CN103958674B - 具有木聚糖酶活性的多肽及其编码多核苷酸 - Google Patents
具有木聚糖酶活性的多肽及其编码多核苷酸 Download PDFInfo
- Publication number
- CN103958674B CN103958674B CN201280048419.3A CN201280048419A CN103958674B CN 103958674 B CN103958674 B CN 103958674B CN 201280048419 A CN201280048419 A CN 201280048419A CN 103958674 B CN103958674 B CN 103958674B
- Authority
- CN
- China
- Prior art keywords
- polypeptide
- seq
- technique
- xylan
- cellulosic material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2477—Hemicellulases not provided in a preceding group
- C12N9/248—Xylanases
- C12N9/2482—Endo-1,4-beta-xylanase (3.2.1.8)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2477—Hemicellulases not provided in a preceding group
- C12N9/248—Xylanases
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/02—Monosaccharides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/14—Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01008—Endo-1,4-beta-xylanase (3.2.1.8)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明涉及具有木聚糖酶活性的分离的多肽和编码所述多肽的多核苷酸。本发明还涉及包含所述多核苷酸的核酸构建体、载体和宿主细胞,以及制备和使用所述多肽的方法。
Description
对于在联邦资助的研究和开发下完成的发明的权利声明
本发明是部分地在由能源部授予的合作协议(Cooperative Agreement) DE-FC36-08GO18080下以政府支持完成的。政府在本发明中具有一定权利。
涉及序列表
本申请包含计算机可读形式的序列表,其通过提述并入本文。
技术领域
本发明涉及具有木聚糖酶活性的多肽,和编码所述多肽的多核苷酸。本 发明亦涉及包含所述多核苷酸的核酸构建体、载体和宿主细胞,以及产生和 使用所述多肽的方法。
背景技术
纤维素是葡萄糖通过β-1,4-键连接的聚合物。许多微生物产生水解β-连接 的葡聚糖的酶。这些酶包括内切葡聚糖酶、纤维二糖水解酶和β-葡糖苷酶。 内切葡聚糖酶在随机位置消化纤维素聚合物,将其打开以受到纤维二糖水解 酶攻击(attack)。纤维二糖水解酶从纤维素聚合物的末端顺序地释放纤维二糖 的分子。纤维二糖是水溶性的β-1,4-连接的葡萄糖二聚体。β-葡糖苷酶将纤维 二糖水解成葡萄糖。
将含木素纤维素原料(lignocellulosic feedstock)转化为乙醇具有以下优 势:大量原料现成可用,避免燃烧或填埋材料的合意性和乙醇燃料的清洁性。 木材、农业残余物、草本作物和城市固体废物被认为是用于乙醇生产的原料。 这些材料主要由纤维素、半纤维素和木质素组成。一旦将纤维素转化成葡萄 糖,葡萄糖容易地由酵母发酵成乙醇。木聚糖酶将β-1,4-木聚糖降解成木糖, 如此分解半纤维素(植物细胞壁的一种主要组分)。
本领域中需要经由补充另外的酶来改进纤维素分解和半纤维素分解酶组 合物以针对木质纤维素的降解提高功效并提供经济的酶溶液。木聚糖酶是现有 技术中已知的。来自变灰青霉(Penicillium canescens)的木聚糖酶(Uniprot. C3VEV9)与作为SEQ ID NO:2公开的木聚糖酶具有76.1%的同一性。另一种 来自Talaromyces stipitatus的木聚糖酶(Uniprot.B8M9H8)与作为SEQ ID NO: 4公开的木聚糖酶具有76.5%的同一性。另一种披露于US2010124769-A1中的 来自青霉属菌种(Penicillium sp)的木聚糖酶(Uniprot.AYB51189)与作为SEQ ID NO:6公开的木聚糖酶具有84.0%的同一性。
本发明提供了具有木聚糖酶活性的多肽和编码所述多肽的多核苷酸。
发明内容
本发明涉及具有木聚糖酶活性的分离的多肽,其选自下组:
(a)多肽,其与SEQ ID NO:2的成熟多肽具有至少77%的序列同一性, 或多肽,其与SEQ ID NO:4的成熟多肽具有至少77%的序列同一性,或多肽, 其与SEQ ID NO:6的成熟多肽具有至少85%的序列同一性;
(b)多肽,其由多核苷酸编码,所述多核苷酸在低、或中等、或中-高、 或高、或非常高严格条件下与以下杂交:(i)SEQ ID NO:1、SEQ ID NO:3或 SEQ ID NO:5的成熟多肽编码序列,(ii)其cDNA序列,或(iii)(i)或(ii)的全长 互补物;
(c)多肽,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:1、SEQ ID NO:3或SEQID NO:5的成熟多肽编码序列或它们的cDNA序列具有至少 60%序列同一性;
(d)SEQ ID NO:2、SEQ ID NO:4或SEQ ID NO:6的成熟多肽的包含在一 个或多个(例如几个)位置处的取代、缺失和/或插入的变体;和
(e)(a)、(b)、(c)或(d)的多肽的具有木聚糖酶活性的片段。
本发明亦涉及分离的多肽,其包含选自下组的催化域:
(a)催化域,其与SEQ ID NO:2的催化域(例如,SEQ ID NO:2的氨基酸 18至364)具有至少77%的序列同一性,催化域,其与SEQ ID NO:4的催化域 (例如,SEQ ID NO:4的氨基酸17至326)具有至少77%的序列同一性,或催化 域,其与SEQ ID NO:6的催化域(例如,SEQID NO:6的氨基酸21至337)具有 至少85%的序列同一性;
(b)催化域,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:1的催化 域编码序列(例如,SEQ ID NO:1的核苷酸52-240和314-1165)具有至少60%序 列同一性,催化域,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:3的催 化域编码序列(例如,SEQ ID NO:3的核苷酸49-241、302-342、404-452、 518-639、707-852、912-1019、1088-1205、1282-1347和1430-1516)具有至少 60%序列同一性,或催化域,其由多核苷酸编码,所述多核苷酸与SEQID NO: 5的催化域编码序列(例如,SEQ ID NO:5的核苷酸124-270、342-474、567-680 和757-1313)具有至少60%序列同一性;
(c)SEQ ID NO:2、SEQ ID NO:4或SEQ ID NO:6的催化域的包含一个或 多个(几个)氨基酸的取代、缺失和/或插入的催化域变体;和
(d)(a)、(b)或(c)的催化域的片段,其具有木聚糖酶活性。
本发明亦涉及编码本发明多肽的分离的多核苷酸,包含所述多核苷酸的 核酸构建体、重组表达载体、重组宿主细胞;和产生所述多肽的方法。
本发明亦涉及降解纤维素材料或含木聚糖材料的工艺,其包括:在本发 明的具有木聚糖酶活性的多肽的存在下用酶组合物处理纤维素材料或含木 聚糖材料。在一个方面,所述工艺进一步包括回收经降解或转化的纤维素材 料或含木聚糖材料。
本发明亦涉及产生发酵产物的工艺,其包括:(a)在本发明的具有木聚糖 酶活性的多肽的存在下用酶组合物糖化纤维素材料或含木聚糖材料;(b)用一 种或多种(例如几种)发酵微生物发酵经糖化的纤维素材料或含木聚糖材料以 产生发酵产物;和(c)从发酵回收发酵产物。
本发明亦涉及发酵纤维素材料或含木聚糖材料的工艺,其包括用一种或多 种(例如几种)发酵微生物发酵所述纤维素材料或含木聚糖材料,其中所述纤维 素材料或含木聚糖材料是在本发明具有木聚糖酶活性的多肽的存在下用酶组 合物糖化的。在一个方面,纤维素材料或含木聚糖材料的发酵产生发酵产物。 在另一个方面,所述工艺进一步包括从发酵回收发酵产物。
本发明亦涉及编码信号肽的多核苷酸,所述信号肽包含下述或由下述组 成:SEQID NO:2的氨基酸1至17、SEQ ID NO:4的氨基酸1至16、或SEQ ID NO:6的氨基酸1至20,其可操作地连接于编码蛋白质的基因;包含所述多核 苷酸的核酸构建体、表达载体和重组宿主细胞;以及产生蛋白质的方法。
定义
木聚糖酶:术语“木聚糖酶”意指1,4-β-D-木聚糖-木糖水解酶 (1,4-β-D-xylan-xylohydrolase)(E.C.3.2.1.8),其催化木聚糖中1,4-β-D-木糖苷键 的内水解。就本发明而言,木聚糖降解活性通过测量由木聚糖降解酶在下述 通常条件下造成的桦木木聚糖(Sigma Chemical Co.,Inc.,St.Louis,MO,USA) 水解的增加来确定:1ml反应液,5mg/ml底物(总固体),5mg木聚糖分解蛋 白质/g底物,50mM乙酸钠pH5,50℃,24小时,如Lever,1972,A new reaction for colorimetric determination of carbohydrates,Anal.Biochem47:273-279所述 使用对羟基苯甲酸酰肼(PHBAH)测定法进行糖分析。在一个方面,本发明的 多肽具有SEQ ID NO:2的成熟多肽的至少20%,例如至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、或至少100%的木聚糖酶 活性。在另一个方面,本发明的多肽具有SEQ ID NO:4的成熟多肽的至少20%, 例如至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少 95%、或至少100%的木聚糖酶活性。仍在另一个方面,本发明的多肽具有SEQ ID NO:6的成熟多肽的至少20%,例如至少40%、至少50%、至少60%、至少70%、至少80%、至少90%、至少95%、或至少100%的木聚糖酶活性。
乙酰木聚糖酯酶:术语“乙酰木聚糖酯酶”意指羧基酯酶(EC3.1.1.72), 其催化乙酰基从聚合木聚糖、乙酰化木糖、乙酰化葡萄糖、乙酸α-萘酯 (alpha-napthyl acetate)和乙酸对硝基苯酯(p-nitrophenyl acetate)的水解。就本 发明而言,乙酰木聚糖酯酶活性是使用含有0.01%TWEENTM20(聚氧乙烯山 梨聚糖单月桂酸酯)的50mM乙酸钠pH5.0中的0.5mM乙酸对硝基苯酯作为 底物确定的。一个单位的乙酰木聚糖酯酶定义为能够在pH5,25℃每分钟释 放1微摩尔对硝基苯酚阴离子(p-nitrophenolate anion)的酶量。
等位变体(allelic variant):术语“等位变体”意指占据相同染色体基因座 的基因的任何两种或更多种可选形式。等位变异通过突变天然地发生,并且 可导致种群内的多态性。基因突变可以是沉默的(在编码的多肽中无变化)或 可以编码具有改变的氨基酸序列的多肽。多肽的等位变体是由基因的等位变 体编码的多肽。
α-L-阿拉伯呋喃糖苷酶:术语“α-L-阿拉伯呋喃糖苷酶”意指α-L-阿拉伯 呋喃糖苷阿拉伯呋喃水解酶(EC3.2.1.55),其催化对α-L-阿拉伯糖苷中的末端 非还原性α-L-阿拉伯呋喃糖苷残基的水解。该酶对α-L-阿拉伯呋喃糖苷、含 有(1,3)-和/或(1,5)-键的α-L-阿拉伯聚糖、阿拉伯木聚糖和阿拉伯半乳聚糖起 作用。α-L-阿拉伯呋喃糖苷酶也称为阿拉伯糖苷酶、α-阿拉伯糖苷酶、α-L- 阿拉伯糖苷酶、α-阿拉伯呋喃糖苷酶、多糖α-L-阿拉伯呋喃糖苷酶、α-L-阿 拉伯呋喃糖苷水解酶、L-阿拉伯糖苷酶或α-L-阿拉伯聚糖酶。就本发明而言, α-L-阿拉伯呋喃糖苷酶活性是使用总体积200μl中的每ml的100mM乙酸钠 pH5中5mg的中等粘度小麦阿拉伯木聚糖(Megazyme International Ireland, Ltd.,Bray,Co.Wicklow,Ireland)在40℃进行30分钟,接着通过经由 HPX-87H柱层析(Bio-Rad Laboratories,Inc.,Hercules,CA,USA)的阿拉伯糖 分析来确定的。
α-葡糖醛酸糖苷酶:术语“α-葡糖醛酸糖苷酶”意指α-D-葡糖苷酸葡糖醛 酸水解酶(alpha-D-glucosiduronate glucuronohydrolase)(EC3.2.1.139),其催化 α-D-葡糖醛酸糖苷水解为D-葡糖醛酸和醇。就本发明而言,α-葡糖醛酸糖苷 酶活性是根据de Vries,1998,J.Bacteriol.180:243-249确定的。一个单位的α- 葡糖醛酸糖苷酶等于能够在pH5,40℃每分钟释放1微摩尔葡糖醛酸或4-O- 甲基葡糖醛酸的酶量。
β-葡糖苷酶:术语“β-葡糖苷酶”意指β-D-葡糖苷葡糖水解酶 (beta-D-glucosideglucohydrolase)(E.C.No.3.2.1.21),其催化末端非还原β-D- 葡萄糖残基的水解,并释放β-D-葡萄糖。就本发明而言,β-葡糖苷酶根据 Venturi等,2002,Extracellular beta-D-glucosidase from Chaetomium thermophilum var.coprophilum:production,purification and some biochemical properties,J.Basic Microbiol.42:55-66的方法使用对硝基苯基-β-D-葡糖吡喃 糖苷作为底物确定。一个单位的β-葡糖苷酶定义为在25℃、pH4.8,在含有 0.01%20的50mM柠檬酸钠中从作为底物的1mM对硝基苯基 -β-D-葡糖吡喃糖苷每分钟产生1.0微摩尔对硝基苯酚阴离子。
β-木糖苷酶:术语“β-木糖苷酶”意指β-D木糖苷木糖水解酶(β-D-xylosidexylohydrolase)(E.C.3.2.1.37),其催化短β(1→4)木寡糖(xylooligosaccharide) 的外水解以从非还原端去除连续的D-木糖残基。就本发明而言,一个单位的 β-木糖苷酶定义为在40℃,pH5在含有0.01%20的100mM柠檬酸 钠中从作为底物的1mM对硝基苯基-β-D-木糖苷每分钟产生1.0微摩尔对硝 基苯酚阴离子。
cDNA:术语“cDNA”意指能够通过反转录从得自真核或原核细胞的成熟 的、已剪接的mRNA分子制备的DNA分子。cDNA缺少通常存在于相应基因 组DNA中的内含子序列。起始的(initial)、初级的RNA转录物是mRNA的前体, 其通过一系列的步骤加工包括剪接,然后作为成熟的已剪接的mRNA出现。
纤维二糖水解酶:术语“纤维二糖水解酶”意指1,4-β-D-葡聚糖纤维二糖 水解酶(1,4-beta-D-glucan cellobiohydrolase)(E.C.3.2.1.91),其催化纤维素、 纤维寡糖,或任何包含β-1,4-连接的葡萄糖的聚合物中的1,4-β-D-糖苷键的水 解,从链的还原或非还原末端释放纤维二糖(Teeri,1997,Crystalline cellulose degradation:New insightinto the function of cellobiohydrolases,Trends in Biotechnology15:160-167;Teeri等,1998,Trichoderma reesei cellobiohydrolases:why so efficient oncrystalline cellulose?,Biochem.Soc. Trans.26:173-178)。根据Lever等,1972,Anal.Biochem.47:273-279;van Tilbeurgh等,1982,FEBS Letters149:152-156;vanTilbeurgh和Claeyssens, 1985,FEBS Letters187:283-288;以及Tomme等,1988,Eur.J.Biochem.170: 575-581描述的方法确定纤维二糖水解酶活性。在本发明中,Tomme等的方 法可用于确定纤维二糖水解酶活性。
纤维素材料:术语“纤维素材料”意指包含纤维素的任何材料。生物质的 初生细胞壁(primary cell wall)中的主要多糖是纤维素,其次最丰富的是半纤 维素,而第三是果胶。次生细胞壁(secondary cell wall)在细胞停止生长后产 生,其同样含有多糖并通过共价交联至半纤维素的聚合木质素而加强。纤维 素是脱水纤维二糖的均聚物,并且因此是直链β-(1-4)-D-葡聚糖,而半纤维素 包括多种化合物,例如木聚糖、木葡聚糖(xyloglucan)、阿拉伯木聚糖和甘露 聚糖,具有系列取代基的复杂分支结构。尽管通常是多形的,存在于植物组 织中的纤维素主要是平行葡聚糖链的不溶晶体基质。半纤维素通常与纤维素 以及其它半纤维素以氢键相连,其帮助稳定细胞壁基质。
纤维素通常见于例如植物的茎、叶、壳、皮和穗轴,或树的叶、枝和木 材。纤维素材料可以是,但不限于,农业残余物、草本材料(包括能量作物)、 城市固体废物、纸浆与造纸厂残余物、废纸和木材(包括林业残余物)(参见, 例如,Wiselogel等,1995,于Handbook onBioethanol(Charles E.Wyman编), pp.105-118,Taylor&Francis,Washington D.C.;Wyman,1994,Bioresource Technology50:3-16;Lynd,1990,Applied Biochemistry andBiotechnology24/25: 695-719;Mosier等,1999,Recent Progress in Bioconversion ofLignocellulosics, 于Advances in Biochemical Engineering/Biotechnology,T.Scheper主编,Volume 65,pp.23-40,Springer-Verlag,New York)。在本文中应理解的是,纤维素可以 是任何形式的木素纤维素,在混合基质中包含木质素、纤维素和半纤维素的 植物细胞壁材料。在一个优选的方面,纤维素材料是任何生物质材料。在另 一个优选的方面,所述纤维素材料是木素纤维素,其包含纤维素、半纤维素 和木质素。
在一个方面,纤维素材料是农业残余物。在另一个方面,纤维素材料是 草本材料(包括能量作物)。在另一个方面,纤维素材料是城市固体废物。在 另一个方面,纤维素材料是纸浆和造纸厂残余物。在另一个方面,纤维素材 料是废纸。在另一个方面,纤维素材料是木材(包括林业残余物)。
在另一个方面,纤维素材料是芦竹(arundo)。在另一个方面,纤维素材 料是甘蔗渣。在另一个方面,纤维素材料是竹材。在另一个方面,纤维素材 料是玉米穗轴。在另一个方面,纤维素材料是玉米纤维。在另一个方面,纤 维素材料是玉米秸秆。在另一个方面,纤维素材料是芒草属。在另一个方面, 纤维素材料是橙皮。在另一个方面,纤维素材料是稻杆。在另一个方面,纤 维素材料是柳枝稷(switchgrass)。在另一个方面,纤维素材料是麦杆。
在另一个方面,纤维素材料是白杨。在另一个方面,纤维素材料是桉树。 在另一个方面,纤维素材料是枞树(fir)。在另一个方面,纤维素材料是松树。 在另一个方面,纤维素材料是杨树。在另一个方面,纤维素材料是云杉。在 另一个方面,纤维素材料是柳树。
在另一个方面,纤维素材料是藻类纤维素。在另一个方面,纤维素材料 是细菌纤维素。在另一个方面,纤维素材料是棉绒(cotton linter)。在另一个 方面,纤维素材料是滤纸。在另一个方面,纤维素材料是微晶纤维素。在另 一个方面,纤维素材料是经磷酸处理的纤维素。
在另一个方面,纤维素材料是水生生物质。如用于本文中的,“水生生 物质”意指在水生环境中由光合作用过程产生的生物质。水生生物质可为藻 类、挺水植物(emergentplant)、浮叶植物(floating-leaf plant)或沉水植物 (submerged plant)。
纤维素材料可以按原样(as is)使用或进行预处理,使用本领域已知的常 规方法,如本文所述。在一个优选的方面,纤维素材料是预处理的。
纤维素分解酶或纤维素酶:术语“纤维素分解酶”或“纤维素酶”意指一种 或多种(例如几种)水解纤维素材料的酶。此类酶包括内切葡聚糖酶,纤维二 糖水解酶,β-葡糖苷酶,或其组合。测量纤维素分解活性的两种基本方法包 括:(1)测量总纤维素分解活性,和(2)测量单独的纤维素分解活性(内切葡聚 糖酶、纤维二糖水解酶和β-葡糖苷酶),如Zhang等,Outlook for cellulase improvement:Screening and selection strategies,2006,Biotechnology Advances 24:452-481所综述的。总纤维素分解活性通常是使用不溶性底物来测定的, 所述底物包括Whatman№1滤纸、微晶纤维素、细菌纤维素、藻类纤维素、 棉花、经预处理的木素纤维素等。最常见的总纤维素分解活性测定法是使用 Whatman№1滤纸作为底物的滤纸测定法。该测定法是由International Union of Pure and AppliedChemistry(IUPAC)(Ghose,1987,Measurement of cellulase activities,PureAppl.Chem.59:257-68)确立的。
就本发明而言,纤维素分解酶活性通过测量在下述条件下由纤维素分解 酶进行的纤维素材料水解的增加来确定:1-50mg的纤维素分解酶蛋白/g的 PCS中纤维素(或其它经预处理的纤维素材料)在合适的温度,例如50℃、55 ℃或60℃进行3-7日,与未添加纤维素分解酶蛋白的对照水解相比较。通常 条件为:1ml反应液,经洗涤或未洗涤的PCS,5%不溶性固形物,50mM乙 酸钠pH5,1mM MnSO4,50℃、55℃或60℃,72小时,通过 HPX-87H柱(Bio-Rad Laboratories,Inc.,Hercules,CA,USA)进行糖分析。
编码序列:术语“编码序列”意指直接指定多肽的氨基酸序列的多核苷酸。 编码序列的边界通常由开放阅读框决定,所述开放阅读框以起始密码子如 ATG、GTG或TTG开始,并且以终止密码子如TAA、TAG或TGA结束。编码序 列可以是基因组DNA、cDNA、合成DNA或其组合。在一个实施方案中,所述 编码序列是SEQ ID NO:1的位置1-240和314-1168。在另一个实施方案中,所述 编码序列是SEQ ID NO:3的位置1-241、302-342、404-452、518-639、707-852、 912-1019、1088-1205、1282-1347和1430-1708。在另一个实施方案中,所述编 码序列是SEQ ID NO:5的位置1-50、114-270、342-474、567-680、757-1520。
调控序列(control sequence):术语“调控序列”意指对编码本发明的成熟 多肽的多核苷酸表达是必需的核酸序列。各个调控序列对于编码所述成熟多 肽的多核苷酸可以是天然的(即,来自同一基因)或外源的(即,来自不同基 因),或各个调控序列对于彼此可以是天然的或外源的。这些调控序列包括 但不限于前导序列、聚腺苷酸化序列、前肽序列、启动子、信号肽序列和转 录终止子。最少的情况,调控序列包括启动子和转录和翻译的终止信号。调 控序列可以和用于引入特异性限制位点的接头一起提供,所述特异性限制位点促进调控序列与编码多肽的多核苷酸编码区的连接。
内切葡聚糖酶:术语“内切葡聚糖酶”意指内切-1,4-(1,3;1,4)-β-D-葡聚糖4- 葡聚糖水解酶(endo-1,4-β-D-glucan4-glucanohydrolase)(E.C.3.2.1.4),其催化纤 维素、纤维素衍生物(例如羧甲基纤维素和羟乙基纤维素)、地衣淀粉(lichenin) 中的1,4-β-D-糖苷键、混合的β-1,3葡聚糖例如谷类β-D-葡聚糖或木葡聚糖和含 有纤维素组分的其它植物材料中的β-1,4键的内水解(endohydrolysis)。内切葡聚 糖酶活性可通过测量底物粘度的减少或由还原糖测定法(Zhang等,2006, Biotechnology Advances24:452-481)确定的还原端增加来确定。就本发明而言, 根据Ghose,1987,Pure and Appl.Chem.59:257-268的方法,在pH5,40℃使用 羧甲基纤维素(CMC)作为底物来测定内切葡聚糖酶活性。
表达:术语“表达”包括涉及多肽产生的任何步骤,其包括但不限于转录、 转录后修饰、翻译、翻译后修饰和分泌。
表达载体:术语“表达载体”意指线性的或环状的DNA分子,其包含编码 多肽的多核苷酸,并且所述多核苷酸与提供用于其表达的调控序列可操作地 连接。
家族61糖苷水解酶:术语“家族61糖苷水解酶”或“家族GH61”或“GH61”在 本文中定义为根据Henrissat,1991,A classification of glycosyl hydrolases based onamino-acid sequence similarities,Biochem.J.280:309-316,及Henrissat和Bairoch,1996,Updating the sequence-based classification of glycosyl hydrolases,Biochem.J. 316:695-696属于糖苷水解酶家族61的多肽。该家族中的酶原先基于在一个家族成员测量到的非常弱的内切-1,4-β-D葡聚糖酶活性而归类为糖苷水解酶家 族。这些酶的结构和作用模式是非经典的,且它们无法视为真正的(bona fide) 糖苷酶。然而,基于当与纤维素酶或纤维素酶的混合物一同使用时,其增强木 素纤维素分解的能力,它们被保留在CAZy分类中。
阿魏酸酯酶:术语“阿魏酸酯酶(feruloyl esterase)”意指4-羟基-3-甲氧基肉桂酰-糖水解酶(EC3.1.1.73),其催化4-羟基-3-甲氧基肉桂酰(阿魏酰)基团从 酯化的糖(其在“天然”底物中通常为阿拉伯糖)的水解,以产生阿魏酸(4-羟基 -3-甲氧基肉桂酸)。阿魏酸酯酶也称作阿魏酸酯酶(ferulic acid esterase)、羟基 肉桂酰基酯酶、FAE-III、肉桂酸酯水解酶、FAEA、cinnAE、FAE-I或FAE-II。 就本发明而言,阿魏酸酯酶活性是使用50mM乙酸钠pH5.0中的0.5mM阿魏 酸对硝基苯酯作为底物确定的。一个单位的阿魏酸酯酶等于能够在pH5,25 ℃每分钟释放1微摩尔对硝基苯酚阴离子的酶量。
片段:术语“片段”意指从成熟多肽链的氨基和/或羧基末端缺失一个或多 个(例如几个)氨基酸的多肽;其中所述片段具有木聚糖酶活性。在一个方面, 片段含有SEQ IDNO:2的至少氨基酸残基18-364。在另一个方面,片段含有 SEQ ID NO:4的至少氨基酸残基17-326。在另一个方面,片段含有SEQ ID NO: 6的至少氨基酸残基21-337。
半纤维素分解酶或半纤维素酶:术语“半纤维素分解酶”或“半纤维素酶” 意指一种或多种(例如几种)水解半纤维素材料的酶。参见,例如Shallom和 Shoham(2003)Microbial hemicellulases.Current Opinion In Microbiology, 2003,6(3):219-228)。半纤维素酶是植物生物质降解中的关键成分。半纤维 素酶的实例包括但不限于乙酰甘露聚糖酯酶、乙酰木聚糖酯酶、阿拉伯聚糖 酶、阿拉伯呋喃糖苷酶、香豆酸酯酶、阿魏酸酯酶、半乳糖苷酶、葡糖醛酸 糖苷酶、葡糖醛酸酯酶、甘露聚糖酶、甘露糖苷酶、木聚糖酶和木糖苷酶。 这些酶的底物,半纤维素,是支化和直链多糖的混杂集团,这些多糖通过氢 键键合于植物细胞壁中的纤维素微纤维,将其交联为鲁棒(robust)的网络。半 纤维素亦共价地附于木质素,与纤维素一同形成高度复杂的结构。半纤维素 的可变的结构和组织形式需要许多酶的协同作用使其完全降解。半纤维素酶 的催化模块为水解糖苷键的糖苷水解酶(GH),或水解乙酸或阿魏酸侧基的酯 连接的糖酯酶(CE)。这些催化模块,基于其一级结构的同源性,可指派为GH 和CE家族。一些家族,具有总体上类似的折叠,可进一步归类为宗族(clan), 以字母标记(例如,GH-A)。最具信息性和最新的这些和其他糖活性酶的分类 可在Carbohydrate-Active Enzymes(CAZy)数据库获得。半纤维素分解酶活性 可根据Ghose和Bisaria,1987,Pure&Appl.Chem.59:1739-1752在合适的温 度,例如50℃、55℃或60℃,和pH,例如5.0或5.5进行测量。
高严格条件:术语“高严格条件”意指对于长度至少100个核苷酸的探针, 在42℃,在5X SSPE、0.3%SDS、200微克/ml已剪切并且变性的鲑精DNA和 50%的甲酰胺中,根据标准的Southern印迹法进行预杂交和杂交12至24小时。 使用2X SSC、0.2%SDS在65℃将载体材料最终洗涤三次,每次15分钟。
宿主细胞:术语“宿主细胞”意指任何细胞类型,所述细胞类型对于使用 包含本发明多核苷酸的核酸构建体或表达载体的转化、转染、转导等是易感 的(susceptible)。术语“宿主细胞”涵盖任何亲本细胞的后代,其由于在复制中 发生的突变而不同于亲本细胞。
分离的:术语“分离的”意指以不在自然界出现的形式或环境存在的物 质。分离的物质的非限定性实例包括(1)任何非天然存在的物质,(2)任何至 少部分地从一种或多种或全部与其天然结合的天然存在的成分移出的物质, 包括但不限于任何酶、变体、核酸、蛋白质、肽或辅因子;(3)任何相对于见 于自然界的该物质经人工修饰的物质;或(4)任何通过相对于与其自然结合的 其他组分增加该物质的量(例如,编码该物质的基因的多拷贝;比与编码该 物质的基因自然结合的启动子更强的启动子的使用)而修饰的物质。分离的物质可在发酵液样品中存在。
低严格条件:术语“低严格条件”意指对于长度至少100个核苷酸的探针, 在42℃,在5X SSPE、0.3%SDS、200微克/ml已剪切并且变性的鲑精DNA和 25%的甲酰胺中,根据标准的Southern印迹法进行预杂交和杂交12至24小时。 使用2X SSC、0.2%SDS在50℃将载体材料最终洗涤三次,每次15分钟。
成熟多肽:术语“成熟多肽”意指以其在翻译和任何翻译后修饰之后的最终 形式存在的多肽,所述修饰例如N-末端加工、C-末端截短、糖基化、磷酸化等。 在一个方面,根据预测SEQ ID NO:2的氨基酸1至17是信号肽的SignalP程序 (Nielsen等,1997,ProteinEngineering10:1-6),成熟多肽是SEQ ID NO:2的氨基酸 18至364。在另一个方面,根据预测SEQ ID NO:4的氨基酸1至16是信号肽的 SignalP程序,成熟多肽是SEQ ID NO:4的氨基酸17至389。在另一个方面,根据 预测SEQ ID NO:6的氨基酸1至20是信号肽的SignalP程序,成熟多肽是SEQ ID NO:6的氨基酸21至405。在本领域中已知宿主细胞可产生由相同多核苷酸表达 的两种或更多种不同成熟多肽(即具有不同的C端和/或N端氨基酸)的混合物。
成熟多肽编码序列:术语“成熟多肽编码序列”意指编码具有木聚糖酶活 性的成熟多肽的多核苷酸。在一个方面,根据预测SEQ ID NO:1的核苷酸1 至51编码信号肽的SignalP程序(Nielsen等,1997,见上),成熟多肽编码序列 是SEQ ID NO:1的核苷酸52至1165或其cDNA序列。在另一个方面,根据预 测SEQ ID NO:3的核苷酸1至48编码信号肽的SignalP程序,成熟多肽编码序 列是SEQ ID NO:3的核苷酸49至1705或其cDNA序列。在另一个方面,根据 预测SEQ ID NO:5的核苷酸1至123编码信号肽的SignalP程序,成熟多肽编码序列是SEQ ID NO:5的核苷酸124至1517或其cDNA序列。
催化域:术语“催化域”意指含有酶的催化机构(catalytic machinery)的酶 的部分。
纤维素结合域:术语“纤维素结合域”意指介导酶对纤维素底物的无定形 区的结合的酶的部分。纤维素结合域(CBD)见于酶的N末端或C末端。CBD 亦称作纤维素结合模块或CBM。在一个实施方案中,CBM是SEQ ID NO:4 的氨基酸354至389。在一个实施方案中,CBM是SEQ ID NO:6的氨基酸370 至405。CBM与催化域通过接头序列分隔。在一个实施方案中,所述接头是 SEQ ID NO:4的氨基酸327至353。在一个实施方案中,所述接头是SEQ ID NO:6的氨基酸338至369。
中等严格条件:术语“中等严格条件”意指对于长度至少100个核苷酸的探 针,在42℃,在5X SSPE、0.3%SDS、200微克/ml已剪切并且变性的鲑精DNA 和35%的甲酰胺中,根据标准的Southern印迹法进行预杂交和杂交12至24小时。 使用2X SSC、0.2%SDS在55℃将载体材料最终洗涤三次,每次15分钟。
中-高严格条件:术语“中-高严格条件”意指对于长度至少100个核苷酸的探 针,在42℃,在5X SSPE、0.3%SDS、200微克/ml已剪切并且变性的鲑精DNA 和35%的甲酰胺中,根据标准的Southern印迹法进行预杂交和杂交12至24小时。 使用2X SSC、0.2%SDS在60℃将载体材料最终洗涤三次,每次15分钟。
核酸构建体:术语“核酸构建体”意指单链或双链的核酸分子,其分离自 天然存在的基因,或其经修饰以本来不存在于(not otherwise exist)自然界中的 方式含有核酸的区段,或其为合成的,其包含一个或多个调控序列。
可操作地连接:术语“可操作地连接”意指这样的构型,其中将调控序列 置于相对于多核苷酸的编码序列的适当位置,使得调控序列指导编码序列的 表达。
具有纤维素分解增强活性的多肽:术语“具有纤维素分解增强的多肽”意 指催化具有纤维素分解活性的酶对纤维素材料的水解的增强的GH61多肽。就 本发明而言,通过测量来自由纤维素分解酶在下述条件下水解纤维素材料的 还原糖增加或纤维二糖与葡萄糖的总量增加来测定纤维素分解增强活性: 1-50mg总蛋白/g PCS中纤维素,其中总蛋白包含50-99.5%w/w的纤维素分解 酶蛋白,及0.5-50%w/w的具有纤维素分解增强活性的GH61多肽的蛋白质, 在合适的温度(例如50℃、55℃或60℃)和pH(例如5.0或5.5)历时1-7天,与用等量的总蛋白加载量而无纤维素分解增强活性(1-50mg纤维素分解蛋白/g PCS 中纤维素)所进行的对照水解相比。在一个优选的方面,使用在总蛋白重量的 2-3%的米曲霉β-葡糖苷酶(根据WO02/095014在米曲霉中重组产生)或者总蛋 白质量的2-3%的烟曲霉β-葡糖苷酶(如WO02/095014所述在米曲霉中重组产 生)的纤维素酶蛋白加载量存在下的1.5L(Novozymes A/S, Denmark)的混合物作为纤维素分解活性的来源。
具有纤维素分解增强活性的GH61多肽通过降低达到相同水解水平所需 的纤维素分解酶的量来增强由具有纤维素分解活性的酶催化的纤维素材料的 水解,优选降低至少1.01倍,例如至少1.05倍,至少1.10倍,至少1.25倍,至 少1.5倍,至少2倍,至少3倍,至少4倍,至少5倍,至少10倍,或至少20倍。
预处理的玉米秸秆:术语“PCS”或“预处理的玉米秸秆”意指通过用热和 稀硫酸处理、碱预处理或中性预处理的源自玉米秸秆的纤维素材料。
序列同一性:参数“序列同一性”描述两个氨基酸序列之间或两个核苷酸 序列之间的相关性。
就本发明而言,两个氨基酸序列之间的序列同一性程度使用如EMBOSS 软件包(EMBOSS:The European Molecular Biology Open Software Suite,Rice 等,2000,Trends Genet.16:276-277),优选5.0.0版或更高版本的Needle程序中 所执行的Needleman-Wunsch算法(Needleman和Wunsch,1970,J.Mol.Biol.48: 443-453)来测定。使用的参数为缺口开放罚分(gap open penalty)10,缺口延 伸罚分(gap extensionpenalty)0.5和EBLOSUM62(BLOSUM62的EMBOSS版) 取代矩阵。使用Needle标记为“最高同一性(longest identity)”的输出结果(使用 -nobrief选项获得)作为同一性百分比,并计算如下:
(同样的残基×100)/(比对长度-比对中缺口的总数)
就本发明而言,两个核苷酸序列之间的序列同一性程度使用如EMBOSS 软件包(EMBOSS:The European Molecular Biology Open Software Suite,Rice 等,2000,见上文),优选5.0.0版或更高版本的Needle程序中所执行的 Needleman-Wunsch算法(Needleman和Wunsch,1970,见上文)来测定。使用的 参数为缺口开放罚分10,缺口延伸罚分0.5和EDNAFULL(NCBI NUC4.4的 EMBOSS版)取代矩阵。使用Needle标记为“最高同一性”的输出结果(使用 -nobrief选项获得)作为同一性百分比,并计算如下:
(同样的脱氧核糖核苷酸×100)/(比对长度-比对中缺口的总数)
亚序列:术语“亚序列(subsequence)”意指从成熟多肽编码序列的5’和/或3’ 端缺失一个或多个(例如几个)核苷酸的多核苷酸;其中所述亚序列编码具有木聚 糖酶活性的片段。在一个方面,亚序列对应于编码催化域的多核苷酸。
变体:术语“变体”意指在一个或多个(例如几个)位置包含改变,即取代、 插入和/或缺失的具有木聚糖酶活性的多肽。取代意指将占据某位置的氨基酸 用不同的氨基酸替代;缺失意指去除占据某位置的氨基酸;而插入意指在邻 接并紧接着占据某位置的氨基酸之后添加氨基酸。
非常高严格条件:术语“非常高严格条件”意指对于长度至少100个核苷 酸的探针,在42℃,在5X SSPE、0.3%SDS、200微克/ml已剪切并且变性的 鲑精DNA和50%的甲酰胺中,根据标准的Southern印迹法进行预杂交和杂交 12至24小时。使用2X SSC、0.2%SDS在70℃将载体材料最终洗涤三次,每 次15分钟。
非常低严格条件:术语“非常低严格条件”意指对于长度至少100个核苷 酸的探针,在42℃,在5X SSPE、0.3%SDS、200微克/ml已剪切并且变性的 鲑精DNA和25%的甲酰胺中,根据标准的Southern印迹法进行预杂交和杂交 12至24小时。使用2X SSC、0.2%SDS在45℃将载体材料最终洗涤三次,每 次15分钟。
含木聚糖材料:术语“含木聚糖材料”意指任何包含含有β-(1-4)连接的木 糖残基骨架的植物细胞壁多糖的材料。陆生植物的木聚糖是具有β-(1-4)-吡喃 木糖骨架的杂聚物,其由短的糖链分支。它们包含D-葡糖醛酸或其4-O-甲基 醚,L-阿拉伯糖和/或多种包含D-木糖、L-阿拉伯糖、D-或L-半乳糖和D-葡萄 糖的寡糖。木聚糖类型的多糖可分为均木聚糖(homoxylan)和杂木聚糖 (heteroxylan),后者包括葡糖醛酸木聚糖,(阿拉伯)葡糖醛酸木聚糖,(葡糖 醛酸)阿拉伯木聚糖,阿拉伯木聚糖和复合杂木聚糖。参见,例如Ebringerova 等,2005,Adv.Polym.Sci.186:1-67。
在本发明的工艺中,可使用任何含有木聚糖的材料。在一个优选的方面, 所述含木聚糖材料是木素纤维素。
木聚糖降解活性或木聚糖分解活性:术语“木聚糖降解活性”或“木聚糖 分解活性”意指水解含木聚糖材料的生物学活性。两种测定木聚糖分解活性 的基础方法包括:(1)测定总木聚糖分解活性,和(2)测定单独的木聚糖分解 活性(例如内切木聚糖酶、β-木糖苷酶、阿拉伯呋喃糖苷酶、α-葡糖醛酸糖苷 酶、乙酰木聚糖酯酶、阿魏酸酯酶和α-葡糖醛酸酯酶(α-glucuronyl esterase))。 最近在木聚糖分解酶测定法的进展总结于几个公开文献中,包括Biely和 Puchard,2006,Recent progress in the assays of xylanolyticenzymes,Journal of the Science of Food and Agriculture86(11):1636-1647;Spanikova和Biely,2006, Glucuronoyl esterase-Novel carbohydrate esteraseproduced by Schizophyllum commune,FEBS Letters580(19):4597-4601;Herrmann等,1997,The beta-D-xylosidase of Trichoderma reesei is a multifunctional beta-D-xylan xylohydrolase,Biochemical Journal321:375-381。
总木聚糖降解活性可通过确定从多种类型的木聚糖形成的还原糖来测 量,所述木聚糖包括例如燕麦小麦(oat spelt)、山毛榉木(beechwood)和落叶松 木(larchwood)木聚糖,或者可通过光度法确定从多种共价染色的木聚糖释放 出的染色的木聚糖片段来测量。最常见的总木聚糖分解活性测定法基于从多 聚的4-O-甲基葡糖醛酸木聚糖产生还原糖,如Bailey等,1992,Interlaboratory testing of methods for assay of xylanaseactivity,Journal of Biotechnology23(3): 257-270中所述。木聚糖酶活性亦可用0.2%AZCL-阿拉伯木聚糖作为底物在 37℃在0.01%X-100(4-(1,1,3,3-四甲基丁基)苯基-聚乙二醇)和200 mM磷酸钠缓冲液pH6中来确定。一个单位的木聚糖酶活性定义为在37℃, pH6在200mM磷酸钠pH6缓冲液中从作为底物的0.2%AZCL-阿拉伯木聚糖 每分钟产生1.0微摩尔天青蛋白(azurine)。
就本发明而言,木聚糖降解活性通过测量由木聚糖降解酶在下述通常条 件下造成的桦木木聚糖(Sigma Chemical Co.,Inc.,St.Louis,MO,USA)水解的 增加来确定:1ml反应液,5mg/ml底物(总固体),5mg木聚糖分解蛋白质/g 底物,50mM乙酸钠,pH5,50℃,24小时,如Lever,1972,A new reaction for colorimetric determination ofcarbohydrates,Anal.Biochem47:273-279所述使 用对羟基苯甲酸酰肼(PHBAH)测定法进行糖分析。
发明详述
具有木聚糖酶活性的多肽
在一个实施方案中,本发明涉及分离的多肽,其与SEQ ID NO:2的成熟 多肽具有至少77%,例如至少78%、至少79%、至少80%、至少85%、至少90%、 至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、 至少98%、至少99%、或100%的序列同一性,其具有木聚糖酶活性。在一个 实施方案中,本发明涉及分离的多肽,其与SEQ ID NO:4的成熟多肽具有至 少77%,例如至少78%、至少79%、至少80%、至少85%、至少90%、至少91%、 至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、 至少99%、或100%的序列同一性,其具有木聚糖酶活性。在一个实施方案中, 本发明涉及分离的多肽,其与SEQ ID NO:6的成熟多肽具有至少85%,例如 至少86%、至少87%、至少88%、至少89%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、 或100%的序列同一性,其具有木聚糖酶活性。在一个方面,所述多肽与SEQ ID NO:2、SEQ ID NO:4或SEQ ID NO:6的成熟多肽相差不超过10个氨基酸, 例如1,2,3,4,5,6,7,8,或9个氨基酸。
本发明的多肽优选包含或组成为SEQ ID NO:2、SEQ ID NO:4或SEQ ID NO:6的氨基酸序列或其等位变体;或为其具有木聚糖酶活性的片段。在另一 个方面,所述多肽包含或组成为SEQ ID NO:2、SEQ ID NO:4或SEQ ID NO:6 的成熟多肽。在另一个方面,所述多肽包含或组成为SEQ ID NO:2的氨基酸 18至364、SEQ ID NO:4的氨基酸17至389、或SEQ IDNO:6的氨基酸21至405。
在另一个实施方案中,本发明涉及具有木聚糖酶活性的分离的多肽,其 由多核苷酸编码,所述多核苷酸在非常低严格条件、或低严格条件、或中等 严格条件、或中-高严格条件、或高严格条件、或非常高严格条件下与以下杂 交:(i)SEQ ID NO:1、SEQ ID NO:3或SEQ ID NO:5的成熟多肽编码序列,(ii) 其cDNA序列,或(iii)(i)或(ii)的全长互补物(Sambrook等,1989,Molecular Cloning,A Laboratory Manual,第2版,Cold SpringHarbor,New York)。
SEQ ID NO:1、SEQ ID NO:3或SEQ ID NO:5的多核苷酸或其亚序列,以 及SEQ IDNO:2、SEQ ID NO:4或SEQ ID NO:6的多肽或其片段,可用于设计 核酸探针,以根据本领域内公知的方法从不同属或种的菌株鉴定和克隆编码具 有木聚糖酶活性的多肽的DNA。具体而言,根据标准的Southern印迹方法,可 将这些探针用于与感兴趣的细胞的基因组DNA或cDNA杂交,以鉴定和从其中 分离相应的基因。这些探针可明显短于完整序列,但长度上应为至少15,例如 至少25,至少35,或至少70个核苷酸。优选地,所述核酸探针是至少100个核苷酸的长度,例如,至少200个核苷酸,至少300个核苷酸,至少400个核苷酸, 至少500个核苷酸,至少600个核苷酸,至少700个核苷酸,至少800个核苷酸, 或至少900个核苷酸的长度。DNA和RNA探针二者均可使用。通常将探针标记 以探测相应的基因(例如,用32P、3H、35S、生物素或抗生物素蛋白(avidin)标记)。 这类探针涵盖于本发明中。
可从由这类其它菌株制备的基因组DNA或cDNA文库中筛选DNA,所述 DNA与上述探针杂交并且编码具有木聚糖酶活性的多肽。可以通过琼脂糖或 聚丙烯酰胺凝胶电泳,或通过其它分离技术分离来自这些其它菌株的基因组 或其它DNA。可以将来自文库的DNA或分离的DNA转移至硝化纤维素 (nitrocellulose)或其它合适的载体材料并且固定于其上。为了鉴定与SEQ ID NO:1、SEQ ID NO:3或SEQ ID NO:5或其亚序列杂交的克隆或DNA,将所 述载体材料用在Sounthern印迹中。
就本发明而言,杂交表示多核苷酸在非常低至非常高的严格条件下与标 记的核酸探针杂交,所述核酸探针对应于下述:(i)SEQ ID NO:1、SEQ ID NO: 3或SEQ ID NO:5,(ii)SEQ ID NO:1、SEQ ID NO:3或SEQ ID NO:5的成熟 多肽编码序列,(iii)其cDNA序列;(iv)它们的全长互补物,或(v)它们的亚序 列。可使用例如X射线片(X-ray film)或其他任何本领域中已知的检测手段检 测在这些条件下与核酸探针杂交的分子。
在一个方面,所述核酸探针是编码SEQ ID NO:2、SEQ ID NO:4或SEQ ID NO:6的多肽,其成熟多肽,或其片段的多核苷酸。在另一个方面,所述 核酸探针是SEQ ID NO:1、SEQID NO:3或SEQ ID NO:5或其cDNA序列。 在另一个方面,所述核酸探针是包含在Talaromyces leycettanus菌株CBS 398.68中的多核苷酸,其中所述多核苷酸编码具有木聚糖酶活性的多肽。
在另一个实施方案中,本发明涉及具有木聚糖酶活性的分离的多肽,其 由多核苷酸编码,所述多核苷酸与SEQ ID NO:1成熟多肽编码序列或其 cDNA序列具有至少60%,例如至少65%,至少70%,至少75%,至少80%, 至少85%,至少90%,至少91%,至少92%,至少93%,至少94%,至少95%, 至少96%,至少97%,至少98%,至少99%,或100%的序列同一性。在另一 个实施方案中,本发明涉及具有木聚糖酶活性的分离的多肽,其由多核苷酸 编码,所述多核苷酸与SEQ ID NO:3成熟多肽编码序列或其cDNA序列具有 至少60%,例如至少65%,至少70%,至少75%,至少80%,至少85%,至少 90%,至少91%,至少92%,至少93%,至少94%,至少95%,至少96%,至 少97%,至少98%,至少99%,或100%的序列同一性。在另一个实施方案中, 本发明涉及具有木聚糖酶活性的分离的多肽,其由多核苷酸编码,所述多核 苷酸与SEQ ID NO:5成熟多肽编码序列或其cDNA序列具有至少60%,例如 至少65%,至少70%,至少75%,至少80%,至少85%,至少90%,至少91%, 至少92%,至少93%,至少94%,至少95%,至少96%,至少97%,至少98%, 至少99%,或100%的序列同一性。
在另一个实施方案中,本发明涉及SEQ ID NO:2、SEQ ID NO:4或SEQ ID NO:6的成熟多肽在一个或多个(例如几个)位置包含取代、缺失和/或插入 的变体。在一个实施方案中,引入SEQ ID NO:2、SEQ ID NO:4或SEQ ID NO: 6的成熟多肽的氨基酸取代、缺失和/或插入的数目不超过10,例如1、2、3、 4、5、6、7、8或9。氨基酸改变可为性质上较不重要的(ofa minor nature), 即保守的氨基酸取代或插入,其不显著影响蛋白质的折叠和/或活性;通常为 1至大约30个氨基酸的小缺失;小的氨基或羧基末端延伸,例如氨基末端甲 硫氨酸残基;多至大约20-25个残基的小接头肽;或通过改变净电荷或其它 功能来促进纯化的小延伸,如多组氨酸序列(poly histidine tract)、抗原表位 (antigenic epitope)或结合域(binding domain)。
保守取代的实例是在以下组之内:碱性氨基酸组(精氨酸、赖氨酸和组 氨酸)、酸性氨基酸组(谷氨酸和天冬氨酸)、极性氨基酸组(谷氨酰胺和天冬 酰胺)、疏水氨基酸组(亮氨酸、异亮氨酸和缬氨酸)、芳族氨基酸组(苯丙氨 酸、色氨酸和酪氨酸)和小氨基酸组(甘氨酸、丙氨酸、丝氨酸、苏氨酸和甲 硫氨酸)。通常不改变比活性(specific activity)的氨基酸取代是本领域已知的, 并且由例如H.Neurath和R.L.Hill,1979,于TheProteins,Academic Press,New York中描述。常见的取代为Ala/Ser、Val/Ile、Asp/Glu、Thr/Ser、Ala/Gly、 Ala/Thr、Ser/Asn、Ala/Val、Ser/Gly、Tyr/Phe、Ala/Pro、Lys/Arg、Asp/Asn、 Leu/Ile、Leu/Val、Ala/Glu和Asp/Gly。
或者,氨基酸改变具有这样的性质以使多肽的物理化学性质改变。例如, 氨基酸改变可改善多肽的热稳定性,改变底物特异性,改变最适pH等。
能够根据本领域已知的方法,例如定位诱变或丙氨酸扫描诱变法 (Cunningham和Wells,1989,Science244:1081-1085)来鉴定亲本多肽中的必需 氨基酸。在后一技术中,将单一丙氨酸突变引入到分子中的每个残基,并且 就木聚糖酶活性测试所得突变分子以鉴定对于所述分子的活性关键的氨基 酸残基。同样参见Hilton等,1996,J.Biol.Chem.271:4699-4708。酶的活性部 位或其它的生物相互作用也能够通过结构的物理分析而测定,如通过以下这 些技术:如核磁共振、晶体学、电子衍射或光亲和标记,连同推定的接触位 点氨基酸的突变来测定。参见例如de Vos等,1992,Science255:306-312;Smith 等,1992,J.Mol.Biol.224:899-904;Wlodaver等,1992,FEBS Lett.309:59-64。 必需氨基酸的身份也能够从与相关多肽的比对来推断。
可使用已知的诱变、重组和/或改组方法,然后进行相关的筛选过程,如由Reidhaar-Olson和Sauer,1988,Science241:53-57;Bowie和Sauer,1989,Proc.Natl.Acad.Sci.USA86:2152-2156;WO95/17413;或者WO95/22625所公开的那些, 进行一个或多个氨基酸取代、缺失和/或插入并加以测试。其他可使用的方法包 括易错PCR、噬菌体展示(例如Lowman等,1991,Biochemistry30:10832-10837;美 国专利号5,223,409;WO92/06204)和区域定向诱变(region-directed mutagenesis) (Derbyshire等,1986,Gene46:145;等,1988,DNA7:127)。
诱变/改组方法可与高通量、自动筛选方法组合以检测由宿主细胞表达的 经克隆、诱变的多肽的活性(Ness等,1999,Nature Biotechnology17:893-896)。 编码活性多肽的经诱变的DNA分子可自宿主细胞回收并使用本领域标准方 法迅速测序。这些方法允许快速确定多肽中单个氨基酸残基的重要性。
所述多肽可为杂合多肽,其中一个多肽的区域融合于另一个多肽的区域 的N端或C端。
所述多肽可为融合多肽或可切割的融合多肽,其中另一个多肽融合于本 发明的多肽的N端或C端。通过将编码另一个多肽的多核苷酸融合于本发明 的多核苷酸来产生融合多肽。产生融合多肽的技术是本领域已知的,并包括 连接编码多肽的编码序列以使它们符合读框(in frame),并且使融合多肽的表 达在相同启动子和终止子的控制下。融合蛋白亦可使用内蛋白(intein)技术构 建,其中融合物在翻译后产生(Cooper等,1993,EMBOJ.12:2575-2583; Dawson等,1994,Science266:776-779)。
融合多肽还可以在两个多肽之间包含切割位点。在融合多肽分泌时,就切 割所述位点,释放所述两个多肽。切割位点的实例包括但不限于,公开于Martin 等,2003,J.Ind.Microbiol.Biotechnol.3:568-576;Svetina等,2000,J.Biotechnol. 76:245-251;Rasmussen-Wilson等,1997,Appl.Environ.Microbiol.63:3488-3493; Ward等,1995,Biotechnology13:498-503;和Contreras等,1991,Biotechnology9: 378-381;Eaton等,1986,Biochem.25:505-512);Collins-Racie等,1995, Biotechnology13:982-987;Carter等,1989,Proteins:Structure,Function,and Genetics6:240-248;以及Stevens,2003,Drug Discovery World4:35-48中的位点。
具有木聚糖酶活性的多肽的来源
本发明的具有木聚糖酶活性的多肽可以获得自任何属的微生物。就本发 明而言,用于本文与给定的来源有关的术语“获得自”,意思应为由多核苷酸 编码的多肽由所述来源产生,或由其中插入了来自所述来源的多核苷酸的菌 株产生。在一个方面,从给定来源获得的多肽是胞外分泌的。
在一个方面,所述多肽是踝节菌属(Talaromyces)多肽。
在另一个方面,所述多肽是Talaromyces leycettanus多肽,例如从 Talaromycesleycettanus菌株CBS398.68获得的多肽。
可理解的是对于前述的种,本发明包含完全和不完全阶段(perfect andimperfect states),和其它分类学的等同物(equivalent),例如无性型(anamorph), 而无论它们已知的种名。本领域技术人员将容易地识别适合的等同物的身份。
这些种的菌株在许多培养物保藏中心对于公众能够容易地取得,所述保 藏中心诸如美国典型培养物保藏中心(the American Type Culture Collection) (ATCC)、德意志微生物和细胞培养物保藏中心(Deutsche Sammlung von Mikroorganismen undZellkulturen GmbH)(DSMZ)、真菌菌种保藏中心 (Centraalbureau VoorSchimmelcultures)(CBS)和农业研究机构专利培养物保 藏中心北区研究中心(Agricultural Research Service Patent Culture Collection, Northern RegionalResearch Center)(NRRL)。
可以使用上述的探针从其它来源,包括从自然界(例如,土壤、堆肥、 水等)分离的微生物或直接获得自自然材料(例如,土壤、堆肥、水等)的DNA 样品鉴定和获得所述多肽。用于直接从天然生境(habitat)分离微生物和DNA 的技术是本领域内公知的。随后可通过相似地筛选另一种微生物的基因组 DNA或cDNA文库或混合的DNA样品来得到编码所述多肽的多核苷酸。一旦 用探针检测到编码多肽的多核苷酸,就可以使用本领域普通技术人员已知的 技术将所述多核苷酸分离或克隆(参见,例如,Sambrook等,1989,见上文)。
催化域
本发明亦涉及分离的多肽,其包含选自下组的催化域:
(a)催化域,其与SEQ ID NO:2的催化域(例如,SEQ ID NO:2的氨基酸 18至364)具有至少77%的序列同一性,催化域,其与SEQ ID NO:4的催化域 (例如,SEQ ID NO:4的氨基酸17至326)具有至少77%的序列同一性,或催化 域,其与SEQ ID NO:6的催化域(例如,SEQID NO:6的氨基酸21至337)具有 至少85%的序列同一性;
(b)催化域,其由与SEQ ID NO:1的催化域编码序列(例如,SEQ ID NO:1 的核苷酸52-240和314-1165)具有至少60%序列同一性的多核苷酸编码,催化 域,其由与SEQ ID NO:3的催化域编码序列(例如,SEQ ID NO:3的核苷酸 49-241、302-342、404-452、518-639、707-852、912-1019、1088-1205、1282-1347、 和1430-1516)具有至少60%序列同一性的多核苷酸编码,或催化域,其由与SEQ ID NO:5的催化域编码序列(例如,SEQ ID NO:5的核苷酸124-270、342-474、 567-680和757-1313)具有至少60%序列同一性的多核苷酸编码;
(c)SEQ ID NO:2、SEQ ID NO:4或SEQ ID NO:6的催化域的包含一个或 多个(几个)氨基酸的取代、缺失和/或插入的催化域变体;和
(d)(a)、(b)或(c)的催化域的具有木聚糖酶活性的片段。
所述催化域优选与SEQ ID NO:2的催化域具有至少60%,例如至少70%、 至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少95%、 至少96%、至少97%、至少98%、至少99%、或100%的序列同一性程度。所 述催化域优选与SEQ ID NO:4的催化域具有至少60%,例如至少70%、至少 75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少95%、至 少96%、至少97%、至少98%、至少99%、或100%的序列同一性程度。所述 催化域优选与SEQ ID NO:6的催化域具有至少60%,例如至少70%、至少75%、 至少80%、至少85%、至少90%、至少91%、至少92%、至少95%、至少96%、 至少97%、至少98%、至少99%、或100%的序列同一性程度。在一个方面, 所述催化域包含氨基酸序列,所述氨基酸序列与SEQ ID NO:2、SEQ ID NO:4 或SEQ IDNO:6的催化域相差十个氨基酸,例如相差五个氨基酸,相差四个 氨基酸,相差三个氨基酸,相差两个氨基酸,和相差一个氨基酸。
所述催化域优选包含或组成为SEQ ID NO:2的催化域或其等位变体;或 为其具有木聚糖酶活性的片段。在另一个优选方面,所述催化域包含或组成 为SEQ ID NO:2的氨基酸18至364。
所述催化域优选包含或组成为SEQ ID NO:4的催化域或其等位变体;或 为其具有木聚糖酶活性的片段。在另一个优选方面,所述催化域包含或组成 为SEQ ID NO:4的氨基酸17至326。
所述催化域优选包含或组成为SEQ ID NO:6的催化域或其等位变体;或 为其具有木聚糖酶活性的片段。在另一个优选方面,所述催化域包含或组成 为SEQ ID NO:6的氨基酸21至337。
在一个实施方案中,所述催化域可由多核苷酸编码,所述多核苷酸在非 常低严格条件、或低严格条件、或中等严格条件、或中-高严格条件、或高严 格条件、或非常高严格条件下(如上文定义),与以下杂交:(i)SEQ ID NO:1、 SEQ ID NO:3或SEQ ID NO:5的催化域编码序列,(ii)包含于SEQ ID NO:1、 SEQ ID NO:3或SEQ ID NO:5的催化域编码序列中的cDNA序列,或(iii)(i)或 (ii)的全长互补物(J.Sambrook等,1989,见上文)。
所述催化域可由多核苷酸编码,所述多核苷酸与SEQ ID NO:1的催化域编 码序列具有至少60%,例如至少70%、至少75%、至少80%、至少85%、至少 90%、至少91%、至少92%、至少95%、至少96%、至少97%、至少98%、至 少99%、或100%的序列同一性程度,其编码具有木聚糖酶活性的多肽。
所述催化域可由多核苷酸编码,所述多核苷酸与SEQ ID NO:3的催化域编 码序列具有至少60%,例如至少70%、至少75%、至少80%、至少85%、至少 90%、至少91%、至少92%、至少95%、至少96%、至少97%、至少98%、至 少99%、或100%的序列同一性程度,其编码具有木聚糖酶活性的多肽。
所述催化域可由多核苷酸编码,所述多核苷酸与SEQ ID NO:5的催化域编 码序列具有至少60%,例如至少70%、至少75%、至少80%、至少85%、至少 90%、至少91%、至少92%、至少95%、至少96%、至少97%、至少98%、至 少99%、或100%的序列同一性程度,其编码具有木聚糖酶活性的多肽。
在一个方面,编码催化域的多核苷酸包含或组成为SEQ ID NO:1的核苷酸 52至1165或其cDNA序列。特别地,编码催化域的多核苷酸包含或组成为SEQ ID NO:1的核苷酸52-240和314-1165。
在一个方面,编码催化域的多核苷酸包含或组成为SEQ ID NO:3的核苷酸 49至1516或其cDNA序列。特别地,编码催化域的多核苷酸包含或组成为SEQ ID NO:3的核苷酸49-241、302-342、404-452、518-639、707-852、912-1019、 1088-1205、1282-1347、和1430-1516。
在一个方面,编码催化域的多核苷酸包含或组成为SEQ ID NO:5的核苷酸 124至1313或其cDNA序列。特别地,编码催化域的多核苷酸包含或组成为SEQ ID NO:5的核苷酸124-270、342-474、567-680、和757-1313。
多核苷酸
本发明亦涉及编码如本文中所述的本发明的多肽的分离的多核苷酸。
用于分离或克隆多核苷酸的技术在本领域中是已知的,并包括从基因组DNA或cDNA分离,或其组合。可通过例如使用熟知的聚合酶链式反应(PCR) 或表达文库的抗体筛选来检测具有共有结构特性的克隆DNA片段,从而实现从 这种基因组DNA克隆多核苷酸。参见,例如,Innis等,1990,PCR:A Guide to Methods and Application,Academic Press,New York。可以使用其它核酸扩增方 法,如连接酶链式反应(LCR)、连接活化转录(ligatedactivated transcription;LAT) 和基于多核苷酸的扩增(NASBA)。可以从踝节菌属的菌株,或相关生物体克隆 所述多核苷酸,因此,例如可为所述多核苷酸的多肽编码区的等位基因变体或 种变体(species variant)。
修饰编码本发明多肽的多核苷酸对于合成与所述多肽基本上相似的多肽可 为必需的。术语与所述多肽“基本上相似”指多肽的非天然存在的形式。这些多 肽可能以一些工程改造的方式而不同于从其天然来源分离的多肽,例如,比活 性、热稳定性、最适pH等方面不同的变体。可以在作为SEQ ID NO:1、SEQ ID NO:3或SEQ ID NO:5的成熟多肽编码序列,或其cDNA序列,例如其亚序列呈 现的多核苷酸的基础上和/或通过引入如下核苷酸取代:所述取代不导致多肽氨 基酸序列的改变,但是符合意欲产生酶的宿主生物体的密码子使用;或者通过 导入可产生不同的氨基酸序列的核苷酸取代来构建变体。关于核苷酸取代的概 述,参见,例如,Ford等,1991,Protein Expression and Purification2:95-107。
核酸构建体
本发明还涉及包含本发明的多核苷酸的核酸构建体,所述多核苷酸与一 个或多个调控序列可操作地连接,所述调控序列在合适的宿主细胞中在与该 调控序列相容的条件下指导编码序列的表达。
可以用许多方式操作所述多核苷酸以提供多肽的表达。依赖于表达载 体,在将多核苷酸插入载体之前对其进行操作可能是理想的或必需的。使用 重组DNA方法修饰多核苷酸的技术是本领域熟知的。
调控序列可为启动子,其由用于表达编码本发明的多肽的多核苷酸的宿 主细胞所识别的多核苷酸。启动子含有介导多肽的表达的转录调控序列。启 动子可以是在宿主细胞中显示转录活性的任何多核苷酸,包括突变的、截短 的和杂合的启动子,并且可以从编码与宿主细胞同源或异源的胞外或胞内多 肽的基因获得。
用于在细菌宿主细胞中指导本发明的核酸构建体转录的合适启动子的实 例是从下述获得的启动子:解淀粉芽孢杆菌(Bacillus amyloliquefaciens)α-淀粉 酶基因(amyQ)、地衣芽孢杆菌(Bacillus licheniformis)α-淀粉酶基因(amyL)、地 衣芽孢杆菌青霉素酶基因(penP)、嗜热脂肪芽孢杆菌(Bacillus stearothermophilus) 产麦芽淀粉酶基因(amyM)、枯草芽孢杆菌(Bacillus subtilis)果聚糖蔗糖酶基因 (sacB)、枯草芽孢杆菌xylA和xylB基因、苏云金芽孢杆菌(Bacillus thuringiensis) cryIIIA基因(Agaisse和Lereclus,1994,Molecular Microbiology13:97-107)、大肠 杆菌(E.coli)lac操纵子、大肠杆菌trc启动子(Egon等,1988,Gene69:301-315)、 天蓝链霉菌(Streptomycescoelicolor)琼脂糖酶基因(dagA)和原核β-内酰胺酶基 因(Villa-Kamaroff等,1978,Proceedings of the National Academy of Sciences USA 75:3727-3731),以及tac启动子(DeBoer等,1983,Proc.Natl.Acad.Sci.USA80: 21-25)。另外的启动子在"Usefulproteins from recombinant bacteria"于Gilbert等, 1980,Scientific American,242:74-94中;和在Sambrook等,1989,见上文中描述。 串联启动子的实例公开于WO99/43835。
用于指导本发明的核酸构建体在丝状真菌宿主细胞中转录的合适启动子 的实例是从下列酶的基因获得的启动子:构巢曲霉(Aspergillus nidulans)乙酰胺 酶、黑曲霉(Aspergillus niger)中性α-淀粉酶、黑曲霉酸稳定性α-淀粉酶、黑曲霉 或泡盛曲霉(Aspergillus awamori)葡糖淀粉酶(glaA)、米曲霉(Aspergillus oryzae) TAKA淀粉酶、米曲霉碱性蛋白酶、米曲霉丙糖磷酸异构酶、尖镰孢(Fusarium oxysporum)胰蛋白酶样蛋白酶(WO96/00787)、镶片镰孢(Fusarium venenatum) 淀粉葡糖苷酶(WO00/56900)、镶片镰孢Daria(WO00/56900)、镶片镰孢Quinn (WO00/56900)、曼赫根毛霉(Rhizomucor miehei)脂肪酶、曼赫根毛霉天冬氨酸 蛋白酶、里氏木霉(Trichoderma reesei)β-葡糖苷酶、里氏木霉纤维二糖水解酶I、 里氏木霉纤维二糖水解酶II、里氏木霉内切葡聚糖酶I、里氏木霉内切葡聚糖酶 II、里氏木霉内切葡聚糖酶III、里氏木霉内切葡聚糖酶IV、里氏木霉内切葡聚 糖酶V、里氏木霉木聚糖酶I、里氏木霉木聚糖酶II、里氏木霉β-木糖苷酶,以 及NA2-tpi启动子(一种修饰的启动子,其来自在曲霉属中性α-淀粉酶基因,其 中未翻译的前导序列由曲霉属丙糖磷酸异构酶的基因的未翻译的前导序列所 替代;非限制性实例包括修饰的启动子,其来自黑曲霉中性α-淀粉酶的基因, 其中未翻译的前导序列由构巢曲霉或米曲霉丙糖磷酸异构酶的基因的未翻译 的前导序列所替代);和它们的突变的、截短的和杂合的启动子。
在酵母宿主中,有用的启动子从如下的基因获得:酿酒酵母(Saccharomycescerevisiae)烯醇化酶(ENO-1)、酿酒酵母半乳糖激酶(GAL1)、酿酒酵母醇脱氢酶/甘油醛-3-磷酸脱氢酶(ADH1,ADH2/GAP)、酿酒酵母丙糖磷酸异构酶(TPI)、 酿酒酵母金属硫蛋白(CUP1)和酿酒酵母3-磷酸甘油酸激酶。对于酵母宿主细胞 其它有用的启动子由Romanos等,1992,Yeast8:423-488描述。
调控序列也可以是转录终止子,其由宿主细胞识别以终止转录。所述终 止子与编码所述多肽的多核苷酸的3’末端可操作地连接。在本发明中,可使 用在宿主细胞中有功能的任何终止子。
对于细菌宿主细胞优选的终止子从如下的基因获得:克劳氏芽孢杆菌 (Bacillusclausii)碱性蛋白酶(aprH)、地衣芽孢杆菌α-淀粉酶(amyL)和大肠杆菌 核糖体RNA(rrnB)。
对于丝状真菌宿主细胞优选的终止子从如下酶的基因获得:构巢曲霉邻 氨基苯甲酸合酶、黑曲霉葡糖淀粉酶、黑曲霉α-葡糖苷酶、米曲霉TAKA淀 粉酶、和尖镰孢胰蛋白酶样蛋白酶。
对于酵母宿主细胞优选的终止子从如下酶的基因获得:酿酒酵母烯醇化 酶、酿酒酵母细胞色素C(CYC1)和酿酒酵母甘油醛-3-磷酸脱氢酶。对于酵 母宿主细胞其它有用的终止子由Romanos等,1992,见上文描述。
调控序列还可以是启动子下游和基因的编码序列上游的mRNA稳定化 区,其增加所述基因的表达。
合适的mRNA稳定化区的实例从如下的基因获得:苏云金芽孢杆菌 cryIIIA基因(WO94/25612)和枯草芽孢杆菌SP82基因(Hue等,1995,Journal of Bacteriology177:3465-3471)。
调控序列还可以是合适的前导序列,其为对于宿主细胞的翻译重要的 mRNA非翻译区。前导序列可操作地连接于编码多肽的多核苷酸的5’-末端。 可使用在宿主细胞中有功能的任何前导序列。
对于丝状真菌宿主细胞优选的前导序列从如下酶的基因获得:米曲霉 TAKA淀粉酶和构巢曲霉丙糖磷酸异构酶。
对于酵母宿主细胞合适的前导序列从如下酶的基因获得:酿酒酵母烯醇 化酶(ENO-1)、酿酒酵母3-磷酸甘油酸激酶、酿酒酵母α因子和酿酒酵母醇脱 氢酶/甘油醛-3-磷酸脱氢酶(ADH2/GAP)。
调控序列也可以是聚腺苷酸化序列,其是与多核苷酸的3’末端可操作地 连接的序列,并且在转录时,宿主细胞将其识别为将聚腺苷残基添加至转录 的mRNA的信号。可使用在宿主细胞中有功能的任何聚腺苷酸化序列。
对于丝状真菌宿主细胞优选的聚腺苷酸化序列从如下酶的基因获得:构 巢曲霉邻氨基苯甲酸合酶、黑曲霉葡糖淀粉酶、黑曲霉α-葡糖苷酶、米曲霉 TAKA淀粉酶和尖镰孢胰蛋白酶样蛋白酶。
对于酵母宿主细胞有用的聚腺苷酸化序列由Guo和Sherman,1995,Mol. CellularBiol.15:5983-5990描述。
调控序列还可以是信号肽编码区,其编码与多肽的N端相连的信号肽,并指 导所述多肽进入细胞分泌途径。多核苷酸的编码序列5’端可固有地包含信号肽 编码序列,其与编码所述多肽的编码序列的区段一起天然地连接在翻译阅读框 中。或者,编码序列5’端可含有对于所述编码序列外来的信号肽编码序列。外 来信号肽编码序列在编码序列不天然地含有信号肽编码序列时可为必需的。或 者,外源信号肽编码序列可简单地取代天然信号肽编码序列以增强多肽的分泌。 然而,可使用指导表达的多肽进入宿主细胞的分泌途径的任何信号肽编码序列。
对于细菌宿主细胞有效的信号肽编码序列是从如下酶的基因获得的信号 肽编码序列:芽孢杆菌属NCIB11837产麦芽糖淀粉酶、地衣芽孢杆菌枯草杆 菌蛋白酶(subtilisin)、地衣芽孢杆菌β-内酰胺酶、嗜热脂肪芽孢杆菌α-淀粉酶、 嗜热脂肪芽孢杆菌中性蛋白酶(nprT,nprS,nprM)和枯草芽孢杆菌prsA。另外的 信号肽由Simonen和Palva,1993,Microbiological Reviews57:109-137描述。
对于丝状真菌宿主细胞有效的信号肽编码序列是从如下酶的基因获得的 信号肽编码序列:黑曲霉中性淀粉酶、黑曲霉葡糖淀粉酶、米曲霉TAKA淀粉 酶、特异腐质霉(Humicola insolens)纤维素酶、特异腐质霉内切葡聚糖酶V、 疏棉状腐质霉(Humicolalanuginosa)脂肪酶和曼赫根毛霉天冬氨酸蛋白酶。
对于酵母宿主细胞有用的信号肽从酿酒酵母α因子和酿酒酵母转化酶的 基因获得。其它有用的信号肽编码序列由Romanos等,1992,见上文描述。
调控序列还可以是前肽编码序列,其编码位于多肽N端的前肽。所得多肽称 为酶原(proenzyme)或前多肽(propolypeptide)(或在某些情况下称为酶原 (zymogen))。前多肽通常是无活性的,并且能够通过前肽的催化或自催化切割从 前多肽转化为活性多肽。可以从枯草芽孢杆菌碱性蛋白酶(aprE)、枯草芽孢杆菌 中性蛋白酶(nprT)、嗜热毁丝霉(Myceliophthora thermophila)漆酶(WO95/33836)、 曼赫根毛霉天冬氨酸蛋白酶和酿酒酵母α因子的基因获得前肽编码序列。
当信号肽和前肽序列二者均存在时,将前肽序列置于紧接着(next to)多 肽的N端,并且将信号肽序列置于紧接着前肽序列的N端。
同样理想的是添加调节序列,其相对于宿主细胞的生长来调节多肽的表 达。调节系统的实例是引起基因表达响应化学或物理刺激物,包括调节化合 物的存在而开启或关闭的那些系统。原核系统中的调节系统包括lac、tac和trp 操纵基因系统。在酵母中,可使用ADH2系统或GAL1系统。在丝状真菌中, 可以使用黑曲霉葡糖淀粉酶启动子、米曲霉TAKAα-淀粉酶启动子和米曲霉 葡糖淀粉酶启动子。调节序列的其它实例是那些允许基因扩增的序列。在真 核系统中,这些调节序列包括在氨甲蝶呤(methotrexate)存在下扩增的二氢叶 酸还原酶基因,和以重金属(with heavy metal)扩增的金属硫蛋白基因。在这 些情况下,编码多肽的多核苷酸将与调节序列可操作地连接。
表达载体
本发明还涉及重组表达载体,所述重组表达载体包含本发明的多核苷 酸、启动子、和转录和翻译终止信号。多种核苷酸和调控序列可以结合在一 起以产生重组表达载体,所述表达载体可以包括一个或多个方便的限制位点 以允许在这些位点插入或取代编码多肽的多核苷酸。可供选择的是,可以通 过在适当的用于表达的载体中插入所述多核苷酸或包含所述多核苷酸的核 酸构建体来表达所述多核苷酸。在制备表达载体的过程中,将编码序列置于 载体中,从而将该编码序列与适当的调控序列可操作地连接以供表达。
重组表达载体可以是任何载体(例如,质粒或病毒),其能够方便地进行 重组DNA步骤,并且能够产生多核苷酸的表达。载体的选择将通常依赖于载 体与将引入该载体的宿主细胞的相容性。载体可以是线状或闭合环状质粒。
载体可以是自主复制载体,即,作为染色体外实体(entity)存在的载体, 其复制独立于染色体复制,例如,质粒、染色体外元件、微型染色体 (minichromosome)或人工染色体。载体可以含有任何用于确保自复制的手段 (means)。或者,载体可为当被引入宿主细胞中时,整合到基因组中并且与整 合了该载体的染色体一起复制的载体。此外,可以使用单独的载体或质粒或 两个或更多个载体或质粒,其共同含有待引入宿主细胞基因组的完整DNA (total DNA),或可以使用转座子(transposon)。
所述载体优选地含有一个或多个选择性标记,其允许简单选择经转化、 转染、转导等的细胞。选择性标记是基因,其产物提供杀生物剂或病毒抗性、 对重金属的抗性、对营养缺陷型的原养性(prototrophy to auxotrophs)等。
细菌选择性标记的实例是地衣芽孢杆菌或枯草芽孢杆菌dal基因,或赋予 抗生素抗性的标记,所述抗生素抗性例如氨苄青霉素、氯霉素、卡那霉素、 新霉素、壮观霉素或四环素抗性。对于酵母宿主细胞合适的标记包括但不限 于ADE2、HIS3、LEU2、LYS2、MET3、TRP1和URA3。用于丝状真菌宿主 细胞的选择性标记包括但不限于amdS(乙酰胺酶)、argB(鸟氨酸氨甲酰基转 移酶)、bar(草铵膦(phosphinothricin)乙酰转移酶)、hph(潮霉素磷酸转移酶)、 niaD(硝酸还原酶)(nitrate reductase)、pyrG(乳清酸核苷-5’-磷酸脱羧酶)(orotidine-5’-phosphate decarboxylase)、sC(硫酸腺苷酰转移酶)和trpC(邻氨基 苯甲酸合酶(anthranilate synthase))以及它们的等同物。优选用在曲霉属细胞 中的是构巢曲霉或米曲霉amdS和pyrG基因和吸水链霉菌(Streptomyces hygroscopicus)bar基因。
所述载体优选含有元件,其允许载体整合入宿主细胞基因组或载体在细 胞中独立于基因组的自主复制。
为了整合入宿主细胞基因组,载体可依赖编码多肽的多核苷酸的序列或 用于通过同源或非同源重组整合入基因组的任何其它载体元件。或者,载体 可以含有额外的多核苷酸,用于指导通过同源重组整合入宿主细胞基因组染 色体中的精确位置。为了增加在精确位置整合的可能性,整合元件应含有足 够数量的核酸,如100至10,000碱基对,400至10,000碱基对,和800至10,000 碱基对,其与相应的目标序列具有高度序列同一性以增强同源重组的概率。 整合元件可为任何序列,其与宿主细胞基因组中的目标序列同源。此外,整合元件可为非编码或编码的多核苷酸。另一方面,可将载体通过非同源重组 整合到宿主细胞的基因组中。
为了自主复制,载体可以进一步包含复制起点,其使载体能够在所述的 宿主细胞中自主地复制。复制起点可以是介导自主复制的任何质粒复制子 (replicator),其在细胞中发挥功能。术语“复制起点”或“质粒复制子”意指能够 使质粒或载体体内复制的多核苷酸。
细菌复制起点的实例是允许在大肠杆菌中复制的质粒pBR322、pUC19、 pACYC177和pACYC184的复制起点,和允许在芽孢杆菌属中复制的质粒 pUB110、pE194、pTA1060和pAMβ1的复制起点。
用于酵母宿主细胞中的复制起点的实例是2微米复制起点、ARS1、 ARS4、ARS1和CEN3的组合,和ARS4和CEN6的组合。
在丝状真菌细胞中有用的复制起点的实例是AMA1和ANS1(Gems等, 1991,Gene98:61-67;Cullen等,1987,Nucleic Acids Res.15:9163-9175;WO 00/24883)。分离AMA1基因和构建包含该基因的质粒或载体能够根据公开于 WO00/24883中的方法完成。
可以将多于一个拷贝的本发明的多核苷酸插入宿主细胞以增加多肽的 产生。多核苷酸拷贝数的增加可通过如下方法获得:将至少一个额外拷贝的 序列整合入宿主细胞基因组,或将可扩增的选择性标记基因包括于多核苷 酸,其中可通过在合适的选择剂(selectable agent)存在下培养细胞来选择含有 选择性标记基因的扩增拷贝,且由此含有多核苷酸的额外拷贝的细胞。
用于连接上述元件以构建本发明的重组表达载体的方法是本领域技术 人员熟知的(参见,例如,Sambrook等,1989,见上文)。
宿主细胞
本发明还涉及重组宿主细胞,其包含本发明的多核苷酸可操作地连接于 一个或多个指导本发明多肽的产生的调控序列。将包含多核苷酸的构建体或 载体导入宿主细胞,使所述构建体或载体如前所述作为染色体整体或者作为 自复制的染色体外载体维持。术语“宿主细胞”包括亲本细胞的任何后代,其 由于复制过程中发生的突变而不同于亲本细胞。宿主细胞的选择将在很大程 度上依赖于编码多肽的基因及其来源。
宿主细胞可以是在本发明的多肽的重组产生中有用的任何细胞,例如, 原核或真核细胞。
原核宿主细胞可以是任何革兰氏阳性或革兰氏阴性细菌。革兰氏阳性细 菌包括但不限于,芽孢杆菌属(Bacillus)、梭菌属(Clostridium)、肠球菌属 (Enterococcus)、地芽孢杆菌属(Geobacillus)、乳杆菌属(Lactobacillus)、乳球 菌属(Lactococcus)、海洋芽孢杆菌属(Oceanobacillus)、葡萄球菌属 (Staphylococcus)、链球菌属(Streptococcus)和链霉菌属(Streptomyces)。革兰氏 阴性细菌包括但不限于,弯曲杆菌属(Campylobacter)、大肠杆菌、黄杆菌属 (Flavobacterium)、梭杆菌属(Fusobacterium)、螺杆菌属(Helicobacter)、泥杆菌 属(Ilyobacter)、奈瑟氏菌属(Neisseria)、假单胞菌属(Pseudomonas)、沙门氏菌 属(Salmonella)和脲原体属(Ureaplasma)。
细菌宿主细胞可以是任何芽孢杆菌属细胞,包括但不限于嗜碱芽孢杆菌(Bacillus alkalophilus)、解淀粉芽孢杆菌、短芽孢杆菌(Bacillus brevis)、环状 芽孢杆菌(Bacillus circulans)、克劳氏芽孢杆菌、凝结芽孢杆菌(Bacillus coagulans)、坚强芽孢杆菌(Bacillus firmus)、灿烂芽孢杆菌(Bacillus lautus)、 迟缓芽孢杆菌(Bacillus lentus)、地衣芽孢杆菌、巨大芽孢杆菌(Bacillus megaterium)、短小芽孢杆菌(Bacillus pumilus)、嗜热脂肪芽孢杆菌、枯草芽 孢杆菌和苏云金芽孢杆菌细胞。
细菌宿主细胞还可以是任何链球菌属细胞,包括但不限于似马链球菌(Streptococcus equisimilis)、酿脓链球菌(Streptococcus pyogenes)、乳房链球菌(Streptococcus uberis)和马链球菌兽瘟亚种(Streptococcus equi subsp.Zooepidemicus)细胞。
细菌宿主细胞还可以是任何链霉菌属细胞,包括但不限于不产色链霉菌(Streptomyces achromogenes)、除虫链霉菌(Streptomyces avermitilis)、天蓝链 霉菌(Streptomyces coelicolor)、灰色链霉菌(Streptomyces griseus)和浅青紫链霉 菌(Streptomyces lividans)细胞。
可通过如下方法实现将DNA引入到芽孢杆菌属细胞:原生质体转化(参 见,例如,Chang和Cohen,1979,Mol.Gen.Genet.168:111-115),感受态细胞 转化(参见,例如,Young和Spizizen,1961,J.Bacteriol.81:823-829或Dubnau 和Davidoff-Abelson,1971,J.Mol.Biol.56:209-221),电穿孔(参见,例如, Shigekawa和Dower,1988,Biotechniques6:742-751)或接合(参见,例如, Koehler和Thorne,1987,J.Bacteriol.169:5271-5278)。可通过如下方法实现将 DNA引入到大肠杆菌细胞:原生质体转化(参见,例如,Hanahan,1983,J.Mol. Biol.166:557-580)或电穿孔(参见,例如,Dower等,1988,Nucleic Acids Res.16: 6127-6145)。可通过如下方法实现将DNA引入到链霉菌属细胞:原生质体转 化和电穿孔(参见,例如,Gong等,2004,Folia Microbiol.(Praha)49:399-405), 接合(参见,例如,Mazodier等,1989,J.Bacteriol.171:3583-3585),或转导(参 见,例如,Burke等,2001,Proc.Natl.Acad.Sci.USA98:6289-6294)。可通过 如下方法实现将DNA引入到假单胞菌属细胞:电穿孔(参见,例如,Choi等, 2006,J.Microbiol.Methods64:391-397)或接合(参见,例如,Pinedo和Smets, 2005,Appl.Environ.Microbiol.71:51-57)。可通过如下方法实现将DNA引入 到链球菌属细胞:天然感受态(natural competence)(参见,例如,Perry和 Kuramitsu,1981,Infect.Immun.32:1295-1297),原生质体转化(参见,例如, Catt和Jollick,1991,Microbios.68:189-207),电穿孔(参见,例如,Buckley等, 1999,Appl.Environ.Microbiol.65:3800-3804)或接合(参见,例如,Clewell, 1981,Microbiol.Rev.45:409-436)。然而,可以使用本领域已知的将DNA引入 宿主细胞的任何方法。
宿主细胞还可以是真核生物,如哺乳动物、昆虫、植物或真菌细胞。
宿主细胞可为真菌细胞。“真菌”用在本文包括以下门:子囊菌门 (Ascomycota)、担子菌门(Basidiomycota)、壶菌门(Chytridiomycota)和接合菌门 (Zygomycota)以及卵菌门(Oomycota),和所有有丝分裂孢子真菌(mitosporic fungi)(如由Hawksworth等,于Ainsworth and Bisby’s Dictionary of The Fungi, 第8版,1995,CAB International,University Press,Cambridge,UK中所定义)。
真菌宿主细胞可为酵母细胞。“酵母”用在本文包括产子囊酵母 (ascosporogenous yeast)(内孢霉目(Endomycetales))、产担子酵母 (basidiosporogenous yeast)和属于半知菌类(Fungi Imperfecti)(芽孢纲 (Blastomycetes))的酵母。由于酵母的分类在未来可能改变,就本发明而言, 将酵母定义为如Biology and Activities of Yeast(Skinner,Passmore和Davenport 编,Soc.App.Bacteriol.Symposium Series No.9,1980)中所述。
酵母宿主细胞可为假丝酵母属(Candida)、汉逊酵母属(Hansenula)、克鲁 维酵母属(Kluyveromyces)、毕赤酵母属(Pichia)、酵母属(Saccharomyces)、裂 殖酵母属(Schizosaccharomyces)或西洋蓍霉属(Yarrowia)细胞,如乳酸克鲁维 酵母(Kluyveromyces lactis)、卡尔酵母(Saccharomyces carlsbergensis)、酿酒酵 母(Saccharomyces cerevisiae)、糖化酵母(Saccharomyces diastaticus)、道格拉 氏酵母(Saccharomyces douglasii)、克鲁弗酵母(Saccharomyces kluyveri)、诺地 酵母(Saccharomyces norbensis)、卵形酵母(Saccharomyces oviformis)或解脂西 洋蓍霉(Yarrowia lipolytica)细胞。
真菌宿主细胞可为丝状真菌细胞。“丝状真菌”包括真菌门(Eumycota)和 卵菌门的亚门(如由Hawksworth等,1995,见上文,所定义)的所有丝状形式。 丝状真菌通常的特征在于由壳多糖(chitin)、纤维素、葡聚糖、壳聚糖 (chitosan)、甘露聚糖和其它复杂多糖组成的菌丝体壁。通过菌丝延伸进行营 养生长,而碳分解代谢是专性需氧的。相反,酵母例如酿酒酵母的营养生长 通过单细胞菌体的出芽生殖(budding)进行,而碳分解代谢可以是发酵的。
丝状真菌宿主细胞可为枝顶孢霉属(Acremonium)、曲霉属(Aspergillus)、 短梗霉属(Aureobasidium)、烟管霉属(Bjerkandera)、拟蜡菌属(Ceriporiopsis)、 金孢子菌属(Chrysosporium)、鬼伞属(Coprinus)、革盖菌属(Coriolus)、隐球菌 属(Cryptococcus)、Filibasidium、镰孢属(Fusarium)、腐质霉属(Humicola)、 梨孢菌属(Magnaporthe)、毛霉属(Mucor)、毁丝霉属(Myceliophthora)、新考 玛脂霉属(Neocallimastix)、脉孢菌属(Neurospora)、拟青霉属(Paecilomyces)、 青霉属(Penicillium)、平革菌属(Phanerochaete)、射脉菌属(Phlebia)、瘤胃壶 菌属(Piromyces)、侧耳属(Pleurotus)、裂褶菌属(Schizophyllum)、踝节菌属 (Talaromyces)、嗜热子囊菌属(Thermoascus)、梭孢壳属(Thielavia)、弯颈霉属 (Tolypocladium)、栓菌属(Trametes)或木霉属(Trichoderma)细胞。
例如,丝状真菌宿主细胞可为泡盛曲霉、烟曲霉(Aspergillus fumigatus)、 臭曲霉(Aspergillus foetidus)、日本曲霉(Aspergillus japonicus)、构巢曲霉、黑曲 霉、米曲霉、黑刺烟管菌(Bjerkandera adusta)、干拟蜡菌(Ceriporiopsis aneirina)、Ceriporiopsis caregiea、Ceriporiopsis gilvescens、Ceriporiopsis pannocinta、Ceriporiopsis rivulosa、Ceriporiopsis subrufa、虫拟蜡菌(Ceriporiopsissubvermispora)、Chrysosporium inops、嗜角质金孢子菌(Chrysosporiumkeratinophilum)、Chrysosporium lucknowense、Chrysosporium merdarium、毡金 孢子菌(Chrysosporium pannicola)、Chrysosporium queenslandicum、热带金孢子 菌(Chrysosporium tropicum)、Chrysosporium zonatum、灰盖鬼伞(Coprinus cinereus)、毛革盖菌(Coriolus hirsutus)、杆孢状镰孢(Fusarium bactridioides)、 禾谷镰孢(Fusarium cerealis)、库威镰孢(Fusarium crookwellense)、大刀镰孢 (Fusariumculmorum)、禾本科镰孢(Fusarium graminearum)、禾赤镰孢(Fusarium graminum)、异孢镰孢(Fusarium heterosporum)、合欢木镰孢(Fusarium negundi)、 尖镰孢(Fusariumoxysporum)、多枝镰孢(Fusarium reticulatum)、粉红镰孢 (Fusarium roseum)、接骨木镰孢(Fusarium sambucinum)、肤色镰孢(Fusarium sarcochroum)、拟分枝孢镰孢(Fusariumsporotrichioides)、硫色镰孢(Fusarium sulphureum)、圆镰孢(Fusarium torulosum)、拟丝孢镰孢(Fusarium trichothecioides)、镶片镰孢(Fusarium venenatum)、特异腐质霉(Humicola insolens)、疏棉状腐质霉(Humicola lanuginosa)、米黑毛霉(Mucor miehei)、嗜热 毁丝霉(Myceliophthora thermophila)、粗糙脉孢菌(Neurospora crassa)、产紫青霉(Penicillium purpurogenum)、黄孢平革菌(Phanerochaete chrysosporium)、辐射 射脉菌(Phlebia radiata)、刺芹侧耳(Pleurotus eryngii)、土生梭孢霉(Thielaviaterrestris)、长绒毛栓菌(Trametes villosa)、变色栓菌(Trametes versicolor)、哈茨木霉(Trichoderma harzianum)、康宁木霉(Trichoderma koningii)、长枝木霉(Trichoderma longibrachiatum)、里氏木霉(Trichoderma reesei)或绿色木霉(Trichoderma viride)细胞。
可将真菌细胞通过涉及原生质体形成、原生质体转化和细胞壁再生的方法 以本身公知的方式转化。用于转化曲霉属和木霉属宿主细胞的合适方法在EP 238023,Yelton等,1984,Proc.Natl.Acad.Sci.USA81:1470-1474,和Christensen 等,1988,Bio/Technology6:1419-1422中描述。用于转化镰孢属菌种的合适方法 由Malardier等,1989,Gene78:147-156和WO96/00787描述。可以使用由如下文 献描述的方法转化酵母:Becker和Guarente,于Abelson,J.N.和Simon,M.I.编, Guide to Yeast Genetics and MolecularBiology,Methods in Enzymology,Volume 194,pp182-187,Academic Press,Inc.,NewYork;Ito等,1983,J.Bacteriol.153: 163;和Hinnen等,1978,Proc.Natl.Acad.Sci.USA75:1920。
产生方法
本发明还涉及用于产生本发明多肽的方法,其包括:(a)在有助于产生多 肽的条件下培养细胞,所述细胞以其野生型形式产生所述多肽;和(b)回收所 述多肽。在一个优选的方面,所述细胞是踝节菌属的细胞。在一个更优选的 方面,所述细胞是Talaromycesleycettanus细胞。在一个最优选的方面,所述 细胞是Talaromyces leycettanus菌株CBS398.68。
本发明还涉及用于产生本发明的多肽的方法,其包括:(a)在有助于产生 多肽的条件下培养本发明的重组宿主细胞;和(b)回收所述多肽。
所述宿主细胞使用本领域已知的方法在适合于产生所述多肽的营养培 养基中培养。例如,可以通过在合适培养基中和允许表达和/或分离所述多肽 的条件下的摇瓶培养,或实验室或工业发酵罐中的小规模或大规模发酵(包 括连续、分批、补料分批或固态发酵)来培养细胞。使用本领域已知的方法 在合适的营养培养基中进行培养,所述营养培养基包含碳源和氮源和无机 盐。合适的培养基能够从商业供应商获得或可以根据公开的组成制备(例如, 在美国典型培养物保藏中心的目录中)。如果多肽分泌到营养培养基中,该 多肽能够从所述培养基中直接回收。如果多肽不分泌,其能够从细胞裂解物 (lysate)回收。
可以使用本领域已知的对于所述多肽是特异性的方法来检测多肽。这些 检测方法包括但不限于特异性抗体的使用、酶产物的形成或酶底物的消失。 例如,酶测定法(enzyme assay)可用于确定多肽的活性。
多肽可以使用本领域已知的方法回收。例如,多肽可以通过常规方法从 营养培养基中回收,所述常规方法包括但不限于收集、离心、过滤、提取、 喷雾干燥、蒸发或沉淀。
多肽可以通过多种本领域已知的方法纯化以获得基本上纯的多肽,所述 方法包括但不限于层析(例如,离子交换、亲和、疏水、层析聚焦和大小排 阻)、电泳方法(例如,制备型(preparative)等电聚焦)、差示溶解度(例如,硫 酸铵沉淀)、SDS-PAGE或提取(参见,例如,Protein Purification,Janson和Ryden 编,VCH Publishers,New York,1989)。
在另一个方面,不回收多肽,而是使用表达所述多肽的本发明的宿主细 胞作为所述多肽的来源。
植物
本发明还涉及分离的植物,例如,转基因植物、植物部分或植物细胞,其 包含本发明的多核苷酸,从而以可回收的量表达和产生所述多肽或域。多肽或 域可从植物或植物部分回收。或者,可以按原样(as such)将含有该多肽或域的 植物或植物部分用于改进食品或饲料的质量,例如,改进营养价值、适口性 (palatability)和流变性质(rheologicalproperties),或用于破坏抗营养因子。
转基因植物可以是双子叶的(双子叶植物)或单子叶的(单子叶植物)。单 子叶植物的实例是草(grasses),如草地早熟禾(meadow grass)(蓝草(blue grass),早熟禾属(Poa));饲用牧草(forage grass)如羊茅属(Festuca)、黑麦草 属(Lolium);寒地型牧草(temperate grass),如Agrostis(翦股颖属);和谷类, 例如,小麦、燕麦、黑麦、大麦、稻(rice)、高粱和玉蜀黍(maize)(玉米)。
双子叶植物的实例是烟草(tobacco),豆类(legumes),如羽扇豆(lupins), 马铃薯,糖甜菜(sugar beet),豌豆,豆(bean)和大豆(soybean)和十字花科的 (cruciferous)植物(十字花科(family Brassicaceae)),如花椰菜(cauliflower),油 菜籽(rape seed)和紧密相关的模型生物体拟南芥(Arabidopsis thaliana)。
植物部分的实例是茎(stem)、愈伤组织(callus)、叶(leaf)、根(root)、果实(fruit)、种子(seed)和块茎(tuber),以及包含这些部分的独立组织,例如,表 皮(epidermis)、叶肉(mesophyll)、薄壁组织(parenchyme)、维管组织(vascular tissue)、分生组织(meristem)。具体的植物细胞区室(compartments),如叶绿 体(chloroplast)、质外体(apoplast)、线粒体(mitochondria)、液泡(vacuole)、过 氧化物酶体(peroxisome)和细胞质(cytoplasm)也被认为是植物部分。此外,任 何植物细胞,无论什么组织来源,都被认为是植物部分。同样地,植物部分, 如分离以促进本发明的应用的具体组织和细胞也被认为是植物部分,例如胚 (embryo)、胚乳(endosperm)、糊粉(aleurone)和种皮(seed coat)。
同样包含于本发明范围内的还有这些植物、植物部分和植物细胞的后代。
表达多肽或域的转基因植物或植物细胞可以依照本领域已知方法构建。 简而言之,通过如下方法构建所述植物或植物细胞:将编码多肽或域的一个 或多个表达构建体并入植物宿主基因组或叶绿体基因组,并且将所得的修饰 植物或植物细胞繁殖为转基因植物或植物细胞。
表达构建体便利地是包含编码多肽或域的多核苷酸的核酸构建体,所述 多核苷酸与在选择的植物或植物部分中表达该多核苷酸所需的适当的调节 序列可操作地连接。此外,表达构建体可以包含对于鉴定植物细胞有用的选 择性标记,在所述植物细胞中整合了表达构建体和将该构建体引入到所述植 物中所必需的DNA序列(后者依赖于使用的DNA引入方法)。
调节序列的选择,例如启动子和终止子序列和任选地信号或转运序列的 选择,举例来说,基于期望何时、何处以及如何表达多肽或域而确定。例如, 编码多肽或域的基因的表达可以是组成型的或诱导型的,或可以是发育、阶 段或组织特异性的,并且基因产物可以靶向特定的组织或植物部分如种子或 叶。调节序列由例如Tague等,1988,PlantPhysiology86:506所述。
对于组成性表达,可以使用35S-CaMV、玉米泛素1或稻肌动蛋白1启动子 (Franck等,1980,Cell21:285-294,Christensen等,1992,Plant Mo.Biol.18: 675-689;Zhang等,1991,Plant Cell3:1155-1165)。器官特异性启动子可以是 例如来自贮藏库组织(storagesink tissue)例如种子、马铃薯块茎和果实的启动 子(Edwards和Coruzzi,1990,Ann.Rev.Genet.24:275-303),或来自代谢库组织 (metabolic sink tissue)例如分生组织的启动子(Ito等,1994,Plant Mol.Biol.24: 863-878),种子特异性启动子诸如来自稻的谷蛋白(glutelin)、醇溶蛋白 (prolamin)、球蛋白(globulin)或白蛋白(albumin)启动子(Wu等,1998,Plant Cell Physiol.39:885-889),来自豆球蛋白(legumin)B4和蚕豆(Vicia faba)的未知的种 子蛋白基因的蚕豆启动子(Conrad等,1998,J.PlantPhysiol.152:708-711)、来自 种子油体蛋白(oil body protein)的启动子(Chen等,1998,Plant Cell Physiol.39: 935-941),来自欧洲油菜(Brassica napus)的贮藏蛋白napA启动子,或本技术领 域公知的任何其他种子特异性的启动子,例如,在WO91/14772中所描述的。 此外,启动子可为叶特异性的启动子,如来自稻或番茄的rbcs启动子(Kyozuka 等,1993,Plant Physiol.102:991-1000),小球藻病毒(chlorella virus)腺嘌呤甲基 转移酶(adenine methyltransferase)基因启动子(Mitra和Higgins,1994,Plant Mol. Biol.26:85-93),来自稻的aldP基因启动子(Kagaya等,1995,Mol.Gen.Genet. 248:668-674),或伤口诱导的启动子,如马铃薯pin2启动子(Xu等,1993,Plant Mol.Biol.22:573-588)。同样地,所述启动子可通过非生物的处理诱导,所述 非生物的处理诸如温度、干旱或盐度变化,或通过外源施加的激活所述启动 子的物质诱导,例如乙醇、雌激素(oestrogen)、植物激素如乙烯、脱落酸(abscisic acid)和赤霉酸(gibberellic acid),和重金属。
启动子增强子元件也可以用于实现多肽或域在植物中的较高表达。例如, 启动子增强子元件可以是内含子,其置于启动子和编码多肽或域的多核苷酸 之间。例如Xu等,1993,见上,公开了使用稻肌动蛋白1基因的第一内含子以 增强表达。
选择性标记基因和表达构建体的任何其它部分可以选自本领域内可用 的那些。
将核酸构建体根据本领域已知的常规技术并入植物基因组,所述常规技 术包括土壤杆菌属(Agrobacterium)介导的转化、病毒介导的转化、显微注射 (microinjection)、粒子轰击、生物射弹转化和电穿孔(Gasser等,1990,Science 244:1293;Potrykus,1990,Bio/Technology8:535;Shimamoto等,1989,Nature 338:274)。
根癌土壤杆菌(Agrobacterium tumefaciens)介导的基因转移(gene transfer),是一种产生转基因双子叶植物(其综述,参见Hooykas和Schilperoort,1992,PlantMol.Biol.19:15-38),和用于转化单子叶植物的方法,虽然对于这些植物可使 用其他的转化方法。一种产生转基因单子叶植物的方法是用粒子(用转化DNA 涂覆的微观的金或钨粒子)轰击胚愈伤组织(embryonic calli)或发育中的胚 (developing embryos)(Christou,1992,Plant J.2:275-281;Shimamoto,1994,Curr. Opin.Biotechnol.5:158-162;Vasil等,1992,Bio/Technology10:667-674)。转化单 子叶植物的可供选择的方法是基于原生质体转化,如由Omirulleh等,1993,Plant Mol.Biol.21:415-428所描述的。其它转化方法包括描述于美国专利号6,395,966 和7,151,204中的那些(两者均通过提述以其整体并入本文)。
转化之后,根据本领域熟知的方法选择具有并入的表达构建体的转化体 并且再生成为完整植物。通常设计转化方法用于通过如下方法在再生期间或 在后续世代中选择性消除选择基因:例如,使用带有两个独立的T-DNA构建 体的共转化或通过特异性重组酶位点特异性地切除选择基因。
除了直接用本发明的构建体直接转化具体植物基因型之外,还可通过将 具有构建体的植物与缺乏该构建体的第二植物杂交来制备转基因植物。举例 而言,可将编码多肽或域的构建体通过杂交而引入特定植物品种,而根本无 需直接转化该给定品种的植物。因此,本发明不仅涵盖从依照本发明经转化 的细胞直接再生的植物,还包括此类植物的后代(progeny)。如用于本文,后 代可指依照本发明制备的亲本植物任何世代的后裔(offspring)。此种后代可 包含依据本发明制备的DNA构建体。杂交导致转基因通过将起始种系供体植 物种系交叉授粉而引入植物种系。此类步骤的非限制性实例描述于美国专利号7,151,204。
植物通过回交转化方法生成。举例而言,该植物包括称作回交转化的基 因型、种系、近交体(inbred)或杂交体(hybrid)的植物。
可使用遗传标记以协助本发明的一种或多种转基因从一个遗传背景基因 渗入(introgression)至另一个。标记协助的选择提供了相对于常规育种的优势, 在于其可用于避免由表型变异导致的错误。进一步,遗传标记可在特定杂交 的个体后代中提供有关良种种质相对程度的数据。举例而言,当本不(otherwise) 具有非农艺学所需的遗传背景但具有所需性状的植物与良种亲本杂交时,可 使用遗传标记来选择不仅具有目标性状,还具有相对较大比例所需种质的后 代。以此方式,使一种或多种性状基因渗入特定遗传背景所需的世代数得到 最小化。
本发明亦涉及产生本发明的多肽或域的方法,其包括:(a)在有助于产生 所述多肽或域的条件下培养转基因植物或植物细胞,所述植物或植物细胞包 含编码多肽或域的多核苷酸;和(b)回收所述多肽或域。
组合物
本发明还涉及包含本发明多肽的组合物。优选地,所述组合物富含这类 多肽。术语“富含/富集”指已增加组合物的木聚糖酶活性,例如以至少1.1 的富集因数。
所述组合物可包含本发明的多肽作为主要的酶组分,例如一种单组分组 合物。或者,所述组合物可包括多种酶活性,如一种或多种(例如几种)选自 下组的酶:纤维素酶、半纤维素酶、GH61多肽、棒曲霉素(expansin)、酯酶、 漆酶、木质素分解酶、果胶酶、过氧化物酶、蛋白酶和膨胀素(swollenin)。
所述多肽组合物可依照本领域中已知的方法制备并可以为液态或干组 合物的形式。例如,所述多肽组合物可以颗粒或微颗粒的形式。可依照本领 域中已知的方法将要纳入组合物的多肽稳定化。
下面给出了本发明的多肽组合物的优选用途。本发明的多肽组合物的剂量 和使用所述组合物的其它条件可基于本领域中已知的方法来确定。
用途
本发明还涉及下述使用具有木聚糖酶活性的多肽或其组合物的工艺。
本发明还涉及降解纤维素材料或含木聚糖材料的工艺,其包括:在本发 明的具有木聚糖酶活性的多肽的存在下,用酶组合物处理纤维素材料或含木 聚糖材料。在一个方面,所述方法进一步包括回收已降解或转化的纤维素材 料或含木聚糖材料。所述纤维素材料或含木聚糖材料的降解或转化的可溶性 产物可使用本领域已知的方法如例如离心、过滤或重力沉降从不溶性纤维素 材料或含木聚糖材料分离。
本发明还涉及产生发酵产物的工艺,其包括:(a)在本发明的具有木聚糖 酶活性的多肽的存在下,用酶组合物糖化纤维素材料或含木聚糖材料;(b) 用一种或多种(例如几种)发酵微生物发酵经糖化的纤维素材料或含木聚糖材 料以产生发酵产物;和(c)从发酵回收发酵产物。
本发明还涉及发酵纤维素材料或含木聚糖材料的工艺,其包括:用一种 或多种(例如几种)发酵微生物发酵纤维素材料或含木聚糖材料,其中所述纤 维素材料或含木聚糖材料是在本发明的具有木聚糖酶活性的多肽的存在下 用酶组合物糖化的。在一个方面,纤维素材料或含木聚糖材料的发酵产生发 酵产物。在另一个方面,所述方法进一步包括从发酵回收发酵产物。
本发明的工艺可以用于将纤维素材料或含木聚糖材料糖化成可发酵糖, 并且将可发酵糖转化成很多有用的发酵产物,例如燃料、饮用乙醇和/或平台 化学品(platformchemical)(例如酸、醇、酮、气体等)。从纤维素材料或含木 聚糖材料产生期望的发酵产物通常涉及预处理、酶水解(糖化)和发酵。
根据本发明的纤维素材料或含木聚糖材料的处理可以使用本领域的常规 工艺完成。此外,本发明的方法能使用经配置以依照发明操作的任何常规生物 质加工设备进行。
水解(糖化)和发酵,分别或同时,包括但不限于,分离的水解和发酵(SHF)、 同步糖化和发酵(SSF)、同步糖化和共发酵(SSCF)、混合的水解和发酵(HHF)、 分离的水解和共发酵(SHCF)、混合的水解和共发酵(HHCF),和直接微生物转 化(DMC),有时也称为合并的生物加工(consolidated bioprocessing,CBP)。SHF 使用分离的处理步骤以首先将纤维素材料或含木聚糖材料酶水解为可发酵 糖,例如,葡萄糖,纤维二糖和戊糖单体,然后将可发酵糖发酵成为乙醇。 在SSF中,纤维素材料或含木聚糖材料的酶水解和糖变为乙醇的发酵在一个步 骤中组合(Philippidis,G.P.,1996,Cellulose bioconversion technology,于Handbook on Bioethanol:Production and Utilization,Wyman,C.E编,Taylor&Francis,Washington,DC,179-212)。SSCF包括多种糖的共发酵(Sheehan J.和 Himmel M.,1999,Enzymes,energy and the environment:A strategic perspective on theU.S.Department of Energy’s research and development activities forbioethanol,Biotechnol.Prog.15:817-827)。HHF在同步糖化和水解 步骤之外,还涉及单独的水解步骤,所述步骤可以在同一个反应器中进行。 HHF过程中的步骤可以在不同的温度,即,高温酶法糖化,然后在发酵菌株 能够耐受的较低温度进行SSF。DMC在一个或多个(例如几个)步骤中组合了所 有三个过程(酶产生、水解和发酵),其中使用相同的生物体产生用于将纤维素 材料或含木聚糖材料转化成可发酵糖并将可发酵糖转化成终产物的酶(Lynd 等,I.S.,2002,Microbial cellulose utilization:Fundamentals andbiotechnology, Microbiol.Mol.Biol.Reviews66:506-577)。在本文可以理解的是,任何本领域 中已知的方法,包括预处理、酶水解(糖化)、发酵,或它们的组合,可用于实 施本发明的工艺。
常规设备包括补料批式搅拌反应器、批式搅拌反应器、具有超滤的连续 流搅拌反应器和/或连续活塞流柱式反应器(Fernanda de Castilhos Corazza, Flávio Faria deMoraes,Gisella Maria Zanin和Ivo Neitzel,2003,Optimal control in fed-batchreactor for the cellobiose hydrolysis,Acta Scientiarum.Technology 25:33-38;Gusakov和Sinitsyn,1985,Kinetics of the enzymatic hydrolysis of cellulose:1.Amathematical model for a batch reactor process,Enz.Microb. Technol.7:346-352)、研磨反应器(Ryu和Lee,1983,Bioconversion of waste cellulose by using anattrition bioreactor,Biotechnol.Bioeng.25:53-65),或者具 有由电磁场引起的强烈搅拌的反应器(Gusakov等,1996,Enhancement of enzymatic cellulose hydrolysisusing a novel type of bioreactor with intensive stirring induced byelectromagnetic field,Appl.Biochem.Biotechnol.56: 141-153)。其它反应器类型包括:流化床、升流层(upflow blanket)、固定化 和用于水解和/或发酵的挤出机型的反应器。
预处理。在本发明的工艺的实施中,可以使用本领域已知的任何预处理 过程破坏植物细胞壁的纤维素材料或含木聚糖材料组分(Chandra等,2007, Substratepretreatment:The key to effective enzymatic hydrolysis of lignocellulosics?Adv.Biochem.Engin./Biotechnol.108:67-93;Galbe和Zacchi, 2007,Pretreatment oflignocellulosic materials for efficient bioethanol production,Adv.Biochem.Engin./Biotechnol.108:41-65;Hendriks和Zeeman,2009, Pretreatmentsto enhance the digestibility of lignocellulosic biomass,BioresourceTechnol.100:10-18;Mosier等,2005,Features of promising technologies forpretreatment of lignocellulosic biomass,Bioresource Technol.96:673-686;Taherzadeh和Karimi,2008,Pretreatment of lignocellulosic wastes to improveethanol and biogas production:A review,Int.J.of Mol.Sci.9:1621-1651;Yang 和Wyman,2008,Pretreatment:the key to unlocking low-cost cellulosic ethanol,Biofuels Bioproducts and Biorefining-Biofpr.2:26-40)。
纤维素材料或含木聚糖材料也可以在预处理之前使用本领域中已知的 方法进行粒度减小、筛分、预浸泡、润湿、洗涤和/或调理(conditioning)。
常规的预处理包括但不限于,蒸汽预处理(伴随或不伴随爆炸)、稀酸预 处理、热水预处理、碱性预处理、石灰预处理、湿氧化、湿爆炸、氨纤维爆 炸、有机溶剂预处理和生物预处理。其它预处理包括氨渗滤、超声、电穿孔、 微波、超临界CO2、超临界H2O、臭氧、离子性液体和γ辐射预处理。
可以在水解和/或发酵之前预处理纤维素材料或含木聚糖材料。预处理优 选在水解前进行。或者,预处理可以与酶水解同时进行以释放可发酵糖,如 葡萄糖、木糖和/或纤维二糖。在大多数情况下,预处理步骤本身使一些生物 质转化成可发酵糖(甚至在不存在酶的情况下)。
蒸汽预处理。在蒸汽预处理中,加热纤维素材料或含木聚糖材料以破坏植 物细胞壁成分,包括木质素、半纤维素和纤维素,使酶可接触纤维素和其它级 分,例如,半纤维素。将纤维素材料或含木聚糖材料经过或通过反应容器,其 中注入蒸汽以增加温度至需要的温度和压力,并且在其中保持期望的反应时 间。蒸汽预处理优选在140-250℃,例如160-200℃,或170-190℃进行,其中最 优的温度范围依赖于任何化学催化剂的添加。蒸汽预处理的停留时间优选1-60 分钟,例如1-30分钟,1-20分钟,3-12分钟,或4-10分钟,其中最优的停留时 间依赖于温度范围和化学催化剂的添加。蒸汽预处理允许相对较高的固体加载量,使纤维素材料或含木聚糖材料在预处理过程中通常仅仅变得潮湿。蒸汽预 处理经常与预处理后的物质的爆炸放料(explosive discharge)组合,这称为蒸汽 爆炸,即,快速闪变至大气压和物质的湍流,以通过破碎增加可接触的表面积 (Duff和Murray,1996,Bioresource Technology855:1-33;Galbe和Zacchi,2002,Appl.Microbiol.Biotechnol.59:618-628;美国专利申请No.20020164730)。在蒸 汽预处理过程中,切割半纤维素乙酰基团,并且得到的酸自催化半纤维素部分 水解成为单糖和寡糖。去除木质素仅至有限的程度。
化学预处理:术语“化学处理”指能促进纤维素、半纤维素和/或木质素分离 和/或释放的任何化学预处理。此种预处理可将晶体纤维素转化为无定形纤维 素。合适的化学预处理工艺的实例包括例如稀酸预处理、石灰预处理、湿氧化、 氨纤维/冷冻爆炸(AFEX)、氨渗滤(APR)、离子性液体和有机溶剂预处理。
经常在蒸汽预处理之前加入催化剂如H2SO4或SO2(通常0.3至5%w/w),其 可减少时间,降低温度,增加回收率,并改进酶水解(Ballesteros等,2006,Appl.Biochem.Biotechnol.129-132:496-508;Varga等,2004,Appl.Biochem.Biotechnol. 113-116:509-523;Sassner等.,2006,Enzyme Microb.Technol.39:756-762)。在稀 酸预处理中,将纤维素材料或含木聚糖材料与稀酸(通常是H2SO4)和水混合 以形成浆料,由蒸汽加热至期望的温度,并在一段停留时间后闪变至大气压。 可以用很多反应器设计进行稀酸预处理,例如,活塞流反应器、逆流反应器 或连续逆流收缩床反应器(Duff和Murray,1996,supra;Schell等,2004, Bioresource Technol.91:179-188;Lee等,1999,Adv.Biochem.Eng.Biotechnol.65: 93-115)。
还可以使用碱性条件下的几种预处理方法。这些碱预处理包括,但不限 于,氢氧化钠、石灰、湿氧化、氨渗滤(APR)和氨纤维/冷冻爆炸(AFEX)。
用氧化钙或氢氧化钙,在85-150℃的温度进行石灰预处理,停留时间从1 小时到几天(Wyman等,2005,Bioresource Technol.96:1959-1966;Mosier等, 2005,BioresourceTechnol.96:673-686)。WO2006/110891、WO2006/110899、 WO2006/110900和WO2006/110901公开了使用氨的预处理方法。
湿法氧化是热预处理,通常在180-200℃进行5-15分钟,加入氧化剂如过 氧化氢或过压氧(Schmidt和Thomsen,1998,Bioresource Technol.64:139-151; Palonen等,2004,Appl.Biochem.Biotechnol.117:1-17;Varga等,2004,Biotechnol. Bioeng.88:567-574;Martin等,2006,J.Chem.Technol.Biotechnol.81: 1669-1677)。预处理以优选1-40%干物质,例如2-30%干物质,或5-20%干物 质进行,并且由于加入碱如碳酸钠,初始pH常常会增加。
湿法氧化预处理方法的修改方法,称为湿爆炸(湿氧化和蒸汽爆炸的组合), 能够处理高达30%的干物质。在湿爆炸中,在预处理过程中,在一定的停留时 间后引入氧化剂。然后通过闪变至大气压而结束预处理(WO2006/032282)。
氨纤维爆炸(AFEX)涉及在温和温度如90-150℃和高压如17-20bar,用液 体或气体氨将纤维素材料或含木聚糖材料处理5-10分钟,其中干物质含量可 以高达60%(Gollapalli等,2002,Appl.Biochem.Biotechnol.98:23-35; Chundawat等,2007,Biotechnol.Bioeng.96:219-231;Alizadeh等,2005,Appl. Biochem.Biotechnol.121:1133-1141;Teymouri等,2005,Bioresource Technol.96: 2014-2018)。在AFEX预处理过程中,纤维素和半纤维素保持相对完整。木质 素-糖复合物受切割。
有机溶剂预处理通过用含水乙醇(40-60%乙醇)在160-200℃提取30-60分 钟而将纤维素材料或含木聚糖材料去木质素化(Pan等,2005,Biotechnol. Bioeng.90:473-481;Pan等,2006,Biotechnol.Bioeng.94:851-861;Kurabi等, 2005,Appl.Biochem.Biotechnol.121:219-230)。经常加入硫酸作为催化剂。在 有机溶剂预处理中,去除大部分半纤维素和木质素。
合适的预处理方法的其他实例如Schell等,2003,Appl.Biochem andBiotechn.105-108:69-85,和Mosier等,2005,Bioresource Technology96:673-686, 和美国公开申请2002/0164730所述。
在一个方面,化学预处理优选作为稀酸处理,并且更优选作为连续稀酸 处理进行。酸通常是硫酸,但也可以使用其它酸,如乙酸、柠檬酸、硝酸、 磷酸、酒石酸、琥珀酸、氯化氢或其混合物。弱酸(mild acid)处理在优选1-5, 例如1-4,或1-2.5的pH范围进行。在一个方面,酸浓度在优选0.01至10wt% 酸,例如0.05至5wt%酸或0.1至2wt%酸的范围。将酸与纤维素材料或含木聚 糖材料接触,并在优选140-200℃,例如165-190℃范围的温度保持1至60分钟 的时间。
在另一个方面,预处理发生在含水浆料中。在优选的方面,在预处理过 程中纤维素材料或含木聚糖材料以优选10-80wt%,例如20-70wt%或30-60 wt%,如约40wt%的量存在。预处理的纤维素材料或含木聚糖材料可以不洗 涤或者使用本领域任何已知的方法洗涤,例如,用水洗涤。
机械预处理或物理预处理:术语“机械预处理”或“物理预处理”指任何促 进颗粒大小减少的预处理。举例而言,此种预处理可涉及各种类型的磨制 (grinding)或粉碎(milling)(例如,干磨、湿磨或振动球磨)。
纤维素材料或含木聚糖材料可经物理(机械)和化学预处理。机械或物理 预处理可与下述偶联:汽蒸/蒸汽爆炸、水热解(hydrothermolysis)、稀酸或弱 酸处理、高温、高压处理、辐射(例如微波辐射),或其组合。在一个方面, 高压指优选约100至约400psi,例如约150至约250psi的范围的压强。在另一 个方面,高温指约100至约300℃,例如约140至约200℃范围的温度。在一个 优选的方面,机械或物理预处理在使用利用如上所定义的高温和高压的蒸汽 枪水解器系统(例如来自Sunds Defibrator AB,Sweden的Sunds Hydrolyzer)的分 批过程中进行。所述物理和化学预处理可视需要顺序进行或同时进行。
因此,在一个优选的方面,对纤维素材料或含木聚糖材料进行物理(机 械)或化学预处理,或者它们的任何组合,以促进纤维素、半纤维素和/或木 质素的分离和/或释放。
生物预处理:术语“生物预处理”指可以促进纤维素、半纤维素和/或木质素 从纤维素材料或含木聚糖材料分离和/或释放的任何生物预处理。生物预处理技 术可以包括应用溶解木质素的微生物和/或酶(参见,例如,Hsu,T.-A.,1996, Pretreatment ofbiomass,于Handbook on Bioethanol:Production and Utilization, Wyman,C.E编,Taylor&Francis,Washington,DC,179-212;Ghosh和Singh,1993, Physicochemical andbiological treatments for enzymatic/microbial conversion of lignocellulosicbiomass,Adv.Appl.Microbiol.39:295-333;McMillan,J.D.,1994, Pretreatinglignocellulosic biomass:a review,于Enzymatic Conversion of Biomass for FuelsProduction,Himmel,M.E.,Baker,J.O.和Overend,R.P.,编,ACS Symposium Series566,American Chemical Society,Washington,DC,第15章; Gong,C.S.,Cao,N.J.,Du,J.和Tsao,G.T.,1999,Ethanol production from renewable resources,于Advances inBiochemical Engineering/Biotechnology,Scheper,T.,编, Springer-Verlag BerlinHeidelberg,Germany,65:207-241;Olsson和Hahn-Hagerdal, 1996,Fermentation oflignocellulosic hydrolysates for ethanol production,Enz. Microb.Tech.18:312-331;和Vallander和Eriksson,1990,Production of ethanol from lignocellulosicmaterials:State of the art,Adv.Biochem.Eng./Biotechnol.42:63-95)。
糖化。在水解(也称作糖化)步骤中,将例如经预处理的纤维素材料或含木 聚糖材料水解以将纤维素和半纤维素分解成可发酵糖,如葡萄糖、纤维二糖、 木糖、木酮糖、阿拉伯糖、甘露糖、半乳糖和/或可溶的寡糖。水解由酶组合 物以酶法在本发明具有木聚糖酶活性的多肽的存在下进行。组合物的酶还可以 同时或顺序加入。
酶水解优选在容易由本领域技术人员确定的条件下,在合适的含水环境 中进行。在一个方面,水解在适于酶的活性,即对于酶最佳的条件下进行。 水解可以以补料分批或连续的过程进行,其中将纤维素材料或含木聚糖材料 逐渐补料至,例如,含酶的水解溶液。
糖化通常在搅拌釜反应器或发酵罐中在受控的pH、温度和混合条件下进 行。合适的处理时间、温度和pH条件可以由本领域技术人员容易地确定。例 如,糖化可持续长达200小时,但是通常进行优选约12至约120小时,例如约 16至约72小时,或约24至约48小时。温度在优选约25℃至约70℃,例如约30 ℃至约65℃,约40℃至约60℃,或约50℃至55℃的范围。pH在优选约3至约8, 例如约3.5至约7,约4至约6,或约5.0至约5.5的范围。干固体含量在优选约5 至约50wt%,例如约10至约40wt%,或约20至约30wt%的范围。
酶组合物可包含任何可用于降解纤维素材料或含木聚糖材料的蛋白。
在一个方面,所述酶组合物包含或进一步包含一种或多种(例如几种)选 自下组的蛋白:纤维素酶、具有纤维素分解增强活性的GH61多肽,半纤维 素酶、酯酶、棒曲霉素、漆酶、木质素分解酶、果胶酶、过氧化物酶、蛋白 酶和膨胀素。在另一个方面,所述半纤维素酶优选为一种或多种(例如几种) 选自下组的酶:乙酰甘露聚糖酯酶、乙酰木聚糖酯酶、阿拉伯聚糖酶、阿拉 伯呋喃糖苷酶、香豆酸酯酶、阿魏酸酯酶、半乳糖苷酶、葡糖醛酸糖苷酶、葡糖醛酸酯酶、甘露聚糖酶、甘露糖苷酶、木聚糖酶和木糖苷酶。在另一个 方面,所述纤维素酶优选为一种或多种(例如几种)选自下组的酶:内切葡聚 糖酶、纤维二糖水解酶和β-葡糖苷酶。
在另一个方面,所述酶组合物包含一种或多种(例如几种)纤维素分解酶。 在另一个方面,所述酶组合物包含或进一步包含一种或多种(例如几种)半纤维 素分解酶。在另一个方面,所述酶组合物包含一种或多种(例如几种)纤维素分 解酶和一种或多种(例如几种)半纤维素分解酶。在另一个方面,所述酶组合物 包含一种或多种(例如几种)选自下组的酶:纤维素分解酶和半纤维素分解酶。
在另一个方面,所述酶组合物包含乙酰甘露聚糖酯酶。在另一个方面, 所述酶组合物包含乙酰木聚糖酯酶。在另一个方面,所述酶组合物包含阿拉 伯聚糖酶(例如α-L-阿拉伯聚糖酶)。在另一个方面,所述酶组合物包含阿拉 伯呋喃糖苷酶(例如α-L-阿拉伯呋喃糖苷酶)。在另一个方面,所述酶组合物 包含香豆酸酯酶。在另一个方面,所述酶组合物包含阿魏酸酯酶。在另一个 方面,所述酶组合物包含半乳糖苷酶(例如α-半乳糖苷酶和/或β-半乳糖苷酶)。 在另一个方面,所述酶组合物包含葡糖醛酸糖苷酶(例如α-D-葡糖醛酸糖苷酶)。在另一个方面,所述酶组合物包含葡糖醛酸酯酶。在另一个方面,所 述酶组合物包含甘露聚糖酶。在另一个方面,所述酶组合物包含甘露糖苷酶 (例如β-甘露糖苷酶)。在另一个方面,所述酶组合物包含木聚糖酶。在一个 优选的方面,所述木聚糖酶是家族10木聚糖酶。在另一个方面,所述酶组合 物包含木糖苷酶(例如β-木糖苷酶)。
在另一个方面,所述酶组合物包含内切葡聚糖酶。在另一个方面,所述酶 组合物包含纤维二糖水解酶。在另一个方面,所述酶组合物包含β-葡糖苷酶。 在另一个方面,所述酶组合物包含具有纤维素分解增强活性的多肽。在另一个 方面,所述酶组合物包含内切葡聚糖酶和具有纤维素分解增强活性的多肽。在 另一个方面,所述酶组合物包含纤维二糖水解酶和具有纤维素分解增强活性的 多肽。在另一个方面,所述酶组合物包含β-葡糖苷酶和具有纤维素分解增强活 性的多肽。在另一个方面,所述酶组合物包含内切葡聚糖酶和纤维二糖水解酶。 在另一个方面,所述酶组合物包含内切葡聚糖酶和β-葡糖苷酶。在另一个方面, 所述酶组合物包含纤维二糖水解酶和β-葡糖苷酶。在另一个方面,所述酶组合 物包含内切葡聚糖酶、纤维二糖水解酶和具有纤维素分解增强活性的多肽。在 另一个方面,所述酶组合物包含内切葡聚糖酶、β-葡糖苷酶和具有纤维素分解 增强活性的多肽。在另一个方面,所述酶组合物包含纤维二糖水解酶、β-葡糖 苷酶和具有纤维素分解增强活性的多肽。在另一个方面,所述酶组合物包含内 切葡聚糖酶、纤维二糖水解酶和β-葡糖苷酶。在另一个方面,所述酶组合物包 含内切葡聚糖酶、纤维二糖水解酶、β-葡糖苷酶和具有纤维素分解增强活性的 多肽。
在另一个方面,所述酶组合物包含酯酶。在另一个方面,所述酶组合物 包含棒曲霉素。在另一个方面,所述酶组合物包含漆酶。在另一个方面,所 述酶组合物包含木质素分解酶。在另一个优选的方面,所述木质素分解酶是 锰过氧化物酶。在另一个优选的方面,所述木质素分解酶是木质素过氧化物 酶。在另一个优选的方面,所述木质素分解酶是产生H2O2的酶。在另一个方 面,所述酶组合物包含果胶酶。在另一个方面,所述酶组合物包含过氧化物 酶。在另一个方面,所述酶组合物包含蛋白酶。在另一个方面,所述酶组合 物包含膨胀素。
在本发明的方法中,酶可在发酵之前或过程中,例如在糖化过程中或在发 酵微生物的繁殖过程中或之后添加。
所述酶组合物的一种或多种(例如几种)组分可为野生型蛋白、重组蛋白或野 生型蛋白和重组蛋白的组合。举例而言,一种或多种(例如几种)组分可为细胞的 天然蛋白,其用作宿主细胞以重组表达酶组合物的一种或多种(例如几种)其他组 分。酶组合物的一种或多种(例如几种)组分可作为单组分产生,然后将其组合以 形成酶组合物。所述酶组合物可为多组分和单组分蛋白制备物的组合。
用于本发明工艺中的酶可为任何适用于如去除或不去除细胞的粗发酵 液配制物,含或不含细胞碎片的细胞裂解液,半纯化或纯化的酶制备物,或 宿主细胞,作为酶的来源。所述酶组合物可为干粉或颗粒,无粉尘的颗粒, 液体,稳定化液体或稳定化受保护的酶。液体酶制备物可根据确立的工艺, 例如通过添加稳定剂如糖、糖醇或其他多元醇,和/或乳酸或其他有机酸来稳 定化。
具有木聚糖酶活性的酶和多肽的最适量取决于几个因素,其包括但不限 于,组分纤维素分解酶的混合物、纤维素材料或含木聚糖材料、纤维素材料 或含木聚糖材料的浓度、纤维素材料或含木聚糖材料的预处理、温度、时间、 pH和包括发酵生物体(例如,同步糖化和发酵的酵母)。
在一个方面,纤维素分解酶或半纤维素分解酶对纤维素材料或含木聚糖 材料的有效量是约0.5至约50mg,例如约0.5至约40mg,约0.5至约25mg, 约0.75至约20mg,约0.75至约15mg,约0.5至约10mg,或约2.5至约10mg 每g纤维素材料或含木聚糖材料。
在另一个方面,具有木聚糖酶活性的多肽对纤维素材料或含木聚糖材料 的有效量是约0.01至约50.0mg,例如约0.01至约40mg,约0.01至约30mg, 约0.01至约20mg,约0.01至约10mg,约0.01至约5mg,约0.025至约1.5mg, 约0.05至约1.25mg,约0.075至约1.25mg,约0.1至约1.25mg,约0.15至约1.25 mg,或约0.25至约1.0mg每g纤维素材料或含木聚糖材料。
在另一个方面,具有木聚糖酶活性的多肽对纤维素分解酶或半纤维素分 解酶的有效量是约0.005至约1.0g,例如约0.01至约1.0g,约0.15至约0.75g, 约0.15至约0.5g,约0.1至约0.5g,约0.1至约0.25g,或约0.05至约0.2g每g纤 维素分解酶或半纤维素分解酶。
具有纤维素分解酶活性或半纤维素分解酶活性的多肽,以及任何可用于 纤维素材料或含木聚糖材料的降解的蛋白/多肽,例如具有纤维素分解增强活 性的GH61多肽(在本文中统称为具有酶活性的多肽)可源自或获得自任何合 适的来源,包括细菌、真菌、酵母、植物或哺乳动物来源。术语“获得”在本 文中还意指该酶可在宿主生物中使用本文中所述的方法重组产生,其中经重 组产生的酶对于宿主生物是天然的或外源的,或具有修饰的氨基酸序列,例 如,具有一个或多个(例如几个)缺失、插入和/或取代的氨基酸,即重组产生 的酶,其为天然氨基酸序列的片段和/或突变体或通过本领域已知的氨基酸改 组方法产生的酶。天然酶的含义中涵盖的是天然变体,而外来酶的含义中涵 盖的是重组(如通过定位诱变或重排)获得的变体。
所述酶组合物的一种或多种(例如几种)组分可以是重组组分,亦即,通过 克隆编码所述单独组分的DNA序列并随后用该DNA序列转化细胞并在宿主 中表达(参见,例如,WO91/17243和WO91/17244)产生。所述宿主优选是异源 宿主(酶对宿主是外源的),但该宿主在一定条件下也可以是同源宿主(酶对宿 主是天然的)。单组分纤维素分解蛋白还可以通过从发酵液中提纯这样的蛋白 质来制备。
在一个方面,所述一种或多种(例如几种)纤维素分解酶包含商业性纤维素分 解酶制备物。适用于本发明的商业的纤维素分解酶制备物的实例包括,例如, CELLICTMCTec(Novozymes A/S)、CELLICTMCTec2(Novozymes A/S)、 CELLUCLASTTM(Novozymes A/S)、NOVOZYMTM188(Novozymes A/S)、 CELLUZYMETM(Novozymes A/S)、CEREFLOTM(Novozymes A/S)和 ULTRAFLOTM(Novozymes A/S)、ACCELERASETM(Genencor Int.)、LAMINEXTM (GenencorInt.)、SPEZYMETMCP(Genencor Int.)、NL(DSM)、 S/L100(DSM)、ROHAMENTTM7069W(GmbH)、 LDI(Dyadic International,Inc.)、LBR(Dyadic International,Inc.)或150L(Dyadic International,Inc.)。所述纤维素 酶以固体的约0.001至约5.0wt%,例如固体的约0.025至约4.0wt%,或固体的约 0.005至约2.0wt%的有效量添加。
可以用于本发明工艺的细菌内切葡聚糖酶的实例包括但不仅限于,解纤 维热酸菌(Acidothermus cellulolyticus)内切葡聚糖酶(WO91/05039;WO 93/15186;美国专利5,275,944;WO96/02551;美国专利5,536,655、WO 00/70031、WO05/093050);Thermobifidafusca内切葡聚糖酶III(WO 05/093050);和Thermobifida fusca内切葡聚糖酶V(WO05/093050)。
可以用于本发明的真菌内切葡聚糖酶的实例包括但不仅限于,里氏木霉 内切葡聚糖酶I(Penttila等,1986,Gene45:253-263,里氏木霉Cel7B内切葡聚 糖酶I(GENBANKTM登录号M15665);里氏木霉内切葡聚糖酶II(Saloheimo等, 1988,Gene63:11-22),里氏木霉Cel5A内切葡聚糖酶II(GENBANKTM登录号 M19373);里氏木霉内切葡聚糖酶III(Okada等,1988,Appl.Environ.Microbiol. 64:555-563;GENBANKTM登录号AB003694);里氏木霉内切葡聚糖酶V (Saloheimo等,1994,Molecular Microbiology13:219-228;GENBANKTM登录 号Z33381);棘孢曲霉内切葡聚糖酶(Ooi等,1990,Nucleic Acids Research18: 5884);川地曲霉(Aspergillus kawachii)内切葡聚糖酶(Sakamoto等,1995, Current Genetics27:435-439);胡萝卜软腐欧文氏菌(Erwinia carotovara)内切 葡聚糖酶(Saarilahti等,1990,Gene90:9-14);尖镰孢内切葡聚糖酶 (GENBANKTM登录号L29381);灰腐质霉thermoidea变种内切葡聚糖酶 (GENBANKTM登录号AB003107);Melanocarpus albomyces内切葡聚糖酶 (GENBANKTM登录号MAL515703);粗糙脉孢菌内切葡聚糖酶(GENBANKTM登录号XM_324477);特异腐质霉内切葡聚糖酶V;嗜热毁丝霉CBS117.65内 切葡聚糖酶;担子菌纲(basidiomycete)CBS495.95内切葡聚糖酶;担子菌纲 CBS494.95内切葡聚糖酶;土生梭孢霉NRRL8126CEL6B内切葡聚糖酶;土 生梭孢霉NRRL8126CEL6C内切葡聚糖酶;土生梭孢霉NRRL8126CEL7C 内切葡聚糖酶;土生梭孢霉NRRL8126CEL7E内切葡聚糖酶;土生梭孢霉NRRL8126CEL7F内切葡聚糖酶;Cladorrhinum foecundissimum ATCC62373 CEL7A内切葡聚糖酶;以及里氏木霉菌株VTT-D-80133内切葡聚糖酶 (GENBANKTM登录号M15665)。
可用于本发明的纤维二糖水解酶的实例包括但不仅限于,棘孢曲霉纤维 二糖水解酶II(WO2011/059740),嗜热毛壳菌(Chaetomium thermophilum)纤 维二糖水解酶I,嗜热毛壳菌纤维二糖水解酶II,特异腐质霉纤维二糖水解酶 I,嗜热毁丝霉纤维二糖水解酶II,(WO2009/042871),Thielavia hyrcanie纤维 二糖水解酶II(WO2010/141325),土生梭孢霉纤维二糖水解酶II(CEL6A, WO2006/074435),里氏木霉纤维二糖水解酶I,里氏木霉纤维二糖水解酶II, 以及褐孢长毛盘菌(Trichophaea saccata)纤维二糖水解酶II(WO2010/057086)。
可用于本发明的β-葡糖苷酶的实例包括但不仅限于来自棘孢曲霉 (Kawaguchi等,1996,Gene173:287-288)、烟曲霉(WO2005/047499)、黑曲霉(Dan 等,2000,J.Biol.Chem.275:4973-4980)、米曲霉(WO02/095014)、巴西青霉IBT 20888(WO2007/019442和WO2010/088387)、土生梭孢霉(WO2011/035029)和 褐孢长毛盘菌(WO2007/019442)的β-葡糖苷酶。
所述β-葡糖苷酶可以是融合蛋白。在一个方面,所述β-葡糖苷酶是WO 米曲霉β-葡糖苷酶变体BG融合蛋白(WO2008/057637)或米曲霉β-葡糖苷酶 融合蛋白(2008/057637)。
其它可用的内切葡聚糖酶、纤维二糖水解酶和β-葡糖苷酶公开于使用根 据Henrissat,1991,A classification of glycosyl hydrolases based on amino-acidsequence similarities,Biochem.J.280:309-316和Henrissat和Bairoch,1996,Updating the sequence-based classification of glycosyl hydrolases,Biochem.J.316:695-696的分类的许多糖基水解酶家族中。
其它可用于本发明的纤维素分解酶描述于WO98/13465、WO98/15619、 WO98/15633、WO99/06574、WO99/10481、WO99/25847、WO99/31255、 WO02/101078、WO2003/027306、WO2003/052054、WO2003/052055、WO 2003/052056、WO2003/052057、WO2003/052118、WO2004/016760、WO 2004/043980、WO2004/048592、WO2005/001065、WO2005/028636、WO2005/093050、WO2005/093073、WO2006/074005、WO2006/117432、WO 2007/071818、WO2007/071820、WO2008/008070、WO2008/008793、美国 专利No.5,457,046、美国专利No.5,648,263和美国专利No.5,686,593。
在本发明的工艺中,可使用任何具有纤维素分解增强活性的GH61多肽。
可用于本发明工艺的具有纤维素分解增强活性的GH61多肽的实例包括但 不限于来自土生梭孢霉(WO2005/074647,WO2008/148131和WO 2011/035027);桔橙热子囊菌(WO2005/074656和WO2010/065830),里氏木霉 (WO2007/089290),嗜热毁丝霉(WO2009/085935,WO2009/085859,WO 2009/085864,WO2009/085868),烟曲霉(WO2010/138754)的GH61多肽,来自 嗜松青霉(Penicillium pinophilum)(WO2011/005867),嗜热子囊菌菌种(WO 2011/039319),青霉属菌种(WO2011/041397),和甲壳嗜热子囊菌(Thermoascuscrustaceous)(WO2011/041504)的GH61多肽。
在一个方面,所述具有纤维素分解增强活性的GH61多肽在 WO2008/151043中所述的可溶性活化二价金属阳离子,例如硫酸锰的存在下 使用。
在一个方面,所述具有纤维素分解增强活性的GH61多肽在二氧化合物、 二环化合物、杂环化合物、含氮化合物、醌化合物、含硫化合物或从经预处理 的纤维素材料或含木聚糖材料(如经预处理的玉米秸秆(PCS))获得的液剂的存 在下使用。
所述二氧化合物可包括任何含有两个或更多氧原子的合适化合物。在一 些方面,所述二氧化合物含有如本文中所述的取代的芳基模块(moiety)。所 述二氧化合物可包括一个或多个(几个)羟基和/或羟基衍生物,但亦包括缺乏 羟基和羟基衍生物的取代的芳基模块。二氧化合物的非限定性实例包括邻苯 二酚或儿茶酚;咖啡酸;3,4-二羟基苯甲酸;4-叔丁基-5-甲氧基-1,2-苯二酚; 连苯三酚;没食子酸;甲基-3,4,5-三羟基苯甲酸;2,3,4-三羟基二苯甲酮;2,6- 二甲氧基苯酚;芥子酸;3,5-二羟基苯甲酸;4-氯-1,2-苯二酚;4-硝基-1,2- 苯二酚;鞣酸;没食子酸乙酯;羟乙酸甲酯;二羟基延胡索酸;2-丁炔-1,4- 二醇;克酮酸;1,3-丙二醇;酒石酸;2,4-戊二醇;3-乙氧基-1,2-丙二醇;2,4,4’- 三羟基二苯甲酮;顺-2-丁烯-1,4-二醇;3,4-二羟基-3-环丁烯-1,2-二酮;二羟 基丙酮;乙酰丙烯醛(acrolein acetal);甲基-4-羟基苯甲酸;4-羟基苯甲酸; 和甲基-3,5-二甲氧基-4-羟基苯甲酸;或它们的盐或溶剂合物(solvate)。
所述二环化合物可包括任何如本文中所述的合适的取代稠环系统。所述化 合物可包含一个或多个(例如几个)另外的环,且除非另行说明,不限于具体的 环数。在一个方面,所述二环化合物是类黄酮。在另一个方面,所述二环化合 物是任选取代的异类黄酮(isoflavonoid)。在另一个方面,所述二环化合物是任 选取代的花色离子(flavyliumion),如任选取代的花色素或任选取代的花色 苷,或其衍生物。二环化合物的非限定性实例包括表儿茶素(epicatechin);槲皮 素(quercetin);杨梅黄酮(myricetin);黄杉素(taxifolin);山奈酚(kaempferol);桑 素(morin);金合欢素(acacetin);柚皮素(naringenin);异鼠李黄素(isorhamnetin); 芹菜苷配基(apigenin);花青素(cyanidin);花色素苷(cyanin);kuromanin;花青 素鼠李葡糖苷(keracyanin);或它们的盐或溶剂合物。
所述杂环化合物可为任何合适的化合物,如本文中所述的任选取代的包 含杂原子的芳环或非芳环。在一个方面,所述杂环是包含任选取代的杂环烷 基模块或任选取代的杂芳基模块的化合物。在另一个方面,所述任选取代的 杂环烷基(heterocycloalkyl)模块或任选取代的杂芳基模块是任选取代的五元 杂环烷基或任选取代的五元杂芳基模块。在另一个方面,任选取代的杂环烷 基或任选取代的杂芳基模块是选自如下的任选取代的模块:吡唑基、呋喃基、 咪唑基、异噁唑基、噁二唑基、噁唑基、吡咯基、吡啶基、嘧啶基、哒嗪基、 噻唑基、三唑基、噻吩基(thienyl)、二氢噻吩-吡唑基(dihydrothieno-pyrazolyl)、硫茚基、咔唑基、苯并咪唑基、苯并噻吩基(benzothienyl)、苯并呋喃基、吲 哚基、喹啉基、苯并三唑基、苯并噻唑基、苯并噁唑基(benzooxazolyl)、苯并 咪唑基、异喹啉基、异吲哚基、吖啶基、苯并异噁唑基(benzoisazolyl)、二甲 基乙内酰脲、吡嗪基、四氢呋喃基、吡咯啉基、吡咯烷基、吗啉基、吲哚基、 二氮杂环庚三烯基(diazepinyl)、氮杂环庚三烯基(azepinyl)、硫杂环庚三烯基 (thiepinyl)、哌啶基和氧杂环庚三烯基(oxepinyl)。在另一个方面所述任选取代 的杂环烷基模块或任选取代的杂芳基模块是任选取代的呋喃基。杂环化合物 的非限定性实例包括(1,2-二羟乙基)-3,4-二氢呋喃-2(5H)-酮;4-羟基-5-甲基-3- 呋喃酮;5-羟基-2(5H)-呋喃酮;[1,2-二羟乙基]呋喃-2,3,4(5H)-三酮;α-羟基-γ-丁内酯;核糖酸γ-内酯;己醛糖酸γ-内酯(aldohexuronicaldohexuronic acid γ-lactone);葡糖酸δ-内酯;4-羟基香豆素;二氢苯并呋喃;5-(羟甲基)糠醛; 糠偶姻(furoin);2(5H)-呋喃酮;5,6-二氢-2H-吡喃-2-酮;和5,6-二氢-4-羟基-6- 甲基-2H-吡喃-2-酮;或它们的盐或溶剂合物。
所述含氮化合物可为任何具有一个或多个氮原子的合适化合物。在一个 方面,所述含氮化合物包含胺、亚胺、羟胺或氧化亚氮(nitroxide)模块。含氮 化合物的非限定性实例包括丙酮肟;紫尿酸;吡啶-2-醛肟;2-氨基苯酚;1,2- 苯二胺;2,2,6,6-四甲基-1-哌啶基氧(piperidinyloxy);5,6,7,8-四氢生物蝶呤; 6,7-二甲基-5,6,7,8-四氢蝶呤;和马来酰胺酸;或它们的盐或溶剂合物。
所述醌化合物可为任何本文中所述的包含醌模块的合适的化合物。醌化合 物的非限定性实例包括1,4-苯醌;1,4-萘醌;2-羟基-1,4-萘醌;2,3-二甲氧基-5- 甲基-1,4-苯醌或辅酶Q0;2,3,5,6-四甲基-1,4-苯醌或四甲基对苯醌;1,4-二羟基 蒽醌;3-羟基-1-甲基-5,6-二氢吲哚二酮或肾上腺色素;4-叔丁基-5-甲氧基-1,2- 苯醌;吡咯并喹啉醌(pyrroloquinoline quinone);或它们的盐或溶剂合物。
所述含硫化合物可为任何包含一个或多个硫原子的合适的化合物。在一 个方面,所述含硫化合物包含选自如下的模块:亚硫酰,硫醚,亚磺酰,磺 酰,磺酰胺(sulfamide),磺酰胺(sulfonamide),磺酸和磺酸酯。含硫化合物的 非限定性实例包括乙硫醇;2-丙硫醇;2-丙烯-1-硫醇;2-巯基乙磺酸;苯硫 醇;苯-1,2-二硫醇;半胱氨酸;甲硫氨酸;谷胱甘肽;胱氨酸;或它们的盐 或溶剂合物。
在一个方面,如上所述的此类化合物对纤维素材料或含木聚糖材料的有 效量,作为对纤维素糖单元的摩尔比为约10-6至约10,例如约10-6至约7.5, 约10-6至约5,约10-6至约2.5,约10-6至约1,约10-5至约1,约10-5至约10-1,约 10-4至约10-1,约10-3至约10-1,或约10-3至约10-2。在另一个方面,如上所述的 此类化合物的有效量为约0.1μM至约1M,例如约0.5μM至约0.75M,约0.75 μM至约0.5M,约1μM至约0.25M,约1μM至约0.1M,约5μM至约50mM, 约10μM至约25mM,约50μM至约25mM,约10μM至约10mM,约5μM至 约5mM,或约0.1mM至约1mM。
术语“液体/液剂(liquor)”意指在本文中所述的条件下,通过处理浆料中的 木素纤维素和/或半纤维素材料,或其单糖例如木糖、阿拉伯糖、甘露糖等, 所产生的溶液相,即水相、有机相或其组合,及其可溶性内含物。用于GH61 多肽的纤维素分解增强的液剂可通过,任选在催化剂例如酸的存在下,任选 在有机溶剂的存在下,且任选与所述材料的物理破坏相组合来藉由施加热和 /或压力来处理纤维素材料或半纤维素材料(或原料),然后将溶液与残余固体 分离来产生。此类条件决定在通过纤维素酶制备物水解纤维素材料过程中, 通过液剂和GH61多肽的组合可获得的纤维素分解增强的程度。所述液剂可 使用本领域中的标准方法如过滤、沉积或离心从经处理的材料分离。
在一个方面,所述液剂对纤维素的有效量为约10-6至约10g每g纤维素, 例如约10-6至约7.5g,约10-6至约5,约10-6至约2.5g,约10-6至约1g,约10-5至约1g,约10-5至约10-1g,约10-4至约10-1g,约10-3至约10-1g,或约10-3至约 10-2g每g纤维素。
在一个方面,所述一种或多种(例如几种)半纤维素分解酶包含商业性半纤维素分解酶制备物。适用于本发明的商业性半纤维素分解酶制备物的实例包括,例如SHEARZYMETM(Novozymes A/S)、CELLICTMHTec(Novozymes A/S)、CELLICTM HTec2(NovozymesA/S)、(Novozymes A/S)、 (Novozymes A/S)、HC(Novozymes A/S)、Xylanase (Genencor)、XY(Genencor)、XC(Genencor)、 TX-200A(AB Enzymes)、HSP6000Xylanase(DSM)、DEPOLTM333P (Biocatalysts Limit,Wales,UK)、DEPOLTM740L(Biocatalysts Limit,Wales,UK)和 DEPOLTM762P(BiocatalystsLimit,Wales,UK)。
可用于本发明工艺的其他木聚糖酶的实例包括但不限于来自棘孢曲霉(GeneSeqP:AAR63790;WO94/21785)、烟曲霉(WO2006/078256)、嗜松青霉 (WO2011/041405)、青霉属菌种(WO2010/126772)、土生梭孢霉NRRL8126 (WO2009/079210)和褐孢长毛盘菌GH10(WO2011/057083)的木聚糖酶。
可用于本发明工艺的β-木糖苷酶的实例包括但不限于来自粗糙脉孢菌(Neurospora crassa)(SwissProt登录号Q7SOW4)、里氏木霉 (UniProtKB/TrEMBL登录号Q92458)和埃默森踝节菌(Talaromyces emersonii) (SwissProt登录号Q8X212)的β-木糖苷酶。
可用于本发明工艺的乙酰木聚糖酯酶的实例包括但不限于来自棘孢曲霉(WO2010/108918)、球毛壳菌(Chaetomium globosum)(Uniprot登录号 Q2GWX4)、细丽毛壳菌(Chaetomium gracile)(GeneSeqP登录号AAB82124)、特 异腐质霉(Humicola insolens)DSM1800(WO2009/073709)、红褐肉座菌 (Hypocrea jecorina)(WO2005/001036)、嗜热毁丝霉(Wo2010/014880)、粗糙脉 孢菌(UniProt登录号q7s259)、颖枯壳针孢(Phaeosphaerianodorum)(Uniprot登录 号Q0UHJ1)和土生梭孢霉NRRL8126(WO2009/042846)的乙酰木聚糖酯酶。
可用于本发明工艺的阿魏酸酯酶的实例包括但不限于来自特异腐质霉DSM 1800(WO2009/076122)、费希新萨托菌(Neosartorya fischer)(UniProt登录号 A1D9T4)、粗糙脉孢菌(UniProt登录号Q9HGR3)、橘灰青霉(WO2009/127729) 和土生梭孢壳(WO2010/053838和WO2010/065448)的阿魏酸酯酶。
可用于本发明工艺的阿拉伯呋喃糖苷酶的实例包括但不限于来自黑曲霉(GeneSeqP登录号AAR94170)、特异腐质霉DSM1800(WO2006/114094和WO 2009/073383)和巨多孔菌(M.giganteus)(WO2006/114094)的阿拉伯呋喃糖苷酶。
可用于本发明工艺的α-葡糖醛酸糖苷酶的实例包括但不限于来自棒曲 霉(Aspergillus clavatus)(UniProt登录号alcc12)、烟曲霉(SwissProt登录号 Q4WW45)、黑曲霉(Uniprot登录号Q96WX9)、土曲霉(Aspergillus terreus) (SwissProt登录号Q0CJP9)、特异腐质霉(WO2010/014706)、橘灰青霉(WO 2009/068565)、埃默森踝节菌(UniProt登录号Q8X211)和里氏木霉(Uniprot登录 号Q99024)的α-葡糖醛酸糖苷酶。
用于本发明工艺的具有酶活性的多肽可通过在含有合适碳源和氮源和无 机盐的营养培养基上,使用本领域已知方法(参见,例如Bennett,J.W.和LaSure, L.(编),MoreGene Manipulations in Fungi,Academic Press,CA,1991)发酵上述 指出的微生物菌株来产生。合适的培养基可从供应商获得,或可根据已公开组 合物制备(例如美国典型培养物保藏中心的目录)。适于生长和酶产生的温度范 围和其他条件在本领域是已知的(参见,例如Bailey,J.E.和Ollis,D.F., Biochemical Engineering Fundamentals,McGraw-HillBook Company,NY,1986)。
所述发酵可以是任何其结果为酶或蛋白表达或分离的培养细胞的方法。 因此,发酵可以理解为包括在合适的培养基中并在允许所述酶得以表达或分 离的条件下进行的摇瓶培养,或在实验室或工业发酵罐中的小-或大规模发 酵(包括连续、分批、补料分批或固态发酵)。通过上述方法产生的所得的酶 可从发酵培养基回收并通过常规方法纯化。
发酵。可通过一种或多种(例如几种)能将糖直接或间接发酵成所需发酵 产物的发酵微生物发酵自经水解的纤维素材料或含木聚糖材料获得的可发 酵糖。“发酵”或“发酵方法”指任何发酵方法或包含发酵步骤的任何方法。发 酵方法还包括用于消费品醇工业(例如,啤酒和葡萄酒)、乳品业(例如,发酵 乳产品)、皮革业和烟草业的发酵方法。发酵条件依赖于期望的发酵产物和 发酵生物体,并且能由本领域的技术人员容易地确定。
在发酵步骤中,作为预处理和酶水解步骤的结果从纤维素材料或含木聚 糖材料释放的糖,通过发酵生物体(如酵母)发酵成为产物,例如,乙醇。如 本文中所述,水解(糖化)和发酵可以是单独或同时的。
在实施本发明的发酵步骤中可以使用任何合适的经水解的纤维素材料 或含木聚糖材料。通常根据所需发酵产品(即,要从发酵获得的物质)和使用 的方法来选择所述材料,如本领域中所公知的。
术语“发酵培养基”在本文中可理解为指加入发酵微生物之前的培养基,如, 由糖化过程产生的培养基,以及同步的糖化和发酵方法(SSF)中使用的培养基。
“发酵微生物”指适用于理想的发酵方法产生发酵产物的任何微生物,包 括细菌和真菌生物体。发酵生物体可以是己糖和/或戊糖发酵生物体,或它们 的组合。己糖和戊糖发酵生物体均在本领域公知。合适的发酵微生物能将糖 (如葡萄糖、木糖、木酮糖、阿拉伯糖、麦芽糖、甘露糖、半乳糖和/或寡糖) 直接或间接地发酵(即,转化)成所需的发酵产品。可产生乙醇的细菌和真菌发 酵生物体的实例如Lin等,2006,Appl.Microbiol.Biotechnol.69:627-642所述。
能发酵己糖的发酵微生物的实例包括细菌和真菌生物体,如酵母。优选 的酵母包括假丝酵母属、克鲁维酵母属和酵母属,例如Candida sonorensis、 马克斯克鲁维酵母和酿酒酵母的菌株。
以其天然状态能发酵戊糖的发酵生物体的实例包括细菌和真菌生物体, 如一些酵母。优选的木糖发酵酵母包括假丝酵母属,优选休哈塔假丝酵母 (Candida sheatae)或Candida sonorensis;和毕赤酵母属,优选树干毕赤酵母 (Pichia stipitis)的菌株,如树干毕赤酵母CBS5773的菌株。优选的戊糖发酵 酵母包括管囊酵母属(Pachysolen),优选嗜鞣管囊酵母(Pachysolen tannophilus) 的菌株。不能够发酵戊糖如木糖和阿拉伯糖的生物通过本领域已知方法可经 遗传修饰而发酵戊糖。
能有效地将己糖和戊糖发酵成乙醇的细菌包括,例如,凝结芽孢杆菌 (Bacilluscoagulans)、丙酮丁醇梭菌(Clostridium acetobutylicum)、热纤维梭菌 (Clostridiumthermocellum)、Clostridium phytofermentans、地芽孢杆菌属菌种、 解糖热厌氧杆菌(Thermoanaerobacter saccharolyticum)和运动发酵单胞菌 (Zymomonas mobilis)(Philippidis,1996,见上文)。
其它发酵生物包括芽孢杆菌属,如凝结芽孢杆菌;假丝酵母属,如C. sonorensis、C.methanosorbosa、迪丹斯假丝酵母(C.diddensii)、近平滑假丝酵 母(C.parapsilosis)、C.naedodendra、C.blankii、C.entomophilia、芸薹假丝酵 母(C.brassicae)、假热带假丝酵母(C.pseudotropicalis)、博伊丁假丝酵母 (Candida boidinii)、产朊假丝酵母(Candida utilis)和休哈塔假丝酵母(C. scehatae);梭菌属,如丙酮丁醇梭菌、热纤维梭菌和C.phytofermentans;大肠 杆菌,特别是经遗传修饰以改进乙醇产生的大肠杆菌菌株;地芽孢杆菌属菌种; 汉逊酵母属,如异常汉逊酵母(Hansenula anomala);克雷伯氏菌属(Klebsiella), 如产酸克雷伯氏菌(K.oxytoca);克鲁维酵母属,如马克斯克鲁维酵母、乳酸克 鲁维酵母(K.lactis)、K.thermotolerans和脆壁克鲁维酵母;裂殖酵母属,如粟酒 裂殖酵母(S.pombe);热厌氧杆菌属(Thermoanaerobacter),如解糖热厌氧杆菌, 和发酵单胞菌属(Zymomonas),如运动发酵单胞菌的菌株。
在一个优选的方面,酵母是酒香酵母属(Bretannomyces)。在一个更优选的 方面,酵母是克劳森酒香酵母(Bretannomyces clausenii)。在另一个更优选的方 面,酵母是假丝酵母。在另一个更优选的方面,酵母是Candida sonorensis。在 另一个更优选的方面,酵母是博伊丁假丝酵母。在另一个更优选的方面,酵母 是Candida blankii。在另一个更优选的方面,酵母是芸薹假丝酵母。在另一个 更优选的方面,酵母是迪丹斯假丝酵母。在另一个更优选的方面,酵母是 Candida entomophiliia。在另一个更优选的方面,酵母是假热带假丝酵母。在另 一个更优选的方面,酵母是休哈塔假丝酵母。在另一个更优选的方面,酵母是产朊假丝酵母。在另一个优选的方面,酵母是棒孢酵母属(Clavispora)。在另一 个更优选的方面,酵母是葡萄牙棒孢酵母(Clavispora lusitaniae)。在另一个更优 选的方面,酵母是仙人掌棒孢酵母(Clavispora opuntiae)。在另一个优选的方面, 酵母是克鲁维酵母属。在另一个更优选的方面,酵母是脆壁克鲁维酵母。在另 一个更优选的方面,酵母是马克斯克鲁维酵母。在另一个更优选的方面,酵母 是耐热克鲁维酵母(Kluyveromycesthermotolerans)。在另一个优选的方面,酵母 是管囊酵母属(Pachysolen)。在另一个更优选的方面,酵母是嗜鞣管囊酵母。在 另一个优选的方面,酵母是毕赤酵母。在另一个更优选的方面,酵母是树干毕 赤酵母。在另一个优选的方面,酵母是酵母属菌种。在一个优选的方面,酵母 是酿酒酵母。在另一个更优选的方面,酵母是糖化酵母(Saccharomycesdistaticus)。在另一个更优选的方面,酵母是葡萄汁酵母(Saccharomyces uvarum)。
在一个优选的方面,细菌是芽孢杆菌属。在一个更优选的方面,细菌是凝 结芽孢杆菌。在另一个更优选的方面,细菌是梭菌属。在另一个更优选的方面, 细菌是丙酮丁醇梭菌。在另一个更优选的方面,细菌是Clostridium phytofermentans。在另一个更优选的方面,细菌是热纤维梭菌。在另一个更优 选的方面,细菌是地芽孢杆菌属菌种。在另一个更优选的方面,细菌是热厌氧 杆菌属。在另一个更优选的方面,细菌是解糖热厌氧杆菌。在另一个更优选的 方面,细菌是发酵单胞菌属。在另一个更优选的方面,细菌是运动发酵单胞菌。
商业上可得到的适合乙醇产生的酵母包括,例如BIOFERMTMAFT和XR (NABC-NorthAmerican Bioproducts Corporation,GA,USA),ETHANOL REDTM酵母(Red Star/Lesaffre,USA)、FALITM(Fleischmann’s Yeast,Burns Philp Food Inc.,USA)、FERMIOLTM(DSMSpecialties)、GERT STRANDTM(Gert Strand AB,Sweden)以及SUPERSTARTTM和THERMOSACCTM新鲜酵母 (Ethanol Technology,WI,USA)。
在一个优选的方面,发酵微生物已经经过遗传修饰,提供发酵戊糖的能 力,如利用木糖、利用阿拉伯糖和共同利用木糖和阿拉伯糖的微生物。
通过将异源基因克隆入多种发酵微生物已经构建了能将己糖和戊糖转化成 乙醇(共发酵)的生物体(Chen和Ho,1993,Cloning and improving the expression of Pichiastipitis xylose reductase gene in Saccharomyces cerevisiae,Appl.Biochem.Biotechnol.39-40:135-147;Ho等,1998,Genetically engineered Saccharomyces yeastcapable of effectively cofermenting glucose and xylose,Appl.Environ.Microbiol.64: 1852-1859;Kotter和Ciriacy,1993,Xylose fermentationby Saccharomyces cerevisiae, Appl.Microbiol.Biotechnol.38:776-783;Walfridsson等,1995,Xylose-metabolizing Saccharomyces cerevisiae strains overexpressingthe TKL1and TAL1genes encoding the pentose phosphate pathway enzymestransketolase and transaldolase,Appl.Environ. Microbiol.61:4184-4190;Kuyper等,2004,Minimal metabolic engineering of Saccharomyces cerevisiae forefficient anaerobic xylose fermentation:a proof of principle,FEMS YeastResearch4:655-664;Beall等,1991,Parametric studies of ethanol production fromxylose and other sugars by recombinant Escherichia coli, Biotech.Bioeng.38:296-303;Ingram等,1998,Metabolic engineering of bacteria for ethanolproduction,Biotechnol.Bioeng.58:204-214;Zhang等,1995,Metabolic engineering ofa pentose metabolism pathway in ethanologenic Zymomonas mobilis, Science267:240-243;Deanda等,1996,Development of an arabinose-fermenting Zymomonasmobilis strain by metabolic pathway engineering,Appl.Environ.Microbiol. 62:4465-4470;WO2003/062430,xylose isomerase(木糖异构酶))。
在一个优选的方面,经过遗传修饰的发酵微生物是Candida sonorensi。 在另一个优选的方面,经过遗传修饰的发酵微生物是大肠杆菌。在另一个优 选的方面,经过遗传修饰的发酵微生物是产酸克雷伯氏菌。在另一个优选的 方面,所述经遗传修饰的发酵微生物是马克斯克鲁维酵母。在另一个优选的 方面,所述经遗传修饰的发酵微生物是酿酒酵母。在另一个优选的方面,经 过遗传修饰的发酵微生物是运动发酵单胞菌。
本领域中公知的是,上述生物体还能用于产生其它物质,如本文所述。
通常向降解的纤维素材料或含木聚糖材料或水解物加入发酵微生物,并进 行约8至约96小时,例如约24至约60小时发酵。温度通常为约26℃至约60℃, 例如约32℃或50℃,并且在约pH3至约pH8,例如约pH4-5、6或7。
在一个方面,对降解的纤维素材料或含木聚糖材料施用酵母和/或另一种 微生物,并进行约12至约96小时,如通常为24-60小时发酵。在另一个方面, 温度优选为约20℃至约60℃,例如约25℃至约50℃,约32℃至约50℃,或约 32℃至约50℃,并且pH通常为约pH3至约pH7,例如约pH4至约pH7。然而, 一些发酵生物体例如细菌,具有更高的最适发酵温度。酵母或另一种微生物 优选以约105-1012,优选约107-1010,特别是约2x108活细胞计数每ml发酵液 的量施用。关于使用酵母进行发酵的进一步指导可见于例如“The AlcoholTextbook”(K.Jacques,T.P.Lyons和D.R.Kelsall编,Nottingham University Press,United Kingdom1999),其通过提述并入本文。
对于乙醇产生,在发酵之后,对发酵的浆料进行蒸馏以提取乙醇。根据 本发明的工艺获得的乙醇可用作例如燃料乙醇,饮用乙醇,例如可饮用的中 性酒(potable neutralspirits),或工业乙醇。
发酵刺激剂可以与本文所述的任何方法组合使用,以进一步改进发酵工 艺,而且特定地,改进发酵微生物的性能,如,速率增加和乙醇得率。“发 酵刺激剂”指用于发酵微生物(特别是酵母)生长的刺激剂。优选的用于生长的 发酵刺激剂包括维生素和矿物质。维生素的实例包括多种维生素、生物素、 泛酸(盐)、烟酸、内消旋肌醇(meso-inositol)、硫胺素、吡哆醇(pyridoxine)、 对氨基苯甲酸、叶酸、核黄素和维生素A、B、C、D和E。参见,例如,Alfenore 等,Improving ethanol production and viability of Saccharomycescerevisiae by a vitamin feeding strategy during fed-batch process,Springer-Verlag(2002),其通 过提述并入本文。矿物质的实例包括能够提供营养物的矿物质和矿物质盐, 所述营养物包括P、K、Mg、S、Ca、Fe、Zn、Mn和Cu。
发酵产物:发酵产物可以是源自发酵的任何物质。发酵产物可以是,不 限于,醇(例如,阿拉伯醇、正丁醇、异丁醇、乙醇、甘油、甲醇、乙二醇、 1,3-丙二醇(丙二醇)、丁二醇、丙三醇、山梨醇和木糖醇);烷烃(例如戊烷、 己烷、庚烷、辛烷、壬烷、癸烷、十一烷和十二烷);环烷烃(例如环戊烷、 环己烷、环庚烷、和环辛烷);烯烃(例如戊烯、己烯、庚烯和辛烯);氨基酸(例如,天冬氨酸、谷氨酸、甘氨酸、赖氨酸、丝氨酸和苏氨酸);气体(例如, 甲烷、氢气(H2)、二氧化碳(CO2)和一氧化碳(CO));异戊二烯;酮(例如,丙 酮);有机酸(例如,乙酸、醋酮酸、己二酸、抗坏血酸、柠檬酸、2,5-二酮-D- 葡糖酸、甲酸、反丁烯二酸、葡糖二酸、葡糖酸、葡糖醛酸、戊二酸、3-羟 基丙酸、衣康酸、乳酸、苹果酸、丙二酸、草酸、草酰乙酸、丙酸、琥珀酸 和木糖酸);和聚酮化合物。发酵产物还可以是作为高价值产品的蛋白质。
在一个优选的方面,发酵产物是醇。可理解的是,术语“醇”包括包含一个 或多个羟基模块的物质。在更优选的方面,所述醇是正丁醇。在另一个更优选 的方面,所述醇是异丁醇。在另一个更优选的方面,所述醇是乙醇。在另一个 更优选的方面,所述醇是甲醇。在另一个更优选的方面,所述醇是阿拉伯糖醇。 在另一个更优选的方面,所述醇是丁二醇。在另一个更优选的方面,所述醇是 乙二醇。在另一个更优选的方面,所述醇是丙三醇(glycerin)。在另一个更优选 的方面,所述醇是甘油(glycerol)。在另一个更优选的方面,所述醇是1,3-丙二 醇。在另一个更优选的方面,所述醇是山梨醇。在另一个更优选的方面,所述 醇是木糖醇。参见,例如,Gong,C.S.,Cao,N.J.,Du,J.和Tsao,G.T.,1999,Ethanolproduction from renewable resources,于Advances in Biochemical Engineering/Biotechnology,Scheper,T.编,Springer-Verlag Berlin Heidelberg, Germany,65:207-241;Silveira,M.M.和Jonas,R.,2002,The biotechnological production of sorbitol,Appl.Microbiol.Biotechnol.59:400-408;Nigam和Singh, 1995,Processes forfermentative production of xylitol–a sugar substitute,Process Biochemistry30(2):117-124;Ezeji等,2003,Production of acetone,butanol and ethanol byClostridium beijerinckii BA101and in situ recovery by gas stripping, WorldJournal of Microbiology and Biotechnology19(6):595-603。
在另一个优选的方面,所述发酵产物是烷烃。所述烷烃是未支化或支化 的烷烃。在另一个更优选的方面,所述烷烃是戊烷。在另一个更优选的方面, 所述烷烃是己烷。在另一个更优选的方面,所述烷烃是庚烷。在另一个更优 选的方面,所述烷烃是辛烷。在另一个更优选的方面,所述烷烃是壬烷。在 另一个更优选的方面,所述烷烃是癸烷。在另一个更优选的方面,所述烷烃 是十一烷。在另一个更优选的方面,所述烷烃是十二烷。
在另一个优选的方面,所述发酵产物是环烷烃。在另一个更优选的方面, 所述环烷烃是环戊烷。在另一个更优选的方面,所述环烷烃是环己烷。在另 一个更优选的方面,所述环烷烃是环庚烷。在另一个更优选的方面,所述环 烷烃是环辛烷。
在另一个优选的方面,所述发酵产物是烯烃。所述烯烃可为未支化或支 化的烯烃。在另一个更优选的方面,所述烯烃是戊烯。在另一个更优选的方 面,所述烯烃是己烯。在另一个更优选的方面,所述烯烃是庚烯。在另一个 更优选的方面,所述烯烃是辛烯。
在另一个优选的方面,所述发酵产物是氨基酸。在另一个更优选的方面, 所述有机酸是天冬氨酸。在另一个更优选的方面,所述氨基酸是谷氨酸。在另 一个更优选的方面,所述氨基酸是甘氨酸。在另一个更优选的方面,所述氨基 酸是赖氨酸。在另一个更优选的方面,所述氨基酸是丝氨酸。在另一个更优选 的方面,所述氨基酸是苏氨酸。参见,例如,Richard和Margaritis,2004,Empirical modeling of batch fermentation kineticsfor poly(glutamic acid)production and other microbial biopolymers,Biotechnology and Bioengineering87(4):501-515。
在另一个优选的方面,所述物质是气体。在另一个更优选的方面,所述 气体是甲烷。在另一个更优选的方面,所述气体是H2。在另一个更优选的方 面,所述气体是CO2。在另一个更优选的方面,所述气体是CO。参见,例如, Kataoka等,1997,Studies on hydrogenproduction by continuous culture system of hydrogen-producing anaerobicbacteria,Water Science and Technology36 (6-7):41-47;和Gunaseelan,1997,Anaerobic digestion of biomass for methane production:A review,Biomass andBioenergy13(1-2):83-114。
在另一个优选的方面,所述发酵产物是异戊二烯。
在另一个优选的方面,所述发酵产物是酮。应理解的是,术语“酮”涵盖 了含有一个或多个酮模块的酮。在另一个更优选的方面,所述酮是丙酮。参 见,例如Qureshi和Blaschek,2003,见上文。
在另一个优选的方面,所述发酵产物是有机酸。在另一个更优选的方面, 所述有机酸是乙酸。在另一个更优选的方面,所述有机酸是醋酮酸。在另一 个更优选的方面,所述有机酸是己二酸。在另一个更优选的方面,所述有机 酸是抗坏血酸。在另一个更优选的方面,所述有机酸是柠檬酸。在另一个更 优选的方面,所述有机酸是2,5-二酮-D-葡糖酸。在另一个更优选的方面,所 述有机酸是甲酸。在另一个更优选的方面,所述有机酸是反丁烯二酸。在另 一个更优选的方面,所述有机酸是葡糖二酸。在另一个更优选的方面,所述 有机酸是葡糖酸。在另一个更优选的方面,所述有机酸是葡糖醛酸。在另一 个更优选的方面,所述有机酸是戊二酸。在另一个优选的方面,所述有机酸 是3-羟基丙酸。在另一个更优选的方面,所述有机酸是衣康酸。在另一个更 优选的方面,所述有机酸是乳酸。在另一个更优选的方面,所述有机酸是苹 果酸。在另一个更优选的方面,所述有机酸是丙二酸。在另一个更优选的方 面,所述有机酸是草酸。在另一个更优选的方面,所述有机酸是丙酸。在另 一个更优选的方面,所述有机酸是琥珀酸。在另一个更优选的方面,所述有 机酸是木糖酸。参见,例如,Chen和Lee,1997,Membrane-mediated extractive fermentation for lacticacid production from cellulosic biomass,Appl.Biochem. Biotechnol.63-65:435-448。
在另一个优选的方面,所述物质是聚酮化合物。
回收。可以使用本领域已知的任何方法,任选地从发酵培养基回收发酵 产物,所述方法包括,但不限于,层析、电泳方法、差示溶解度、蒸馏或提 取。例如,通过常规蒸馏方法从发酵的纤维素材料或含木聚糖材料分离并纯 化醇。可以获得纯度高达约96vol.%的乙醇,其能用作,例如,燃料乙醇、 饮用乙醇(即,可饮用的中性含酒精饮料),或工业乙醇。
信号肽
本发明还涉及编码信号肽的分离的多核苷酸,所述信号肽包含或组成为 SEQ IDNO:2的氨基酸1至17、SEQ ID NO:4的氨基酸1至16、或SEQ ID NO: 6的氨基酸1至20。所述多核苷酸可进一步包含编码蛋白的基因,其可操作地 连接于信号肽。所述蛋白优选对于所述信号肽是外来的。在一个方面,编码 信号肽的多核苷酸是SEQ ID NO:1的核苷酸1至51。在另一个方面,编码信 号肽的多核苷酸是SEQ ID NO:3的核苷酸1至48。在另一个方面,编码信号 肽的多核苷酸是SEQ ID NO:5的核苷酸1至50和114至123。
本发明还涉及包含此种多核苷酸的核酸构建体、表达载体和重组宿主细胞。
本发明还涉及用于产生蛋白质的方法,包括:(a)培养包含此种多核苷酸 的重组宿主细胞;和(b)回收所述蛋白质。
所述蛋白质对于宿主细胞可以是天然的或异源的。术语“蛋白质”在本文的 意思不是指特定长度的编码产物,并且因此涵盖肽、寡肽和多肽。术语“蛋白质” 还涵盖经组合以形成编码产物的两种以上多肽。所述蛋白质还包括杂合多肽和 融合多肽。
优选蛋白质是激素、酶、受体或其部分、抗体或其部分,或报告蛋白 (reporter)。例如,所述蛋白质可为水解酶、异构酶、连接酶、裂合酶(lyase)、 氧化还原酶或转移酶,如氨肽酶、淀粉酶、糖酶、羧肽酶、过氧化氢酶、纤 维二糖水解酶、纤维素酶、几丁质酶、角质酶、环糊精糖基转移酶、脱氧核 糖核酸酶、内切葡聚糖酶、酯酶、α-半乳糖苷酶、β-半乳糖苷酶、葡糖淀粉酶、 α-葡糖苷酶、β-葡糖苷酶、转化酶、漆酶、脂肪酶、甘露糖苷酶、变聚糖酶(mutanase)、氧化酶、果胶分解酶、过氧化物酶、肌醇六磷酸酶、多酚氧化酶、 蛋白水解酶、核糖核酸酶、转谷氨酰胺酶、木聚糖酶或β-木糖苷酶。
基因可以从任何原核、真核生物或其它来源获得。
本发明进一步由以下实施例描述,其不应理解为限制本发明的范围。
实施例
菌株
将Talaromyces leycettanus菌株CBS398.68用作具有木聚糖酶活性的多肽 的来源。将米曲霉MT3568菌株用于表达编码具有木聚糖酶活性的多肽的 Talaromycesleycettanus基因。米曲霉MT3568是米曲霉JaL355(WO02/40694) 的amdS(乙酰胺酶)破坏的基因衍生物,其中通过破坏米曲霉乙酰胺酶(amdS) 基因恢复了pyrG营养缺陷。
培养基和溶液
YP+2%葡萄糖培养基包含1%酵母提取物、2%蛋白胨和2%葡萄糖。
PDA琼脂平板包含马铃薯浸出物(马铃薯浸出物如下所述制备:将300g的 切片(经洗涤但未经削皮)的马铃薯在水中煮沸30分钟,然后将汤液(broth)倾出 或通过干酪包布(cheesecloth)滤过。然后添加蒸馏水直至悬液的总体积为一升, 接着添加20g的右旋糖和20g的琼脂粉。将培养基通过高压灭菌在15psi灭菌15 分钟(Bacteriological AnalyticalManual,第8版,Revision A,1998)。
LB平板包含10g的Bacto-Tryptone(细菌用胰蛋白胨),5g的酵母提取物,10 g的氯化钠,15g的细菌用琼脂,和去离子水加至1升。将培养基通过高压灭菌在 15psi灭菌15分钟(Bacteriological Analytical Manual,第8版,Revision A,1998)。
COVE蔗糖平板包含342g蔗糖(Sigma S-9378),20g琼脂粉,20ml COVE盐 溶液(26gMgSO4.7H2O,26g KCl,26g KH2PO4,50ml Cove痕量金属溶液)和 去离子水加至1升),和去离子水加至1升。将培养基通过高压灭菌在15psi灭菌15 分钟(Bacteriological AnalyticalManual,第8版,Revision A,1998)。将培养基冷却 至60℃并添加10mM乙酰胺,15mM CsCl,Triton X-100(50μl/500ml))。
Cove痕量金属溶液包含0.04g Na2B4O7.10H2O,0.4g CuSO4.5H2O,1.2g FeSO4.7H2O,0.7g MnSO4.H2O,0.8g Na2MoO4.2H2O,10g ZnSO4.7H2O,和 去离子水加至1升。
Dap-4C培养基包含20g右旋糖,10g麦芽糖,11g MgSO4.7H2O,1g KH2PO4,2g柠檬酸,5.2g K3PO4.H2O,0.5g酵母提取物(Difco),1ml Dowfax 63N10(Dow Chemical Company),0.5ml KU6痕量金属溶液,2.5g CaCO3,和 去离子水加至1升。将培养基通过高压灭菌在15psi灭菌15分钟(Bacteriological Analytical Manual,第8版,Revision A,1998)。在使用之前,向Dap-4C培养基添 加3.5ml灭菌的50%(NH4)2HPO4和5ml灭菌的20%乳酸每150ml培养基。
KU6痕量金属溶液包含0.13g NiCl2,2.5g CuSO4.5H2O,13.9g FeSO4.7H2O,8.45gMnSO4.H2O,6.8g ZnCl2,3g柠檬酸,和去离子水加至1升。
实施例1:Talaromyces leycettanus菌株CBS398.68的DNA序列信息的来源
基因组序列信息在中国北京市的北京华大基因(Beijing Genome Institute)(BGI)通过Illumina DNA测序从由Talaromyces leycettanus菌株CBS398.68分离的 基因组DNA生成。基因组的初级汇编(preliminary assembly)使用Pedant-ProTM SequenceAnalysis Suite(Biomax Informatics AG,Martinsried,Germany)进行分 析。将由该软件构建的基因模型用作供在基因组中检测GH10同源物的起始点。 使用多种已知的GH10蛋白序列作为指导,手动构建了更加准确的基因模型。
实施例2:Talaromyces leycettanus菌株CBS398.68基因组DNA提取
为了生成用于PCR扩增的基因组DNA,将Talaromyces leycettanus菌株CBS398.68在PDA琼脂平板上通过在26℃生长7日来进行繁殖。将从PDA平板 收获的孢子用于接种带挡板的摇瓶中的25ml的YP+2%葡萄糖培养基,并在 26℃以85rpm搅拌温育72小时。
基因组DNA根据修饰的DNeasy Plant Maxi试剂盒实验方案(Qiagen Danmark,Copenhagen,Denmark)进行分离。将来自上述培养物的真菌材料 通过在14,000x g离心2分钟来收获。去除上清,并将0.5g的沉淀与石英砂冻结 于液氮,并在经预冷的研钵中磨制至细微粉末。将粉末转移至15ml离心管, 并添加5ml缓冲液AP1(预热至65℃)和10μl RNase A储液(100mg/ml),接着进 行剧烈的涡旋。在65℃定期倒置试管温育10分钟之后,将1.8ml缓冲液AP2通 过轻柔地混合添加至裂解液,接着在冰上温育10分钟。然后将裂解液在室温 在3000x g离心5分钟,并将上清倾入置于50ml收集管的QIAshredder maxi旋转 柱中。接着,在室温在3000x g离心5分钟。将流过物转移入新的50ml管,并 添加1.5倍体积的缓冲液AP3/E,接着进行涡旋。将15ml的样品转移入置于50 ml收集管中的DNeasy Maxi旋转柱,并在室温在3000x g离心5分钟。将流过物 弃去,并将12ml缓冲液AW添加至置于50ml收集管中的DNeasy Maxi旋转柱, 并在室温在3000x g离心10分钟。在弃去流过物之后,重复离心以弃去剩余的 醇。将DNeasy Maxi旋转柱转移至新的50ml管,并添加0.5ml缓冲液AE(预热 至70℃)。在室温温育5分钟之后,将样品通过在室温在3000x g离心5分钟来 洗脱。再用0.5ml缓冲液AE重复洗脱,并合并洗脱物。收获的DNA的浓度通 过在260nm的UV分光光度计来测量。
实施例3:含有编码具有木聚糖酶活性的家族GH10多肽的Talaromycesleycettanus菌株CBS398.68基因组序列的米曲霉表达载体的构建
设计了下示的两个合成的寡核苷酸引物以从实施例2中制备的基因组 DNA来PCR扩增Talaromyces leycettanus菌株CBS398.68P24F5Z基因(SEQ ID NO:1)。使用IN-FUSIONTMCloning Kit(BD Biosciences,Palo Alto,CA,USA) 以将片段直接克隆入表达载体pDau109(WO2005/042735)。
F-P24F5Z
5’-ACACAACTGGGGATCCACCATGCGTTTCTCCTTGGCCACTG-3’(SEQ ID NO:7)
R-P24F5Z
5’-CCCTCTAGATCTCGAGCTAGCAGACGCTGCAGGCCT-3’(SEQ ID NO:8)
粗体字母代表基因序列。下划线序列同源于pDau109的插入位点。
使用MJ Research PTC-200DNA引擎(engine)进行PCR反应。使用 High-Fidelity PCR Kit(Finnzymes Oy,Espoo,Finland)进行PCR扩 增。PCR反应包含5μl的5X HF缓冲液(Finnzymes Oy,Espoo,Finland),0.5μl 的dNTP(10mM),0.5μl的DNA聚合酶(0.2单位/μl)(Finnzymes Oy, Espoo,Finland),1μl的引物F-P24F5Z(5μM),1μl的引物R-P24F5Z(5μM), 0.5μl的Talaromyces leycettanus基因组DNA(100ng/μl),和16.5μl的去离子 水,总体积为25μl。PCR条件为1个循环在95℃进行2分钟,35个循环每个在 98℃进行10秒,60℃进行30秒,和72℃进行2.5分钟;和1个循环在72℃进行 10分钟。然后将样品保持在12℃,直至从PCR机器移出。
反应产物通过使用40mM Tris碱,20mM乙酸钠,1mM EDTA二钠盐(TAE) 缓冲液的1.0%琼脂糖凝胶电泳来分离,其中将1168bp产物条带从凝胶切出, 并使用illustraPCR DNA and Gel Band Purification Kit(GE Healthcare Life Sciences,Brondby,Denmark)根据生产商的指示纯化。然后将片段使用 IN-FUSIONTMCloning Kit克隆入经Bam HI和Xho I消化的pDau109,得到质粒 pP24F5Z。将P24F5Z基因克隆入经Bam HI-Xho I消化的pDau109使得 Talaromyces leycettanus P24F5Z基因的转录处于NA2-tpi双重启动子的调控下。 NA2-tpi是经修饰的来自编码黑曲霉中性α-淀粉酶的基因的启动子,其中非翻译 前导序列由来自编码构巢曲霉丙糖磷酸异构酶的基因的非翻译前导序列替代。
克隆实验方案根据IN-FUSIONTMCloning Kit的指示进行,生成P24F5Z GH10构建体。将经处理的质粒和插入物根据生产商的实验方案转化入One TOP10F′Chemically Competent大肠杆菌细胞(nvitrogen,Carlsbad,CA, USA),并铺板于补充0.1mg氨苄青霉素每ml的LB平板上。在37℃温育过夜 之后,发现菌落在LB氨苄青霉素平板上的选择下生长。将四个经P24F5Z GH10构建体转化的菌落在补充0.1mg氨苄青霉素每ml的LB培养基中培养, 并用QIAprep Spin Miniprep Kit(QIAGEN Inc.,Valencia,CA,USA)根据生 产商的实验方案分离质粒。
将分离的质粒用载体引物和P24F5Z基因特异性引物进行测序以确定不 含PCR错误的代表性质粒表达克隆。
实施例4:编码具有木聚糖酶活性的P24F5Z GH10多肽的Talaromycesleycettanus CBS398.68基因组序列的表征
Talaromyces leycettanus CBS398.68P24F5Z GH10基因组克隆的DNA测 序用Applied Biosystems Model3700Automated DNA Sequencer使用版本3.1 BIG-DYETM终止子化学(Applied Biosystems,Inc.,Foster City,CA,USA) 和引物步移策略来进行。对核苷酸序列就品质进行审视,并在PHRED/PHRAP 软件(University of Washington,Seattle,WA,USA)的协助下将所有序列相互 比较。获得的序列与来自JGI的序列相同。
Talaromyces leycettanus P24F5Z基因的核苷酸序列和推导的氨基酸序列分 别示于SEQ ID NO:1和SEQ ID NO:2。编码序列为1168bp,包含终止密码子且 被1个内含子打断。编码的预测蛋白为364个氨基酸。使用SignalP程序(Nielsen 等,1997,ProteinEngineering10:1-6),预测了17个残基的信号肽。预测的成 熟蛋白含有347个氨基酸,其具有38.7kDa的预测分子量和4.6的等电pH。
氨基酸序列的比较性逐对全局比对使用Needleman和Wunsch算法 (Needleman和Wunsch,1970,J.Mol.Biol.48:443-453)以缺口开放罚分为10, 缺口延伸罚分为0.5,和EBLOSUM62矩阵进行。比对显示编码具有木聚糖活 性的P24F5Z GH10多肽的Talaromycesleycettanus基因的推导的氨基酸序列与 来自Penicillium canescens的预测的GH10家族蛋白(登录号 UNIPROT:C3VEV9)的推导的氨基酸序列具有75.6%同一性(排除缺口),所述GH10家族蛋白具有木聚糖酶活性。
实施例5:Talaromyces leycettanus GH10木聚糖酶P24F5Z的表达
将表达质粒pP24F5Z转化入米曲霉MT3568。米曲霉MT3568是JaL355 (WO02/40694)的AMDS(乙酰胺酶)破坏的衍生物,其中在米曲霉乙酰胺酶 (AMDS)基因的敲除过程中恢复了pyrG营养缺陷。MT3568原生质体根据欧洲 专利No.0238023第14-15页(其通过提述并入本文)的方法制备。
将转化体在COVE蔗糖选择平板上通过单个分生孢子进行纯化,然后使 它们在PDA平板上形成孢子。由转化体所致的Talaromyces leycettanus GH10 多肽的生成根据YP+2%葡萄糖培养基中在30℃的1ml96深孔静态培养的培 养上清进行分析。表达在E-Page8%SDS-PAGE48孔凝胶(Invitrogen, Carlsbad,CA,USA)上通过考马斯染色进行验证。选择一个转化体进行进一 步研究,并将其命名为米曲霉41.4.3。
对于更大规模的生产,将米曲霉41.4.3孢子铺板于PDA平板,并在37℃ 温育5日。将汇合的孢子平板用5ml的0.01%20洗涤两次以最大化 收集的孢子的数量。然后使用孢子悬液接种二十五个含有100ml的Dap-4C培 养基的500ml烧瓶。将培养物在30℃在100rpm的恒定振荡下温育。在接种之 后第四日,将培养液通过经由瓶顶(bottle top)MF75Supor MachV0.2μm PES 过滤器(Thermos Fisher Scientific,Roskilde,Denmark)过滤来收集。来自该 转化体的新鲜培养液产生大约50kDa的GH10蛋白的条带,其具有指示可能 糖基化的曳尾。该主要条带作为Talaromyces leycettanus GH10多肽的身份通 过肽测序来验证。
实施例6:用于产生Talaromyces leycettanus GH10木聚糖酶P24F5Z的其 它方法
基于鉴定为SEQ ID NO:1的核苷酸序列,可从多个供应商如Gene Art (GENEARTAG BioPark,Josef-Engert-Str.11,93053,Regensburg,Germany) 或DNA2.0(DNA2.0,1430O'Brien Drive,Suite E,Menlo Park,CA94025, USA)获得合成基因。所述合成基因可设计为并入其它DNA序列如限制性位 点或同源重组区以便于克隆入表达载体。
使用上述的两个合成寡核苷酸引物F-P24F5Z和R-P24F5Z,可使用简单 的PCR反应从SEQ ID NO:1的合成基因扩增全长开放阅读框。然后可将基因 克隆入表达载体,例如如上所述的表达载体,并在宿主细胞中表达,例如在 如上所述的米曲霉中表达。
实施例7:Talaromyces leycettanus GH10木聚糖酶P24F5Z的纯化
将米曲霉表达菌株41.4.3的1000ml培养液调整至pH7.0并在0.22μm PES过滤器(Thermo Fisher Scientific,Roskilde,Denmark)上过滤。接着,向 滤过物添加1.8M硫酸铵。将滤过物加载于用1.8M硫酸铵pH7.0,25mM HEPES pH7.0平衡的PhenylSepharoseTM6Fast Flow柱(high sub)(GE Healthcare,Piscataway,NJ,USA)(柱体积为60mL)。在加载之后,将用3 个柱体积的平衡缓冲液继以7个柱体积的1.0M硫酸铵(蛋白保持结合于柱)洗 涤柱,并接着用5个柱体积的25mM HEPES pH7.0以15ml/min的流速将蛋白 洗脱。收集10mL的级分,并通过SDS-Page分析。将级分汇集并施于在25mM HEPES pH7.0中平衡的SephadexTMG-25(介质)(GE Healthcare,Piscataway, NJ,USA)柱。将级分施于在25mMHEPES pH7.0(柱体积60mL)中平衡的 SOURCETM15Q(GE Healthcare,Piscataway,NJ,USA)柱。在加载之后, 将柱用5个柱体积的平衡缓冲液洗涤,并将结合的蛋白在20个柱体积中以0至 1000mM氯化钠的线性梯度洗脱。收集10ml的级分,并通过SDS-Page分析, 且汇集含有蛋白的级分。随着层析谱中两个独特的峰,制备两种汇集物A和 B。蛋白浓度通过A280/A260吸光度来确定。蛋白质身份通过对凝胶内消化 样品的MS/MS验证,其确认两种级分的身份。
实施例8:含有编码具有木聚糖酶活性的家族GH10多肽的Talaromycesleycettanus菌株CBS398.68基因组序列的米曲霉表达载体的构建
设计了下示的两个合成的寡核苷酸引物以从实施例2中制备的基因组 DNA来PCR扩增Talaromyces leycettanus菌株CBS398.68P24F61基因(SEQ ID NO:3)。使用IN-FUSIONTMCloning Kit(BD Biosciences,Palo Alto,CA,USA) 以将片段直接克隆入表达载体pDau109(WO2005/042735)。
F-P24F61
5’-ACACAACTGGGGATCCACCATGGTCCGTCTTTCCGCTGGA-3’(SEQ ID NO:9)
R-P24F61
5’-CCCTCTAGATCTCGAGTTACAAGCACTGGGAGTACCACTGG-3’(SEQ ID NO:10)
粗体字母代表基因序列。下划线序列同源于pDau109的插入位点。
使用MJ Research PTC-200DNA引擎(engine)进行PCR反应。使用 High-Fidelity PCR Kit(Finnzymes Oy,Espoo,Finland)进行PCR扩 增。PCR反应包含5μl的5X HF缓冲液(Finnzymes Oy,Espoo,Finland),0.5μl 的dNTP(10mM),0.5μl的DNA聚合酶(0.2单位/μl)(Finnzymes Oy, Espoo,Finland),1μl的引物F-P24F61(5μM),1μl的引物R-P24F61(5μM), 0.5μl的Talaromyces leycettanus基因组DNA(100ng/μl),和16.5μl的去离子 水,总体积为25μl。PCR条件为1个循环在95℃进行2分钟,35个循环每个在 98℃进行10秒,60℃进行30秒,和72℃进行2.5分钟;和1个循环在72℃进行 10分钟。然后将样品保持在12℃,直至从PCR机器移去。
反应产物通过使用40mM Tris碱,20mM乙酸钠,1mM EDTA二钠盐(TAE) 缓冲液的1.0%琼脂糖凝胶电泳来分离,其中将1708bp产物条带从凝胶切出,并 使用illustraPCR DNA and Gel Band Purification Kit(GE Healthcare Life Sciences,Brondby,Denmark)根据生产商的指示纯化。然后将片段使用 IN-FUSIONTMCloning Kit克隆入经Bam HI和Xho I消化的pDau109,得到质粒 pP24F61。将P24F61基因克隆入经Bam HI-Xho I消化的pDau109使得Talaromyces leycettanus P24F61基因的转录处于NA2-tpi双重启动子的调控下。NA2-tpi是经修 饰的来自编码黑曲霉中性α-淀粉酶的基因的启动子,其中非翻译前导序列由来 自编码构巢曲霉丙糖磷酸异构酶的基因的非翻译前导序列替代。
克隆实验方案根据IN-FUSIONTMCloning Kit的指示进行,生成P24F61 GH10构建体。将经处理的质粒和插入物根据生产商的实验方案转化入One TOP10F′Chemically Competent大肠杆菌细胞(nvitrogen,Carlsbad,CA, USA),并铺板于补充0.1mg氨苄青霉素每ml的LB平板上。在37℃温育过夜 之后,发现菌落在LB氨苄青霉素平板上的选择下生长。将四个经P24F61 GH10构建体转化的菌落在补充0.1mg氨苄青霉素每ml的LB培养基中培养, 并用QIAprep Spin Miniprep Kit(QIAGEN Inc.,Valencia,CA,USA)根据生 产商的实验方案分离质粒。
将分离的质粒用载体引物和P24F61基因特异性引物进行测序以确定不 含PCR错误的代表性质粒表达克隆。
实施例9:编码具有木聚糖酶活性的P24F61GH10多肽的Talaromyces leycettanusCBS398.68基因组序列的表征
Talaromyces leycettanus CBS398.68P24F61GH10基因组克隆的DNA测 序用Applied Biosystems Model3700Automated DNA Sequencer使用版本3.1 BIG-DYETM终止子化学(Applied Biosystems,Inc.,Foster City,CA,USA) 和引物步移策略来进行。对核苷酸序列就品质进行审视,并在PHRED/PHRAP 软件(University of Washington,Seattle,WA,USA)的协助下将所有序列相互 比较。获得的序列与来自JGI的序列相同。
Talaromyces leycettanus P24F61基因的核苷酸序列和推导的氨基酸序列分 别示于SEQ ID NO:3和SEQ ID NO:4。编码序列为1708bp,包含终止密码子且 被8个内含子打断。编码的预测蛋白为389个氨基酸。使用SignalP程序(Nielsen 等,1997,ProteinEngineering10:1-6),预测了16个残基的信号肽。预测的成 熟蛋白含有373个氨基酸,其具有39.6kDa的预测分子量和5.2的等电pH。
氨基酸序列的比较性逐对全局比对使用Needleman和Wunsch算法 (Needleman和Wunsch,1970,J.Mol.Biol.48:443-453)以缺口开放罚分为10, 缺口延伸罚分为0.5,和EBLOSUM62矩阵进行。比对显示编码具有木聚糖活 性的P24F61GH10多肽的Talaromycesleycettanus基因的推导的氨基酸序列与 来自Talaromyces stipitatus的预测的GH10家族蛋白(登录号 SWISSPROT:B8M9H8)的推导的氨基酸序列具有76.0%同一性(排除缺口),所述GH10家族蛋白具有推定的木聚糖酶活性。
实施例10:Talaromyces leycettanus GH10木聚糖酶P24F61的表达
将表达质粒pP24F61转化入米曲霉MT3568。米曲霉MT3568是JaL355 (WO02/40694)的AMDS(乙酰胺酶)破坏的衍生物,其中在米曲霉乙酰胺酶 (AMDS)基因的敲除过程中恢复了pyrG营养缺陷。MT3568原生质体根据欧洲 专利No.0238023第14-15页(其通过提述并入本文)的方法制备。
将转化体在COVE蔗糖选择平板上通过单个分生孢子进行纯化,然后使 它们在PDA平板上形成孢子。由转化体所致的Talaromyces leycettanus GH10 多肽的生成根据YP+2%葡萄糖培养基中在30℃的1ml96深孔静态培养的培 养上清进行分析。表达在E-Page8%SDS-PAGE48孔凝胶(Invitrogen, Carlsbad,CA,USA)上通过考马斯染色进行验证。选择一个转化体进行进一 步研究,并将其命名为米曲霉40.2.3。
对于更大规模的生产,将米曲霉40.2.3孢子铺板于PDA平板,并在37℃ 温育5日。将汇合的孢子平板用5ml的0.01%20洗涤两次以最大化 收集的孢子的数量。然后使用孢子悬液接种二十五个含有100ml的Dap-4C培 养基的500ml烧瓶。将培养物在30℃在100rpm的恒定振荡下温育。在接种之 后第四日,将培养液通过经由瓶顶(bottle top)MF75Supor MachV0.2μm PES 过滤器(Thermos Fisher Scientific,Roskilde,Denmark)过滤来收集。来自该 转化体的新鲜培养液产生大约40kDa的GH10蛋白的条带。该条带作为Talaromyces leycettanus GH10多肽的身份通过肽测序来验证。
实施例11:用于产生Talaromyces leycettanus GH10木聚糖酶P24F61的其 它方法
基于鉴定为SEQ ID NO:3的核苷酸序列,可从多个供应商如Gene Art (GENEARTAG BioPark,Josef-Engert-Str.11,93053,Regensburg,Germany) 或DNA2.0(DNA2.0,1430O'Brien Drive,Suite E,Menlo Park,CA94025, USA)获得合成基因。所述合成基因可设计为并入其它DNA序列如限制性位 点或同源重组区以便于克隆入表达载体。
使用上述的两个合成寡核苷酸引物F-P24F61和R-P24F61,可使用简单的 PCR反应从SEQ ID NO:3的合成基因扩增全长开放阅读框。然后可将基因克 隆入表达载体,例如如上所述的表达载体,并在宿主细胞中表达,例如在如 上所述的米曲霉中表达。
实施例12:Talaromyces leycettanus GH10木聚糖酶P24F61的纯化
将米曲霉表达菌株40.2.3的1000ml培养液调整至pH7.0并在0.22μm PES 过滤器(Thermo Fisher Scientific,Roskilde,Denmark)上过滤。接着,向滤过 物添加1.4M硫酸铵。将滤过物加载于用1.4M硫酸铵pH7.0,25mM HEPES pH7.0平衡的PhenylSepharoseTM6Fast Flow柱(high sub)(GE Healthcare, Piscataway,NJ,USA)(柱体积为60mL)。在加载之后,将用3个柱体积的平 衡缓冲液继以7个柱体积的0.8M硫酸铵(蛋白保持结合于柱)洗涤柱,并接着用 5个柱体积的25mM HEPES pH7.0以15ml/min的流速将蛋白洗脱。收集10mL 的级分,并通过SDS-Page分析。将级分汇集并施于在25mM HEPES pH7.0中 平衡的SephadexTMG-25(介质)(GE Healthcare,Piscataway,NJ,USA)柱。将级 分施于在25mMHEPES pH7.0(柱体积60mL)中平衡的SOURCETM15Q(GE Healthcare,Piscataway,NJ,USA)柱。在加载之后,将柱用5个柱体积的平衡 缓冲液洗涤,并将结合的蛋白在20个柱体积中以0至1000mM氯化钠的线性梯 度洗脱。收集10ml的级分,并通过SDS-Page分析。该酶在流过物且在第一级 分中,并相应进行汇集。随着层析谱中两个独特的峰,制备两种汇集物。使 用离心浓缩器20MWCO10,000聚醚砜膜(Sartorius Stedim Biotech GmbH,37070Goettingen,Germany)将该酶浓缩。蛋白浓度通过A280/A260吸光 度来确定。蛋白质身份通过对凝胶内消化样品的MS/MS验证。
实施例13:含有编码具有木聚糖酶活性的家族GH10多肽的Talaromycesleycettanus菌株CBS398.68基因组序列的米曲霉表达载体的构建
设计了下示的两个合成的寡核苷酸引物以从实施例2中制备的基因组 DNA来PCR扩增Talaromyces leycettanus菌株CBS398.68P24F62基因(SEQ ID NO:5)。使用IN-FUSIONTMCloning Kit(BD Biosciences,Palo Alto,CA,USA) 以将片段直接克隆入表达载体pDau109(WO2005/042735)。
F-P24F62
5’-ACACAACTGGGGATCCACCATGGTCCATCTTTCTTCCCTGGCC-3’(SEQ ID NO:11)
R-P24F62
5’-CCCTCTAGATCTCGAGTTACAGGCACTGGTAGTAGTAGGGATTC-3’(SEQ ID NO:12)
粗体字母代表基因序列。下划线序列同源于pDau109的插入位点。
使用MJ Research PTC-200DNA引擎(engine)进行PCR反应。使用 High-Fidelity PCR Kit(Finnzymes Oy,Espoo,Finland)进行PCR扩 增。PCR反应包含5μl的5X HF缓冲液(Finnzymes Oy,Espoo,Finland),0.5μl 的dNTP(10mM),0.5μl的DNA聚合酶(0.2单位/μl)(Finnzymes Oy, Espoo,Finland),1μl的引物F-P24F62(5μM),1μl的引物R-P24F62(5μM), 0.5μl的Talaromyces leycettanus基因组DNA(100ng/μl),和16.5μl的去离子 水,总体积为25μl。PCR条件为1个循环在95℃进行2分钟,35个循环每个在 98℃进行10秒,60℃进行30秒,和72℃进行2.5分钟;和1个循环在72℃进行 10分钟。然后将样品保持在12℃,直至从PCR机器移去。
反应产物通过使用40mM Tris碱,20mM乙酸钠,1mM EDTA二钠盐(TAE) 缓冲液的1.0%琼脂糖凝胶电泳来分离,其中将1520bp产物条带从凝胶切出,并 使用illustraPCR DNA and Gel Band Purification Kit(GE Healthcare Life Sciences,Brondby,Denmark)根据生产商的指示纯化。然后将片段使用 IN-FUSIONTMCloning Kit克隆入经Bam HI和Xho I消化的pDau109,得到质粒 pP24F62。将P24F62基因克隆入经Bam HI-Xho I消化的pDau109使得Talaromyces leycettanus P24F62基因的转录处于NA2-tpi双重启动子的调控下。NA2-tpi是经修 饰的来自编码黑曲霉中性α-淀粉酶的基因的启动子,其中非翻译前导序列由来 自编码构巢曲霉丙糖磷酸异构酶的基因的非翻译前导序列替代。
克隆实验方案根据IN-FUSIONTMCloning Kit的指示进行,生成P24F62 GH10构建体。将经处理的质粒和插入物根据生产商的实验方案转化入One TOP10F′Chemically Competent大肠杆菌细胞(nvitrogen,Carlsbad,CA, USA),并铺板于补充0.1mg氨苄青霉素每ml的LB平板上。在37℃温育过夜 之后,发现菌落在LB氨苄青霉素平板上的选择下生长。将四个经P24F62 GH10构建体转化的菌落在补充0.1mg氨苄青霉素每ml的LB培养基中培养, 并用QIAprep Spin Miniprep Kit(QIAGEN Inc.,Valencia,CA,USA)根据生 产商的实验方案分离质粒。
将分离的质粒用载体引物和P24F62基因特异性引物进行测序以确定不 含PCR错误的代表性质粒表达克隆。
实施例14:对编码具有木聚糖酶活性的P24F62GH10多肽的Talaromyces
Talaromyces leycettanus CBS398.68P24F62GH10基因组克隆的DNA测 序用Applied Biosystems Model3700Automated DNA Sequencer使用版本3.1 BIG-DYETM终止子化学(Applied Biosystems,Inc.,Foster City,CA,USA) 和引物步移策略来进行。对核苷酸序列就品质进行审视,并在PHRED/PHRAP 软件(University of Washington,Seattle,WA,USA)的协助下将所有序列相互 比较。获得的序列与来自JGI的序列相同。
Talaromyces leycettanus P24F62基因的核苷酸序列和推导的氨基酸序列分 别示于SEQ ID NO:5和SEQ ID NO:6。编码序列为1520bp,包含终止密码子且 被4个内含子打断。编码的预测蛋白为405个氨基酸。使用SignalP程序(Nielsen 等,1997,ProteinEngineering10:1-6),预测了20个残基的信号肽。预测的成 熟蛋白含有385个氨基酸,其具有41.6kDa的预测分子量和4.7的等电pH。
氨基酸序列的比较性逐对全局比对使用Needleman和Wunsch算法 (Needleman和Wunsch,1970,J.Mol.Biol.48:443-453)以缺口开放罚分为10, 缺口延伸罚分为0.5,和EBLOSUM62矩阵进行。比对显示编码具有木聚糖活 性的P24F62GH10多肽的Talaromycesleycettanus基因的推导的氨基酸序列与 来自青霉属菌种的预测的GH10家族蛋白(登录号GENESEQP:AYL61291)的 推导的氨基酸序列具有83.0%同一性(排除缺口),所述GH10家族蛋白具有木 聚糖酶活性。
实施例15:Talaromyces leycettanus GH10木聚糖酶P24F62的表达
将表达质粒pP24F62转化入米曲霉MT3568。米曲霉MT3568是JaL355 (WO02/40694)的AMDS(乙酰胺酶)破坏的衍生物,其中在米曲霉乙酰胺酶 (AMDS)基因的敲除过程中恢复了pyrG营养缺陷。MT3568原生质体根据欧洲 专利No.0238023第14-15页(其通过提述并入本文)的方法制备。
将转化体在COVE蔗糖选择平板上通过单个分生孢子进行纯化,然后使 它们在PDA平板上形成孢子。由转化体所致的Talaromyces leycettanus GH10 多肽的生成根据YP+2%葡萄糖培养基中在30℃的1ml96深孔静态培养的培 养上清进行分析。表达在E-Page8%SDS-PAGE48孔凝胶(Invitrogen, Carlsbad,CA,USA)上通过考马斯染色进行验证。选择一个转化体进行进一 步研究,并将其命名为米曲霉39.3.1。
对于更大规模的生产,将米曲霉39.3.1孢子铺板于PDA平板,并在37℃ 温育5日。将汇合的孢子平板用5ml的0.01%20洗涤两次以最大化 收集的孢子的数量。然后使用孢子悬液接种二十五个含有100ml的Dap-4C培 养基的500ml烧瓶。将培养物在30℃在100rpm的恒定振荡下温育。在接种之 后第四日,将培养液通过经由瓶顶(bottle top)MF75Supor MachV0.2μm PES 过滤器(Thermos Fisher Scientific,Roskilde,Denmark)过滤来收集。来自该 转化体的新鲜培养液产生大约50kDa的GH10蛋白的条带。该条带作为Talaromyces leycettanus GH10多肽的身份通过肽测序来验证。
实施例16:用于产生Talaromyces leycettanus GH10木聚糖酶P24F62的其 它方法
基于鉴定为SEQ ID NO:5的核苷酸序列,可从多个供应商如Gene Art (GENEARTAG BioPark,Josef-Engert-Str.11,93053,Regensburg,Germany) 或DNA2.0(DNA2.0,1430O'Brien Drive,Suite E,Menlo Park,CA94025, USA)获得合成基因。所述合成基因可设计为并入其它DNA序列如限制性位 点或同源重组区以便于克隆入表达载体。
使用上述的两个合成寡核苷酸引物F-P24F62和R-P24F62,可使用简单的 PCR反应从SEQ ID NO:5的合成基因扩增全长开放阅读框。然后可将基因克 隆入表达载体,例如如上所述的表达载体,并在宿主细胞中表达,例如在如 上所述的米曲霉中表达。
实施例17:Talaromyces leycettanus GH10木聚糖酶P24F62的纯化
将米曲霉表达菌株39.3.1的1000ml培养液调整至pH7.0并在0.22μm PES过滤器(Thermo Fisher Scientific,Roskilde,Denmark)上过滤。接着,向 滤过物添加1.4M硫酸铵。将滤过物加载于用1.4M硫酸铵pH7.0,25mM HEPES pH7.0平衡的PhenylSepharoseTM6Fast Flow柱(high sub)(GE Healthcare,Piscataway,NJ,USA)(柱体积为60mL)。在加载之后,将用3 个柱体积的平衡缓冲液继以7个柱体积的0.8M硫酸铵(蛋白保持结合于柱)洗 涤柱,并接着用5个柱体积的25mM HEPES pH7.0以15ml/min的流速将蛋白 洗脱。收集10mL的级分,并通过SDS-Page分析。将级分汇集并施于在25mM HEPES pH7.0中平衡的SephadexTMG-25(介质)(GE Healthcare,Piscataway, NJ,USA)柱。将级分施于在25mMHEPES pH7.0(柱体积60mL)中平衡的 SOURCETM15Q(GE Healthcare,Piscataway,NJ,USA)柱。在加载之后, 将柱用5个柱体积的平衡缓冲液洗涤,并将结合的蛋白在20个柱体积中以0至 1000mM氯化钠的线性梯度洗脱。收集10ml的级分,并通过SDS-Page分析。 该酶在流过物且在第一级分中,并相应进行汇集。随着层析谱中两个独特的 峰,制备两种汇集物。使用离心浓缩器20MWCO10,000聚醚砜膜 (Sartorius Stedim Biotech GmbH,37070Goettingen,Germany)将该酶浓缩。蛋 白浓度通过A280/A260吸光度来确定。蛋白质身份通过对凝胶内消化样品的 MS/MS验证。
实施例18:确定依照本发明的木聚糖酶的木聚糖酶活性
Talaromyces leycettanus GH10木聚糖酶P24F5Z的酶活性
基于要在线性范围内的剂量-应答曲线,将纯化的木聚糖酶的汇集物A和 汇集物B在有0.01%Triton X-100(100ppm)的蒸馏水中稀释。底物为0.2% (w/v)AZCL-阿糖基木聚糖(Megazyme Wicklow,Ireland),其在pH6.0在(50 mM磷酸、50mM醋酸、50mM硼酸)、50mM KCl、1mM CaCl2、0.01%Triton X-100中;pH用NaOH调整。将底物平衡至37℃。将1000μl0.2%(w/v)AZCL- 阿糖基木聚糖与20μl稀释过的酶混合。将管在37℃在Eppendorf Comfort热混 合器(Eppendorf AG,Hamburg,Germany)上以1.400rpm温育15分钟。通过将管 置于冰上5分钟使反应停止。将Eppendorf管在4℃以10,000rpm离心5分钟。 将200微升上清液转移至平底MicroWell板(NUNC,Roskilde,Denmark),并在 分光光度计中读出595nm处的吸光度。相对于Shearzyme(Novozymes, Bagsvaerd,Denmark),发现对AZCL-阿糖基木聚糖的比活性对于汇集物A为2 %,对于汇集物B为4%。
Talaromyces leycettanus GH10木聚糖酶P24F61的酶活性
基于要在线性范围内的剂量-应答曲线,将纯化的木聚糖酶在有0.01% Triton X-100(100ppm)的蒸馏水中稀释。底物为0.2%(w/v)AZCL-阿糖基木 聚糖(Megazyme Wicklow,Ireland),其在pH6.0在(50mM磷酸、50mM醋酸、 50mM硼酸)、50mM KCl、1mM CaCl2、0.01%Triton X-100中;pH用NaOH 调整。将底物平衡至37℃。将1000μl0.2%(w/v)AZCL-阿糖基木聚糖与20μl 稀释过的酶混合。将管在37℃在Eppendorf Comfort热混合器(Eppendorf AG,Hamburg,Germany)上以1.400rpm温育15分钟。通过将管置于冰上5分钟使反 应停止。将Eppendorf管在4℃以10,000rpm离心5分钟。将200微升上清液转 移至平底MicroWell板(NUNC,Roskilde,Denmark),并在分光光度计中读出 595nm处的吸光度。相对于Shearzyme(Novozymes,Bagsvaerd,Denmark),发 现对AZCL-阿糖基木聚糖的比活性对于纯化的木聚糖酶为830%。
Talaromyces leycettanus GH10木聚糖酶P24F62的酶活性
基于要在线性范围内的剂量-应答曲线,将纯化的木聚糖酶在有0.01% Triton X-100(100ppm)的蒸馏水中稀释。底物为0.2%(w/v)AZCL-阿糖基木 聚糖(Megazyme Wicklow,Ireland),其在pH6.0在(50mM磷酸、50mM醋酸、 50mM硼酸)、50mM KCl、1mM CaCl2、0.01%Triton X-100中;pH用NaOH 调整。将底物平衡至37℃。将1000μl0.2%(w/v)AZCL-阿糖基木聚糖与20μl 稀释过的酶混合。将管在37℃在Eppendorf Comfort热混合器(Eppendorf AG,Hamburg,Germany)上以1.400rpm温育15分钟。通过将管置于冰上5分钟使反 应停止。将Eppendorf管在4℃以10,000rpm离心5分钟。将200微升上清液转 移至平底MicroWell板(NUNC,Roskilde,Denmark),并在分光光度计中读出 595nm处的吸光度。相对于Shearzyme(Novozymes,Bagsvaerd,Denmark),发 现对AZCL-阿糖基木聚糖的比活性对于纯化的木聚糖酶为950%。
本文描述和要求保护的本发明并不局限于本文公开的具体方面的范围 内,因为这些方面旨在作为本发明几个方面的说明。旨在将任何等同的方面 包含于本发明的范围内。实际上,从前面的说明中,除本文所显示和描述的 之外,本发明的多种修改对于本领域的技术人员来说是显而易见的。这些修 改也旨在落入所附的权利要求的范围内。在冲突的情况下,将以包括定义部 分的本公开为准。
本发明由以下编号段落进一步描述:
[1]一种具有木聚糖酶活性的分离的多肽,其选自下组:
(a)多肽,其与SEQ ID NO:2的成熟多肽具有至少77%,例如至少78%、 至少79%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、 至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100% 的序列同一性,或多肽,其与SEQ ID NO:4的成熟多肽具有至少77%,例如 至少78%、至少79%、至少80%、至少85%、至少90%、至少91%、至少92%、 至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、 或100%的序列同一性,或多肽,其与SEQ ID NO:6的成熟多肽具有至少85%, 例如至少86%、至少87%、至少88%、至少89%、至少90%、至少91%、至少 92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%、或100%的序列同一性;
(b)多肽,其由多核苷酸编码,所述多核苷酸在低严格条件、或中等严 格条件、或中-高严格条件、或高严格条件、或非常高严格条件下与以下杂 交:(i)SEQ ID NO:1、SEQID NO:3或SEQ ID NO:5的成熟多肽编码序列, (ii)其cDNA序列,或(iii)(i)或(ii)的全长互补物;
(c)多肽,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:1、SEQ ID NO:3或SEQID NO:5的成熟多肽编码序列或它们的cDNA序列具有至少 60%,例如至少65%、至少70%、至少75%、至少80%、至少85%、至少85%、 至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、 至少97%、至少98%、至少99%、或100%的序列同一性;
(d)SEQ ID NO:2、SEQ ID NO:4或SEQ ID NO:6的成熟多肽的包含在一 个或多个位置处的取代、缺失和/或插入的变体;和
(e)(a)、(b)、(c)或(d)的多肽的具有木聚糖酶活性的片段。
[2]段落1的多肽,其与SEQ ID NO:2的成熟多肽具有至少77%、至少78%、 至少79%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、 至少94%、至少95%、至少96%、至少97%、至少98%、至少99%或100%的序 列同一性;其与SEQ ID NO:4的成熟多肽具有至少77%、至少78%、至少79%、 至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、 至少95%、至少96%、至少97%、至少98%、至少99%或100%的序列同一性; 或其与SEQ ID NO:6的成熟多肽具有至少85%、至少86%、至少87%、至少88%、 至少89%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、 至少96%、至少97%、至少98%、至少99%或100%的序列同一性。
[3]段落1或2的多肽,其由多核苷酸编码,所述多核苷酸在低严格条件、 或低-中严格条件、或中等严格条件、或中-高严格条件、或高严格条件,或 非常高严格条件下与以下杂交:(i)SEQ ID NO:1、SEQ ID NO:3或SEQ ID NO:5的成熟多肽编码序列,(ii)其cDNA序列,或(iii)(i)或(ii)的全长互补物。
[4]段落1-3中任一项的多肽,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:1、SEQ ID NO:3或SEQ ID NO:5的成熟多肽编码序列或它们的cDNA 序列具有至少60%、至少65%、至少70%、至少75%、至少80%、至少85%、 至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、 至少96%、至少97%、至少98%、至少99%、或100%的序列同一性。
[5]段落1-4中任一项的多肽,其包含或组成为SEQ ID NO:2、SEQ ID NO:4或SEQID NO:6,或者SEQ ID NO:2、SEQ ID NO:4或SEQ ID NO:6 的成熟多肽。
[6]段落5的多肽,其中所述成熟多肽是SEQ ID NO:2的氨基酸18至364、 SEQ IDNO:4的氨基酸17至389、或SEQ ID NO:6的氨基酸21至405。
[7]段落1-4中任一项的多肽,其为SEQ ID NO:2、SEQ ID NO:4或SEQ ID NO:6的成熟多肽的包含在一个或多个位置处取代、缺失和/或插入的变体。
[8]段落1的多肽,其为SEQ ID NO:2、SEQ ID NO:4或SEQ ID NO:6的 片段,其中所述片段具有木聚糖酶活性。
[9]一种分离的多肽,其包含选自下组的催化域:
(a)催化域,其与SEQ ID NO:2或SEQ ID NO:4的催化域具有至少77% 的序列同一性,或催化域,其与SEQ ID NO:6的催化域具有至少85%的序列 同一性;
(b)催化域,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:1、SEQ ID NO:3或SEQID NO:5的催化域编码序列具有至少60%序列同一性;
(c)SEQ ID NO:2、SEQ ID NO:4或SEQ ID NO:6的催化域的包含一个或 多个(几个)氨基酸取代、缺失和/或插入的催化域变体;和
(d)(a)、(b)或(c)的催化域的片段,其具有木聚糖酶活性。
[10]段落9的多肽,其包含或组成为SEQ ID NO:2、SEQ ID NO:4或SEQ ID NO:6的催化域。
[11]段落10的多肽,其中所述催化域是SEQ ID NO:2的氨基酸18至364, SEQ IDNO:4的氨基酸17至326或SEQ ID NO:6的氨基酸21至337。
[12]段落9-11中任一项的多肽,其进一步包含纤维素结合域。
[13]段落1-12中任一项的多肽,其由Talaromyces leycettanus菌株 CBS398.68中所含的多核苷酸所编码。
[14]一种组合物,其包含段落1-13中任一项的多肽。
[15]一种分离的多核苷酸,其编码段落1-13中任一项的多肽。
[16]一种核酸构建体或表达载体,其包含段落15的多核苷酸,所述多核 苷酸可操作地连接于一个或多个调控序列,所述调控序列指导所述多肽在表 达宿主中的产生。
[17]一种重组宿主细胞,其包含段落15的多核苷酸,所述多核苷酸可操 作地连接于一个或多个调控序列,所述调控序列指导多肽的产生。
[18]一种产生段落1-13中任一项的多肽的方法,其包括:
(a)在有助于所述多肽产生的条件下培养细胞,所述细胞以其野生型形 式产生所述多肽;和
(b)回收所述多肽。
[19]一种产生具有木聚糖酶活性的多肽的方法,其包括:
(a)在有助于所述多肽产生的条件下培养段落17的宿主细胞;和
(b)回收所述多肽。
[20]一种转基因植物、植物部分或植物细胞,其包含段落1-13中任一项 的多肽。
[21]一种产生具有木聚糖酶活性的多肽的方法,其包括:
(a)在有助于所述多肽的产生的条件下培养段落20的转基因植物或植物 细胞;和
(b)回收所述多肽。
[22]一种分离的多核苷酸,其编码包含或组成为SEQ ID NO:2的氨基酸1 至17、SEQ ID NO:4的氨基酸1至16、或SEQ ID NO:6的氨基酸1至20的信号肽。
[23]一种核酸构建体或表达载体,其包含编码蛋白的基因,所述基因可 操作地连接于段落22的多核苷酸,其中所述基因对于编码信号肽的多核苷酸 是外源的。
[24]一种重组宿主细胞,其包含编码蛋白的基因,所述基因可操作地连 接于段落22的多核苷酸,其中所述基因对于编码信号肽的多核苷酸是外源的。
[25]一种产生蛋白的方法,其包括:
(a)在有助于所述蛋白的产生的条件下培养重组宿主细胞,所述重组宿 主细胞包含编码蛋白的基因,所述基因可操作地连接于段落22的多核苷酸, 其中所述基因对于编码信号肽的多核苷酸是外源的;和
(b)回收所述蛋白。
[26]一种降解纤维素材料或含木聚糖材料的工艺,其包括:在段落1-13 中任一项的具有木聚糖酶活性的多肽存在下用酶组合物处理所述纤维素材 料或含木聚糖材料。
[27]段落26的工艺,其中所述纤维素材料或含木聚糖材料经过预处理。
[28]段落26或27的工艺,其中所述酶组合物包含一种或多种选自下组的 酶:纤维素酶、具有纤维素分解增强活性的GH61多肽、半纤维素酶、酯酶、 棒曲霉素、漆酶、木质素分解酶、果胶酶、过氧化物酶、蛋白酶和膨胀素。
[29]段落28的工艺,其中所述半纤维素酶是一种或多种选自下组的酶: 木聚糖酶、乙酰木聚糖酯酶、阿魏酸酯酶、阿拉伯呋喃糖苷酶、木糖苷酶和 葡糖醛酸糖苷酶。
[30]段落28的工艺,其中所述纤维素酶是一种或多种选自下组的酶:内 切葡聚糖酶、纤维二糖水解酶和β-葡糖苷酶。
[31]段落26-30中任一项的工艺,其进一步包括回收经降解的纤维素材 料或含木聚糖材料。
[32]段落31的工艺,其中所述经降解的纤维素材料或含木聚糖材料是糖。
[33]段落32的工艺,其中所述糖选自下组:葡萄糖、木糖、甘露糖、半 乳糖和阿拉伯糖。
[34]一种用于产生发酵产物的工艺,其包括:
(a)在段落1-13中任一项的具有木聚糖酶活性的多肽存在下,用酶组合物 糖化纤维素材料或含木聚糖材料;
(b)用一种或多种发酵微生物发酵经糖化的纤维素材料或含木聚糖材料 以产生发酵产物;和
(c)从发酵回收发酵产物。
[35]段落34的工艺,其中所述纤维素材料或含木聚糖材料经过预处理。
[36]段落34或35的工艺,其中所述酶组合物包含一种或多种选自下组的 酶:纤维素酶、具有纤维素分解增强活性的GH61多肽、半纤维素酶、酯酶、 棒曲霉素、漆酶、木质素分解酶、果胶酶、过氧化物酶、蛋白酶和膨胀素。
[37]段落36的工艺,其中所述半纤维素酶是一种或多种选自下组的酶: 木聚糖酶、乙酰木聚糖酯酶、阿魏酸酯酶、阿拉伯呋喃糖苷酶、木糖苷酶和 葡糖醛酸糖苷酶。
[38]段落36的工艺,其中所述纤维素酶是一种或多种选自下组的酶:内 切葡聚糖酶、纤维二糖水解酶和β-葡糖苷酶。
[39]段落34-38中任一项的工艺,其中步骤(a)和(b)在同步糖化和发酵中 同时进行。
[40]段落34-39中任一项的工艺,其中发酵产物是醇、烷烃、环烷烃、 烯烃、氨基酸、气体、异戊二烯、酮、有机酸或聚酮化合物。
[41]一种发酵纤维素材料或含木聚糖材料的工艺,其包括:用一种或多 种发酵微生物发酵纤维素材料或含木聚糖材料,其中所述纤维素材料或含木 聚糖材料是在段落1-13中任一项的具有木聚糖酶活性的多肽的存在下用酶 组合物糖化的。
[42]段落41的工艺,其中所述纤维素材料或含木聚糖材料的发酵产生发 酵产物。
[43]段落42的工艺,其进一步包括从发酵回收发酵产物。
[44]段落41-43中任一项的工艺,其中所述纤维素材料或含木聚糖材料在 糖化之前经预处理。
[45]段落41-44中任一项的工艺,其中所述酶组合物包含一种或多种选自 下组的酶:纤维素酶、具有纤维素分解增强活性的GH61多肽、半纤维素酶、 酯酶、棒曲霉素、漆酶、木质素分解酶、果胶酶、过氧化物酶、蛋白酶和膨 胀素。
[46]段落45的工艺,其中所述半纤维素酶是一种或多种选自下组的酶: 木聚糖酶、乙酰木聚糖酯酶、阿魏酸酯酶、阿拉伯呋喃糖苷酶、木糖苷酶和 葡糖醛酸糖苷酶。
[47]段落45的工艺,其中所述纤维素酶是一种或多种选自下组的酶:内 切葡聚糖酶、纤维二糖水解酶和β-葡糖苷酶。
[48]段落41-47中任一项的工艺,其中发酵产物是醇、烷烃、环烷烃、 烯烃、氨基酸、气体、异戊二烯、酮、有机酸或聚酮化合物。
Claims (54)
1.一种具有木聚糖酶活性的分离的多肽,其选自下组:
(a)多肽,其与SEQ ID NO:6的成熟多肽具有100%的序列同一性;
(b)多肽,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:5的成熟多肽编码序列或其cDNA序列具有100%的序列同一性;和
(c)多肽,其获自Talaromyces leycettanus,与SEQ ID NO:6的成熟多肽具有至少99%的序列同一性。
2.权利要求1的多肽,所述多肽从Talaromyces leycettanus菌株CBS398.68获得的多肽。
3.权利要求1的多肽,其与SEQ ID NO:6的成熟多肽具有100%的序列同一性。
4.权利要求1的多肽,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:5的成熟多肽编码序列或其cDNA序列具有100%的序列同一性。
5.一种具有木聚糖酶活性的分离的多肽,其组成为SEQ ID NO:6,或者SEQ ID NO:6的成熟多肽。
6.权利要求1-5任一项的多肽,其中所述成熟多肽是SEQ ID NO:6的氨基酸21至405。
7.一种分离的多肽,其包含选自下组的催化域:
(a)催化域,其与SEQ ID NO:6的催化域具有100%的序列同一性;
(b)催化域,其由多核苷酸编码,所述多核苷酸与SEQ ID NO:5的催化域编码序列具有100%序列同一性;和
(c)催化域,其获自Talaromyces leycettanus,与SEQ ID NO:6的成熟多肽具有至少99%的序列同一性。
8.权利要求7的多肽,其组成为SEQ ID NO:6的催化域。
9.权利要求8的多肽,其中所述催化域是SEQ ID NO:6的氨基酸21至337。
10.权利要求7-9中任一项的多肽,其进一步包含纤维素结合域。
11.权利要求1-4、7-9中任一项的多肽,其由Talaromyces leycettanus菌株CBS398.68中所含的多核苷酸所编码。
12.一种组合物,其包含权利要求1-11中任一项的多肽。
13.一种分离的多核苷酸,其编码权利要求1-11中任一项的多肽。
14.一种核酸构建体或表达载体,其包含权利要求13的多核苷酸,所述多核苷酸可操作地连接于一个或多个调控序列,所述调控序列指导所述多肽在表达宿主中的产生。
15.一种重组宿主细胞,其包含权利要求13的多核苷酸,所述多核苷酸可操作地连接于一个或多个调控序列,所述调控序列指导多肽的产生。
16.一种产生权利要求1-11中任一项的多肽的方法,其包括:
(a)在有助于所述多肽产生的条件下培养细胞,所述细胞以其野生型形式产生所述多肽;和
(b)回收所述多肽。
17.一种产生具有木聚糖酶活性的多肽的方法,其包括:
(a)在有助于所述多肽产生的条件下培养权利要求15的宿主细胞;和
(b)回收所述多肽。
18.一种降解纤维素材料或含木聚糖材料的工艺,其包括:在权利要求1-11中任一项的具有木聚糖酶活性的多肽存在下用酶组合物处理所述纤维素材料或含木聚糖材料。
19.权利要求18的工艺,其中所述纤维素材料或含木聚糖材料经过预处理。
20.权利要求18的工艺,其中所述酶组合物包含一种或多种选自下组的酶:纤维素酶、具有纤维素分解增强活性的GH61多肽、半纤维素酶、酯酶、漆酶、木质素分解酶、果胶酶、过氧化物酶、蛋白酶和膨胀素。
21.权利要求20的工艺,其中所述半纤维素酶是一种或多种选自下组的酶:木聚糖酶、乙酰木聚糖酯酶、阿魏酸酯酶、阿拉伯呋喃糖苷酶、木糖苷酶和葡糖醛酸糖苷酶。
22.权利要求20的工艺,其中所述纤维素酶是一种或多种选自下组的酶:内切葡聚糖酶、纤维二糖水解酶和β-葡糖苷酶。
23.权利要求18-22中任一项的工艺,其进一步包括回收经降解的纤维素材料或含木聚糖材料。
24.权利要求23的工艺,其中所述经降解的纤维素材料或含木聚糖材料是糖。
25.权利要求24的工艺,其中所述糖选自下组:葡萄糖、木糖、甘露糖、半乳糖和阿拉伯糖。
26.一种降解纤维素材料或含木聚糖材料的工艺,其包括:在权利要求1-11中任一项的具有木聚糖酶活性的多肽存在下用棒曲霉素处理所述纤维素材料或含木聚糖材料。
27.权利要求26的工艺,其中所述纤维素材料或含木聚糖材料经过预处理。
28.权利要求27的工艺,其进一步包括回收经降解的纤维素材料或含木聚糖材料。
29.权利要求28的工艺,其中所述经降解的纤维素材料或含木聚糖材料是糖。
30.权利要求29的工艺,其中所述糖选自下组:葡萄糖、木糖、甘露糖、半乳糖和阿拉伯糖。
31.一种用于产生发酵产物的工艺,其包括:
(a)在权利要求1-11中任一项的具有木聚糖酶活性的多肽存在下,用酶组合物糖化纤维素材料或含木聚糖材料;
(b)用一种或多种发酵微生物发酵经糖化的纤维素材料或含木聚糖材料以产生发酵产物;和
(c)从发酵回收发酵产物。
32.权利要求31的工艺,其中所述纤维素材料或含木聚糖材料经过预处理。
33.权利要求31的工艺,其中所述酶组合物包含一种或多种选自下组的酶:纤维素酶、具有纤维素分解增强活性的GH61多肽、半纤维素酶、酯酶、漆酶、木质素分解酶、果胶酶、过氧化物酶、蛋白酶和膨胀素。
34.权利要求33的工艺,其中所述半纤维素酶是一种或多种选自下组的酶:木聚糖酶、乙酰木聚糖酯酶、阿魏酸酯酶、阿拉伯呋喃糖苷酶、木糖苷酶和葡糖醛酸糖苷酶。
35.权利要求33的工艺,其中所述纤维素酶是一种或多种选自下组的酶:内切葡聚糖酶、纤维二糖水解酶和β-葡糖苷酶。
36.权利要求31-35中任一项的工艺,其中步骤(a)和(b)在同步糖化和发酵中同时进行。
37.权利要求31-35中任一项的工艺,其中发酵产物是醇、烷烃、环烷烃、烯烃、氨基酸、气体、异戊二烯、酮、有机酸或聚酮化合物。
38.一种用于产生发酵产物的工艺,其包括:
(a)在权利要求1-11中任一项的具有木聚糖酶活性的多肽存在下,用棒曲霉素糖化纤维素材料或含木聚糖材料;
(b)用一种或多种发酵微生物发酵经糖化的纤维素材料或含木聚糖材料以产生发酵产物;和
(c)从发酵回收发酵产物。
39.权利要求38的工艺,其中所述纤维素材料或含木聚糖材料经过预处理。
40.权利要求38的工艺,其中步骤(a)和(b)在同步糖化和发酵中同时进行。
41.权利要求38-40中任一项的工艺,其中发酵产物是醇、烷烃、环烷烃、烯烃、氨基酸、气体、异戊二烯、酮、有机酸或聚酮化合物。
42.一种发酵纤维素材料或含木聚糖材料的工艺,其包括:用一种或多种发酵微生物发酵纤维素材料或含木聚糖材料,其中所述纤维素材料或含木聚糖材料是在权利要求1-11中任一项的具有木聚糖酶活性的多肽的存在下用酶组合物糖化的。
43.权利要求42的工艺,其中所述纤维素材料或含木聚糖材料的发酵产生发酵产物。
44.权利要求42的工艺,其进一步包括从发酵回收发酵产物。
45.权利要求42的工艺,其中所述纤维素材料或含木聚糖材料在糖化之前经预处理。
46.权利要求42-45中任一项的工艺,其中所述酶组合物包含一种或多种选自下组的酶:纤维素酶、具有纤维素分解增强活性的GH61多肽、半纤维素酶、酯酶、漆酶、木质素分解酶、果胶酶、过氧化物酶、蛋白酶和膨胀素。
47.权利要求46的工艺,其中所述半纤维素酶是一种或多种选自下组的酶:木聚糖酶、乙酰木聚糖酯酶、阿魏酸酯酶、阿拉伯呋喃糖苷酶、木糖苷酶和葡糖醛酸糖苷酶。
48.权利要求46的工艺,其中所述纤维素酶是一种或多种选自下组的酶:内切葡聚糖酶、纤维二糖水解酶和β-葡糖苷酶。
49.权利要求43-45中任一项的工艺,其中发酵产物是醇、烷烃、环烷烃、烯烃、氨基酸、气体、异戊二烯、酮、有机酸或聚酮化合物。
50.一种发酵纤维素材料或含木聚糖材料的工艺,其包括:用一种或多种发酵微生物发酵纤维素材料或含木聚糖材料,其中所述纤维素材料或含木聚糖材料是在权利要求1-11中任一项的具有木聚糖酶活性的多肽的存在下用棒曲霉素糖化的。
51.权利要求50的工艺,其中所述纤维素材料或含木聚糖材料的发酵产生发酵产物。
52.权利要求50的工艺,其进一步包括从发酵回收发酵产物。
53.权利要求50的工艺,其中所述纤维素材料或含木聚糖材料在糖化之前经预处理。
54.权利要求51-52任一项的工艺,其中发酵产物是醇、烷烃、环烷烃、烯烃、氨基酸、气体、异戊二烯、酮、有机酸或聚酮化合物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810695013.3A CN108823184B (zh) | 2011-08-04 | 2012-08-01 | 具有木聚糖酶活性的多肽及其编码多核苷酸 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11250700 | 2011-08-04 | ||
EP11250700.9 | 2011-08-04 | ||
PCT/US2012/049096 WO2013019827A2 (en) | 2011-08-04 | 2012-08-01 | Polypeptides having xylanase activity and polynucleotides encoding same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810695013.3A Division CN108823184B (zh) | 2011-08-04 | 2012-08-01 | 具有木聚糖酶活性的多肽及其编码多核苷酸 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103958674A CN103958674A (zh) | 2014-07-30 |
CN103958674B true CN103958674B (zh) | 2018-07-31 |
Family
ID=46705039
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810695013.3A Active CN108823184B (zh) | 2011-08-04 | 2012-08-01 | 具有木聚糖酶活性的多肽及其编码多核苷酸 |
CN201280048419.3A Active CN103958674B (zh) | 2011-08-04 | 2012-08-01 | 具有木聚糖酶活性的多肽及其编码多核苷酸 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810695013.3A Active CN108823184B (zh) | 2011-08-04 | 2012-08-01 | 具有木聚糖酶活性的多肽及其编码多核苷酸 |
Country Status (9)
Country | Link |
---|---|
US (5) | US8859227B2 (zh) |
EP (3) | EP3091073B2 (zh) |
CN (2) | CN108823184B (zh) |
BR (1) | BR112014002401B1 (zh) |
CA (1) | CA2838755A1 (zh) |
DK (3) | DK2739727T3 (zh) |
ES (2) | ES2672048T5 (zh) |
FI (1) | FI3091073T4 (zh) |
WO (1) | WO2013019827A2 (zh) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103517985B (zh) * | 2011-01-26 | 2016-12-07 | 诺维信公司 | 具有纤维二糖水解酶活性的多肽及编码该多肽的多核苷酸 |
BR112014002401B1 (pt) * | 2011-08-04 | 2021-08-03 | Novozymes A/S | Célula hospedeira transgênica de fungo filamentoso, métodos para produzir um polipeptídeo e uma proteína, e, construto de ácido nucleico ou um vetor de expressão |
WO2015028606A1 (en) * | 2013-08-29 | 2015-03-05 | Novozymes A/S | Polypeptides having xylanase activity and polynucleotides encoding same |
EP3152315B1 (en) * | 2014-06-06 | 2018-08-15 | Novozymes A/S | Enzyme compositions and uses thereof |
US10370682B2 (en) * | 2014-06-25 | 2019-08-06 | Novozymes A/S | Xylanase variants and polynucleotides encoding same |
MX382637B (es) | 2014-09-23 | 2025-03-13 | Novozymes As | Procesos para producir etanol y organismos fermentadores. |
EP3224369A4 (en) * | 2014-11-26 | 2018-07-04 | Novozymes A/S | Milling process |
EP3416740B1 (en) | 2016-02-19 | 2021-01-06 | Intercontinental Great Brands LLC | Processes to create multiple value streams from biomass sources |
CN105754972A (zh) * | 2016-04-27 | 2016-07-13 | 中国农业科学院饲料研究所 | 一种酸性木聚糖酶tlxyn10b及其基因和应用 |
CN110168095A (zh) | 2016-12-06 | 2019-08-23 | 诺维信公司 | 用于使用工程化酵母菌株从含有木糖的纤维素基质生产乙醇的改善方法 |
WO2018220116A1 (en) | 2017-05-31 | 2018-12-06 | Novozymes A/S | Xylose fermenting yeast strains and processes thereof for ethanol production |
WO2018222990A1 (en) | 2017-06-02 | 2018-12-06 | Novozymes A/S | Improved yeast for ethanol production |
AU2018319349B2 (en) | 2017-08-25 | 2024-02-29 | Novozymes A/S | Enzyme assisted crude palm oil extraction |
AU2018344497B2 (en) * | 2017-10-06 | 2024-08-01 | Novozymes A/S | Enzyme assisted crude palm oil extraction |
MX2020007914A (es) | 2018-01-29 | 2020-10-28 | Novozymes As | Microorganismos con uso de nitrogeno mejorado para produccion de etanol. |
CN112601818A (zh) | 2018-07-25 | 2021-04-02 | 诺维信公司 | 用于生产乙醇的表达酶的酵母 |
MX2021003955A (es) | 2018-10-08 | 2021-05-27 | Novozymes As | Levadura que expresa enzimas para la produccion de etanol. |
WO2021021458A1 (en) | 2019-07-26 | 2021-02-04 | Novozymes A/S | Microorganisms with improved nitrogen transport for ethanol production |
BR112021026477A2 (pt) | 2019-08-06 | 2022-02-08 | Novozymes As | Célula hospedeira recombinante, métodos de produção de um produto de fermentação a partir de um material contendo amido ou contendo celulose, de produção do polipeptídeo maduro, de produção de um derivado de uma célula hospedeira recombinante e de produção de etanol, construto de ácido nucleico ou vetor de expressão, composição, e, uso de uma célula hospedeira recombinante |
CN115175923A (zh) | 2019-12-10 | 2022-10-11 | 诺维信公司 | 用于改善的戊糖发酵的微生物 |
MX2023002490A (es) | 2020-09-04 | 2023-03-09 | Novozymes As | Organismo fermentador mejorado para la produccion de etanol. |
CN117795089A (zh) | 2021-06-07 | 2024-03-29 | 诺维信公司 | 用于改善的乙醇发酵的工程化微生物 |
WO2024064901A2 (en) | 2022-09-23 | 2024-03-28 | Novozymes A/S | Improved fermenting organism for ethanol production |
WO2025017069A1 (en) | 2023-07-19 | 2025-01-23 | Novozymes A/S | Enzyme assisted juice extraction from sugar cane |
WO2025088155A1 (en) | 2023-10-25 | 2025-05-01 | Novozymes A/S | Improved fermenting organism for ethanol production |
Family Cites Families (109)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK122686D0 (da) | 1986-03-17 | 1986-03-17 | Novo Industri As | Fremstilling af proteiner |
US5648263A (en) | 1988-03-24 | 1997-07-15 | Novo Nordisk A/S | Methods for reducing the harshness of a cotton-containing fabric |
US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
US5110735A (en) | 1989-09-26 | 1992-05-05 | Midwest Research Institute | Thermostable purified endoglucanase from thermophilic bacterium acidothermus cellulolyticus |
US5275944A (en) | 1989-09-26 | 1994-01-04 | Midwest Research Institute | Thermostable purified endoglucanas from acidothermus cellulolyticus ATCC 43068 |
US5536655A (en) | 1989-09-26 | 1996-07-16 | Midwest Research Institute | Gene coding for the E1 endoglucanase |
PT97110B (pt) | 1990-03-23 | 1998-11-30 | Gist Brocades Nv | Processo para catalisar reaccoes acelaraveis por enzimas, mediante adicao ao meio reaccional de sementes de plantas transgenicas e para obtencao das referidas sementes |
KR100237148B1 (ko) | 1990-05-09 | 2000-01-15 | 한센 핀 베네드 | 엔도글루칸아제 효소를 함유하는 셀룰라제 제조물 |
DK115890D0 (da) | 1990-05-09 | 1990-05-09 | Novo Nordisk As | Enzym |
US6395966B1 (en) | 1990-08-09 | 2002-05-28 | Dekalb Genetics Corp. | Fertile transgenic maize plants containing a gene encoding the pat protein |
IL99552A0 (en) | 1990-09-28 | 1992-08-18 | Ixsys Inc | Compositions containing procaryotic cells,a kit for the preparation of vectors useful for the coexpression of two or more dna sequences and methods for the use thereof |
ATE258224T1 (de) | 1993-03-10 | 2004-02-15 | Novozymes As | Enzyme mit xylanaseaktivität aus aspergillus aculeatus |
FR2704860B1 (fr) | 1993-05-05 | 1995-07-13 | Pasteur Institut | Sequences de nucleotides du locus cryiiia pour le controle de l'expression de sequences d'adn dans un hote cellulaire. |
DE4343591A1 (de) | 1993-12-21 | 1995-06-22 | Evotec Biosystems Gmbh | Verfahren zum evolutiven Design und Synthese funktionaler Polymere auf der Basis von Formenelementen und Formencodes |
US5605793A (en) | 1994-02-17 | 1997-02-25 | Affymax Technologies N.V. | Methods for in vitro recombination |
WO1995033836A1 (en) | 1994-06-03 | 1995-12-14 | Novo Nordisk Biotech, Inc. | Phosphonyldipeptides useful in the treatment of cardiovascular diseases |
AU2705895A (en) | 1994-06-30 | 1996-01-25 | Novo Nordisk Biotech, Inc. | Non-toxic, non-toxigenic, non-pathogenic fusarium expression system and promoters and terminators for use therein |
US20030044956A1 (en) | 1995-08-23 | 2003-03-06 | Short Jay M. | Enzymes having carboxymethyl cellulase activity and methods of use thereof |
US6451063B1 (en) | 1996-09-25 | 2002-09-17 | Genencor International, Inc. | Cellulase for use in industrial processes |
US6017870A (en) | 1996-10-09 | 2000-01-25 | Genencor International, Inc. | Purified cellulase and method of producing |
US7883872B2 (en) | 1996-10-10 | 2011-02-08 | Dyadic International (Usa), Inc. | Construction of highly efficient cellulase compositions for enzymatic hydrolysis of cellulose |
US5811381A (en) | 1996-10-10 | 1998-09-22 | Mark A. Emalfarb | Cellulase compositions and methods of use |
CA2298885A1 (en) | 1997-07-31 | 1999-02-11 | Dsm N.V. | Cellulose degrading enzymes of aspergillus |
US5871550A (en) | 1997-08-26 | 1999-02-16 | Genencor International, Inc. | Mutant Thermonospora spp. cellulase |
AU1590899A (en) | 1997-11-19 | 1999-06-07 | Genencor International, Inc. | Cellulase producing by actinomycete and method of producing same |
CA2315017C (en) | 1997-12-16 | 2011-10-11 | Genencor International, Inc. | Novel egiii-like enzymes, dna encoding such enzymes and methods for producing such enzymes |
US5955310A (en) | 1998-02-26 | 1999-09-21 | Novo Nordisk Biotech, Inc. | Methods for producing a polypeptide in a bacillus cell |
CA2344619C (en) | 1998-10-26 | 2012-01-03 | Novozymes A/S | Constructing and screening a dna library of interest in filamentous fungal cells |
EP2278016B1 (en) | 1999-03-22 | 2012-09-26 | Novozymes Inc. | Promoter sequences derived from Fusarium Venenatum and uses thereof |
WO2000070031A1 (en) | 1999-05-19 | 2000-11-23 | Midwest Research Institute | E1 endoglucanase variants y245g, y82r and w42r |
ES2166316B1 (es) | 2000-02-24 | 2003-02-16 | Ct Investig Energeticas Ciemat | Procedimiento de produccion de etanol a partir de biomasa lignocelulosica utilizando una nueva levadura termotolerante. |
AU7779800A (en) | 2000-09-21 | 2002-04-02 | Dsm Nv | Talaromyces xylanases |
WO2002040694A2 (en) | 2000-11-17 | 2002-05-23 | Novozymes A/S | Heterologous expression of taxanes |
US7151204B2 (en) | 2001-01-09 | 2006-12-19 | Monsanto Technology Llc | Maize chloroplast aldolase promoter compositions and methods for use thereof |
EP1395653A2 (en) | 2001-05-18 | 2004-03-10 | Novozymes A/S | Polypeptides having cellobiase activity and polynucleotides encoding same |
US6982159B2 (en) | 2001-09-21 | 2006-01-03 | Genencor International, Inc. | Trichoderma β-glucosidase |
US7005289B2 (en) | 2001-12-18 | 2006-02-28 | Genencor International, Inc. | BGL5 β-glucosidase and nucleic acids encoding the same |
US7045331B2 (en) | 2001-12-18 | 2006-05-16 | Genencor International, Inc. | EGVII endoglucanase and nucleic acids encoding the same |
US7049125B2 (en) | 2001-12-18 | 2006-05-23 | Genencor International, Inc. | EGVIII endoglucanase and nucleic acids encoding the same |
US7045332B2 (en) | 2001-12-18 | 2006-05-16 | Genencor International, Inc. | BGL4 β-glucosidase and nucleic acids encoding the same |
US7056721B2 (en) | 2001-12-18 | 2006-06-06 | Genencor International, Inc. | EGVI endoglucanase and nucleic acids encoding the same |
DK1468093T4 (en) | 2002-01-23 | 2018-04-09 | Dsm Ip Assets Bv | Fermentation of pentose sugars |
CA2495664C (en) | 2002-08-16 | 2015-01-06 | Genencor International, Inc. | Novel variant hyprocrea jecorina cbh1 cellulases |
EP1556512B1 (en) | 2002-11-07 | 2016-06-15 | Danisco US Inc. | Bgl6 beta-glucosidase and nucleic acids encoding the same |
US7407788B2 (en) | 2002-11-21 | 2008-08-05 | Danisco A/S, Genencor Division | BGL7 beta-glucosidase and nucleic acids encoding the same |
CA2770976C (en) | 2003-03-21 | 2015-05-19 | Genencor International, Inc. | Cbh1 homologs and variant cbh1 cellulases |
EP2385103A3 (en) | 2003-04-01 | 2012-02-22 | Danisco US Inc. | Variant Hypocrea jecorina CBH1 |
EP1862626B1 (en) | 2003-05-29 | 2011-09-14 | Genencor International, Inc. | Novel trichoderma genes |
US7314743B2 (en) * | 2003-09-15 | 2008-01-01 | Genencor International | Modified enzymes, methods to produce modified enzymes and use thereof |
EP1682656B1 (en) | 2003-10-28 | 2013-09-18 | Novozymes Inc. | Polypeptides having beta-glucosidase activity and polynucleotides encoding same |
ATE441705T1 (de) | 2003-10-30 | 2009-09-15 | Novozymes As | Kohlenhydratbindende module |
ES2468366T3 (es) | 2004-01-30 | 2014-06-16 | Novozymes Inc. | Polip�ptidos con actividad de mejora celulol�tica y polinucle�tidos que los codifican |
BRPI0507431B1 (pt) | 2004-02-06 | 2021-07-27 | Novozymes, Inc | Célula hospedeira microbiana recombinante, construto de ácido nucleico, vetor de expressão recombinante, composição detergente, e, métodos para produzir o polipeptídeo gh61, para degradar um material celulósico e para produzir um produto de fermentação |
CN101389645B (zh) * | 2004-02-12 | 2016-08-03 | 诺维信股份有限公司 | 具有木聚糖酶活性的多肽和编码它的多核苷酸 |
US8097445B2 (en) | 2004-03-25 | 2012-01-17 | Danisco Us Inc. | Exo-endo cellulase fusion protein |
CA2560588A1 (en) | 2004-03-25 | 2005-10-06 | Genencor International, Inc. | Cellulase fusion protein and heterologous cellulase fusion construct encoding the same |
DK176540B1 (da) | 2004-09-24 | 2008-07-21 | Cambi Bioethanol Aps | Fremgangsmåde til behandling af biomasse og organisk affald med henblik på at udvinde önskede biologisk baserede produkter |
EP2292746B1 (en) | 2004-12-30 | 2017-01-25 | Danisco US Inc. | Variant hypocrea jecorina cbh2 cellulases |
DK1836299T4 (da) | 2005-01-06 | 2014-03-31 | Novozymes Inc | Polypeptider, der har cellobiohydrolaseaktivitet, og polynukleotider, der koder for disse |
CN101160388B (zh) | 2005-04-12 | 2013-05-01 | 纳幕尔杜邦公司 | 生物质处理的系统和工艺 |
AR053066A1 (es) | 2005-04-26 | 2007-04-18 | Novozymes As | Arabinofuranosidasas |
MX2007013474A (es) | 2005-04-29 | 2008-04-02 | Ab Enzymes Oy | Celulasas mejoradas. |
US8097772B2 (en) | 2005-08-04 | 2012-01-17 | Novozymes, Inc. | Polypeptides having beta-glucosidase activity and polynucleotides encoding same |
AU2006337184B2 (en) | 2005-09-30 | 2012-08-16 | Novozymes, Inc. | Methods for enhancing the degradation or conversion of cellulosic material |
WO2007071820A1 (en) | 2005-12-22 | 2007-06-28 | Ab Enzymes Oy | Novel enzymes |
FI120045B (fi) | 2005-12-22 | 2009-06-15 | Roal Oy | Selluloosamateriaalin käsittely ja siinä käyttökelpoiset entsyymit |
US8304212B2 (en) | 2006-07-10 | 2012-11-06 | Dyadic International, Inc. | Methods and compositions for degradation of lignocellulosic material |
CN101516906B (zh) | 2006-07-21 | 2013-11-06 | 诺维信股份有限公司 | 提高具有生物学活性之多肽的分泌的方法 |
CN101809150B (zh) | 2007-05-31 | 2013-09-04 | 诺维信股份有限公司 | 提高多肽的纤维素分解增强活性的方法 |
WO2008148131A1 (en) | 2007-05-31 | 2008-12-04 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US8034996B2 (en) | 2007-09-28 | 2011-10-11 | Novozymes A/S | Polypeptides having acetylxylan esterase activity and polynucleotides encoding same |
DK2195424T3 (en) | 2007-09-28 | 2019-01-07 | Novozymes As | Polypeptides with cellobiohydrolase II activity and polynucleotides encoding them |
US7867745B2 (en) | 2007-11-27 | 2011-01-11 | Novozymes A/S | Polypeptides having alpha-glucuronidase activity and polynucleotides encoding same |
BRPI0820647A8 (pt) | 2007-11-30 | 2017-06-06 | Novozymes As | Construção de ácido nucleico, célula microbiana hospedeira recombinante, métodos para produzir o polipeptídeo tendo atividade de alfa-larabinofuranosidase, e para degradar um material 5 contendo xilano |
EP2220219A2 (en) | 2007-12-05 | 2010-08-25 | Novozymes A/S | Polypeptides having xylanase activity and polynucleotides encoding same |
CN101909461B (zh) | 2007-12-06 | 2015-10-07 | 诺维信公司 | 具有乙酰木聚糖酯酶活性的多肽和编码该多肽的多核苷酸 |
CN101939420A (zh) | 2007-12-07 | 2011-01-05 | 诺维信公司 | 具有阿魏酸酯酶活性的多肽和编码该多肽的多核苷酸 |
BRPI0821048A2 (pt) | 2007-12-19 | 2015-06-16 | Novozymes As | Polipeptídeo e polinucleotídeo isolados, construção de ácido nucléico, célula hospedeira recombinante, métodos para produzir o polipeptídeo, um mutante de uma célula precursora, uma proteína e um produto de fermentação, para inibir a expressão de um polipeptídeo, para degradar ou converter um material celulósico, e para fermentar um material celulósico, planta trangênica, parte vegetal ou célula vegetal, e, melécula de rna inibidora |
BRPI0822031A2 (pt) | 2007-12-19 | 2017-06-13 | Novozymes As | polipeptídeo e polinicleotídeo isolados, construção de ácido nucleico, célula hospedeira recombinante, métodos para produzir o polipeptídeo, um mutante de uma célula precursora, uma proteína e um produto de fermentação, para inibir a expressão de um polipeptídeo, para degradar ou converter um material celulósico, e para fermentar um material celulósico, planta transgênica, parte de planta ou célula de planta, e, molécula de rna inibidora |
US8323944B2 (en) | 2007-12-19 | 2012-12-04 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
BRPI0822090A2 (pt) | 2007-12-19 | 2017-05-23 | Novozymes As | polipeptídeo isolado, polinucleotídeo isolado, construção de ácido nucléico, célula hospedeira recombinante, métodos para produzir o polipeptídeo, para produzir um mutante de uma célula precursora, de inibir a expressão de um polipeptídeo, para produzir uma proteína, para degradar ou converter um material celulósico, para a produção de um produto de fermentação, para fermentar um material celulósico, planta transgênica, parte vegetal ou célula vegetal, molécula de rna inibidora de duplo filamento |
WO2009108941A2 (en) * | 2008-02-29 | 2009-09-03 | University Of Central Florida Research Foundation, Inc. | Production and use of plant degrading materials |
EP2274322A1 (en) | 2008-04-17 | 2011-01-19 | Novozymes A/S | Polypeptides having ferulic acid esterase activity and polynucleotides encoding same |
CA2732122A1 (en) | 2008-07-29 | 2010-02-04 | Novozymes A/S | Polypeptides having alpha-glucuronidase activity and polynucleotides encoding same |
CN102112604B (zh) | 2008-07-31 | 2015-09-30 | 诺维信公司 | 具有乙酰木聚糖酯酶活性的多肽和编码该多肽的多核苷酸 |
EP2356136A1 (en) | 2008-11-10 | 2011-08-17 | Novozymes Inc. | Polypeptides having feruloyl esterase activity and polynucleotides encoding same |
US8805427B2 (en) | 2008-11-14 | 2014-08-12 | Microsoft Corporation | Channel reuse with cognitive low interference signals |
WO2010059424A2 (en) | 2008-11-18 | 2010-05-27 | Novozymes, Inc. | Methods and compositions for degrading cellulosic material |
EP2373684A1 (en) | 2008-12-04 | 2011-10-12 | Novozymes Inc. | Polypeptides having feruloyl esterase activity and polynucleotides encoding same |
BRPI0922773B1 (pt) | 2008-12-04 | 2018-10-09 | Novozymes As | célula microbiana hospedeira transgênica, métodos para produzir um polipeptídeo tendo atividade de intensificação celulolítica e para degradar ou converter um material celulósico, construção de ácido nucleico, vetor de expressão, e, composição detergente. |
CN102388134A (zh) | 2009-01-28 | 2012-03-21 | 诺维信股份有限公司 | 具有β-葡糖苷酶活性的多肽和编码该多肽的多核苷酸 |
DK2411511T3 (en) | 2009-03-24 | 2018-11-26 | Novozymes As | POLYPEPTIDES WITH ACETYLXYLANESTERASE ACTIVITY AND POLYNUCLEOTIDES CODING THEM |
CN102482680B (zh) * | 2009-04-30 | 2014-09-10 | 诺维信股份有限公司 | 具有木聚糖酶活性的多肽和编码该多肽的多核苷酸 |
US20100304437A1 (en) | 2009-05-29 | 2010-12-02 | Novozymes, Inc. | Methods for enhancing the degradation or conversion of cellulosic material |
DK2438163T3 (en) | 2009-06-02 | 2015-04-20 | Novozymes Inc | Polypeptides having cellobiohydrolase activity and polynucleotides encoding them |
DK2451957T3 (en) | 2009-07-07 | 2018-02-05 | Novozymes Inc | POLYPEPTIDES WITH CELLULOLYSE ENHANCING ACTIVITY AND POLYNUCLEOTIDES CODING THEM |
CN102770534B (zh) | 2009-09-17 | 2016-07-06 | 诺维信股份有限公司 | 具有纤维素分解增强活性的多肽及编码其的多核苷酸 |
EP2478095A1 (en) | 2009-09-18 | 2012-07-25 | Novozymes Inc. | Polypeptides having beta-glucosidase activity and polynucleotides encoding same |
EP2483403B1 (en) | 2009-09-29 | 2017-11-15 | Novozymes Inc. | Polypeptides having xylanase activity and polynucleotides encoding same |
MX2012003473A (es) | 2009-09-29 | 2012-05-22 | Novozymes Inc | Polipeptidos que tienen actividad celulitica mejorada y polinucleotidos que codifican para los mismos. |
EP2483296B1 (en) | 2009-09-30 | 2015-07-29 | Novozymes Inc. | Polypeptides derived from thermoascus crustaceus having cellulolytic enhancing activity and polynucleotides encoding same |
US8586829B2 (en) | 2009-09-30 | 2013-11-19 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2011059740A1 (en) | 2009-10-29 | 2011-05-19 | Novozymes, Inc. | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
EP2955221A1 (en) | 2009-11-04 | 2015-12-16 | DSM IP Assets B.V. | Talaromyces transformants |
US9534211B2 (en) | 2009-11-06 | 2017-01-03 | Novozymes A/S | Polypeptides having xylanase activity and polynucleotides encoding same |
EP3222716B1 (en) | 2009-11-06 | 2020-08-19 | Novozymes, Inc. | Composition for saccharification of cellulosic material |
AU2011207336A1 (en) * | 2010-01-25 | 2012-07-05 | Syngenta Participations Ag | Compositions and methods relating to dual activity enzymes having xylanase and cellulase activity |
BR112014002401B1 (pt) * | 2011-08-04 | 2021-08-03 | Novozymes A/S | Célula hospedeira transgênica de fungo filamentoso, métodos para produzir um polipeptídeo e uma proteína, e, construto de ácido nucleico ou um vetor de expressão |
BR112015030655A2 (pt) * | 2013-06-05 | 2017-08-22 | Novozymes As | Variantes de xilanase e polinucleótidos que codificam as mesmas |
-
2012
- 2012-08-01 BR BR112014002401-4A patent/BR112014002401B1/pt active IP Right Grant
- 2012-08-01 DK DK12748613.2T patent/DK2739727T3/en active
- 2012-08-01 CN CN201810695013.3A patent/CN108823184B/zh active Active
- 2012-08-01 EP EP16170376.4A patent/EP3091073B2/en active Active
- 2012-08-01 WO PCT/US2012/049096 patent/WO2013019827A2/en active Application Filing
- 2012-08-01 CN CN201280048419.3A patent/CN103958674B/zh active Active
- 2012-08-01 DK DK18163849T patent/DK3382016T3/da active
- 2012-08-01 CA CA2838755A patent/CA2838755A1/en active Pending
- 2012-08-01 EP EP18163849.5A patent/EP3382016B1/en active Active
- 2012-08-01 ES ES16170376T patent/ES2672048T5/es active Active
- 2012-08-01 ES ES12748613.2T patent/ES2586307T3/es active Active
- 2012-08-01 EP EP12748613.2A patent/EP2739727B1/en not_active Not-in-force
- 2012-08-01 US US14/122,431 patent/US8859227B2/en active Active
- 2012-08-01 FI FIEP16170376.4T patent/FI3091073T4/fi active
- 2012-08-01 DK DK16170376.4T patent/DK3091073T4/da active
-
2014
- 2014-10-13 US US14/513,057 patent/US9637727B2/en not_active Expired - Fee Related
-
2017
- 2017-04-10 US US15/483,639 patent/US9885029B2/en active Active
- 2017-12-08 US US15/835,830 patent/US20180135035A1/en not_active Abandoned
-
2018
- 2018-09-05 US US16/122,230 patent/US10570384B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
DK3382016T3 (da) | 2019-11-18 |
US8859227B2 (en) | 2014-10-14 |
US20180135035A1 (en) | 2018-05-17 |
EP2739727A2 (en) | 2014-06-11 |
EP3382016B1 (en) | 2019-10-09 |
CN108823184A (zh) | 2018-11-16 |
US20170298336A1 (en) | 2017-10-19 |
DK3091073T4 (da) | 2023-06-06 |
US9637727B2 (en) | 2017-05-02 |
CN108823184B (zh) | 2022-04-05 |
ES2586307T3 (es) | 2016-10-13 |
BR112014002401B1 (pt) | 2021-08-03 |
EP3091073A2 (en) | 2016-11-09 |
ES2672048T5 (es) | 2023-07-10 |
EP3091073A3 (en) | 2016-12-07 |
CN103958674A (zh) | 2014-07-30 |
US20140113336A1 (en) | 2014-04-24 |
DK2739727T3 (en) | 2016-08-22 |
US20150031079A1 (en) | 2015-01-29 |
US10570384B2 (en) | 2020-02-25 |
EP3382016A1 (en) | 2018-10-03 |
US20180362950A1 (en) | 2018-12-20 |
WO2013019827A2 (en) | 2013-02-07 |
DK3091073T3 (en) | 2018-06-18 |
WO2013019827A3 (en) | 2013-04-11 |
ES2672048T3 (es) | 2018-06-12 |
CA2838755A1 (en) | 2013-02-07 |
EP3091073B2 (en) | 2023-03-08 |
EP3091073B1 (en) | 2018-03-28 |
EP2739727B1 (en) | 2016-05-25 |
FI3091073T4 (fi) | 2023-05-11 |
BR112014002401A2 (pt) | 2017-02-21 |
US9885029B2 (en) | 2018-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10570384B2 (en) | Polypeptides having xylanase activity and polynucleotides encoding same | |
US11208641B2 (en) | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same | |
CN103517986B (zh) | 具有纤维二糖水解酶活性的多肽及编码该多肽的多核苷酸 | |
CN103620028B (zh) | 具有纤维二糖水解酶活性的多肽和编码该多肽的多核苷酸 | |
CN103703125B (zh) | 具有内切葡聚糖酶活性的多肽及其编码多核苷酸 | |
BR112013018307B1 (pt) | Célula microbiana hospedeira transgênica, construto de ácido nucleico ou vetor de expressão, e, processos para produzir um polipeptídeo, uma proteína e um mutante de uma célula mãe, para degradar um material celulósico, para produzir um produto de fermentação, e para fermentar um material celulósico |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |