled pore walls | |
CN104001491B (en) | A kind of CeO2/TiO2 nanocomposite hollow sphere catalyst and preparation method thereof | |
CN103172030B (en) | Oxide powder and preparation method thereof as well as catalyst and carrier thereof | |
CN102795661B (en) | A kind of preparation method of graded flower-shaped ZnIn2S4 ternary compound | |
CN100406117C (en) | A kind of magnetic photocatalyst and preparation method thereof | |
CN105879884B (en) | One-dimensional ZnS/CdS-C nanocomposites and preparation method thereof | |
CN105214656A (en) | Gold nano cluster-golden nanometer particle-titanium dioxide composite photocatalyst and application | |
CN103480395B (en) | Preparation and application of a core-shell structure bismuth sulfide@bismuth oxide composite microsphere | |
CN102527381A (en) | Preparation method of nano-sized gold/ titanium dioxide compound mesoporous microspheric photocatalyst | |
CN110433841B (en) | Preparation method of Ag-Pt bimetallic supported carbon nitride nanosheet composite photocatalyst containing nitrogen vacancies | |
CN106693996B (en) | Preparation method and application of bismuth sulfide-bismuth ferrite composite visible-light-driven photocatalyst | |
Hongfei et al. | Porous TiO2-coated magnetic core-shell nanocomposites: preparation and enhanced photocatalytic activity | |
CN106807404B (en) | Preparation method and application of non-precious metal-based carbon-coated nickel sulfide photocatalyst | |
CN105521783A (en) | Biomass carbon base and copper and/or cuprous oxide hybrid material, and preparation method thereof | |
CN109731583A (en) | A two-step method for preparing Zn0.2Cd0.8S/rGO composites | |
CN111644169B (en) | Metal composite modified nano zirconia catalyst and its preparation method and application | |
CN104860351B (en) | A kind of micro/meso porous tetravalent metal oxide and preparation method thereof | |
Rana et al. | A Facile Synthetic Approach for TiO2@ NiO Core‐shell Nanoparticles using TiO2@ Ni (OH) 2 Precursors and their Photocatalytic Application | |
CN111054419B (en) | For CO 2 Reduced semiconductor/g-C 3 N 4 Photocatalyst and preparation method thereof | |
Cao et al. | Special sea urchin-like CdS/g-C3N4 photocatalyst with high specific surface area and efficient charge separation | |
CN106311240B (en) | A kind of preparation method of spherical shape hierarchical organization cobalt titanate-titanium dioxide composite nano material | |
CN105056965B (en) | Biological carbon sphere loaded ferrous molybdate Fenton catalyst, preparation method and application | |
Meng et al. | Photocatalytic and magnetic properties of loosened ceria hollow microspheres synthesized by a single-step hydrothermal method | |
CN103626226A (en) | Method for preparing hollow nano titanium dioxide without template |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20161207 Termination date: 20190515 |
|
CF01 | Termination of patent right due to non-payment of annual fee |