CN111644169B - Metal composite modified nano zirconia catalyst and its preparation method and application - Google Patents
Metal composite modified nano zirconia catalyst and its preparation method and application Download PDFInfo
- Publication number
- CN111644169B CN111644169B CN202010554036.XA CN202010554036A CN111644169B CN 111644169 B CN111644169 B CN 111644169B CN 202010554036 A CN202010554036 A CN 202010554036A CN 111644169 B CN111644169 B CN 111644169B
- Authority
- CN
- China
- Prior art keywords
- zro
- solution
- catalyst
- preparation
- metal composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 title claims abstract description 85
- 239000003054 catalyst Substances 0.000 title claims abstract description 58
- 239000002905 metal composite material Substances 0.000 title claims abstract description 31
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 239000000243 solution Substances 0.000 claims abstract description 39
- 238000006243 chemical reaction Methods 0.000 claims abstract description 32
- 150000003754 zirconium Chemical class 0.000 claims abstract description 32
- 238000000227 grinding Methods 0.000 claims abstract description 22
- 239000002270 dispersing agent Substances 0.000 claims abstract description 21
- 239000012266 salt solution Substances 0.000 claims abstract description 21
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 20
- 239000011858 nanopowder Substances 0.000 claims abstract description 20
- 239000011259 mixed solution Substances 0.000 claims abstract description 19
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000002243 precursor Substances 0.000 claims abstract description 18
- 238000001354 calcination Methods 0.000 claims abstract description 15
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 12
- 239000004094 surface-active agent Substances 0.000 claims abstract description 12
- 239000003513 alkali Substances 0.000 claims abstract description 9
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 9
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 9
- 238000002156 mixing Methods 0.000 claims abstract description 4
- 239000000843 powder Substances 0.000 claims description 35
- 238000003756 stirring Methods 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 16
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 12
- 239000004202 carbamide Substances 0.000 claims description 12
- 238000005984 hydrogenation reaction Methods 0.000 claims description 12
- WXKDNDQLOWPOBY-UHFFFAOYSA-N zirconium(4+);tetranitrate;pentahydrate Chemical compound O.O.O.O.O.[Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O WXKDNDQLOWPOBY-UHFFFAOYSA-N 0.000 claims description 11
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 9
- 229910021641 deionized water Inorganic materials 0.000 claims description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000012298 atmosphere Substances 0.000 claims description 7
- 229940057847 polyethylene glycol 600 Drugs 0.000 claims description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 6
- 230000003197 catalytic effect Effects 0.000 claims description 6
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 5
- 239000002904 solvent Substances 0.000 claims description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 4
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 claims description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 3
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 3
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 claims description 3
- ZFQCFWRSIBGRFL-UHFFFAOYSA-B 2-hydroxypropane-1,2,3-tricarboxylate;zirconium(4+) Chemical compound [Zr+4].[Zr+4].[Zr+4].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O.[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O ZFQCFWRSIBGRFL-UHFFFAOYSA-B 0.000 claims description 2
- DUFCMRCMPHIFTR-UHFFFAOYSA-N 5-(dimethylsulfamoyl)-2-methylfuran-3-carboxylic acid Chemical compound CN(C)S(=O)(=O)C1=CC(C(O)=O)=C(C)O1 DUFCMRCMPHIFTR-UHFFFAOYSA-N 0.000 claims description 2
- 239000001361 adipic acid Substances 0.000 claims description 2
- 235000011037 adipic acid Nutrition 0.000 claims description 2
- 239000012670 alkaline solution Substances 0.000 claims description 2
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 claims description 2
- 235000006408 oxalic acid Nutrition 0.000 claims description 2
- XPGAWFIWCWKDDL-UHFFFAOYSA-N propan-1-olate;zirconium(4+) Chemical compound [Zr+4].CCC[O-].CCC[O-].CCC[O-].CCC[O-] XPGAWFIWCWKDDL-UHFFFAOYSA-N 0.000 claims description 2
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 claims description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims 1
- 239000007789 gas Substances 0.000 abstract description 10
- 230000015572 biosynthetic process Effects 0.000 abstract description 9
- 238000003786 synthesis reaction Methods 0.000 abstract description 9
- 239000002994 raw material Substances 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 4
- 239000001301 oxygen Substances 0.000 abstract description 4
- 229910052760 oxygen Inorganic materials 0.000 abstract description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 abstract description 3
- 238000011031 large-scale manufacturing process Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 28
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 23
- 229910002091 carbon monoxide Inorganic materials 0.000 description 23
- 239000000047 product Substances 0.000 description 18
- 238000001035 drying Methods 0.000 description 13
- 239000002245 particle Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- 150000001336 alkenes Chemical class 0.000 description 6
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 6
- 239000003245 coal Substances 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 4
- -1 ethylene, propylene Chemical group 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 239000012265 solid product Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- RBNPOMFGQQGHHO-UHFFFAOYSA-N -2,3-Dihydroxypropanoic acid Natural products OCC(O)C(O)=O RBNPOMFGQQGHHO-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- RBNPOMFGQQGHHO-UWTATZPHSA-N D-glyceric acid Chemical compound OC[C@@H](O)C(O)=O RBNPOMFGQQGHHO-UWTATZPHSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000001808 coupling effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 229910001928 zirconium oxide Inorganic materials 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 239000008240 homogeneous mixture Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 229960005137 succinic acid Drugs 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910001341 Crude steel Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910016287 MxOy Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 230000035425 carbon utilization Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013064 chemical raw material Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- GRVDJDISBSALJP-UHFFFAOYSA-N methyloxidanyl Chemical group [O]C GRVDJDISBSALJP-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- CIBMHJPPKCXONB-UHFFFAOYSA-N propane-2,2-diol Chemical compound CC(C)(O)O CIBMHJPPKCXONB-UHFFFAOYSA-N 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000001384 succinic acid Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/06—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/08—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/10—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0027—Powdering
- B01J37/0036—Grinding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
- C07C1/0425—Catalysts; their physical properties
- C07C1/043—Catalysts; their physical properties characterised by the composition
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
- C07C1/0425—Catalysts; their physical properties
- C07C1/0445—Preparation; Activation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
- C10G2/33—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Catalysts (AREA)
Abstract
Description
技术领域technical field
本发明属于合成气化工及催化剂制备技术领域,具体涉及一种金属复合改性纳米氧化锆催化剂及其制备方法和应用。The invention belongs to the technical field of synthesis gas chemical industry and catalyst preparation, and in particular relates to a metal composite modified nano-zirconia catalyst and its preparation method and application.
背景技术Background technique
低碳烯烃是指乙烯、丙烯和丁烯,是合成塑料、纤维和各类化工材料的关键中间体,是一种非常重要的基础有机化工原料,是现代化工领域的基石。近年来,随着国民经济的快速增长,石油及石化产品的需求快速增加,石油资源不足使低碳烯烃的供需矛盾逐渐突出,严重制约着我国石化工业与石化产品的健康稳定发展。Low-carbon olefins refer to ethylene, propylene and butene, which are key intermediates for synthetic plastics, fibers and various chemical materials. They are a very important basic organic chemical raw material and the cornerstone of the modern chemical industry. In recent years, with the rapid growth of the national economy, the demand for petroleum and petrochemical products has increased rapidly. Insufficient petroleum resources have gradually highlighted the contradiction between supply and demand of low-carbon olefins, seriously restricting the healthy and stable development of my country's petrochemical industry and petrochemical products.
“富煤、贫油、少气”是我国能源特点,我国煤储量丰富,它不仅能够满足全国74%的电力、8亿吨粗钢、24亿吨水泥、0.7亿吨合成氨的需要,还可以通过煤生产油、烯烃、甲醇、乙二醇等化工原料。合成气主要由一氧化碳(CO)和氢气(H2)组成,是化工合成的原料气,可由煤、石油、天然气、焦炉煤气和生物质等含碳资源转化而来。然而,随着石油价格的不断上涨,科学家提出了C1化学的概念,自此之后合成气的利用研究引起了各国研究者极大关注。因此,发展新型煤化工技术,以合成气为主要枢纽的低碳烯烃制备技术是非石油资源制备低碳烯烃切实可行路线。"Rich in coal, poor in oil, and low in gas" is the characteristic of my country's energy resources. my country's abundant coal reserves can not only meet the needs of 74% of the country's electricity, 800 million tons of crude steel, 2.4 billion tons of cement, and 70 million tons of synthetic ammonia. Coal is used to produce oil, olefins, methanol, ethylene glycol and other chemical raw materials. Synthesis gas is mainly composed of carbon monoxide (CO) and hydrogen (H 2 ). It is a raw material gas for chemical synthesis and can be converted from carbon-containing resources such as coal, oil, natural gas, coke oven gas and biomass. However, with the continuous rise of oil prices, scientists proposed the concept of C1 chemistry. Since then, the research on the utilization of syngas has attracted great attention from researchers from all over the world. Therefore, the development of new coal chemical technology and the production technology of low-carbon olefins with syngas as the main hub are feasible routes for the production of low-carbon olefins from non-petroleum resources.
合成气制备低碳烯烃最受关注的主要是以下2条路线:(1)通过费托合成过程(FTS)将合成气直接转化为低碳烯烃;(2)利用氧化物-分子筛双功能催化剂(XO-ZEO)制备低碳烯烃。如在费托合成中,虽CO的转化率很高,但产物分布受ASF分布限制,低碳烯烃选择性最高只能达到60%,催化剂受逆水煤气反应影响严重,CO2选择性较高,催化剂碳利用率很低,催化剂活性组分易流失。双功能催化路线制低碳烯烃还需要关注以下几个方面:对分子筛的孔道结构进行优化调整,提高其热稳定性并抑制积碳发生;两种活性组分具有的“热耦合效应”和“产物转化耦合效应”,使两种活性组分通过合适的匹配,有效调控产物分布;构建一个传质传热性能良好的微区环境,使中间体和产物快速有效的转移,防止低碳烯烃的二次加氢反应。The most concerned about the production of low-carbon olefins from syngas are the following two routes: (1) direct conversion of syngas to low-carbon olefins through Fischer-Tropsch synthesis (FTS); (2) the use of oxide-molecular sieve dual-functional catalysts ( XO-ZEO) to prepare light olefins. For example, in Fischer-Tropsch synthesis, although the conversion rate of CO is very high, the distribution of products is limited by the distribution of ASF, and the selectivity of light olefins can only reach 60%. The carbon utilization rate of the catalyst is very low, and the active components of the catalyst are easily lost. The following aspects need to be paid attention to in the production of low-carbon olefins by the dual-functional catalytic route: optimize and adjust the pore structure of the molecular sieve, improve its thermal stability and inhibit the occurrence of carbon deposition; the "thermal coupling effect" and "thermal coupling effect" of the two active components Product conversion coupling effect", so that the two active components can be properly matched to effectively control the product distribution; build a micro-zone environment with good mass and heat transfer performance, so that intermediates and products can be transferred quickly and effectively, and prevent the formation of low-carbon olefins secondary hydrogenation reaction.
ZrO2本身具有多种化学和物理性质,表面同时具有酸性、碱性、氧化性和还原性,又是p型半导体,易于产生氧空穴。ZrO2作为催化剂活性组分、催化剂载体或助剂在催化体系中被广泛应用。由Pichler首先提出了异构合成的概念,研究发现氧化锆可直接将合成气转化为异丁烯和异丁烷(Pichler H,Ziesecke KH.Isosynthesis by reduced oxidecatalysts[J].Brennst Chem,1949,30:13-80.)。徐龙伢(申请号:CN 92109866.9)公开了一种用于CO加氢制低碳烯烃的铁锰催化剂的制备方法,MgO担载时CO转化率为83.4%,低碳烯烃选择性为62.1%,虽然CO转化率很高,但低碳烯烃选择性较低。 ZrO2 itself has a variety of chemical and physical properties, and its surface is acidic, basic, oxidizing, and reducing at the same time. It is also a p-type semiconductor, and it is easy to generate oxygen holes. ZrO 2 is widely used in catalytic systems as a catalyst active component, catalyst support or assistant. The concept of isomerization synthesis was first proposed by Pichler, and it was found that zirconia can directly convert synthesis gas into isobutene and isobutane (Pichler H, Ziesecke KH. Isosynthesis by reduced oxidecatalysts[J]. Brennst Chem,1949,30:13 -80.). Xu Longya (application number: CN 92109866.9) discloses a method for preparing an iron-manganese catalyst for CO hydrogenation to produce low-carbon olefins. When MgO is loaded, the conversion rate of CO is 83.4%, and the selectivity of low-carbon olefins is 62.1%. Although The conversion of CO is high, but the selectivity of light olefins is low.
发明内容Contents of the invention
针对上述现有技术存在的问题或缺陷,本发明的目的在于提供一种金属复合改性纳米氧化锆催化剂及其制备方法和应用。In view of the problems or defects in the above-mentioned prior art, the object of the present invention is to provide a metal composite modified nano-zirconia catalyst and its preparation method and application.
为了实现本发明的上述其中一个目的,本发明采用的技术方案如下:In order to realize one of the above-mentioned purposes of the present invention, the technical scheme adopted in the present invention is as follows:
一种金属复合改性纳米氧化锆催化剂的制备方法,所述方法具体包括如下步骤:A method for preparing a metal composite modified nano-zirconia catalyst, the method specifically includes the following steps:
(1)按配比将可溶性锆盐溶液、碱溶液、表面活性剂混合,搅拌均匀,得到混合液1;然后向所述混合液1中加入双氧水,继续搅拌均匀,得到混合液2;再将所述混合液2转移至水热反应釜中,密封,将所述反应釜升温至150~200℃恒温水热反应10~30h,反应结束后,冷却至室温,将所得产物离心、洗涤,干燥,得到ZrO2前驱体;(1) Mix soluble zirconium salt solution, alkali solution, and surfactant according to the proportioning ratio, and stir evenly to obtain a mixed solution 1; then add hydrogen peroxide to the mixed solution 1, and continue to stir evenly to obtain a mixed solution 2; The mixed solution 2 is transferred to a hydrothermal reaction kettle, sealed, and the reaction kettle is heated to 150-200° C. for constant temperature hydrothermal reaction for 10-30 hours. After the reaction is completed, it is cooled to room temperature, and the obtained product is centrifuged, washed, and dried. Obtain ZrO 2 precursor;
(2)将步骤(1)所述ZrO2前驱体置于马弗炉中,并在空气氛围下升温至300~700℃恒温煅烧3~8h,煅烧结束后,得到白色ZrO2粉末;(2) Place the ZrO 2 precursor described in step (1) in a muffle furnace, and heat it up to 300-700°C for 3-8 hours in an air atmosphere, and then calcinate at a constant temperature for 3-8 hours. After the calcination, white ZrO 2 powder is obtained;
(3)将步骤(2)所述白色ZrO2粉末与适量研磨助剂混合,研磨10~40min,得到ZrO2纳米粉末;(3) the white ZrO powder described in step (2) is mixed with an appropriate amount of grinding aid, and ground for 10 to 40 min to obtain ZrO nano powder;
(4)按配比将步骤(3)所述ZrO2纳米粉末与金属氧化物MxOy混合,将所得混合物研磨10~40min,得到所述的金属复合改性纳米氧化锆催化剂。(4) Mixing the ZrO 2 nano powder and the metal oxide M x O y in the step (3) according to the proportioning ratio, and grinding the obtained mixture for 10-40 min to obtain the metal composite modified nano-zirconia catalyst.
进一步地,上述技术方案,步骤(1)中所述可溶性锆盐溶液中,溶质为可溶性锆盐,溶剂为去离子水、乙醇、丙酮等中的任意一种;其中:所述可溶性锆盐为五水合硝酸锆(Zr(NO3)4·5H2O)、硝酸氧锆、氯化锆、醋酸锆、柠檬酸锆、正丙醇锆等中任意一种。Further, in the above technical scheme, in the soluble zirconium salt solution described in step (1), the solute is a soluble zirconium salt, and the solvent is any one of deionized water, ethanol, acetone, etc.; wherein: the soluble zirconium salt is Any one of zirconium nitrate pentahydrate (Zr(NO 3 ) 4 ·5H 2 O), zirconyl nitrate, zirconium chloride, zirconium acetate, zirconium citrate, zirconium n-propoxide, and the like.
优选地,上述技术方案,步骤(1)中所述可溶性锆盐为五水合硝酸锆。Preferably, in the above technical solution, the soluble zirconium salt described in step (1) is zirconium nitrate pentahydrate.
进一步地,上述技术方案,步骤(1)中所述可溶性锆盐溶液中,可溶性锆盐与溶剂的用量比为(15~30)g:(50~120)mL。Further, in the above technical solution, in the soluble zirconium salt solution described in step (1), the dosage ratio of the soluble zirconium salt to the solvent is (15-30) g: (50-120) mL.
优选地,上述技术方案,步骤(1)中所述可溶性锆盐溶液中,可溶性锆盐与溶剂的用量比为(15~30)g:(70~90)mL。Preferably, in the above technical solution, in the soluble zirconium salt solution described in step (1), the dosage ratio of the soluble zirconium salt to the solvent is (15-30) g: (70-90) mL.
进一步地,上述技术方案,步骤(1)中所述碱溶液可以为尿素溶液、氨水溶液或水合肼溶液等中的任意一种或多种。本发明采用的碱溶液,其作用是沉淀剂。Further, in the above technical solution, the alkaline solution in step (1) may be any one or more of urea solution, ammonia solution or hydrazine hydrate solution. The alkali solution that the present invention adopts, its effect is precipitating agent.
优选地,上述技术方案,步骤(1)中所述碱溶液的浓度为1~10mol/L,较优选为5~8mol/L。Preferably, in the above technical solution, the concentration of the alkali solution in step (1) is 1-10 mol/L, more preferably 5-8 mol/L.
进一步地,上述技术方案,步骤(1)中所述表面活性剂优选为聚乙二醇600。本发明采用的表面活性剂分子中含有亲水基团和疏水基团,常用于降低超细粒子的表面能,防止新生的粒子团聚。因此,使用表面活性剂常有利于获得超细粉体。Further, in the above technical solution, the surfactant described in step (1) is preferably polyethylene glycol 600. The surfactant molecule used in the present invention contains hydrophilic groups and hydrophobic groups, and is often used to reduce the surface energy of ultrafine particles and prevent newborn particles from agglomerating. Therefore, the use of surfactants is often beneficial to obtain ultrafine powders.
进一步地,上述技术方案,步骤(1)所述可溶性锆盐溶液中的可溶性锆盐、碱溶液中的碱、表面活性剂三者的质量比为(15~30):(20~60):(1~10)。Further, in the above technical solution, the mass ratio of the soluble zirconium salt in the soluble zirconium salt solution in the step (1), the alkali in the alkali solution, and the surfactant is (15-30): (20-60): (1~10).
进一步地,上述技术方案,步骤(1)所述表面活性剂与双氧水的用量比为(1~10)质量份:(3~10)体积份,其中:所述质量份与体积份之间是以g:mL作为基准的。Further, in the above technical solution, the dosage ratio of the surfactant and hydrogen peroxide in step (1) is (1-10) parts by mass: (3-10) parts by volume, wherein: between the parts by mass and parts by volume is Based on g:mL.
进一步地,上述技术方案,步骤(1)中两次搅拌的时间均可不作限定,只要能实现原料的均匀混合即可,例如两次搅拌时间均可以为10~50min。Further, in the above technical solution, the time for the two stirrings in step (1) is not limited, as long as the uniform mixing of the raw materials can be achieved, for example, the two stirring times can be 10-50 minutes.
进一步地,上述技术方案,步骤(1)中所述水热反应釜具有聚四氟乙烯的内衬,所述水热反应釜的容积为100~500mL。Further, in the above technical solution, the hydrothermal reaction kettle in step (1) has a polytetrafluoroethylene lining, and the volume of the hydrothermal reaction kettle is 100-500mL.
进一步地,上述技术方案,步骤(1)中所述混合液2的填充度优选控制在反应釜容积的50%~80%。Further, in the above technical solution, the filling degree of the mixed liquid 2 in step (1) is preferably controlled at 50% to 80% of the volume of the reactor.
进一步地,上述技术方案,步骤(1)中所述水热反应的温度优选为170~190℃,反应时间优选为15~25h。Further, in the above technical solution, the temperature of the hydrothermal reaction in step (1) is preferably 170-190° C., and the reaction time is preferably 15-25 hours.
进一步地,上述技术方案,步骤(1)中所述洗涤所用溶剂为去离子水。Further, in the above technical solution, the solvent used for the washing described in step (1) is deionized water.
进一步地,上述技术方案,步骤(1)中所述离心、洗涤的次数不限,可以为1次、2次或多次,较优选为1~3次。Further, in the above technical solution, the number of times of centrifugation and washing in step (1) is not limited, it can be 1 time, 2 times or more, more preferably 1-3 times.
进一步地,上述技术方案,步骤(1)中所述干燥工艺具体是将离心、洗涤所得固体产物置于烘箱中,控制烘箱的干燥温度为40~150℃,干燥时间为8~24h。Further, in the above technical solution, the drying process described in step (1) specifically includes placing the solid product obtained by centrifugation and washing in an oven, controlling the drying temperature of the oven to be 40-150° C., and the drying time to be 8-24 hours.
优选地,上述技术方案,步骤(1)中所述干燥温度为50~70℃,干燥时间为10~14h。Preferably, in the above technical solution, the drying temperature in step (1) is 50-70° C., and the drying time is 10-14 hours.
进一步地,上述技术方案,步骤(1)中采用的双氧水,其作用是:抑制锆盐中锆离子(Zr4+)的还原。Furthermore, in the above technical solution, the hydrogen peroxide used in step (1) has the function of inhibiting the reduction of zirconium ions (Zr 4+ ) in the zirconium salt.
进一步地,上述技术方案,步骤(2)中煅烧温度优选为450~600℃,焙烧时间优选为4~6h。本发明煅烧的目的是,将锆的前驱体氢氧化物转化为氧化锆。Furthermore, in the above technical solution, the calcination temperature in step (2) is preferably 450-600° C., and the calcination time is preferably 4-6 hours. The purpose of the calcination in the present invention is to convert the precursor hydroxide of zirconium into zirconium oxide.
进一步地,上述技术方案,步骤(3)中所述研磨助剂为呈支链结构的醇类有机溶剂,例如所述醇类有机溶剂可以为异丙醇或2-丁醇,较优选异丙醇。本发明采用呈支链结构的醇类有机溶剂,其反应活性点较多,在研磨过程中能明显抑制粉体团聚,有利于获得粒径更小的产品。Further, in the above technical scheme, the grinding aid described in step (3) is an alcohol organic solvent with a branched chain structure, for example, the alcohol organic solvent can be isopropanol or 2-butanol, more preferably isopropanol alcohol. The invention adopts the alcohol organic solvent with a branched chain structure, which has many reactive points, can obviously inhibit powder agglomeration during the grinding process, and is beneficial to obtain products with smaller particle diameters.
进一步地,上述技术方案,步骤(3)中所述ZrO2纳米粉末的粒径为30~80nm。Further, in the above technical solution, the particle size of the ZrO2 nano powder described in step (3) is 30-80nm.
进一步地,上述技术方案,步骤(3)中所述研磨助剂与白色ZrO2粉末的质量比为20~40:100。Further, in the above technical solution, the mass ratio of the grinding aid to the white ZrO 2 powder in step (3) is 20-40:100.
进一步地,上述技术方案,步骤(4)所述金属氧化物MxOy中,M元素为Zn、Ce、Y、In中的任意一种,所述x为1或2,所述y为1或2或3。例如,所述金属氧化物MxOy可以为ZnO、CeO2、Y2O3、I2O3中的任意一种。Further, in the above technical scheme, in the metal oxide M x O y described in step (4), the M element is any one of Zn, Ce, Y, and In, the x is 1 or 2, and the y is 1 or 2 or 3. For example, the metal oxide M x O y may be any one of ZnO, CeO 2 , Y 2 O 3 , and I 2 O 3 .
进一步地,上述技术方案,步骤(4)所述金属氧化物MxOy与ZrO2纳米粉末的质量比为0.5~2:100。Further, in the above technical solution, the mass ratio of the metal oxide M x O y to the ZrO 2 nanopowder in step (4) is 0.5-2:100.
进一步地,上述技术方案,步骤(4)中所述混合物中还包括分散剂,所述分散剂优选为多元羧酸,所述多元羧酸选自草酸、丙二酸、丙三酸、丁二酸、己二酸等中的任意一种或多种。Further, in the above technical scheme, a dispersant is also included in the mixture described in step (4), and the dispersant is preferably a polycarboxylic acid, and the polycarboxylic acid is selected from oxalic acid, malonic acid, malonic acid, butanedioic acid Any one or more of acid, adipic acid, etc.
优选地,上述技术方案,步骤(4)中所述分散剂为丙三酸。Preferably, in the above technical scheme, the dispersant described in step (4) is glyceric acid.
进一步地,上述技术方案,步骤(4)中所述分散剂的加入量不超过ZrO2纳米粉末的质量的5%。Further, in the above-mentioned technical scheme, the addition amount of the dispersant described in the step (4) is no more than 5% of the quality of the ZrO2nano powder.
进一步地,上述技术方案,步骤(4)中所述研磨的目的是利用金属改性ZrO2纳米粉末。Further, the above-mentioned technical scheme, the purpose of grinding described in step (4) is to utilize metal modification ZrO 2 nanopowder.
本发明的第二个目的在于提供采用上述所述方法制备得到的金属复合改性纳米氧化锆催化剂。The second object of the present invention is to provide a metal composite modified nano-zirconia catalyst prepared by the method described above.
本发明的第三个目的在于提供采用上述所述方法制备得到的金属复合改性纳米氧化锆催化剂在催化CO加氢中的应用。The third object of the present invention is to provide the application of the metal composite modified nano-zirconia catalyst prepared by the above-mentioned method in catalytic CO hydrogenation.
本发明的金属复合改性纳米氧化锆催化剂可同时提高CO加氢转化率及低碳烯烃选择性的机理如下:The metal composite modified nano-zirconia catalyst of the present invention can simultaneously improve the CO hydrogenation conversion rate and the mechanism of low-carbon olefin selectivity as follows:
ZrO2表面氧空位可以活化CO,形成甲酸类物质,在H2氛围下,氢化生成甲氧基物种。然而ZrO2的H2解离能力较弱,其CO转化率较低。而本发明金属复合改性纳米氧化锆催化剂可以促进在H2的解离吸附,形成能够参与氢化反应的氢物种,提高CO转化率,以及低碳烯烃选择性。Oxygen vacancies on the surface of ZrO2 can activate CO to form formic acid species, which can be hydrogenated to methoxyl species under H2 atmosphere. However, the H2 dissociation ability of ZrO2 is weak and its CO conversion rate is low. However, the metal composite modified nano-zirconia catalyst of the present invention can promote the dissociation and adsorption of H2 , form hydrogen species that can participate in the hydrogenation reaction, improve the conversion rate of CO, and selectivity of low-carbon olefins.
与现有技术相比,本发明具有如下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
(1)本发明制备的金属复合改性纳米氧化锆催化剂可增加氧空位,提高CO加氢转化率,低碳烯烃选择性高,且稳定性很好。(1) The metal composite modified nano-zirconia catalyst prepared by the present invention can increase oxygen vacancies, improve CO hydrogenation conversion rate, have high selectivity for low-carbon olefins, and have good stability.
(2)催化剂制备过程简单,原料成本较低,适合工业化大规模生产。(2) The preparation process of the catalyst is simple, the raw material cost is relatively low, and it is suitable for large-scale industrial production.
(3)本发明在制备金属复合改性纳米氧化锆催化剂过程中,通过添加表面活性剂聚乙二醇600,使制备的氧化锆催化剂的粒径变小,获得了氧化锆超细粉体。(3) In the process of preparing the metal composite modified nano-zirconia catalyst, the particle size of the prepared zirconium oxide catalyst is reduced by adding the surfactant polyethylene glycol 600, and the ultra-fine powder of zirconium oxide is obtained.
(4)本发明在焙烧过后加入研磨助剂,抑制了氧化锆超细粉体的团聚,使制备的催化剂分散性提高,在CO加氢过程中,降低了甲烷的选择性。(4) In the present invention, grinding aid is added after calcination, which inhibits the agglomeration of zirconia ultrafine powder, improves the dispersibility of the prepared catalyst, and reduces the selectivity of methane in the process of CO hydrogenation.
(5)本发明在金属氧化物MxOy和ZrO2中研磨过程中,加入分散剂,不仅有效抑制了CO2的生成,而且提高了低碳烯烃选择性和烯烷比。(5) In the grinding process of the metal oxides MxOy and ZrO2 , the present invention adds a dispersant, which not only effectively suppresses the generation of CO2 , but also improves the selectivity of low-carbon olefins and the ratio of olefins.
(6)本发明在CO加氢反应过程中,表面活性剂、研磨助剂和分散剂的共同协同作用,改善了催化剂的产物分布,有效抑制了催化剂积碳,提高了催化剂的稳定性。(6) During the CO hydrogenation reaction process of the present invention, the synergistic effect of the surfactant, the grinding aid and the dispersant improves the product distribution of the catalyst, effectively inhibits the carbon deposition of the catalyst, and improves the stability of the catalyst.
具体实施方式Detailed ways
下面通过实施案例对本发明作进一步详细说明。本实施案例在以本发明技术为前提下进行实施,现给出详细的实施方式和具体的操作过程来说明本发明具有创造性,但本发明的保护范围不限于以下的实施案例。The present invention will be described in further detail below through examples of implementation. This implementation case is carried out on the premise of the technology of the present invention, and the detailed implementation and specific operation process are given to illustrate the inventiveness of the present invention, but the protection scope of the present invention is not limited to the following implementation cases.
根据本申请包含的信息,对于本领域技术人员来说可以轻而易举地对本发明的精确描述进行各种改变,而不会偏离所附权利要求的精神和范围。应该理解,本发明的范围不局限于所限定的过程、性质或组分,因为这些实施方案以及其他的描述仅仅是为了示意性说明本发明的特定方面。实际上,本领域或相关领域的技术人员明显能够对本发明实施方式作出的各种改变都涵盖在所附权利要求的范围内。From the information contained herein, various changes in the precise description of the invention will readily become apparent to those skilled in the art without departing from the spirit and scope of the appended claims. It should be understood that the scope of the present invention is not limited to the processes, properties or components defined, since these embodiments, as well as other descriptions, are only intended to illustrate certain aspects of the invention. In fact, various changes to the embodiments of the present invention that can be obviously made by those skilled in the art or related fields fall within the scope of the appended claims.
为了更好地理解本发明而不是限制本发明的范围,在本申请中所用的表示用量、百分比的所有数字、以及其他数值,在所有情况下都应理解为以词语“大约”所修饰。因此,除非特别说明,否则在说明书和所附权利要求书中所列出的数字参数都是近似值,其可能会根据试图获得的理想性质的不同而加以改变。各个数字参数至少应被看作是根据所报告的有效数字和通过常规的四舍五入方法而获得的。In order to better understand the present invention but not to limit the scope of the present invention, all figures representing dosage, percentage, and other numerical values used in this application should be understood as being modified by the word "about" in all cases. Accordingly, unless expressly indicated otherwise, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained. At a minimum, each numerical parameter should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
下述各实施例中,若无特殊说明,所有原料组分无特殊说明,均为本领域技术人员熟知的市售产品。In the following examples, unless otherwise specified, all raw material components are commercially available products well known to those skilled in the art.
实施例1Example 1
本实施例的一种金属复合改性纳米氧化锆催化剂的制备方法,所述方法包括如下步骤:A method for preparing a metal composite modified nano-zirconia catalyst of the present embodiment, the method comprises the following steps:
(1)制备ZrO2前驱体(1) Preparation of ZrO 2 precursor
(a)配制可溶性锆盐溶液:称取17.1g的五水硝酸锆(Zr(NO3)4·5H2O),将称量好的五水硝酸锆溶解于80mL去离子水中,在转速300rad/min条件下,机械搅拌3min,得到可溶性锆盐溶液;(a) Preparation of soluble zirconium salt solution: Weigh 17.1g of zirconium nitrate pentahydrate (Zr(NO 3 ) 4 5H 2 O), dissolve the weighed zirconium nitrate pentahydrate in 80mL deionized water, and Under the condition of /min, stir mechanically for 3min to obtain a soluble zirconium salt solution;
(b)配制尿素溶液:称取38.3g的尿素((NH2)2CO)颗粒,将称量好的尿素溶解于80mL去离子水中,在转速300rad/min条件下,机械搅拌5min,得到尿素溶液;(b) Preparation of urea solution: Weigh 38.3g of urea ((NH 2 ) 2 CO) particles, dissolve the weighed urea in 80mL of deionized water, and stir mechanically for 5min at a speed of 300rad/min to obtain urea solution;
(c)将步骤(a)所得可溶性锆盐溶液、步骤(b)所得尿素溶液、1g聚乙二醇600混合,在转速500rad/min条件下机械搅拌10min,得到均匀混合液1;然后向所述混合液1中加入5mL双氧水,继续在转速500rad/min条件下机械搅拌30min,使其完全溶解,得到均匀混合液2;再将所述混合液2转移至装有容积为300mL的聚四氟乙烯内衬的不锈钢反应釜中,密封,将所述反应釜升温至180℃恒温水热反应20h,反应结束后,冷却至室温,将所得产物交替离心、洗涤各1次,将所得固体产物置于烘箱中干燥,干燥温度为60℃,干燥时间为12h,得到ZrO2前驱体;(c) Mix the soluble zirconium salt solution obtained in step (a), the urea solution obtained in step (b), and 1 g of polyethylene glycol 600, and mechanically stir for 10 min at a rotating speed of 500 rad/min to obtain a homogeneous mixed solution 1; Add 5mL of hydrogen peroxide to the mixed solution 1, and continue to mechanically stir for 30min under the condition of a rotating speed of 500rad/min to completely dissolve it to obtain a uniform mixed solution 2; In a stainless steel reaction kettle lined with ethylene, seal it, raise the temperature of the reaction kettle to 180°C for a constant temperature hydrothermal reaction for 20 hours, after the reaction, cool to room temperature, alternately centrifuge and wash the obtained product once, and place the obtained solid product in a Dry in an oven, the drying temperature is 60°C, and the drying time is 12h to obtain the ZrO 2 precursor;
(2)将步骤(1)所述ZrO2前驱体置于马弗炉中,并在空气氛围下升温至500℃恒温煅烧4h,煅烧结束后,得到白色ZrO2粉末;(2) Place the ZrO2 precursor described in step (1) in a muffle furnace, and heat it up to 500°C for 4 hours at a constant temperature for calcination in an air atmosphere. After the calcination, white ZrO2 powder is obtained;
(3)将步骤(2)所述白色ZrO2粉末与研磨助剂异丙醇混合,研磨20min,得到ZrO2纳米粉末,所述ZrO2纳米粉末的粒径为30~80nm;其中:所述研磨助剂与白色ZrO2粉末的质量比为30:100。(3) the white ZrO powder described in step (2) is mixed with grinding aid isopropanol, and ground for 20 min to obtain ZrO nano powder, the particle diameter of the ZrO nano powder is 30-80nm; wherein: the The mass ratio of grinding aid to white ZrO2 powder is 30:100.
(4)将步骤(3)所述ZrO2纳米粉末、ZnO和分散剂混合,将所得混合物研磨20min,得到所述的金属复合改性纳米氧化锆催化剂,标记为0.5%Zn-ZrO2;其中:所述分散剂为丙三酸;所述分散剂的加入量为ZrO2纳米粉末的质量的3%;所述ZnO与ZrO2纳米粉末的质量比为0.5:100。(4) ZrO described in step (3) Nanopowder , ZnO and dispersant are mixed, and the gained mixture is ground for 20min to obtain the described metal composite modified nano-zirconia catalyst, which is marked as 0.5% Zn-ZrO 2 ; wherein : the dispersant is glyceric acid; the addition of the dispersant is 3% of the quality of the ZrO2 nanometer powder; the mass ratio of the ZnO to the ZrO2 nanometer powder is 0.5:100.
实施例2Example 2
本实施例的一种金属复合改性纳米氧化锆催化剂的制备方法,所述方法与实施例1基本相同,区别仅在于:本实施例的步骤(4)中所述ZnO与ZrO2纳米粉末的质量比为1:100。因此,相应地,将本实施例制备的金属复合改性纳米氧化锆催化剂标记为1%Zn-ZrO2。A kind of preparation method of metal composite modified nano-zirconia catalyst of the present embodiment, described method is basically the same as embodiment 1, difference only is: the ZnO described in the step (4) of the present embodiment and ZrO 2 nanopowder The mass ratio is 1:100. Therefore, correspondingly, the metal composite modified nano-zirconia catalyst prepared in this example is marked as 1% Zn-ZrO 2 .
实施例3Example 3
本实施例的一种金属复合改性纳米氧化锆催化剂的制备方法,所述方法与实施例1基本相同,区别仅在于:本实施例的步骤(4)中所述ZnO与ZrO2纳米粉末的质量比为2:100。因此,相应地,将本实施例制备的金属复合改性纳米氧化锆催化剂标记为2%Zn-ZrO2。A kind of preparation method of metal composite modified nano-zirconia catalyst of the present embodiment, described method is basically the same as embodiment 1, difference only is: the ZnO described in the step (4) of the present embodiment and ZrO 2 nanopowder The mass ratio is 2:100. Therefore, correspondingly, the metal composite modified nano-zirconia catalyst prepared in this example is marked as 2% Zn-ZrO 2 .
实施例4Example 4
本实施例的一种金属复合改性纳米氧化锆催化剂的制备方法,所述方法包括如下步骤:A method for preparing a metal composite modified nano-zirconia catalyst of the present embodiment, the method comprises the following steps:
(1)制备ZrO2前驱体(1) Preparation of ZrO 2 precursor
(a)配制可溶性锆盐溶液:称取17.1g的五水硝酸锆(Zr(NO3)4·5H2O),将称量好的五水硝酸锆溶解于50mL去离子水中,在转速300rad/min条件下,机械搅拌10min,得到可溶性锆盐溶液;(a) Preparation of soluble zirconium salt solution: Weigh 17.1g of zirconium nitrate pentahydrate (Zr(NO 3 ) 4 5H 2 O), dissolve the weighed zirconium nitrate pentahydrate in 50mL deionized water, and Under the condition of /min, stir mechanically for 10min to obtain a soluble zirconium salt solution;
(b)配制尿素溶液:称取38.3g的尿素((NH2)2CO)颗粒,将称量好的尿素溶解于100mL去离子水中,在转速300rad/min条件下,机械搅拌5min,得到尿素溶液;(b) Preparation of urea solution: Weigh 38.3g of urea ((NH 2 ) 2 CO) particles, dissolve the weighed urea in 100mL deionized water, and stir mechanically for 5min at a speed of 300rad/min to obtain urea solution;
(c)将步骤(a)所得可溶性锆盐溶液、步骤(b)所得尿素溶液、3g聚乙二醇600混合,在转速500rad/min条件下机械搅拌20min,得到均匀混合液1;然后向所述混合液1中加入3mL双氧水,继续在转速500rad/min条件下机械搅拌20min,使其完全溶解,得到均匀混合液2;再将所述混合液2转移至装有容积为300mL的聚四氟乙烯内衬的不锈钢反应釜中,密封,将所述反应釜升温至150℃恒温水热反应30h,反应结束后,冷却至室温,将所得产物交替离心、洗涤各2次,将所得固体产物置于烘箱中干燥,干燥温度为40℃,干燥时间为24h,得到ZrO2前驱体;(c) Mix the soluble zirconium salt solution obtained in step (a), the urea solution obtained in step (b), and 3 g of polyethylene glycol 600, and mechanically stir for 20 minutes under the condition of a rotating speed of 500 rad/min to obtain a homogeneous mixed solution 1; Add 3mL of hydrogen peroxide to the mixed solution 1, and continue to mechanically stir for 20min under the condition of a rotating speed of 500rad/min to completely dissolve it to obtain a uniform mixed solution 2; In a stainless steel reaction kettle lined with ethylene, seal it, raise the temperature of the reaction kettle to 150°C for a constant temperature hydrothermal reaction for 30 hours, after the reaction, cool to room temperature, alternately centrifuge and wash the obtained product twice, and place the obtained solid product in a Dry in an oven, the drying temperature is 40°C, and the drying time is 24h to obtain the ZrO 2 precursor;
(2)将步骤(1)所述ZrO2前驱体置于马弗炉中,并在空气氛围下升温至300℃恒温煅烧8h,煅烧结束后,得到白色ZrO2粉末;(2) Place the ZrO2 precursor described in step (1) in a muffle furnace, and heat it up to 300°C for 8 hours at a constant temperature for calcination in an air atmosphere. After the calcination, white ZrO2 powder is obtained;
(3)将步骤(2)所述白色ZrO2粉末与研磨助剂异丙醇混合,研磨10min,得到ZrO2纳米粉末,所述ZrO2纳米粉末的粒径为30~80nm;其中:所述研磨助剂与白色ZrO2粉末的质量比为25:100。(3) white ZrO powder described in step (2) is mixed with grinding aid isopropanol, and ground for 10 min to obtain ZrO nano powder, the particle diameter of the ZrO nano powder is 30-80nm; wherein: The mass ratio of grinding aid to white ZrO2 powder is 25:100.
(4)将步骤(3)所述ZrO2纳米粉末、CeO2和分散剂混合,将所得混合物研磨30min,得到所述的金属复合改性纳米氧化锆催化剂,标记为1%Ce-ZrO2;其中:所述分散剂为丁二酸;所述分散剂的加入量为ZrO2纳米粉末的质量的1%;所述CeO2与ZrO2纳米粉末的质量比为1:100。(4) ZrO described in step (3) nanometer powder, CeO 2 and dispersant are mixed, gained mixture is ground 30min, obtains described metal composite modification nanometer zirconia catalyst, is marked as 1%Ce-ZrO 2 ; Wherein: the dispersant is succinic acid; the added amount of the dispersant is 1% of the mass of the ZrO2 nanometer powder; the mass ratio of the CeO2 to the ZrO2 nanometer powder is 1:100.
实施例5Example 5
本实施例的一种金属复合改性纳米氧化锆催化剂的制备方法,所述方法包括如下步骤:A method for preparing a metal composite modified nano-zirconia catalyst of the present embodiment, the method comprises the following steps:
(1)制备ZrO2前驱体(1) Preparation of ZrO 2 precursor
(a)配制可溶性锆盐溶液:称取30g的五水硝酸锆(Zr(NO3)4·5H2O),将称量好的五水硝酸锆溶解于120mL去离子水中,在转速300rad/min条件下,机械搅拌3min,得到可溶性锆盐溶液;(a) Preparation of soluble zirconium salt solution: Weigh 30g of zirconium nitrate pentahydrate (Zr(NO 3 ) 4 5H 2 O), dissolve the weighed zirconium nitrate pentahydrate in 120mL deionized water, and Under the condition of min, stir mechanically for 3 min to obtain a soluble zirconium salt solution;
(b)将步骤(a)所得可溶性锆盐溶液、150mL浓度为6mol/L的氨水溶液、10g聚乙二醇600混合,在转速500rad/min条件下机械搅拌50min,得到均匀混合液1;然后向所述混合液1中加入10mL双氧水,继续在转速500rad/min条件下机械搅拌50min,使其完全溶解,得到均匀混合液2;再将所述混合液2转移至装有容积为300mL的聚四氟乙烯内衬的不锈钢反应釜中,密封,将所述反应釜升温至200℃恒温水热反应10h,反应结束后,冷却至室温,将所得产物交替离心、洗涤各1次,将所得固体产物置于烘箱中干燥,干燥温度为150℃,干燥时间为8h,得到ZrO2前驱体;(b) Mix the soluble zirconium salt solution obtained in step (a), 150 mL of ammonia solution with a concentration of 6 mol/L, and 10 g of polyethylene glycol 600, and mechanically stir for 50 min at a speed of 500 rad/min to obtain a homogeneous mixture 1; then Add 10mL of hydrogen peroxide to the mixed solution 1, and continue to mechanically stir for 50min under the condition of a rotating speed of 500rad/min to completely dissolve it to obtain a homogeneous mixed solution 2; In a stainless steel reaction kettle lined with tetrafluoroethylene, seal it, raise the temperature of the reaction kettle to 200°C for a constant temperature hydrothermal reaction for 10 hours, after the reaction, cool to room temperature, and alternately centrifuge and wash the obtained product once, and the obtained solid The product was dried in an oven at a drying temperature of 150 ° C and a drying time of 8 hours to obtain a ZrO 2 precursor;
(2)将步骤(1)所述ZrO2前驱体置于马弗炉中,并在空气氛围下升温至700℃恒温煅烧3h,煅烧结束后,得到白色ZrO2粉末;(2) Place the ZrO2 precursor described in step (1) in a muffle furnace, and heat it up to 700°C for 3h at a constant temperature for calcination in an air atmosphere. After the calcination, white ZrO2 powder is obtained;
(3)将步骤(2)所述白色ZrO2粉末与研磨助剂2-丁醇混合,研磨10min,得到ZrO2纳米粉末,所述ZrO2纳米粉末的粒径为30~80nm;其中:所述研磨助剂与白色ZrO2粉末的质量比为40:100。(3) White ZrO2 powder described in step (2) is mixed with grinding aid 2-butanol, and ground for 10 min to obtain ZrO2 nanometer powder, and the particle diameter of said ZrO2 nanometer powder is 30~80nm; Wherein: The mass ratio of the grinding aid to the white ZrO2 powder is 40:100.
(4)将步骤(3)所述ZrO2纳米粉末、In2O3和分散剂混合,将所得混合物研磨40min,得到所述的金属复合改性纳米氧化锆催化剂,标记为1%In-ZrO2;其中:所述分散剂为丙二酸;所述分散剂的加入量为ZrO2纳米粉末的质量的2%;所述In2O3与ZrO2纳米粉末的质量比为1:100。(4) Mix the ZrO nano powder, In 2 O 3 and dispersant in step (3), and grind the resulting mixture for 40 min to obtain the metal composite modified nano-zirconia catalyst, marked as 1% In-ZrO 2 ; wherein: the dispersant is malonic acid; the addition of the dispersant is 2% of the mass of the ZrO 2 nanometer powder; the mass ratio of the In 2 O 3 to the ZrO 2 nanometer powder is 1:100.
实施例6Example 6
本实施例的一种金属复合改性纳米氧化锆催化剂的制备方法,所述方法包括如下步骤:A method for preparing a metal composite modified nano-zirconia catalyst of the present embodiment, the method comprises the following steps:
(1)制备ZrO2前驱体(1) Preparation of ZrO 2 precursor
(a)配制可溶性锆盐溶液:称取15g的五水硝酸锆(Zr(NO3)4·5H2O),将称量好的五水硝酸锆溶解于90mL去离子水中,在转速300rad/min条件下,机械搅拌10min,得到可溶性锆盐溶液;(a) Preparation of soluble zirconium salt solution: Weigh 15g of zirconium nitrate pentahydrate (Zr(NO 3 ) 4 5H 2 O), dissolve the weighed zirconium nitrate pentahydrate in 90mL deionized water, and Under the condition of min, stir mechanically for 10 min to obtain a soluble zirconium salt solution;
(b)将步骤(a)所得可溶性锆盐溶液、90mL浓度为5moL/L的水合肼溶液、2g聚乙二醇600混合,在转速500rad/min条件下机械搅拌30min,得到均匀混合液1;然后向所述混合液1中加入5mL双氧水,继续在转速500rad/min条件下机械搅拌30min,使其完全溶解,得到均匀混合液2;再将所述混合液2转移至装有容积为300mL的聚四氟乙烯内衬的不锈钢反应釜中,密封,将所述反应釜升温至170℃恒温水热反应25h,反应结束后,冷却至室温,将所得产物交替离心、洗涤各2次,将所得固体产物置于烘箱中干燥,干燥温度为80℃,干燥时间为10h,得到ZrO2前驱体;(b) Mix the soluble zirconium salt solution obtained in step (a), 90 mL of hydrazine hydrate solution with a concentration of 5 moL/L, and 2 g of polyethylene glycol 600, and mechanically stir for 30 min at a speed of 500 rad/min to obtain a homogeneous mixture 1; Then add 5mL of hydrogen peroxide to the mixed solution 1, continue to mechanically stir for 30min under the condition of rotating speed 500rad/min, make it dissolve completely, and obtain the homogeneous mixed solution 2; In a polytetrafluoroethylene-lined stainless steel reaction kettle, seal it, raise the temperature of the reaction kettle to 170°C for a constant temperature hydrothermal reaction for 25 hours, after the reaction is completed, cool it to room temperature, alternately centrifuge and wash the obtained product twice, and the obtained The solid product was dried in an oven at a drying temperature of 80°C and a drying time of 10 hours to obtain a ZrO 2 precursor;
(2)将步骤(1)所述ZrO2前驱体置于马弗炉中,并在空气氛围下升温至450℃恒温煅烧5h,煅烧结束后,得到白色ZrO2粉末;(2) Place the ZrO 2 precursor described in step (1) in a muffle furnace, and heat it up to 450° C. for calcination at a constant temperature in an air atmosphere for 5 hours. After the calcination is completed, a white ZrO 2 powder is obtained;
(3)将步骤(2)所述白色ZrO2粉末与研磨助剂异丙醇混合,研磨10min,得到ZrO2纳米粉末,所述ZrO2纳米粉末的粒径为30~80nm;其中:所述研磨助剂与白色ZrO2粉末的质量比为20:100。(3) white ZrO powder described in step (2) is mixed with grinding aid isopropanol, and ground for 10 min to obtain ZrO nano powder, the particle diameter of the ZrO nano powder is 30-80nm; wherein: The mass ratio of grinding aid to white ZrO2 powder is 20:100.
(4)将步骤(3)所述ZrO2纳米粉末、Y2O3和分散剂混合,将所得混合物研磨20min,得到所述的金属复合改性纳米氧化锆催化剂,标记为1%Y-ZrO2;其中:所述分散剂为丙三酸;所述分散剂的加入量为ZrO2纳米粉末的质量的1%;所述Y2O3与ZrO2纳米粉末的质量比为1:100。(4) Mix the ZrO nanometer powder, Y 2 O 3 and dispersant in step (3), grind the resulting mixture for 20 min to obtain the metal composite modified nano-zirconia catalyst, marked as 1% Y-ZrO 2 ; wherein: the dispersant is glyceric acid; the added amount of the dispersant is 1% of the mass of the ZrO 2 nanometer powder; the mass ratio of the Y 2 O 3 to the ZrO 2 nanometer powder is 1:100.
催化剂性能测试与表征:Catalyst performance testing and characterization:
为了使催化剂更好地反应,不堵塞反应管,将本发明上述实施例1~6制备的催化剂均制成20~40目的催化剂颗粒。In order to make the catalyst react better and not block the reaction tube, the catalysts prepared in the above-mentioned Examples 1-6 of the present invention were made into catalyst particles of 20-40 mesh.
本发明采用微型固定床反应器对催化剂进行评价,工艺条件为20~40目催化剂0.5~5mL,反应温度300~600℃,反应压力0.5~8MPa,原料气H2/CO=1或2,空速为500~5000·h-1。The present invention uses a miniature fixed-bed reactor to evaluate the catalyst, and the process conditions are 0.5-5mL of catalyst of 20-40 mesh, reaction temperature of 300-600°C, reaction pressure of 0.5-8MPa, raw material gas H2 /CO=1 or 2, air The speed is 500~5000·h -1 .
例如,在微型固定床反应器中对实施例1制备的催化剂进行性能评价,具体操作步骤如下:称取1mL实施例1制备的金属复合改性纳米氧化锆催化剂装入反应管中部恒温区,原料气H2/CO=2,温度为400℃,压力为3MPa、空速(GHSV)为2000h-1,达到稳定状态后,采样分析,间隔3h采样一次。利用气相色谱对原料气和产物经行定量和定性分析。利用《煤基费托合成尾气中H2、N2、CO、CO2和C1~C8烃的测定和气相色谱法》甲烷关联法,计算出CO转化率于各组份物质选择性。For example, the performance evaluation of the catalyst prepared in Example 1 is carried out in a micro-fixed-bed reactor, and the specific operation steps are as follows: Weigh 1 mL of the metal composite modified nano-zirconia catalyst prepared in Example 1 and put it into the constant temperature zone in the middle of the reaction tube. Gas H 2 /CO=2, temperature is 400°C, pressure is 3MPa, space velocity (GHSV) is 2000h -1 , after reaching a steady state, sampling and analysis are performed at intervals of 3h. Gas chromatography is used to conduct quantitative and qualitative analysis of raw gas and products. Using the methane correlation method in "Determination of H 2 , N 2 , CO, CO 2 and C 1 -C 8 Hydrocarbons in Coal-based Fischer-Tropsch Synthesis Tail Gas and Gas Chromatography", the CO conversion rate and the material selectivity of each component were calculated.
表1为本发明上述实施例1~5制备的金属复合改性纳米氧化锆催化剂的加氢催化工艺参数及性能测试结果对比表。由表1可以看出,金属Zn复合改性的纳米氧化锆催化剂,CO转化率提高,在产物分布中,CO2选择性变化不明显,维持在50%左右,烃类产物变化明显。本发明各实施例制备的金属复合改性纳米氧化锆催化剂中,实施例2制备的1%Zn-ZrO2催化剂催化CO加氢性能最好,低碳烯烃选择性高达75.1%,且C4烯烃中异丁烯占比为96.7%,烯烷比(O/P)为8.8。Table 1 is a comparison table of the hydrogenation catalytic process parameters and performance test results of the metal composite modified nano-zirconia catalysts prepared in the above-mentioned Examples 1-5 of the present invention. It can be seen from Table 1 that the nano-zirconia catalyst modified by the metal Zn composite improves the conversion rate of CO, and in the product distribution, the CO2 selectivity does not change significantly, maintaining at about 50%, and the hydrocarbon products change significantly. Among the metal composite modified nano-zirconia catalysts prepared in the various examples of the present invention, the 1% Zn- ZrO catalyst prepared in Example 2 has the best catalytic CO hydrogenation performance, the selectivity of low-carbon olefins is as high as 75.1%, and C 4 olefins The proportion of isobutene is 96.7%, and the olefin ratio (O/P) is 8.8.
表1实施例1~5制备的金属复合改性纳米氧化锆催化剂的加氢催化反应工艺参数及性能测试结果对比表Table 1 Comparison Table of Process Parameters and Performance Test Results of Metal Composite Modified Nano-zirconia Catalysts for Hydrogenation Catalysts Prepared in Examples 1-5
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010554036.XA CN111644169B (en) | 2020-06-17 | 2020-06-17 | Metal composite modified nano zirconia catalyst and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010554036.XA CN111644169B (en) | 2020-06-17 | 2020-06-17 | Metal composite modified nano zirconia catalyst and its preparation method and application |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111644169A CN111644169A (en) | 2020-09-11 |
CN111644169B true CN111644169B (en) | 2023-02-28 |
Family
ID=72342117
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010554036.XA Active CN111644169B (en) | 2020-06-17 | 2020-06-17 | Metal composite modified nano zirconia catalyst and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111644169B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115518647B (en) * | 2021-06-24 | 2023-08-08 | 中国石油化工股份有限公司 | Catalyst for producing low-carbon olefin by fixed bed synthesis gas and preparation method and application thereof |
CN115709063B (en) * | 2022-10-28 | 2023-12-22 | 国家电投集团广东电力有限公司广州分公司 | Hydrogenation catalyst of organic heterocyclic liquid hydrogen storage carrier, preparation method and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103990464A (en) * | 2014-05-13 | 2014-08-20 | 宁夏大学 | A preparing method of a catalyst used for preparing low-carbon olefins from synthetic gas and applications of the catalyst |
WO2017000427A1 (en) * | 2015-07-02 | 2017-01-05 | 中国科学院大连化学物理研究所 | Catalyst and method of preparing light olefin directly from synthesis gas by one-step process |
CN110314696A (en) * | 2018-03-28 | 2019-10-11 | 中国科学院大连化学物理研究所 | A kind of preparation method of composite catalyst, preparation method and ethylene |
-
2020
- 2020-06-17 CN CN202010554036.XA patent/CN111644169B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103990464A (en) * | 2014-05-13 | 2014-08-20 | 宁夏大学 | A preparing method of a catalyst used for preparing low-carbon olefins from synthetic gas and applications of the catalyst |
WO2017000427A1 (en) * | 2015-07-02 | 2017-01-05 | 中国科学院大连化学物理研究所 | Catalyst and method of preparing light olefin directly from synthesis gas by one-step process |
CN106311317A (en) * | 2015-07-02 | 2017-01-11 | 中国科学院大连化学物理研究所 | Catalyst and method for directly preparing light olefins from synthesis gas by one-step process |
CN110314696A (en) * | 2018-03-28 | 2019-10-11 | 中国科学院大连化学物理研究所 | A kind of preparation method of composite catalyst, preparation method and ethylene |
Non-Patent Citations (3)
Title |
---|
Light Olefins Formation from Syngas Over ZrO2-ZnO Catalysts;W.Zhang,et al;《New Frontiers in Catalysis-Proceedings of the 10th International Congress on Catalysis》;19931231;第75卷;文章摘要,第2793页实验部分,第2794页表1 * |
溶剂热法合成纯单斜和四方晶相氧化锆中的溶剂效应;李为臻等;《物理化学学报》;20081215;第24卷(第12期);文章摘要,第2173页1.1节 * |
纳米氧化锆的制备新工艺研究;何瑶等;《材料导报》;20090531;第23卷;文章第182-184页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111644169A (en) | 2020-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104437504B (en) | A kind of CO2The catalyst of Efficient Conversion producing light olefins | |
CN107497437A (en) | One kind is used for CO2It is hydrogenated with ferrum-based catalyst and its application of preparing low-carbon olefins | |
CN102716749B (en) | A catalyst for co-hydrogenation of CO and CO2 to synthesize methanol modified by additives | |
CN113209976B (en) | A kind of catalyst for hydrogen production by methanol steam reforming, its preparation method and application, and methanol steam reforming hydrogen production reaction | |
CN103480375A (en) | Carbon monoxide methanating catalyst and preparation method thereof | |
CN106622252A (en) | A catalyst for CO2 hydrogenation to methanol | |
CN112108148A (en) | Supported copper-based catalyst for hydrogen production by methanol steam reforming, and preparation method and application thereof | |
CN108264093B (en) | A kind of preparation method of cobalt manganese spinel microsphere | |
CN111644169B (en) | Metal composite modified nano zirconia catalyst and its preparation method and application | |
CN114931949B (en) | Photocatalyst for carbon dioxide reduction and preparation method and application thereof | |
CN114950419B (en) | A metal catalyst for hydrogenating carbon dioxide to produce methanol and its application | |
CN105597769A (en) | Preparation method of a nanocomposite metal oxide catalyst CeO2-Co3O4 with flake shape | |
GUO et al. | Recent advances in integrated carbon dioxide capture and methanation technology | |
CN1291784C (en) | Copper base catalyst in use for preparing hydrogen by reforming vapor of methanol and preparation method | |
San et al. | Highly dispersed active sites and strong metal-support interaction for boosting CO2 hydrogenation to methanol | |
CN104001491B (en) | A kind of CeO2/TiO2 nanocomposite hollow sphere catalyst and preparation method thereof | |
CN1586718A (en) | Nano carbon material modified copper base catalyst and its preparing method | |
Su et al. | The Template‐Free Synthesis of CuO@ CeO2 Nanospheres: Facile Strategy, Structure Optimization, and Enhanced Catalytic Activity toward CO Oxidation | |
Jia et al. | Fe–Ni–Ce–Zr-modified CuO–ZnO catalyst for methanol steam reforming | |
CN112169817B (en) | A kind of perovskite composite oxygen carrier and its application | |
CN103143352B (en) | A kind of preparation method and application thereof with TiO2 as carrier CeO2 as the supported rhodium catalyst of cocatalyst | |
CN107321354B (en) | A kind of high temperature and high selectivity carbon dioxide methanation catalyst and preparation method thereof | |
CN102580753A (en) | Catalyst for synthesizing methanol by taking multi-carbon sources in metallurgical fume as raw materials and preparation method of catalyst | |
CN106378159A (en) | Low temperature sulfur resistant methanation catalyst prepared by ethylene glycol combustion and method thereof | |
CN112371188B (en) | A kind of preparation method of high-efficiency methanation nano-catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |