CN103947461B - A method for obtaining virus resistance in scion varieties, RNA interference vector pCAMBIA2300-CP and transgenic method - Google Patents
A method for obtaining virus resistance in scion varieties, RNA interference vector pCAMBIA2300-CP and transgenic method Download PDFInfo
- Publication number
- CN103947461B CN103947461B CN201410012168.4A CN201410012168A CN103947461B CN 103947461 B CN103947461 B CN 103947461B CN 201410012168 A CN201410012168 A CN 201410012168A CN 103947461 B CN103947461 B CN 103947461B
- Authority
- CN
- China
- Prior art keywords
- transgenic
- virus
- rna interference
- scion
- plants
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000009261 transgenic effect Effects 0.000 title claims abstract description 76
- 241000700605 Viruses Species 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims abstract description 60
- 230000009368 gene silencing by RNA Effects 0.000 title claims abstract description 44
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 title claims abstract description 42
- 239000013598 vector Substances 0.000 title claims abstract description 42
- 239000013256 coordination polymer Substances 0.000 title abstract description 33
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 68
- 235000007688 Lycopersicon esculentum Nutrition 0.000 claims abstract description 47
- 230000000840 anti-viral effect Effects 0.000 claims abstract description 8
- 241000724252 Cucumber mosaic virus Species 0.000 claims description 70
- 240000003768 Solanum lycopersicum Species 0.000 claims description 52
- 230000001580 bacterial effect Effects 0.000 claims description 9
- 230000002155 anti-virotic effect Effects 0.000 claims description 7
- 241000589155 Agrobacterium tumefaciens Species 0.000 claims description 6
- 230000008685 targeting Effects 0.000 claims description 2
- 241000196324 Embryophyta Species 0.000 abstract description 123
- 239000012634 fragment Substances 0.000 abstract description 90
- 238000005516 engineering process Methods 0.000 abstract description 9
- 238000012360 testing method Methods 0.000 abstract description 9
- 230000006872 improvement Effects 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 108700005077 Viral Genes Proteins 0.000 abstract description 2
- 235000013617 genetically modified food Nutrition 0.000 abstract description 2
- 241000227653 Lycopersicon Species 0.000 abstract 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 35
- 239000002609 medium Substances 0.000 description 29
- 239000013612 plasmid Substances 0.000 description 27
- 201000010099 disease Diseases 0.000 description 26
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 26
- 238000001514 detection method Methods 0.000 description 25
- 230000030279 gene silencing Effects 0.000 description 24
- 239000000243 solution Substances 0.000 description 24
- 238000005520 cutting process Methods 0.000 description 21
- 239000013604 expression vector Substances 0.000 description 20
- 239000000499 gel Substances 0.000 description 17
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 16
- 239000000047 product Substances 0.000 description 16
- 108020004414 DNA Proteins 0.000 description 15
- 238000011081 inoculation Methods 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 241000588724 Escherichia coli Species 0.000 description 14
- 239000012153 distilled water Substances 0.000 description 14
- SEOVTRFCIGRIMH-UHFFFAOYSA-N indole-3-acetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CNC2=C1 SEOVTRFCIGRIMH-UHFFFAOYSA-N 0.000 description 14
- 238000012546 transfer Methods 0.000 description 13
- 230000029087 digestion Effects 0.000 description 12
- 230000009466 transformation Effects 0.000 description 12
- 230000003115 biocidal effect Effects 0.000 description 11
- 230000004069 differentiation Effects 0.000 description 11
- 238000009396 hybridization Methods 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 239000012528 membrane Substances 0.000 description 11
- 241000894006 Bacteria Species 0.000 description 10
- 239000013599 cloning vector Substances 0.000 description 10
- 238000012226 gene silencing method Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 229940027257 timentin Drugs 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 238000001976 enzyme digestion Methods 0.000 description 9
- 230000035784 germination Effects 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 108020004459 Small interfering RNA Proteins 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 239000002250 absorbent Substances 0.000 description 8
- 230000002745 absorbent Effects 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 8
- 230000004927 fusion Effects 0.000 description 8
- 238000012216 screening Methods 0.000 description 8
- 239000008223 sterile water Substances 0.000 description 8
- 229930027917 kanamycin Natural products 0.000 description 7
- 229960000318 kanamycin Drugs 0.000 description 7
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 7
- 229930182823 kanamycin A Natural products 0.000 description 7
- 239000003550 marker Substances 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- 238000011160 research Methods 0.000 description 7
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 6
- 206010020649 Hyperkeratosis Diseases 0.000 description 6
- 239000004677 Nylon Substances 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000010276 construction Methods 0.000 description 6
- 238000004925 denaturation Methods 0.000 description 6
- 230000036425 denaturation Effects 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 239000002777 nucleoside Substances 0.000 description 6
- 229920001778 nylon Polymers 0.000 description 6
- 239000004033 plastic Substances 0.000 description 6
- 230000032361 posttranscriptional gene silencing Effects 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 238000003757 reverse transcription PCR Methods 0.000 description 6
- 230000002441 reversible effect Effects 0.000 description 6
- 230000009885 systemic effect Effects 0.000 description 6
- UZKQTCBAMSWPJD-UQCOIBPSSA-N trans-Zeatin Natural products OCC(/C)=C\CNC1=NC=NC2=C1N=CN2 UZKQTCBAMSWPJD-UQCOIBPSSA-N 0.000 description 6
- -1 trans-zeatin nucleoside Chemical class 0.000 description 6
- 241000589158 Agrobacterium Species 0.000 description 5
- 108010026624 GTCGAC-specific type II deoxyribonucleases Proteins 0.000 description 5
- 238000002105 Southern blotting Methods 0.000 description 5
- 238000009395 breeding Methods 0.000 description 5
- 230000001488 breeding effect Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 230000000644 propagated effect Effects 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 208000035240 Disease Resistance Diseases 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 239000005708 Sodium hypochlorite Substances 0.000 description 4
- 229930006000 Sucrose Natural products 0.000 description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 4
- 108700019146 Transgenes Proteins 0.000 description 4
- 238000000246 agarose gel electrophoresis Methods 0.000 description 4
- 230000000844 anti-bacterial effect Effects 0.000 description 4
- 235000013399 edible fruits Nutrition 0.000 description 4
- 238000001962 electrophoresis Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 4
- 235000003869 genetically modified organism Nutrition 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- 230000001124 posttranscriptional effect Effects 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 4
- 238000009331 sowing Methods 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 239000005720 sucrose Substances 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 238000012795 verification Methods 0.000 description 4
- 239000005723 virus inoculator Substances 0.000 description 4
- 101150096316 5 gene Proteins 0.000 description 3
- 229920001817 Agar Polymers 0.000 description 3
- 241000219194 Arabidopsis Species 0.000 description 3
- 108010072454 CTGCAG-specific type II deoxyribonucleases Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 244000061176 Nicotiana tabacum Species 0.000 description 3
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 101100191561 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PRP3 gene Proteins 0.000 description 3
- 239000008272 agar Substances 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 229940088710 antibiotic agent Drugs 0.000 description 3
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 239000012154 double-distilled water Substances 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- JTEDVYBZBROSJT-UHFFFAOYSA-N indole-3-butyric acid Chemical compound C1=CC=C2C(CCCC(=O)O)=CNC2=C1 JTEDVYBZBROSJT-UHFFFAOYSA-N 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 235000013311 vegetables Nutrition 0.000 description 3
- 230000003612 virological effect Effects 0.000 description 3
- 239000011534 wash buffer Substances 0.000 description 3
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 2
- GOSWTRUMMSCNCW-HNNGNKQASA-N 9-ribosyl-trans-zeatin Chemical compound C1=NC=2C(NC\C=C(CO)/C)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O GOSWTRUMMSCNCW-HNNGNKQASA-N 0.000 description 2
- 229930192334 Auxin Natural products 0.000 description 2
- 108010005054 Deoxyribonuclease BamHI Proteins 0.000 description 2
- AHCYMLUZIRLXAA-SHYZEUOFSA-N Deoxyuridine 5'-triphosphate Chemical compound O1[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C[C@@H]1N1C(=O)NC(=O)C=C1 AHCYMLUZIRLXAA-SHYZEUOFSA-N 0.000 description 2
- 108010042407 Endonucleases Proteins 0.000 description 2
- 102000004533 Endonucleases Human genes 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 2
- 108060004795 Methyltransferase Proteins 0.000 description 2
- 108700011259 MicroRNAs Proteins 0.000 description 2
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 101150023114 RNA1 gene Proteins 0.000 description 2
- 101150084101 RNA2 gene Proteins 0.000 description 2
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 2
- 101100353432 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PRP2 gene Proteins 0.000 description 2
- 101100084449 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) PRP4 gene Proteins 0.000 description 2
- 241000519995 Stachys sylvatica Species 0.000 description 2
- 102220603929 TYRO protein tyrosine kinase-binding protein_T11A_mutation Human genes 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000002363 auxin Substances 0.000 description 2
- 230000003385 bacteriostatic effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000034303 cell budding Effects 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 2
- 229960000304 folic acid Drugs 0.000 description 2
- 235000019152 folic acid Nutrition 0.000 description 2
- 239000011724 folic acid Substances 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 239000003617 indole-3-acetic acid Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000002679 microRNA Substances 0.000 description 2
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 2
- 235000019796 monopotassium phosphate Nutrition 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 230000001568 sexual effect Effects 0.000 description 2
- 230000001743 silencing effect Effects 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 238000002791 soaking Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- GOSWTRUMMSCNCW-UHFFFAOYSA-N trans-zeatin riboside Natural products C1=NC=2C(NCC=C(CO)C)=NC=NC=2N1C1OC(CO)C(O)C1O GOSWTRUMMSCNCW-UHFFFAOYSA-N 0.000 description 2
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- QRXMUCSWCMTJGU-UHFFFAOYSA-N 5-bromo-4-chloro-3-indolyl phosphate Chemical compound C1=C(Br)C(Cl)=C2C(OP(O)(=O)O)=CNC2=C1 QRXMUCSWCMTJGU-UHFFFAOYSA-N 0.000 description 1
- 101710197633 Actin-1 Proteins 0.000 description 1
- 108091032955 Bacterial small RNA Proteins 0.000 description 1
- 241001533462 Bromoviridae Species 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 241000724253 Cucumovirus Species 0.000 description 1
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- LTMHDMANZUZIPE-AMTYYWEZSA-N Digoxin Natural products O([C@H]1[C@H](C)O[C@H](O[C@@H]2C[C@@H]3[C@@](C)([C@@H]4[C@H]([C@]5(O)[C@](C)([C@H](O)C4)[C@H](C4=CC(=O)OC4)CC5)CC3)CC2)C[C@@H]1O)[C@H]1O[C@H](C)[C@@H](O[C@H]2O[C@@H](C)[C@H](O)[C@@H](O)C2)[C@@H](O)C1 LTMHDMANZUZIPE-AMTYYWEZSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 229930191978 Gibberellin Natural products 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 101710159910 Movement protein Proteins 0.000 description 1
- 101710198130 NADPH-cytochrome P450 reductase Proteins 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108090000913 Nitrate Reductases Proteins 0.000 description 1
- 101000715088 Oryza sativa subsp. japonica Cytochrome P450 714D1 Proteins 0.000 description 1
- 238000009004 PCR Kit Methods 0.000 description 1
- 108700001094 Plant Genes Proteins 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 108091027967 Small hairpin RNA Proteins 0.000 description 1
- 108091027544 Subgenomic mRNA Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 235000021466 carotenoid Nutrition 0.000 description 1
- 150000001747 carotenoids Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008260 defense mechanism Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001784 detoxification Methods 0.000 description 1
- LTMHDMANZUZIPE-PUGKRICDSA-N digoxin Chemical compound C1[C@H](O)[C@H](O)[C@@H](C)O[C@H]1O[C@@H]1[C@@H](C)O[C@@H](O[C@@H]2[C@H](O[C@@H](O[C@@H]3C[C@@H]4[C@]([C@@H]5[C@H]([C@]6(CC[C@@H]([C@@]6(C)[C@H](O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)C[C@@H]2O)C)C[C@@H]1O LTMHDMANZUZIPE-PUGKRICDSA-N 0.000 description 1
- 229960005156 digoxin Drugs 0.000 description 1
- LTMHDMANZUZIPE-UHFFFAOYSA-N digoxine Natural products C1C(O)C(O)C(C)OC1OC1C(C)OC(OC2C(OC(OC3CC4C(C5C(C6(CCC(C6(C)C(O)C5)C=5COC(=O)C=5)O)CC4)(C)CC3)CC2O)C)CC1O LTMHDMANZUZIPE-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- QKIUAMUSENSFQQ-UHFFFAOYSA-N dimethylazanide Chemical compound C[N-]C QKIUAMUSENSFQQ-UHFFFAOYSA-N 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 241001493065 dsRNA viruses Species 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000037440 gene silencing effect Effects 0.000 description 1
- IXORZMNAPKEEDV-UHFFFAOYSA-N gibberellic acid GA3 Natural products OC(=O)C1C2(C3)CC(=C)C3(O)CCC2C2(C=CC3O)C1C3(C)C(=O)O2 IXORZMNAPKEEDV-UHFFFAOYSA-N 0.000 description 1
- 239000003448 gibberellin Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- OOYGSFOGFJDDHP-KMCOLRRFSA-N kanamycin A sulfate Chemical compound OS(O)(=O)=O.O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N OOYGSFOGFJDDHP-KMCOLRRFSA-N 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 108010026228 mRNA guanylyltransferase Proteins 0.000 description 1
- 206010025482 malaise Diseases 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000011177 media preparation Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000005305 organ development Effects 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 238000007539 photo-oxidation reaction Methods 0.000 description 1
- 230000008121 plant development Effects 0.000 description 1
- 210000003449 plasmodesmata Anatomy 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 238000012257 pre-denaturation Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 1
- 229960001225 rifampicin Drugs 0.000 description 1
- 239000012882 rooting medium Substances 0.000 description 1
- 102220128896 rs376207606 Human genes 0.000 description 1
- 102200126521 rs4498440 Human genes 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 230000017825 seed germination on parent plant Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012033 transcriptional gene silencing Methods 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000014599 transmission of virus Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 210000002845 virion Anatomy 0.000 description 1
Landscapes
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
母案第一次和第二次审查意见通知书中,审查员指出母案存在多项发明,不具备单一性,因此申请人决定对母案中未获得保护的发明进行分案申请。本申请为申请号201110315208.9(发明名称:一种使接穗品种获得病毒抗性的方法及RNA干扰载体与转基因方法)的分案申请。 In the first and second office action notices of the parent case, the examiner pointed out that there were multiple inventions in the parent case, which were not unitary, so the applicant decided to file a divisional application for the unprotected inventions in the parent case. This application is a divisional application of application number 201110315208.9 (name of invention: a method for making scion varieties acquire virus resistance and RNA interference vector and transgenic method).
技术领域 technical field
本发明涉及植物转基因技术及其应用,特别是一种使番茄接穗品种获得病毒抗性的方法及RNA干扰载体与转基因方法。 The invention relates to plant transgenic technology and application thereof, in particular to a method for obtaining virus resistance in tomato scion varieties, an RNA interference carrier and a transgenic method.
背景技术 Background technique
植物病毒是导致果树、蔬菜、花卉等园艺植物产量下降和品质变劣的重要原因,在农业生产中病毒病是仅次于真菌的第二大类病害,由于防治困难,素有“植物癌症”之称。目前植物病毒常用的防治措施有消灭病毒源和传统媒介、应用脱毒技术、药剂防治与选育抗病品种等,其中选育抗病品种是防治病毒病害最有效、最经济的方法。RNA干扰技术为基础的植物抗病技术因其高效性、特异性等特点,在植物抗病毒育种上展现了可观的前景。 Plant virus is an important cause of yield decline and quality deterioration of fruit trees, vegetables, flowers and other horticultural plants. In agricultural production, virus disease is the second largest type of disease after fungi. Due to the difficulty of prevention and treatment, it is known as "plant cancer". known as. At present, the commonly used prevention and control measures for plant viruses include elimination of virus sources and traditional media, application of detoxification technology, chemical control, and breeding of disease-resistant varieties, among which breeding of disease-resistant varieties is the most effective and economical method to prevent and control virus diseases. Due to its high efficiency and specificity, the plant disease resistance technology based on RNA interference technology has shown considerable prospects in plant virus resistance breeding.
基因沉默或称RNA干扰(RNAinterference;RNAi)是指由于转基因序列或外侵病毒与被沉默的内源或外源基因序列具有高度的同源性,其转录产物形成双链RNA(double-strandedRNA,dsRNA)结构,从而特异性地降解同源靶基因mRNA,使之发生沉默(FireA.,XuS.,MontgomeryM.K.,etal.Potentandspecificgeneticinterferencebydouble-strandedRNAinCaenorhabditiselegans[J].Nature,1998,391(6669):806-811)。由于其干扰作用是发生在靶基因的转录后水平,因此,也成转录后基因沉默(post-transcriptionalgenesilencing;PTGS)。植物RNAi具有特异性、高效性、系统性以及可遗传性等特点。可利用RNAi技术进行基因功能研究;或直接利用RNAi创造的特殊性状变异体进行植物改良。其中RNAi技术在植物病毒抗性方面取得了很好的研究成果。RNAi是真核生物中普遍存在的外源核酸(如病毒)入侵的防御机制,同时现有研究进一步表明病毒产生交叉保护是由于诱导病毒(弱株系)所产生的RNA沉默降解了具有致病性的同源病毒(强株系)的结果(FrankG.R.,StuartA.M.andDavidC.B.GeneSilencingwithoutDNA:RNA-MediatedCross-ProtectionbetweenViruses[J].PlantCell,1999,11:1207-1216)。利用RNAi抵抗病毒的常用策略是:选择一段植物病毒基因的序列,以反向重复序列的方式构建成转录后含发夹结构的双链RNA(hairpinRNA,hpRNA)或含内含子的ihpRNA(intron-hairpinRNA)表达载体,通过基因枪、病毒载体转染或者农杆菌介导转化整合到植物基因上,体内表达dsRNA,直接或间接诱导RNAi的产生,起到抵抗病毒的目的。而在发夹结构研究中,认为ihpRNA表达载体比hpRNA表达载体沉默效率高(HelliwellC,WaterhouseP.Constructsandmethodsforhigh-throughputgenesilencinginplants[J].Methods,2003,30(4):289-295)。 Gene silencing or RNA interference (RNAi) refers to the formation of double-stranded RNA (double-stranded RNA, dsRNA) structure, thereby specifically degrading homologous target gene mRNA and silencing it (FireA., XuS., MontgomeryM.K., et al. -811). Since its interference occurs at the post-transcriptional level of the target gene, it is also called post-transcriptional gene silencing (PTGS). Plant RNAi has the characteristics of specificity, high efficiency, systemicity and heritability. RNAi technology can be used for gene function research; or the special trait variants created by RNAi can be directly used for plant improvement. Among them, RNAi technology has achieved good research results in plant virus resistance. RNAi is a defense mechanism for exogenous nucleic acid (such as virus) invasion that is ubiquitous in eukaryotes. At the same time, existing studies have further shown that the cross-protection of viruses is due to the induction of RNA silencing produced by viruses (weak strains) and the degradation of pathogenicity. Sexual homologous virus (strong strain) results (FrankG.R., StuartA.M.andDavidC.B. GeneSilencingwithoutDNA:RNA-MediatedCross-Protectionbetween Viruses [J]. PlantCell, 1999, 11: 1207-1216). A common strategy for using RNAi to resist viruses is to select a sequence of a plant virus gene and construct it into a double-stranded RNA (hairpinRNA, hpRNA) or an intron-containing ihpRNA (intron) in the form of an inverted repeat sequence. -hairpinRNA) expression vector, which is integrated into the plant gene through gene gun, viral vector transfection or Agrobacterium-mediated transformation, expresses dsRNA in vivo, directly or indirectly induces the production of RNAi, and achieves the purpose of resisting the virus. In the study of the hairpin structure, it is believed that the silencing efficiency of the ihpRNA expression vector is higher than that of the hpRNA expression vector (HelliwellC, WaterhouseP. Constructs and methods for high-throughput gene silencing inplants [J]. Methods, 2003, 30 (4): 289-295).
园艺植物种类与品种繁多,通过营养繁殖途径繁衍的园艺植物后代普遍经受着病毒的威胁。目前生产中栽培的众多蔬菜,水果和花卉均有几十到上百个品种,几乎每个品种都有数种到数十种病毒病害,病毒病抑制了植物的生长、结果,降低了果品的产量、质量,甚至引起死树,植物一旦被病毒侵染,将终生带毒持久受害。利用基因工程技术针对每一个品种进行改良,提高其抗病毒的能力,虽可行但需花费大量的人力与财力。嫁接是许多园艺植物繁殖的方法之一,绝大多数的果树和部分蔬菜采用嫁接繁殖。嫁接既能保持接穗品种的优良性状,又能利用砧木的有利特性。在应用嫁接繁殖时,一般同一种类中的不同品种采用同一砧木,甚至有些同属中的不同种类也采用同一砧木。这样一砧多用的情况,使得改良砧木品种比单独改良接穗品种要高效的多。 There are many types and varieties of horticultural plants, and the offspring of horticultural plants reproduced through vegetative propagation are generally under the threat of viruses. At present, there are dozens to hundreds of varieties of vegetables, fruits and flowers cultivated in production. Almost every variety has several to dozens of viral diseases. Viral diseases inhibit the growth and fruiting of plants and reduce the yield of fruits. , quality, and even cause dead trees. Once plants are infected by viruses, they will be poisoned for life and suffer lasting damage. It is feasible to use genetic engineering technology to improve each variety and improve its anti-virus ability, but it will cost a lot of manpower and financial resources. Grafting is one of the methods of propagation of many horticultural plants. Most fruit trees and some vegetables are propagated by grafting. Grafting can not only maintain the excellent characters of the scion species, but also utilize the favorable characteristics of the rootstock. In the application of grafting propagation, generally different varieties of the same species use the same rootstock, and even some different species of the same genus also use the same rootstock. The multi-purpose situation of such a stock makes improving rootstock varieties more efficient than improving scion varieties alone.
所谓植物系统性基因沉默是指:dsRNA、aberrantRNA或siRNA等基因沉默信号既可以通过胞间连丝进行的短距离传递,也可以通过植物中的维管系统长距离传递(BrosnanC.A.,MitterN.,ChristieM.,etal.Nucleargenesilencingdirectsreceptionoflong-distancemRNAsilencinginArabidopsis[J].ProcNatlAcadSciUSA,2007,104(37):14741-14746),(KalantidisK.,SchumacherH.T.,AlexiadisT.,etal.RNAsilencingmovementinplants[J].BiolCell,2008,100(1):13-26),并诱导整个植物产生系统沉默。DanielH.等(DanielH.C,FabioT.S.,MiyaD.H,etal.PatternformationviasmallRNAmobility[J].Genes&Dev,2009,23:549-554)研究表明小分子RNA可以作为一种移动的信号分子参与植物发育的调控。关于沉默信号在植物中的传递方向存在着不同的报道。Palauqui等(PalauquiJ.C.,ElmayanT.,PollienJ.M.,etal.Systemicacquiredsilencing:transgene-specificpost-transcriptionalsilencingistransmittedbygraftingfromsilencedstockstonon-silencedscions[J].EMBOJ,1997,16(15):4738-4745.)以烟草为试材,发现PTGS的传导是单方向的,即只能从沉默的砧木传向非沉默的接穗;而Sonoda等(SonodaS.andNishiguchiM.Grafttransmissionofpost-transcriptionalgenesilencing:targetspecificityforRNAdegradationistransmissiblebetweensilencedandnon-silencedplants,butnotbetweensilencedplants[J].PlantJ,2000,21(1):1-8)研究表明,PTGS的传导是双方向的,从砧木到接穗或从接穗到砧木都可传导,但是PTGS从接穗到砧木的传导效率明显低于从砧木到接穗的传导。李明等(李明,姜世玲,王幼群,等.转录后沉默信号可以在拟南芥嫁接体内快速双向传递[J].科学通报,2006,51(2):142-147)的结果表明,无论用RNAi型植株作为砧木或接穗,基因沉默信号均能导致相应野生型接穗或砧木中靶基因mRNA的减少,说明基因转录后沉默信号可以通过嫁接面在拟南芥体内双向传递。但miRNA(microRNA)或amiRNA(artificialmiRNA)还未发现能在嫁接体间传递,据此,本发明人推测系统性基因沉默方向可能与物种或检测水平或方法有关,但可以肯定以转基因方式获得超表达的siRNA相关的沉默信号能从砧木向上传递给接穗。 The so-called systemic gene silencing in plants means that gene silencing signals such as dsRNA, aberrantRNA or siRNA can be transmitted over short distances through plasmodesmata, or over long distances through the vascular system in plants (BrosnanC.A., MitterN ., ChristieM., et al.Nucleargene silencing directs reception of long-distance mRNA silencing in Arabidopsis [J]. ProcNatlAcadSciUSA, 2007, 104 (37): 14741-14746), (KalantidisK., SchumacherH.T., AlexiadisT., etal. ,100(1):13-26), and induces systemic silencing in whole plants. DanielH. et al. (DanielH.C, FabioT.S., MiyaD.H, etal. Pattern formation via small RNAmobility[J].Genes&Dev, 2009,23:549-554) showed that small RNA can be used as a mobile signal molecule to participate in plant development regulation. There are different reports on the transmission direction of silencing signals in plants. Palauqui et al. (PalauquiJ.C., ElmayanT., PollienJ.M., etal.Systemicacquiredsilencing:transgene-specificpost-transcriptionalsilencingistransmittedbygraftingfromsilencedstockstonon-silencedscions[J].EMBOJ,1997,16(15):4738-4745.) Tobacco as a test material , found that the conduction of PTGS is unidirectional, that is, it can only be transmitted from the silent rootstock to the non-silenced scion; while Sonoda et al. (SonodaS. (1):1-8) Studies have shown that the conduction of PTGS is bidirectional, from rootstock to scion or from scion to rootstock, but the conduction efficiency of PTGS from scion to rootstock is significantly lower than that from rootstock to scion . The results of Li Ming et al. (Li Ming, Jiang Shiling, Wang Youqun, et al. Post-transcriptional silencing signals can be rapidly bidirectionally transmitted in Arabidopsis grafts[J]. Science Bulletin, 2006,51(2):142-147) showed that no matter When RNAi plants were used as rootstock or scion, the gene silencing signal could lead to the decrease of target gene mRNA in the corresponding wild-type scion or rootstock, indicating that the post-transcriptional silencing signal could be bidirectionally transmitted in Arabidopsis through the grafting surface. However, miRNA (microRNA) or amiRNA (artificialmiRNA) has not been found to be transmitted between grafts. Accordingly, the inventor speculates that the direction of systematic gene silencing may be related to species or detection levels or methods, but it is certain that transgenic methods can be used to obtain super The expressed siRNA-associated silencing signal can be transmitted up from the rootstock to the scion.
植物中,关于系统性基因沉默的最初线索来自烟草嫁接试验。1997年Palauqui等(PalauquiJ.C.,ElmayanT.,PollienJ.M.,etal.Systemicacquiredsilencing:transgene-specificpost-transcriptionalsilencingistransmittedbygraftingfromsilencedstockstonon-silencedscions[J].EMBOJ,1997,16(15):4738-4745)把一个芽嫁接到另一植株上时,先将该植株的硝酸盐还原酶基因沉默,嫁接的幼芽上该基因也沉默。在幼芽中被沉默的基因与砧木中被沉默的基因相同,具有序列特异性。Sonoda等(SonodaS.andNishiguchiM.Grafttransmissionofpost-transcriptionalgenesilencing:targetspecificityforRNAdegradationistransmissiblebetweensilencedandnon-silencedplants,butnotbetweensilencedplants[J].PlantJ,2000,21(1):1-8)的研究也得出了相似的的结论,并同时证明经嫁接后,接穗所获得的PTGS即使在沉默的砧木不存在时也能保持。 In plants, the first clues to systemic gene silencing came from tobacco grafting experiments. In 1997, Palauqui et al. (PalauquiJ.C., ElmayanT., PollienJ.M., et al.Systemicacquiredsilencing:transgene-specificpost-transcriptionalsilencingistransmittedbygraftingfromsilencedstockstonon-silencedscions[J].EMBOJ,1997,16(15):4738-4745) grafted a bud When transferred to another plant, the nitrate reductase gene of the plant was first silenced, and the gene was also silenced on the grafted shoots. The genes that were silenced in the shoots were the same as those in the rootstock, with sequence specificity. Sonoda et al. (SonodaS.andNishiguchiM.Grafttransmissionofpost-transcriptionalgenesilencing:targetspecificityforRNAdegradationistransmissiblebetweensilencedandnon-silencedplants, butnotbetweensilencedplants[J].PlantJ,2000,21(1):1-8) also reached a similar conclusion, and proved that after grafting , the PTGS acquired by the scion was maintained even in the absence of a silent rootstock.
近年来,围绕转基因生物育种,我国在转基因生物安全管理和安全性评价研究方面实现了与国际接轨,并取得了令人瞩目的进展。但有关基因工程中所涉及的抗性选择性标记基因对食品安全性的影响,部分人一直存有疑虑,而本项目研究巧妙的避开了这一议题,因为接穗所获得的系统性抗性,来源于砧木中的小分子RNA的沉默效应,因此理论上,嫁接转基因沉默植株接穗品种中将不含抗性标记。为了提高接穗品种抗目标病毒的能力,若只需通过改良砧木,嫁接后达到增强接穗品种抗该目标病毒的目的,这将为园艺嫁接植物的品种改良开辟一条崭新的途径。但到目前为止,通过嫁接方式使接穗品种获得基因沉默效应的研究中,靶标基因都为植物自身的一些基因,未见到以致病菌或病毒基因为靶标的研究报道。 In recent years, around the breeding of genetically modified organisms, my country has achieved international standards in the study of safety management and safety evaluation of genetically modified organisms, and has made remarkable progress. However, some people have always had doubts about the impact of the resistance selectable marker gene involved in genetic engineering on food safety, and the research of this project cleverly avoided this issue, because the systemic resistance acquired by the scion , derived from the silencing effect of small molecule RNA in the rootstock, so theoretically, the grafted transgene silent plant scion varieties will not contain resistance markers. In order to improve the ability of the scion variety to resist the target virus, if the purpose of enhancing the resistance of the scion variety to the target virus is achieved only by improving the rootstock after grafting, this will open up a new way for the variety improvement of horticultural grafted plants. But so far, in the research on the gene silencing effect of scion varieties obtained by grafting, the target genes are some genes of the plant itself, and there is no research report on the target of pathogenic bacteria or virus genes.
发明内容 Contents of the invention
本发明根据上述领域的空白及需求,提供一种使番茄植株获得抵御病毒能力的方法,以及该方法涉及到RNA干扰载体,改进的转基因方法等,该方法获得的抗病毒植株能够有效规避转基因食品的安全隐患,且能够大大提高了获得抗病毒转基因品种的效率。 According to the gaps and demands in the above-mentioned fields, the present invention provides a method for enabling tomato plants to obtain the ability to resist viruses, and the method involves RNA interference vectors, improved transgenic methods, etc., and the anti-virus plants obtained by the method can effectively avoid genetically modified foods potential safety hazards, and can greatly improve the efficiency of obtaining anti-virus transgenic varieties.
一种使接穗品种获得病毒抗性的方法,其步骤如下: A method for making scion varieties obtain virus resistance, the steps are as follows:
(1)制备抗病毒的转基因砧木; (1) prepare antiviral transgenic stock;
(2)使接穗嫁接到所述转基因砧木上生长发育; (2) grafting the scion to the transgenic rootstock to grow and develop;
其特征在于:所述抗病毒的转基因砧木为转入RNA干扰载体而获得,所述RNA干扰载体的靶标序列为目标病毒基因组内的基因片段。 It is characterized in that: the anti-virus transgenic rootstock is obtained by transferring RNA interference vector, and the target sequence of the RNA interference vector is a gene segment in the target virus genome.
所述目标病毒指黄瓜花叶病毒CMV,所述接穗品种和转基因砧木都为番茄品种,所述RNA干扰载体的靶标序列如SeqIDNo.1,2,3,4,5或6所示。 The target virus refers to cucumber mosaic virus CMV, the scion variety and the transgenic rootstock are both tomato varieties, and the target sequence of the RNA interference vector is shown in SeqID No.1, 2, 3, 4, 5 or 6.
所述RNA干扰载体为pCAMBIA2300-1A、pCAMBIA2300-2A、pCAMBIA2300-2B、pCAMBIA2300-3A、pCAMBIA2300-CP或pCAMBIA2300-CMV5。 The RNA interference vector is pCAMBIA2300-1A, pCAMBIA2300-2A, pCAMBIA2300-2B, pCAMBIA2300-3A, pCAMBIA2300-CP or pCAMBIA2300-CMV5.
所述制备抗病毒的转基因砧木,转基因包括如下步骤: Described preparation antiviral transgenic stock, transgenic comprises the steps:
(1).番茄播种,(2).切子叶预培养,(3).抑菌筛选培养根癌农杆菌工程菌侵染后的子叶,(4).促分化培养,(5).生根培养,其特征在于: (1). Tomato sowing, (2). Cut cotyledon pre-cultivation, (3). Bacteriostatic screening culture of cotyledon after Agrobacterium tumefaciens engineering bacteria infection, (4). Promoting differentiation culture, (5). Rooting culture , characterized by:
所述番茄的种子播种前经无菌水浸润5~8小时;20%次氯酸钠灭菌10min,无菌水洗5次,每次5min;30℃培养箱催芽两天; The seeds of the tomato were soaked in sterile water for 5 to 8 hours before sowing; 20% sodium hypochlorite was sterilized for 10 minutes, washed with sterile water 5 times, each time for 5 minutes; germination was accelerated for two days in a 30°C incubator;
所述切子叶预培养,是在真叶未出现前切取子叶进行预培养; The pre-cultivation of the cut cotyledons is to cut the cotyledons before the true leaves appear for pre-cultivation;
所述抑菌筛选培养:被根癌农杆菌侵染并暗培养2天的子叶,培养基C中:pH6.0,MediumBase+2mg/L反式玉米素核苷+200mg/L特美汀+100mg/L卡那霉素,叶背朝上光照培养,10d转接一次,直至出现绿色愈伤或芽点;将带芽点的外植体转入培养基C1中:pH6.0,MediumBase+1mg/L反式玉米素核苷+80mg/L卡那霉素+200mg/L特美汀中培养10~14d,待分化出芽; The antibacterial screening culture: cotyledons infected by Agrobacterium tumefaciens and cultured in dark for 2 days, medium C: pH6.0, MediumBase+2mg/L trans-zeatin nucleoside+200mg/L Timentin+ 100mg/L kanamycin, light culture with leaf back facing up, transfer once every 10 days until green callus or bud point appears; transfer the explant with bud point into medium C1: pH6.0, MediumBase+ 1mg/L trans-zeatin nucleoside + 80mg/L kanamycin + 200mg/L timentin, cultivated for 10-14 days, until differentiation and budding;
所述促分化培养:抑菌培养中筛选到的抗性芽转入到培养基C3中:pH6.0,MediumBase+0.5mg/L反式玉米素核苷+1.5mg/L3-吲哚乙酸+80mg/L卡那霉素+200mg/L特美汀; The differentiation-promoting culture: the resistant buds screened in the antibacterial culture were transferred to the medium C3: pH6.0, MediumBase+0.5mg/L trans-zeatin nucleoside+1.5mg/L3-indoleacetic acid+ 80mg/L Kanamycin + 200mg/L Timentin;
所述生根培养的培养基为:pH6.0,MediumBase+2mg/LIBA+200mg/L特美汀。 The culture medium for rooting culture is: pH6.0, MediumBase+2mg/LIBA+200mg/L Timentin.
一种以黄瓜花叶病毒基因为靶标的的RNA干扰载体,其特征在于,所述RNA干扰载体的靶标序列如SeqIDNo.1,2,3,4,5或6所示。 An RNA interference vector targeting the cucumber mosaic virus gene, characterized in that the target sequence of the RNA interference vector is shown in SeqID No. 1, 2, 3, 4, 5 or 6.
所述RNA干扰载体为pCAMBIA2300-1A、pCAMBIA2300-2A、pCAMBIA2300-2B、pCAMBIA2300-3A、pCAMBIA2300-CP或pCAMBIA2300-CMV5。 The RNA interference vector is pCAMBIA2300-1A, pCAMBIA2300-2A, pCAMBIA2300-2B, pCAMBIA2300-3A, pCAMBIA2300-CP or pCAMBIA2300-CMV5.
转化有上述RNA干扰载体的菌株或植物细胞。 A bacterial strain or plant cell transformed with the above-mentioned RNA interference vector.
所述菌株指根癌农杆菌菌株EHA105。 The strain refers to Agrobacterium tumefaciens strain EHA105.
所述植物细胞指转基因番茄砧木的外植体前体细胞。 The plant cells refer to explant precursor cells of transgenic tomato rootstocks.
一种制备转基因番茄砧木的方法,包括如下步骤: A method for preparing transgenic tomato rootstock, comprising the steps of:
(1).番茄播种,(2).切子叶预培养,(3).抑菌筛选培养根癌农杆菌工程菌侵染后的子叶, (1). Tomato seeding, (2). Cut cotyledon pre-cultivation, (3). Bacteriostatic screening culture of cotyledon after Agrobacterium tumefaciens engineering bacteria infection,
(4).促分化培养,(5).生根培养,其特征在于: (4). Promoting differentiation culture, (5). Rooting culture, it is characterized in that:
所述番茄的种子播种前经无菌水浸润5~8小时;20%次氯酸钠灭菌10min,无菌水洗5次,每次5min;30℃培养箱催芽两天; The seeds of the tomato were soaked in sterile water for 5 to 8 hours before sowing; 20% sodium hypochlorite was sterilized for 10 minutes, washed with sterile water 5 times, each time for 5 minutes; germination was accelerated for two days in a 30°C incubator;
所述切子叶预培养,是在真叶未出现前切取子叶进行预培养; The pre-cultivation of the cut cotyledons is to cut the cotyledons before the true leaves appear for pre-cultivation;
所述抑菌筛选培养:被根癌农杆菌侵染并暗培养2天的子叶,培养基C中:pH6.0,MediumBase+2mg/L反式玉米素核苷+200mg/L特美汀+100mg/L卡那霉素,叶背朝上光照培养,10d转接一次,直至出现绿色愈伤或芽点;将带芽点的外植体转入培养基C1中:pH6.0,MediumBase+1mg/L反式玉米素核苷+80mg/L卡那霉素+200mg/L特美汀中培养10~14d,待分化出芽; The antibacterial screening culture: cotyledons infected by Agrobacterium tumefaciens and cultured in dark for 2 days, medium C: pH6.0, MediumBase+2mg/L trans-zeatin nucleoside+200mg/L Timentin+ 100mg/L kanamycin, light culture with leaf back facing up, transfer once every 10 days until green callus or bud point appears; transfer the explant with bud point into medium C1: pH6.0, MediumBase+ 1mg/L trans-zeatin nucleoside + 80mg/L kanamycin + 200mg/L timentin, cultivated for 10-14 days, until differentiation and budding;
所述促分化培养:抑菌培养中筛选到的抗性芽转入到培养基C3中:pH6.0,MediumBase+0.5mg/L反式玉米素核苷+1.5mg/L3-吲哚乙酸+80mg/L卡那霉素+200mg/L特美汀; The differentiation-promoting culture: the resistant buds screened in the antibacterial culture were transferred to the medium C3: pH6.0, MediumBase+0.5mg/L trans-zeatin nucleoside+1.5mg/L3-indoleacetic acid+ 80mg/L Kanamycin + 200mg/L Timentin;
所述生根培养的培养基为:pH6.0,MediumBase+2mg/LIBA+200mg/L特美汀。 The culture medium for rooting culture is: pH6.0, MediumBase+2mg/LIBA+200mg/L Timentin.
本发明目的在于,通过系统性基因沉默与嫁接技术的结合,先使砧木获得对入侵病毒的抗性,然后砧木将其病毒抗性转导至接穗中使嫁接于该砧木上的接穗品种获得病毒抗性。本发明区别于现有技术的思路是:构建的用于转化砧木的RNA干扰载体的基因沉默对象是入侵病毒的基因,而非植物本身的基因。 The purpose of the present invention is, through the combination of systemic gene silencing and grafting technology, first make the rootstock acquire resistance to the invading virus, and then the rootstock transduces its virus resistance to the scion so that the scion variety grafted on the rootstock can acquire the virus resistance. The idea that the present invention is different from the prior art is: the gene silencing object of the RNA interference vector constructed for transforming rootstocks is the gene of the invading virus, not the gene of the plant itself.
本发明中以番茄为砧木和接穗试材,以寄主较为广泛的黄瓜花叶病毒CMV为靶标病毒进行具体试验验证,实验数据显示,接穗番茄获得了良好的CMV病毒抗性。基于本发明的构思,说明书中记载的实验方法的指导以及本领域普通技术人员所具备的常规实验技能,本领域技术人员可以将本发明的方法应用到很多种易于受病毒侵染的并且可以嫁接的植物中,这种应用都在本发明请求保护的范围内。即,本发明的方法不限于应用到具体实施例中记载的番茄上。 In the present invention, tomato is used as rootstock and scion test material, and cucumber mosaic virus CMV, which has a wide range of hosts, is used as target virus for specific experimental verification. Experimental data show that scion tomato has obtained good CMV virus resistance. Based on the concept of the present invention, the guidance of the experimental method recorded in the description and the routine experimental skills possessed by those of ordinary skill in the art, those skilled in the art can apply the method of the present invention to many kinds of viruses that are easy to be infected by viruses and can be grafted. In the plants, this application is all within the scope of protection of the present invention. That is, the method of the present invention is not limited to the tomato described in the specific examples.
本发明以番茄为试材,以黄瓜花叶病毒(CucumberMosaicVirus;CMV)为靶标对象,验证本发明的构思。即通过分别选择CMV5个基因OPF片段以及1个融合了5个基因片段的共6个ihpRNA植物表达载体,采用农杆菌介导转化番茄,使转化植株产生siRNA,接种CMV筛选出高抗病毒的转基因植株。之后以抗性植株的T0或T1代为砧木,嫁接未转基因的番茄,砧木中的siRNA转运到接穗中,以增强接穗对CMV的抗性。目前,在栽培番茄品种中还未发现有对CMV病毒的抗性基因,且栽培番茄品种也仅存在耐病性品种,利用常规杂交方法难以获得CMV抗性番茄品种。因此通过RNA干扰转基因的方法,是快速获得CMV抗性材料的有效途径。近年来,围绕转基因生物育种,我国在转基因生物安全管理和安全性评价研究方面实现了与国际接轨,并取得了令人瞩目的进展。但有关基因工程中所涉及的抗性选择性标记基因对食品安全性的影响,部分人一直存有疑虑。而本发明巧妙的避开了这一议题,因为接穗所获得的系统性抗性,来源于砧木中的小分子RNA的沉默效应。因此理论上,嫁接转基因沉默植株接穗品种基因组以及所产生的雌/雄配子中将不含抗性标记基因,防止了抗生素抗性基因的漂移。 In the present invention, tomato is used as a test material, and Cucumber Mosaic Virus (CMV) is used as a target object to verify the concept of the present invention. That is, by selecting 5 CMV gene OPF fragments and a total of 6 ihpRNA plant expression vectors fused with 5 gene fragments, using Agrobacterium-mediated transformation of tomato to make the transformed plants produce siRNA, and inoculating CMV to screen out transgenes with high virus resistance plants. Then use the T0 or T1 generation of resistant plants as the rootstock, and graft non-transgenic tomatoes, and the siRNA in the rootstock is transferred to the scion to enhance the resistance of the scion to CMV. At present, no resistance gene to CMV virus has been found in cultivated tomato varieties, and there are only disease-resistant varieties in cultivated tomato varieties. It is difficult to obtain CMV-resistant tomato varieties by conventional hybridization methods. Therefore, the method of transgenic by RNA interference is an effective way to quickly obtain CMV-resistant materials. In recent years, around the breeding of genetically modified organisms, my country has achieved international standards in the study of safety management and safety evaluation of genetically modified organisms, and has made remarkable progress. However, some people have always had doubts about the impact of resistance selectable marker genes involved in genetic engineering on food safety. However, the present invention cleverly avoids this issue, because the systemic resistance acquired by the scion is derived from the silencing effect of the small molecule RNA in the rootstock. Therefore, in theory, the scion genome of grafted transgenic silent plants and the resulting female/male gametes will not contain resistance marker genes, which prevents the drift of antibiotic resistance genes.
本发明包括以下步骤: The present invention comprises the following steps:
a.针对黄瓜花叶病毒(CMV)5个基因,通过比对番茄EST数据库,选取CMV5个基因ORF区间的片段,通过PCR和重叠PCR构建5个含CMV特异基因片段和1个融合了5个基因片段的ihpRNA植物沉默表达载体; a. For the 5 genes of cucumber mosaic virus (CMV), by comparing the tomato EST database, select the fragments of the ORF interval of the 5 genes of CMV, and construct 5 fragments containing CMV-specific genes and 1 fusion of 5 gene fragments by PCR and overlapping PCR The ihpRNA plant silencing expression vector of the gene fragment;
b.利用改良后的遗传转化体系,通过农杆菌介导转化番茄植株,检测获得转基因阳性植株,扦插繁殖转基因植株(T0代); b. Utilize the improved genetic transformation system, transform tomato plants through Agrobacterium-mediated transformation, obtain transgenic positive plants through detection, and propagate transgenic plants by cuttings (T0 generation);
c.通过接种CMV病毒,比较不同载体转基因株系的CMV抗性,筛选出高抗病毒的转基因株系; c. By inoculating CMV virus, comparing the CMV resistance of transgenic strains with different vectors, and screening out transgenic strains with high virus resistance;
d.利用抗性扦插苗(T0代)或T1代植株为砧木,嫁接野生型植株(未转基因植株),接种CMV病毒,检测获得病毒抗性的嫁接植株; d. Use resistant cutting seedlings (T0 generation) or T1 generation plants as rootstocks, graft wild-type plants (non-transgenic plants), inoculate CMV virus, and detect grafted plants that have acquired virus resistance;
e.提取砧木与接穗总RNA,反转为cDNA,RT-PCR检测抗生素抗性基因的表达。 e. extract rootstock and scion total RNA, reverse to cDNA, and detect the expression of antibiotic resistance gene by RT-PCR.
附图说明 Description of drawings
图1:黄瓜花叶病毒(CMV)基因组结构特征 Figure 1: Genome structure features of cucumber mosaic virus (CMV)
图2:本发明采用的载体构建方案 Figure 2: The carrier construction scheme adopted in the present invention
图3:5个含CMV基因特异片段载体的构建 Figure 3: Construction of 5 vectors containing CMV gene-specific fragments
M2K/15K:Marker2K/15K; M2K/15K: Marker2K/15K;
A:用PstI/SalI酶切验证克隆载体pUCCRNAi-1A~CP,所切出小片段为构建入克隆载体的反向重复序列; A: Use PstI/SalI digestion to verify the cloning vector pUCCRNAi-1A~CP, and the cut out fragment is the inverted repeat sequence constructed into the cloning vector;
B:将从pUCCRNAi-1A~CP酶切后的反向重复序列,构建入表达载体得到pCAMBIA2300-1A~CP载体; B: Construct the inverted repeat sequence from pUCCRNAi-1A~CP into the expression vector to obtain the pCAMBIA2300-1A~CP vector;
C:1~3:PstI/SalI酶切验证表达载体pCAMBIA2300-1A~CP,所切出小片段为构建入克隆载体的反向重复序列。 C: 1-3: PstI/SalI digestion to verify the expression vector pCAMBIA2300-1A-CP, the small fragments excised are inverted repeat sequences constructed into the cloning vector.
图4:含5个CMV基因片段融合载体的构建 Figure 4: Construction of a fusion vector containing 5 CMV gene fragments
A.1:Marker为2K,分别利用R1AF/R1AR和R2AF/R2AR引物扩增片段1AF和2AF; A.1: Marker is 2K, using R1AF/R1AR and R2AF/R2AR primers to amplify fragments 1AF and 2AF respectively;
A.2:利用R1AF/R2AR引物,以1AF和2AF混合物为模板,扩增融合片段1A+2A; A.2: Use the R1AF/R2AR primers to amplify the fusion fragment 1A+2A using the mixture of 1AF and 2AF as a template;
B.1:分别利用R2BF/R~RCPF/R引物扩增片段2BF、3AF和CPF; B.1: Use R2BF/R~RCPF/R primers to amplify fragments 2BF, 3AF and CPF respectively;
B.2:利用R2BF/RCPR引物,以2BF、3AF和CPF混合物为模板,扩增融合片段2B+3A+CP; B.2: Use R2BF/RCPR primers to amplify the fusion fragment 2B+3A+CP using the mixture of 2BF, 3AF and CPF as a template;
C.:CMV5为利用R1AF/RCPR引物,以1A+2A和2B+3A+CP混合物为模板,扩增融合片段CMV5; C.: CMV5 uses R1AF/RCPR primers to amplify the fusion fragment CMV5 with 1A+2A and 2B+3A+CP mixtures as templates;
D.:PstI,PstI/SalI酶切检测pCAMBIA2300-CMV5载体。 D.: PstI, PstI/SalI digestion to detect pCAMBIA2300-CMV5 vector.
图5:本发明采用的改进后的番茄转基因步骤 Figure 5: The improved tomato transgenic steps adopted by the present invention
图6:转基因番茄的PCR检测(部分株系分批检测) Figure 6: PCR detection of transgenic tomato (batch detection of some lines)
M:Marker2K;+:质粒pCAMBIA2300-1A为模板;CK:未转基因番茄MoneyMaker为模1A~CMV5-1~9:表示以Actin1PF/IntornR为引物,不同靶标载体对应转基因株系为模板扩增的条带 M: Marker2K; +: Plasmid pCAMBIA2300-1A as a template; CK: Non-transgenic tomato MoneyMaker as a template 1A~CMV5-1~9: Indicates the strips amplified with Actin1PF/IntornR as primers and corresponding transgenic lines of different target vectors as templates bring
图7:转基因番茄部分株系的Southern杂交检测 Figure 7: Southern hybridization detection of some transgenic tomato lines
M:Marker15K;+:质粒pCAMBIA2300-1A为模板(未酶切完全);CK:未转基因番茄MoneyMaker为模板;T01A~CMV5.1~2:表示不同靶标载体对应转基因株系Southern杂交条带 M: Marker15K; +: Plasmid pCAMBIA2300-1A as a template (not digested completely); CK: Non-transgenic tomato MoneyMaker as a template; T01A~CMV5.1~2: Southern hybridization bands of different target vectors corresponding to transgenic lines
图8:转基因番茄植株的RT-PCR检测 Figure 8: RT-PCR detection of transgenic tomato plants
M:Marker2K;+:质粒pCAMBIA2300-1A为模板;CK:未转基因番茄MoneyMaker为模板;T01A~CMV5.1~2:表示分别以1AF~CPF和R1AF(T0CMV5)为上游引物,IntronR为下游引物,扩增不同靶标载体对应转基因株系的条带 M: Marker2K; +: Plasmid pCAMBIA2300-1A as template; CK: non-transgenic tomato MoneyMaker as template; T01A~CMV5.1~2: 1AF~CPF and R1AF (T0CMV5) as upstream primers, IntronR as downstream primers, respectively. Amplify the bands corresponding to transgenic lines with different target vectors
图9:转基因番茄的扦插繁殖与CMV攻毒筛选抗病毒T0代株系 Figure 9: Transgenic tomato cutting propagation and CMV challenge to screen anti-virus T0 generation lines
CK:为未转基因番茄植株MoneyMaker;T01A~CP.1~2和T0CMV5.1~5:表示不同转基因株系扦插苗,接种CMV病毒后鉴定病毒抗性,图中株系为筛选出的部分高抗株系 CK: Non-transgenic tomato plant MoneyMaker; T01A~CP.1~2 and T0CMV5.1~5: Indicate the cutting seedlings of different transgenic lines, and the virus resistance was identified after inoculation with CMV virus. The lines in the figure are some of the selected high Anti-strain
图10:转基因番茄T1代的繁殖与CMV攻毒筛选抗病毒T1代株系 Figure 10: Propagation of transgenic tomato T1 generation and CMV challenge to screen anti-virus T1 generation lines
CK:为未转基因番茄植株MoneyMaker;T11A.1~CMV5.1:表示不同转基因株系T1代,接种CMV病毒后鉴定病毒抗性 CK: Non-transgenic tomato plant MoneyMaker; T11A.1~CMV5.1: Indicates the T1 generation of different transgenic lines, and the virus resistance was identified after inoculation with CMV virus
图11:本发明采用的嫁接技术 Figure 11: Grafting technique used in the present invention
图12:嫁接后抗生素抗性基因NptII的RT-PCR检测 Figure 12: RT-PCR detection of antibiotic resistance gene NptII after grafting
M:Marker2K;+:质粒pCAMBIA2300-1A为模板;CK:未转基因番茄MoneyMaker为模板;T01A~CMV5.1~2:表示以NptIIF/R为引物不同靶标载体对应转基因株系为模板扩增的PCR条带上图表明接穗中无NptII基因的表达 M: Marker2K; +: Plasmid pCAMBIA2300-1A as a template; CK: Non-transgenic tomato MoneyMaker as a template; T01A~CMV5.1~2: Indicates PCR amplification using NptIIF/R as primers and corresponding transgenic lines of different target vectors as templates The top panel of the band indicates that there is no expression of NptII gene in the scion
具体实施方式 detailed description
实施例1.针对黄瓜花叶病毒(CMV)基因,通过比对番茄EST数据库,构建6个ihpRNA植物沉默表达载体; Example 1. For the cucumber mosaic virus (CMV) gene, 6 ihpRNA plant silencing expression vectors were constructed by comparing the tomato EST database;
黄瓜花叶病毒(Cucumbermosaicvirus,CMV)是雀麦花叶病毒科(Bromoviridae)黄瓜花叶病毒属(Cucumovirs)成员。CMV为单链正义RNA病毒。基因组分为RNA1、RNA2和RNA3,基因组大小分别为3389nt、3035nt和2197nt,分别包被于三颗病毒粒体之中,其中RNA3含亚基因组RNA4,全长1000nt。RNA1编码核酸复制酶;RNA2编码两个蛋白:RNA依赖的RNA聚合酶(RNA-dependentRNApolymerase,RdRP)和2b蛋白,RdRP与病毒的侵染有关,2b蛋白类似一种病毒运动蛋白,有实验证明2b蛋白能够减弱RNA介导的病毒基因的沉默;RNA3编码一种运动蛋白3A蛋白,其具体功能不详但与病毒细胞间的传递有关;RNA4编码病毒外壳蛋白:CP蛋白。CMV基因组的具体特征如图1。 Cucumber mosaic virus (CMV) is a member of the genus Cucumovirus in the family Bromoviridae. CMV is a single-stranded positive-sense RNA virus. The genome is divided into RNA1, RNA2 and RNA3. The genome size is 3389nt, 3035nt and 2197nt, respectively, and they are respectively encapsulated in three virions. Among them, RNA3 contains subgenomic RNA4 with a total length of 1000nt. RNA1 encodes nucleic acid replicase; RNA2 encodes two proteins: RNA-dependent RNA polymerase (RNA-dependent RNApolymerase, RdRP) and 2b protein, RdRP is related to virus infection, 2b protein is similar to a viral motor protein, and it has been proved by experiments that 2b The protein can weaken the RNA-mediated silencing of viral genes; RNA3 encodes a motor protein 3A protein, whose specific function is unknown but related to the transmission of virus cells; RNA4 encodes the viral coat protein: CP protein. The specific features of the CMV genome are shown in Figure 1.
本发明针对黄瓜花叶病毒(CMV)5个基因,通过比对番茄EST数据库,选取CMV5个基因ORF区间的片段如(SeqIDNo.1、2、3、4、5所示),通过PCR和重叠PCR构建5个含CMV特异基因片段和1个融合了5个基因片段的ihpRNA植物沉默表达载体,具体步骤如下: The present invention aims at the 5 genes of cucumber mosaic virus (CMV), by comparing the tomato EST database, selecting the fragments of the ORF interval of the 5 genes of CMV (as shown in SeqIDNo.1, 2, 3, 4, 5), and by PCR and overlapping PCR constructs 5 ihpRNA plant silencing expression vectors containing CMV-specific gene fragments and 1 fusion of 5 gene fragments. The specific steps are as follows:
扩增5个片段分别用到的引物,下划线部分为引入的酶切位点: The primers used to amplify the 5 fragments respectively, the underlined part is the introduced restriction site:
1AF:5'-ATTGTCGACTGGATGCGTCCTGTGC-3' 1AF: 5'-ATT GTCGAC TGGATGCGTCCTGTGC-3'
1AR:5'-ATCGGATCCTTGGGCGGACTTCTTG-3'; 1AR: 5'-ATC GGATCC TTGGGCGGACTTCTTG-3';
2AF:5'-AATGTCGACTGTCCAACGCCAACC-3' 2AF: 5'-AAT GTCGAC TGTCCAACGCCAACC-3'
2AR:5'-AGGGGATCCTTCGTTGTACCTACTC-3' 2AR: 5'-AGG GGATCC TTCGTTGTACCTACTC-3'
2BF:5'-ATTGTCGACTGGCTCGTATGGTGGA-3' 2BF: 5'-ATT GTCGAC TGGCTCGTATGGTGGA-3'
2BR:5'-GAGGGATCCGCGAACCAATCTGTAT-3'; 2BR: 5'-GAG GGATCC GCGAACCAATCTGTAT-3';
3AF:5'-ATAGTCGACAGCCCTGAAGCCATTA-3' 3AF: 5'-ATA GTCGAC AGCCCTGAAGCCATTA-3'
3AR:5'-AGAGGATCCAAAGACCCTTCAGCAT-3'; 3AR: 5'-AGA GGATCC AAAGACCCTTCAGCAT-3';
CPF:5'-ATTGTCGACCTTTGTAGGGAGTGA-3' CPF: 5'-ATT GTCGAC CTTTGTAGGGAGTGA-3'
CPR:5'-ATCGGATCCTTTACGGACTGTCA-3'; CPR: 5'-ATC GGATCC TTTACGGACTGTCA-3';
扩增融合片段用到的重叠PCR引物: Overlapping PCR primers used to amplify fusion fragments:
R1AF:5'-TATGTCGACTGTGCCCGAGGGTATTG-3' R1AF: 5'-TAT GTCGAC TGTGCCCGAGGGTATTG-3'
R1AR:5'-TCAGTAGCACGGTTTAAATTTACAGATCACGCATTCAC-3' R1AR: 5'-TCAGTAGCACGGTTTAAATTTACAGATCACGCATTCAC-3'
R2AF:5'-GTGAATGCGTGATCTGTAAATTTAAACCGTGCTACTGA-3' R2AF: 5'-GTGAATGCGTGATCTGTAAATTTAAACCGTGCTACTGA-3'
R2AR:5'-TTCTTCGCCTCCACCATACGCTTGATGAAAAGAGTCGTCGT-3' R2AR: 5'-TTCTTCGCCTCCACCATACGCTTGATGAAAAGAGTCGTCGT-3'
R2BF:5'-ACGACGACTCTTTTCATCAAGCGTATGGTGGAGGCGAAGAA-3' R2BF: 5'-ACGACGACTCTTTTCATCAAGCGTATGGTGGAGGCGAAGAA-3'
R2BR:5'-TCCACTGATGCTGAAGGGTCTGATAGAACGGTAGGAAGCG-3' R2BR: 5'-TCCACTGATGCTGAAGGGTCTGATAGAACGGTAGGAAGCG-3'
R3AF:5'-CGCTTCCTACCGTTCTATCAGACCCTTCAGCATCAGTGGA-3' R3AF: 5'-CGCTTCCTACCGTTTCTATCAGACCCTTCAGCATCAGTGGA-3'
R3AR:5'-CGAGTTAATCCTTTGCCGAACACGGTCGTATTGCTTCCTT-3' R3AR: 5'-CGAGTTAATCCTTTGCCGAACACGGTCGTATTGCTTCCTT-3'
RCPF:5'-AAGGAAGCAATACGACCGTGTTCGGCAAAGGATTAACTCG-3' RCPF: 5'-AAGGAAGCAATACGACCGTGTTCGGCAAAGGATTAACTCG-3'
RCPR:5'-ATCGGATCCATCTATTACCCTAAAGCCAC-3' RCPR: 5'-ATC GGATCC ATCTATTACCCTAAAGCCAC-3'
克隆载体检测引物: Cloning Vector Detection Primers:
M13+:5'-AGGGTTTTCCCAGTCACG-3' M13+: 5'-AGGGTTTTTCCCAGTCACG-3'
M13-:5'-GTGTGAAATTGTTATCCGCTC-3' M13-: 5'-GTGTGAAATTGTTATCCGCTC-3'
表达载体检测引物: Expression vector detection primers:
Actin1PF:5'-CCTCAGCATTGTTCATCGGTAGTT-3' Actin1PF: 5'-CCTCAGCATTGTTCATCGGTAGTT-3'
IntronR:5'-TGTGTCACTCAAAACCAGATAAAC-3' IntronR: 5'-TGTGTCACTCAAAACCAGATAAAC-3'
克隆载体:pUCCRNAi,记载在(Luo,A.,Qian,Q.,Yin,H.etal.(2006)EUI1,encodingaputativecytochromeP450monooxygenase,regulatesinternodeelongationbymodulatinggibberellinresponsesinrice.PlantCellPhysiol.47,181–191.)中,本实验室亦有保存,自申请日起二十年内可向公众发放用于实验研究。 Cloning vector: pUCCRNAi, described in (Luo, A., Qian, Q., Yin, H. et al. (2006) EUI1, encoding aputative cytochrome P450monooxygenase, regulates internodeelongation by modulating gibberellin responses in rice. PlantCellPhysiol.47, 181–191.), also preserved in our laboratory, since It can be issued to the public for experimental research within twenty years from the date of application.
植物表达载体:pCAMBIA2300-Actin1-ocs,记载在(Fang,J.,Chai,C.,Qian,Q.,Li,C.,Tang,J.,Sun,L.,Huang,Z.,Guo,X.,Sun,C.andLiu,M.2008.MutationsofgenesinsynthesisofthecarotenoidprecursorsofABAleadtopre-harvestsproutingandphoto-oxidationinrice.ThePlantJournal.2,177-189),本实验室亦有保存,自申请日起二十年内可向公众发放用于实验研究。 Plant expression vector: pCAMBIA2300-Actin1-ocs, described in (Fang, J., Chai, C., Qian, Q., Li, C., Tang, J., Sun, L., Huang, Z., Guo, X., Sun, C. and Liu, M. 2008. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. The Plant Journal. 2, 177-189), which is also preserved in this laboratory and can be released to the public for experimental research within 20 years from the date of application.
本发明中利用pUCCRNAi中两组同尾酶切位点XhoI/SalI和BglII/BamHI,将选取并经PCR扩增得到的CMV5个基因ORF区间的片段如SeqIDNo.1、2、3、4、5所示的片段的正、反向序列分别构建到pUCCRNAi的两组酶切位点中,即每个片段的正反向序列分别构建到两组酶切位点中得到具有反向重复序列的RNAi克隆载体pUCCRNAi-1A、2A、2B、3A、CP;通过重叠PCR将SeqIDNo.1、2、3、4、5所示的5个片段内的部分片段连在一起得到SeqIDNo.6所示的片段,将SeqIDNo.6所示的片段的正、反向序列构建到pUCCRNAi的两组酶切位点中得到RNAi克隆载体pUCCRNAi-CMV5,引物为上面的重叠PCR引物。 In the present invention, two groups of homologous enzyme cutting sites XhoI/SalI and BglII/BamHI are used in pUCCRNAi to select and amplify fragments of CMV5 gene ORF intervals such as SeqIDNo.1, 2, 3, 4, 5 The forward and reverse sequences of the fragments shown are respectively constructed into two sets of restriction sites of pUCCRNAi, that is, the forward and reverse sequences of each fragment are respectively constructed into two sets of restriction sites to obtain RNAi with inverted repeat sequences Cloning vector pUCCRNAi-1A, 2A, 2B, 3A, CP; through overlapping PCR, some fragments in the 5 fragments shown in SeqIDNo.1, 2, 3, 4, 5 were connected together to obtain the fragment shown in SeqIDNo.6 , the forward and reverse sequences of the fragment shown in SeqID No.6 were constructed into the two sets of restriction sites of pUCCRNAi to obtain the RNAi cloning vector pUCCRNAi-CMV5, and the primers were the above overlapping PCR primers.
将克隆载体pUCCRNAi-1A、2A、2B、3A、CP、CMV5的反向重复区,用内切酶SalI/PstI酶切后连接到植物表达载体pCAMBIA2300-Actin1-ocs中,载体构建方案如图2所示,得到具有ihpRNA的植物表达载体pCAMBIA2300-1A、2A、2B、3A、CP、CMV5酶切,酶切验证如图3,4所示。测序结果也显示所选的正反向序列的构建位置正确。 The inverted repeat regions of the cloning vectors pUCCRNAi-1A, 2A, 2B, 3A, CP, and CMV5 were digested with endonuclease SalI/PstI and then connected to the plant expression vector pCAMBIA2300-Actin1-ocs. The vector construction scheme is shown in Figure 2 As shown, the plant expression vectors pCAMBIA2300-1A, 2A, 2B, 3A, CP, and CMV5 with ihpRNA were digested, and the digestion verification was shown in Figures 3 and 4. Sequencing results also showed that the construction positions of the selected forward and reverse sequences were correct.
将构建得到的植物表达载体转入到大肠杆菌感受态细胞中,扩大培养,提取质粒用于农杆菌转化。操作如下: The constructed plant expression vector was transformed into Escherichia coli competent cells, expanded and cultivated, and the plasmid was extracted for Agrobacterium transformation. The operation is as follows:
步骤1.pUCCRNAi载体片段酶切与回收 Step 1. Digestion and recovery of pUCCRNAi vector fragments
提取大肠杆菌中pUCCRNAi质粒(质粒DNA的小量提取试剂盒)。取5ul质粒,利用XhoI和BagII内切酶,采用50ul酶切体系,37℃酶切过夜,回收酶切产物中3K左右长度的质粒片段;采用DNA/RNA的紫外分光检测琼脂糖凝胶电泳分析判断回收片段的浓度。回收片段标记为XhoI/BagII-pUCCRNAi。 Extract the pUCCRNAi plasmid (Plasmid DNA mini-extraction kit) from Escherichia coli. Take 5ul of plasmid, use XhoI and BagII endonucleases, use 50ul enzyme digestion system, digest overnight at 37°C, and recover the plasmid fragment with a length of about 3K in the digested product; use DNA/RNA UV spectroscopy to detect agarose gel electrophoresis analysis Determine the concentration of recovered fragments. The recovered fragment was labeled as XhoI/BagII-pUCCRNAi.
步骤2.CMV基因PCR片段酶切与回收 Step 2. CMV gene PCR fragment digestion and recovery
利用引物1AF/R~CPF/R,以含CMV全基因组的侵染性克隆载体上,通过如下PCR方法,分别获得5个CMV基因片段,分别记录为1A、2A、2B、3A和CP;测序验证其准确性; Using primers 1AF/R~CPF/R, on the invasive cloning vector containing the whole CMV genome, obtained 5 CMV gene fragments respectively by the following PCR method, which were recorded as 1A, 2A, 2B, 3A and CP; verify its accuracy;
引物的稀释:将合成的引物直接加去离子水配制成终浓度为10umol/L。 Dilution of primers: add deionized water directly to the synthesized primers to make a final concentration of 10umol/L.
(2)混匀后,稍离心至管底,将PCR管放入PCR仪,盖上热盖。扩增前先预热热盖。 (2) After mixing, centrifuge slightly to the bottom of the tube, put the PCR tube into the PCR machine, and cover with a hot lid. Preheat the heated lid before amplification.
(3)以下扩增条件 (3) The following amplification conditions
94℃3min预变性,94℃30sec变性;50-68℃30sec退火;72℃1min延伸(目的片段大于500bp用1分钟,小于500bp用40秒),35个循环,72℃10min,4℃保存 Pre-denaturation at 94°C for 3min, denaturation at 94°C for 30sec; annealing at 50-68°C for 30sec; extension at 72°C for 1min (1 minute for target fragments larger than 500bp, 40 seconds for target fragments smaller than 500bp), 35 cycles, 10min at 72°C, stored at 4°C
分别纯化回收PCR产物得5个CMV基因片段。各取20ul回收片段,利用SalI和BamHI内切酶,采用50ul酶切体系,37℃酶切6h,回收酶切产物中对应SeqIDNo.1~5所示序列长度的质粒片段。取1ul回收片段,进行凝胶电泳判断回收质量。CMV回收片段标记为SalI/BamHI-1A、SalI/BamHI-2A、SalI/BamHI-2B、SalI/BamHI-3A、SalI/BamHI-CP。 The PCR products were purified and recovered to obtain 5 CMV gene fragments. Take 20ul of the recovered fragments, use SalI and BamHI endonucleases, use 50ul enzyme digestion system, digest at 37°C for 6h, and recover the plasmid fragments corresponding to the sequence length shown in SeqIDNo.1-5 in the digested products. Take 1 ul of recovered fragments and perform gel electrophoresis to judge the recovered quality. CMV recovered fragments were labeled SalI/BamHI-1A, SalI/BamHI-2A, SalI/BamHI-2B, SalI/BamHI-3A, SalI/BamHI-CP.
步骤3.pUCCRNAi-1A~CPF的连接与转化大肠杆菌 Step 3. Ligation and transformation of pUCCRNAi-1A-CPF into Escherichia coli
取4ulXhoI/BagII-pUCCRNAi和8ulSalI/BamHI-1A、SalI/BamHI-2A、SalI/BamHI-2B、SalI/BamHI-3A、SalI/BamHI-CP分别进行接连: Take 4ulXhoI/BagII-pUCCRNAi and 8ulSalI/BamHI-1A, SalI/BamHI-2A, SalI/BamHI-2B, SalI/BamHI-3A, SalI/BamHI-CP to connect respectively:
轻弹,混匀,稍离心。16℃过夜连接20h反应得连接产物。65℃10min灭活。 Flick, mix, and centrifuge briefly. The connection product was obtained by reacting overnight at 16°C for 20 hours. Inactivate at 65°C for 10 minutes.
取10ul连接产物,按方法(8.大肠杆菌质粒DNA的转化)转化大肠杆菌感受态(感受态大肠杆菌Trans5aChemicallyCompetentCell购自北京全式金生物技术有限公司) Take 10ul of the ligation product, and transform Escherichia coli competent according to the method (8. Transformation of Escherichia coli plasmid DNA) (competent Escherichia coli Trans5aChemicallyCompetentCell was purchased from Beijing Quanshijin Biotechnology Co., Ltd.)
(1)在每管制备好的感受态大肠杆菌中(100ul/管),加入1-10ug质粒DNA3ul,(连接产物不超过感受态的1/10)轻弹混匀。 (1) Add 3ul of 1-10ug of plasmid DNA to each tube of prepared competent E. coli (100ul/tube), (the ligation product does not exceed 1/10 of the competent) flick and mix well.
(2)将混合物置于冰水浴中保持30min期间轻弹混匀。 (2) Place the mixture in an ice-water bath for 30 minutes and mix well by flicking.
(3)42℃水浴中热击转化60sec,然后迅速转入冰上放2min,注意不要摇动离心管。 (3) Heat shock in a water bath at 42°C for 60 sec, then quickly transfer to ice for 2 min, be careful not to shake the centrifuge tube.
(4)在超净工作台上加入无菌无抗的37℃温浴的500ulLB液体培养基,混匀。 (4) Add 500ul LB liquid medium in a sterile 37°C warm bath on the ultra-clean workbench, and mix well.
(5)37℃200rpm振荡预培养1h,得质粒DNA转化菌液。(期间准备带抗生素的平板) (5) Pre-cultivate for 1 hour at 37°C with shaking at 200 rpm to obtain plasmid DNA transformed bacterial liquid. (Plates with antibiotics prepared during the period)
(6)4000rpm离心5min去除上清400ul,剩下的取50ul涂平板做筛选,涂平板时,以终浓度50mg/L氨苄青霉素(Amp)为抗生素筛选阳性转化子。 (6) Centrifuge at 4000rpm for 5 minutes to remove 400ul of the supernatant, and take 50ul of the rest to spread on a plate for screening. When spreading the plate, use ampicillin (Amp) at a final concentration of 50mg/L as the antibiotic to select positive transformants.
(7)用20ul枪头挑取阳性单菌落,加入到含Amp的1mlLB液体培养基中,250rpm37℃摇床培养6h;取2ul菌液,按步骤2的PCR方法和体系(利用克隆载体检测引物M13+/-检测转化子,阳性结果为CMV基因片段长度加360bp,选择PCR检测为阳性转化菌,测序验证;得到为大肠杆菌阳性菌液,分别标记为pUCCRNAi-1AF、pUCCRNAi-2AF、pUCCRNAi-2BF、pUCCRNAi-3AF、pUCCRNAi-CPF。 (7) Pick a positive single colony with a 20ul pipette tip, add it to 1ml LB liquid medium containing Amp, and incubate on a shaker at 250rpm at 37°C for 6h; take 2ul of the bacterial liquid, and follow the PCR method and system in step 2 (using the cloning carrier to detect primers M13+/- detected transformants, the positive result was the length of the CMV gene fragment plus 360bp, and PCR was selected as a positive transformant, which was verified by sequencing; the obtained Escherichia coli positive bacteria were labeled as pUCCRNAi-1AF, pUCCRNAi-2AF, pUCCRNAi-2BF respectively , pUCCRNAi-3AF, pUCCRNAi-CPF.
步骤4.pUCCRNAi-1A~CPF载体片段酶切与回收 Step 4. Digestion and recovery of pUCCRNAi-1A-CPF vector fragments
分别提取大肠杆菌中pUCCRNAi-1AF、pUCCRNAi-2AF、pUCCRNAi-2BF、pUCCRNAi-3AF、pUCCRNAi-CPF质粒。 The plasmids pUCCRNAi-1AF, pUCCRNAi-2AF, pUCCRNAi-2BF, pUCCRNAi-3AF and pUCCRNAi-CPF were extracted from Escherichia coli respectively.
分别取5ul质粒,利用SalI和BamHI内切酶,采用50ul酶切体系,37℃酶切过夜,回收酶切产物中3K左右长度的质粒片段;取1ul回收片段,利用方法DNA/RNA的紫外分光检测和琼脂糖凝胶电泳分析判断回收片段的浓度。5个回收片段分别标记为SalI/BamHI-pUCCRNAi1AF、SalI/BamHI-pUCCRNAi2AF、SalI/BamHI-pUCCRNAi2BF、SalI/BamHI-pUCCRNAi3AF、SalI/BamHI-pUCCRNAiCPF。 Take 5ul plasmids respectively, use SalI and BamHI endonucleases, use 50ul enzyme digestion system, digest overnight at 37°C, and recover plasmid fragments with a length of about 3K in the digested products; take 1ul recovered fragments, and use the method DNA/RNA UV spectroscopy Detection and agarose gel electrophoresis analysis to determine the concentration of recovered fragments. The five recovered fragments were labeled as SalI/BamHI-pUCCRNAi1AF, SalI/BamHI-pUCCRNAi2AF, SalI/BamHI-pUCCRNAi2BF, SalI/BamHI-pUCCRNAi3AF, SalI/BamHI-pUCCRNAiCPF, respectively.
步骤5.pUCCRNAi-1A~CP的连接与转化大肠杆菌 Step 5. Ligation and transformation of pUCCRNAi-1A-CP into Escherichia coli
按步骤3中的载体与基因片段连接方法,取步骤4中得到载体酶切回收片段和步骤2中得到的5种CMV基因,分别按组合 According to the method of connecting the carrier and gene fragments in step 3, take the fragments recovered by enzyme digestion of the vector obtained in step 4 and the 5 kinds of CMV genes obtained in step 2, and press the combination
SalI/BamHI-pUCCRNAi1AF+SalI/BamHI-1A、 SalI/BamHI-pUCCRNAi1AF+SalI/BamHI-1A,
SalI/BamHI-pUCCRNAi2AF+SalI/BamHI-2A、 SalI/BamHI-pUCCRNAi2AF+SalI/BamHI-2A,
SalI/BamHI-pUCCRNAi2BF+SalI/BamHI-2B、 SalI/BamHI-pUCCRNAi2BF+SalI/BamHI-2B,
SalI/BamHI-pUCCRNAi3AF+SalI/BamHI-3A、 SalI/BamHI-pUCCRNAi3AF+SalI/BamHI-3A,
SalI/BamHI-pUCCRNAiCPF+SalI/BamHI-CP,进行连接,加入其他组分后采用20ul体系,16℃连接过夜; SalI/BamHI-pUCCRNAiCPF+SalI/BamHI-CP, for connection, after adding other components, use 20ul system, connect overnight at 16°C;
取10ul连接产物,转化大肠杆菌感受态(方法同步骤3),取2ul阳性菌液按方法采用50ul体系,利用克隆载体检测引物(M13+/-)进行PCR检测转化子阳性(阳性结果为2×CMV基因片段长度加360bp);选择PCR阳性转化菌,测序验证;得到验证结果为阳性的转化菌,分别标记为pUCCRNAi-1A、pUCCRNAi-2A、pUCCRNAi-2B、pUCCRNAi-3A、pUCCRNAi-CP。 Take 10ul of the ligation product, transform Escherichia coli competent (the method is the same as step 3), take 2ul of the positive bacterial liquid and use the 50ul system according to the method, and use the cloning vector detection primer (M13+/-) to detect the positive result of the transformant by PCR (positive result is 2× The length of the CMV gene fragment plus 360bp); PCR-positive transformants were selected and verified by sequencing; the transformants with positive verification results were marked as pUCCRNAi-1A, pUCCRNAi-2A, pUCCRNAi-2B, pUCCRNAi-3A, pUCCRNAi-CP respectively.
步骤6.pCAMBIA2300-Actin1-ocs载体片段酶切与回收 Step 6. Digestion and recovery of pCAMBIA2300-Actin1-ocs vector fragment
提取大肠杆菌中pCAMBIA2300-Actin1-ocs质粒。取5ul质粒,,用SalI和PstI内切酶,采用50ul酶切体系,37℃酶切过夜,回收酶切产物中10Kb左右长度的质粒片段;取1ul回收片段,利用DNA/RNA的紫外分光检测和琼脂糖凝胶电泳分析判断回收片段的浓度。 The pCAMBIA2300-Actin1-ocs plasmid was extracted from Escherichia coli. Take 5ul of the plasmid, use SalI and PstI endonucleases, use 50ul enzyme digestion system, digest at 37°C overnight, and recover the plasmid fragment of about 10Kb in length in the digested product; take 1ul of the recovered fragment, and use DNA/RNA UV spectroscopic detection And agarose gel electrophoresis analysis to determine the concentration of recovered fragments.
回收片段标记为SalI/PstI-pCAMBIA2300。 The recovered fragment was labeled SalI/PstI-pCAMBIA2300.
步骤7.1A~CPihpRNA片段酶切与回收 Step 7.1A ~ CPihpRNA fragment digestion and recovery
提取步骤5中阳性转化菌中pUCCRNAi-1A、pUCCRNAi-2A、pUCCRNAi-2B、pUCCRNAi-3A、pUCCRNAi-CP质粒。取5ul质粒,用SalI和PstI内切酶,采用50ul酶切体系,37℃酶切过夜,回收酶切产物中700bp左右长度的小片段(ihpRNA片段含正反向的CMV基因特异片段加内含子片段);取1ul回收片段,利用DNA/RNA的紫外分光检测琼脂糖凝胶电泳分析判断回收片段的浓度。5个回收片段分别标记为SalI/PstI-1A、SalI/PstI-2A、SalI/PstI-2B、SalI/PstI-3A、SalI/PstI-CP。 Extract the pUCCRNAi-1A, pUCCRNAi-2A, pUCCRNAi-2B, pUCCRNAi-3A, pUCCRNAi-CP plasmids from the positive transformants in step 5. Take 5ul of the plasmid, use SalI and PstI endonucleases, use 50ul enzyme digestion system, digest overnight at 37°C, and recover a small fragment of about 700bp in the digested product (the ihpRNA fragment contains the forward and reverse CMV gene-specific fragment plus the inner sub-fragment); take 1 ul of the recovered fragment, and use DNA/RNA UV spectroscopic detection agarose gel electrophoresis analysis to determine the concentration of the recovered fragment. The five recovered fragments were labeled as SalI/PstI-1A, SalI/PstI-2A, SalI/PstI-2B, SalI/PstI-3A, SalI/PstI-CP, respectively.
步骤8.pCAMBIA2300-1A~CP的连接与转化大肠杆菌 Step 8. Ligation and transformation of pCAMBIA2300-1A~CP into Escherichia coli
取4ul步骤6得到的SalI/PstI-pCAMBIA2300和8ul步骤7得到的SalI/PstI-1A、SalI/PstI-2A、SalI/PstI-2B、SalI/PstI-3A、SalI/PstI-CP分别进行载体与基因片段的连接,方法同步骤3. Take 4ul of SalI/PstI-pCAMBIA2300 obtained in step 6 and 8ul of SalI/PstI-1A, SalI/PstI-2A, SalI/PstI-2B, SalI/PstI-3A, and SalI/PstI-CP obtained in step 7 for carrier and The connection of gene fragments, the method is the same as step 3.
分别取10ul连接产物,转化大肠杆菌感受态,操作同步骤3的记载; Take 10ul of the ligation product respectively, and transform Escherichia coli into a competent state, and the operation is the same as that described in step 3;
取2ul转化菌液,采用50ul体系,利用表达载体检测引物Actin1PF/IntronR(上游引物Actin1PF匹配于表达载体Actin1启动子区,下游引物IntronR匹配于ihpRNA结构中Intron中)进行PCR检测转化子阳性,(阳性结果为CMV基因片段长度加323bp左右); Take 2ul of the transformed bacteria liquid, use the 50ul system, and use the expression vector detection primer Actin1PF/IntronR (the upstream primer Actin1PF matches the expression vector Actin1 promoter region, and the downstream primer IntronR matches the Intron in the ihpRNA structure) for PCR detection of positive transformants, ( A positive result is the length of the CMV gene fragment plus about 323bp);
选择PCR阳性转化菌,按体积比1:1000加入到50ml含Amp的LB液体培养基中,250rpm37℃摇床培养12h;提取质粒,所得质粒分别标记为pCAMBIA2300-1A、pCAMBIA2300-2A、pCAMBIA2300-2B、pCAMBIA2300-3A、pCAMBIA2300-CP。 Select PCR-positive transformants, add them to 50ml LB liquid medium containing Amp at a volume ratio of 1:1000, and culture them on a shaking table at 250rpm at 37°C for 12h; extract plasmids, and the resulting plasmids are respectively labeled as pCAMBIA2300-1A, pCAMBIA2300-2A, and pCAMBIA2300-2B , pCAMBIA2300-3A, pCAMBIA2300-CP.
步骤9.构建pCAMBIA2300-CMV5载体 Step 9. Construction of pCAMBIA2300-CMV5 vector
分别以pUCCRNAi-1A和pUCCRNAi-2A质粒为模板,分别利用引物R1AF/R1AR和R2AF/R2AR扩增片段1AF和2AF,回收PCR产物得到纯化的片段1AF和2AF;以片段1AF和2AF等量混合物为模板,利用R1AF/R2AR引物,PCR扩增出片段1A+2A,回收PCR产物得到纯化的片段1A+2A。 Using pUCCRNAi-1A and pUCCRNAi-2A plasmids as templates, primers R1AF/R1AR and R2AF/R2AR were used to amplify fragments 1AF and 2AF, respectively, and the PCR products were recovered to obtain purified fragments 1AF and 2AF; an equal mixture of fragments 1AF and 2AF was used as As a template, fragment 1A+2A is amplified by PCR using R1AF/R2AR primers, and the PCR product is recovered to obtain purified fragment 1A+2A.
分别以pUCCRNAi-2B、pUCCRNAi-3A和pUCCRNAi-CP质粒为模板,利用引物R2BF/R2BR、R3AF/R3AR、RCPF/RCPR扩增片段2BF,3AF和CPF,回收PCR产物得到纯化的片段2BF,3AF和CPF;以片段2BF、3AF和CPF等量混合物为模板,利用R2BF/RCPR引物,PCR扩增出片段2B+3A+CP,回收纯化。 Using pUCCRNAi-2B, pUCCRNAi-3A and pUCCRNAi-CP plasmids as templates, primers R2BF/R2BR, R3AF/R3AR, RCPF/RCPR were used to amplify fragments 2BF, 3AF and CPF, and the PCR products were recovered to obtain purified fragments 2BF, 3AF and CPF: Fragment 2B+3A+CP is amplified by PCR using an equal mixture of fragments 2BF, 3AF and CPF as a template, using R2BF/RCPR primers, recovered and purified.
以片段1A+2A和2B+3A+CP等量混合物为模板,利用R1AF/RCPR引物,PCR扩增出片段CMV5,回收加以纯化。 Using the mixture of fragments 1A+2A and 2B+3A+CP as templates, the fragment CMV5 was amplified by PCR using R1AF/RCPR primers, recovered and purified.
按上3步骤的操作得到pUCCRNAi-CMV5,按步骤4的操作酶切pUCCRNAi-CMV5F得到SalI/BamHI-pUCCRNAiCMV5F,按步骤5得到克隆载体pUCCRNAi-CMV5和及按步骤7的方法得到SalI/PstI--CMV5,将步骤6中的SalI/PstI-pCAMBIA2300与步骤7得到的SalI/PstI--CMV5按照步骤8的操作得到表达载体pCAMBIA2300-CMV5。 Obtain pUCCRNAi-CMV5 according to the above 3 steps, digest pUCCRNAi-CMV5F according to step 4 to obtain SalI/BamHI-pUCCRNAiCMV5F, obtain the cloning vector pUCCRNAi-CMV5 according to step 5 and obtain SalI/PstI by the method of step 7-- CMV5, the SalI/PstI-pCAMBIA2300 in step 6 and the SalI/PstI--CMV5 obtained in step 7 were obtained according to the operation in step 8 to obtain the expression vector pCAMBIA2300-CMV5.
实施例2.RNA干扰载体的功能验证 Example 2. Functional verification of RNA interference carrier
材料: Material:
ZT(Trans-Zeatin-Riboside,反式玉米素核苷)、Tim(Timentin,特美汀)、叶酸、As(乙酰丁酮)、Kan(卡那霉素)、IAA(3-吲哚乙酸)、IBA(3-吲哚丁酸)、MSsalt(M0404)均购自Sigma公司。 ZT (Trans-Zeatin-Riboside, trans-zeatin riboside), Tim (Timentin, Timentin), folic acid, As (acetobutanone), Kan (kanamycin), IAA (3-indole acetic acid) , IBA (3-indolebutyric acid), and MSsalt (M0404) were purchased from Sigma.
番茄品种:MoneyMaker,该品种为CMV易感品种。 Tomato variety: MoneyMaker, which is susceptible to CMV.
培养基配制:(单位:L) Medium preparation: (unit: L)
(1)1/2MS:pH5.81/2MSsalt+15g|蔗糖+6.5g|琼脂 (1) 1/2MS: pH5.81/2MSsalt+15g|sucrose+6.5g|agar
(2)培养基A:pH5.8MSsalt+30g|蔗糖 (2) Medium A: pH5.8 MS salt+30g | sucrose
(3)培养基B:pH5.8MSsalt+30g|蔗糖+6.5g|琼脂+1mg|ZT (3) Medium B: pH5.8MS salt+30g|sucrose+6.5g|agar+1mg|ZT
(4)培养基Base:pH6.0MSsalt+20g|蔗糖+6.5g|琼脂+100mg|肌醇+0.1mL|10000×叶酸 (4) Medium Base: pH6.0MSsalt+20g|Sucrose+6.5g|Agar+100mg|Inositol+0.1mL|10000×Folic acid
(5)培养基C:pH6.0MediumBase+2mg|ZT+200mg|Tim+100mg|Kan (5) Medium C: pH6.0MediumBase+2mg|ZT+200mg|Tim+100mg|Kan
(6)培养基C1:pH6.0MediumBase+1mg|ZT+80mg|Kan+200mg|Tim (6) Medium C1: pH6.0MediumBase+1mg|ZT+80mg|Kan+200mg|Tim
(7)培养基C3:pH6.0MediumBase+0.5mg|ZT+1.5mg|IAA+80mg|Kan+200mg|Tim (7) Medium C3: pH6.0MediumBase+0.5mg|ZT+1.5mg|IAA+80mg|Kan+200mg|Tim
(8)培养基D:pH6.0MediumBase+2mg|IBA+200mg|Tim (8) Medium D: pH6.0MediumBase+2mg|IBA+200mg|Tim
方法: method:
实施例1得到并鉴定过的6种具有ihpRNA的植物表达载体pCAMBIA2300-1A、2A、2B、3A、CP、CMV5,其中的所有靶标片段SeqIDNo.1~6,与番茄EST数据库http://solgenomics.net/进行比对,所有片段与番茄EST均无连续20nt以上的完全互补区域,这样保证了RNAi载体在转基因植物内形成的siRNA不会靶向番茄植株重要基因。 The six plant expression vectors pCAMBIA2300-1A, 2A, 2B, 3A, CP, CMV5 obtained and identified in Example 1, all target fragments SeqIDNo.1-6, and the tomato EST database http://solgenomics .net/ for comparison, all fragments have no continuous 20nt or more complete complementary regions with the tomato EST, which ensures that the siRNA formed by the RNAi vector in the transgenic plant will not target the important genes of the tomato plant.
步骤1.制备转基因植株 Step 1. Preparation of transgenic plants
本发明方法中,对现有番茄遗传转化体系(Frary,A.andVanEck,J.2005.OrganogenesisFromTransformedTomatoExplants.Transgenicplants:methodsandprotocols.141-150.)进行了改进,缩短了转化时间。其主要步骤如下:见(图5): In the method of the present invention, the existing tomato genetic transformation system (Frary, A. and VanEck, J. 2005. Organogenesis From Transformed Tomato Explants. Transgenic plants: methods and protocols. 141-150.) is improved, and the transformation time is shortened. Its main steps are as follows: See (Figure 5):
(1)播种6-7d:种子用无菌水浸润5~8h;20%次氯酸钠灭菌10min;无菌水洗5次,每次约5min;30℃培养箱催芽两天;待种子露白,点播于1/2MS培养基中,然后转入26~28℃光照培养箱培养约5d,子叶便可开始展开。改进处:浸泡后催芽可缩短出芽1周左右,且出芽整齐。 (1) Sowing for 6-7 days: soak the seeds with sterile water for 5-8 hours; sterilize with 20% sodium hypochlorite for 10 minutes; wash with sterile water for 5 times, each time for about 5 minutes; accelerate germination for two days in a 30°C incubator; 1/2MS medium, and then transferred to a 26-28°C light incubator for about 5 days, and the cotyledons can begin to unfold. Improvement: Accelerating germination after soaking can shorten the germination by about 1 week, and the germination is neat.
(2)切子叶预培养2d:在真叶未出现前,子叶刚冒出种皮且未完全展开时,将子叶两端切除1-2mm,再从中间横切一刀,每个子叶切成两块,收集于含培养基A的培养皿中,每次约50~80片。倒掉培养基A,用解剖刀小心将叶盘(勿夹伤)拨于无菌滤纸上,吸干后接于覆盖有滤纸的培养基B,子叶叶面朝上,弱光预培养2d。改进处:按本发明所述时期收集的子叶,分化效率要远远高于真叶出现后。 (2) Pre-cultivation of cut cotyledons for 2 days: Before the true leaves appear, when the cotyledons have just emerged from the seed coat and are not fully unfolded, cut off both ends of the cotyledons by 1-2 mm, and then cut across the middle, and cut each cotyledon into two Collect the pieces in the culture dish containing medium A, about 50-80 pieces each time. Pour off the culture medium A, use a scalpel to carefully remove the leaf disk (do not pinch) on the sterile filter paper, blot dry, then transfer to the culture medium B covered with filter paper, with the cotyledon leaves facing up, pre-cultivate in low light for 2 days. Improvement: the differentiation efficiency of the cotyledon collected in the period described in the present invention is much higher than that after the emergence of true leaves.
(3)工程菌的制备: (3) Preparation of engineering bacteria:
a.调节电击仪,使其电脉冲为25uF,电压为2.5KV,电阻为400Ω。 a. Adjust the electric shock meter so that the electric pulse is 25uF, the voltage is 2.5KV, and the resistance is 400Ω.
b.从-70℃冰箱中取出农杆菌EHA105感受态细胞,置于冰上使其融化。 b. Take out the Agrobacterium EHA105 competent cells from the -70°C refrigerator, and place them on ice to thaw.
c.加1ul质粒于50ulEHA105感受态细胞中,轻轻混匀。 c. Add 1ul plasmid to 50ul EHA105 competent cells, and mix gently.
d.将上述混合悬液加入电击杯的底部,迅速将电击杯放进电击仪。 d. Add the above mixed suspension to the bottom of the electric shock cup, and quickly put the electric shock cup into the electric shock instrument.
e.按a中设定的参数,启动对细胞的电脉冲。电击以后,尽快取出样品,加入1ml无抗YEB培养基。 e. According to the parameters set in a, start the electric pulse to the cell. After the electric shock, take out the sample as soon as possible, and add 1 ml of YEB-free medium.
f.将e中得到的菌液转入1.5ml离心管中,28℃200rpm振荡预培养3h。 f. Transfer the bacterial solution obtained in e into a 1.5ml centrifuge tube, and shake at 200 rpm at 28°C for 3 hours.
g.取50-100ul菌液涂布在加有抗生素Kan和利福平(Rif)的YEB培养基上,28℃培养2-3天,直至菌落长出。 g. Take 50-100ul bacterial liquid and spread it on the YEB medium added with antibiotics Kan and rifampicin (Rif), culture at 28°C for 2-3 days, until colonies grow out.
注意:所有操作最好在冰上进行,电击杯电击之前在冰上预冷。 Note: All operations are best performed on ice, and the electric shock cup is pre-cooled on ice before electric shock.
h.微波炉熔化LB固体培养基,冷却到50℃左右后,在超净工作台上加入相应抗生素(一般为Amp)。 h. Melt the LB solid medium in a microwave oven, cool it down to about 50°C, and add the corresponding antibiotic (usually Amp) on the ultra-clean workbench.
i.铺板20ml/块后在平板表面加16ul的IPTG(50mg/ml),40ul的X-gal(20mg/ml),用无菌弯头玻璃棒均匀涂开,避光置于超净工作台1h,使溶解X-gal的二甲基酰胺尽量挥发干净。 i. Add 16ul of IPTG (50mg/ml) and 40ul of X-gal (20mg/ml) on the surface of the plate after plating 20ml/block, spread evenly with a sterile elbow glass rod, and place it on a clean bench in the dark For 1 hour, the dimethylamide dissolved in X-gal was volatilized as much as possible.
j.在平板上加入转化菌液,用无菌弯头玻璃棒均匀涂开,(剩余菌液4℃保存)。 j. Add the transformed bacteria solution on the plate and spread it evenly with a sterile elbow glass rod (the remaining bacteria solution should be stored at 4°C).
k.平板正向放置1h,使菌液吸收。然后倒置放入培养箱中,37℃12-16h培养至有清晰菌落出现。 k. Place the plate forward for 1 hour to allow the bacterial solution to absorb. Then put it upside down into the incubator, and cultivate at 37°C for 12-16h until clear colonies appear.
l.长出蓝白斑后放置于4℃冰箱,使之充分显色(白斑可能为阳性克隆,挑出做扩大培养之后做菌落PCR或质粒PCR/酶切检测)。 l. After the blue and white spots appear, place them in a refrigerator at 4°C to allow them to fully develop their color (the white spots may be positive clones, pick them out for expanded culture, and then do colony PCR or plasmid PCR/enzyme digestion detection).
(4)工程菌侵染及共培养2d:工程菌提前2d划线,然后挑单菌26℃黑暗条件下摇菌16h左右至OD600=0.6~0.8。5000rpm,离心5min收集菌液,用培养基A调至OD600=0.5左右,加终浓度为300uM的AS。侵染预培养过的叶盘外植体10min,无菌滤纸吸干,叶背朝上置于(勿夹伤)覆盖有滤纸的培养基B上,26℃暗培养2d。 (4) Engineering bacteria infection and co-cultivation for 2 days: The engineering bacteria were streaked 2 days in advance, and then the single bacteria were shaken in the dark at 26°C for about 16 hours to OD600=0.6-0.8. Centrifuge at 5000 rpm for 5 minutes to collect the bacterial liquid, and use the culture medium A was adjusted to about OD600=0.5, and the final concentration of 300uM AS was added. Infect the pre-cultured leaf disc explants for 10 minutes, blot them dry with sterile filter paper, place the leaf back up (do not pinch) on medium B covered with filter paper, and culture in the dark at 26°C for 2 days.
(5)抑菌筛选培养7-10d:转入培养基C中,叶背朝上光照培养;10d转接一次,正常情况下2周左右便可以出现绿色愈伤或芽点。待愈伤上芽点出现。则将带芽点外植体转入C1培养10~14d,2~3周便会陆续分化出芽。改进处:高浓度ZT(2mg/L)利于分裂,但分裂速度过快可能导致阴性再生芽逃避抗生素,本发明C1培养基中及时降低ZT并在C中用较高Kan浓度(100mg/L)可防止此情况。 (5) Bacteriostasis screening culture for 7-10 days: transfer to medium C, culture with the leaf back facing up in the light; transfer once every 10 days, under normal circumstances, green calluses or buds will appear in about 2 weeks. Wait for buds to appear on the callus. Then transfer the explants with buds to C1 and culture them for 10-14 days, and they will gradually differentiate and sprout in 2-3 weeks. Improvement: High concentration of ZT (2mg/L) is good for division, but too fast division may cause negative regenerated shoots to escape antibiotics. In the C1 medium of the present invention, reduce ZT in time and use a higher Kan concentration (100mg/L) in C prevents this.
(6)促分化培养10~20d:待再生芽长出约0.5cm。切去白化外植体部分将抗性芽转入新鲜C3。未出芽的叶盘,一部分会白化,切口端褐化且无出愈迹象,此类叶盘应及时除去。具有长出再生芽能力的叶盘,一般切口会出现小团愈伤,继而分化出芽。改进处:长期处于ZT中容易形成畸形芽,本发明改进培养基C3含低浓度ZT并增加了生长素IAA,能有效促进正常芽的分化与生长。 (6) Differentiation-promoting culture for 10-20 days: the regenerated shoots grow about 0.5 cm. Parts of the albino explants were excised and the resistant shoots were transferred to fresh C3. Part of the ungerminated leaf discs will be albino, and the cut end will be browned without signs of healing. Such leaf discs should be removed in time. For leaf discs with the ability to grow regenerated buds, small groups of calluses will generally appear on the incision, and then differentiate and sprout. Improvement: Long-term exposure to ZT tends to form deformed buds. The improved medium C3 of the present invention contains low concentration of ZT and adds auxin IAA, which can effectively promote the differentiation and growth of normal buds.
(7)生根培养15~30d:待抗性芽茎部长至1cm后,剔除愈伤组织,切下置入培养基D生根培养。改进处:抗生素Kan对植株生根影响显著,本发明在生根培养基中不加抗生素Kan,能有效提高生根率。 (7) Rooting culture for 15 to 30 days: After the resistant bud stem grows to 1cm, remove the callus, cut it off and put it in medium D for rooting culture. Improvement: the antibiotic Kan has a significant effect on plant rooting, and the present invention does not add the antibiotic Kan to the rooting medium, which can effectively increase the rooting rate.
(8)田间培养:移栽前3天慢慢打开瓶盖,转入灭菌培养土后用透明塑料袋包好,1周后逐步揭开塑料袋,移栽至大田。PCR检测前2d用次氯酸钠擦拭待检测叶片,叶片用无菌水洗净后再进行后续检测。 (8) Field cultivation: Slowly open the bottle cap 3 days before transplanting, transfer to sterilized culture soil and wrap it in a transparent plastic bag. After 1 week, gradually uncover the plastic bag and transplant to the field. The leaves to be tested were wiped with sodium hypochlorite 2 days before the PCR test, and the leaves were washed with sterile water before subsequent testing.
本发明上述操作方法与现有常用方法的效果比较: The above-mentioned operating method of the present invention compares with the effect of existing commonly used method:
(1):浸泡后催芽可缩短出芽1周左右,且出芽整齐。 (1): Germination after soaking can shorten the germination by about 1 week, and the germination is neat.
(2):按本发明所述时期收集的子叶,分化效率要远远高于真叶出现后。 (2): The differentiation efficiency of the cotyledons collected during the period described in the present invention is much higher than that after the emergence of true leaves.
采用本发明所述时期收集的子叶即“在真叶未出现前,子叶刚冒出种皮且未完全展开时”分化效率达100%(出现分化芽数/叶盘数)且每个叶盘都能分化出2个以上的芽体;真叶出现后2d,调查分化效率为50%;真叶出现后5d,调查分化效率为10%以下。 The cotyledons collected during the period described in the present invention, that is, "before the true leaves appear, when the cotyledons have just emerged from the seed coat and are not fully expanded", the differentiation efficiency reaches 100% (number of differentiated buds/number of leaf disks) and each leaf disk More than 2 buds can be differentiated; 2 days after the emergence of true leaves, the survey differentiation efficiency is 50%; 5 days after the appearance of true leaves, the survey differentiation efficiency is less than 10%.
(3):本发明C1培养基中及时降低ZT并在C中用较高Kan浓度可有效防止假阳性。 (3): The timely reduction of ZT in the C1 medium of the present invention and the use of a higher Kan concentration in C can effectively prevent false positives.
采用本发明方法获得的抗性芽假阳性率(假阳性芽数/分化芽数)平均为24%;若利用2mgZT则假阳性率在40%。注意:本发明采用Kan浓度适合MoneyMaker品种,而我们试验了番茄品种丽春和mic-Tom,其适宜浓度分别为50mg/L和75mg/L。 The average false positive rate (number of false positive buds/number of differentiated buds) obtained by the method of the invention is 24%; if 2mgZT is used, the false positive rate is 40%. Note: The concentration of Kan used in the present invention is suitable for MoneyMaker varieties, while we have tested tomato varieties Ponceau and mic-Tom, and the suitable concentrations are 50mg/L and 75mg/L respectively.
(4):本发明改进培养基C3含低浓度ZT并增加了生长素IAA,能有效促进正常芽的分化与生长。 (4): The improved medium C3 of the present invention contains a low concentration of ZT and increases the auxin IAA, which can effectively promote the differentiation and growth of normal buds.
本发明方法抗性芽畸形率(畸形芽数/抗性芽数)为5%,而不加IAA且分化后的芽一直置于1mg/LZT中芽的畸形率高达22%。 The deformity rate of resistant buds (number of deformed buds/number of resistant buds) in the method of the present invention is 5%, while the deformity rate of buds that are not added with IAA and are kept in 1 mg/LZT is as high as 22%.
(5):Kan对生根的影响。 (5): Kan's effect on rooting.
本发明试验了不同浓度对生根的影响,由于转基因阳性芽数量有限,所选取的芽是未侵染的子叶分化出的芽,各20棵。100mg/L浓度Kan植株生根率(2周后生根的植株数/芽体数)10%(2株);75mg/L浓度Kan植株生根率40%(8株);50mg/L浓度Kan植株生根率60%(12株);0mg/L浓度Kan植株生根率90%(18株)。2周后至1个月内,100mg/L浓度Kan下未生根植株一直未生根,并且叶片发黄或变白;75mg/L和50mg/L浓度Kan下分别增加了3株和2株长根;0mg/L浓度Kan下剩余2株也出现了根。 The present invention has tested the influence of different concentrations on rooting. Since the number of transgenic positive buds is limited, the selected buds are buds differentiated from uninfected cotyledons, 20 each. 100mg/L concentration Kan plant rooting rate (number of rooted plants/bud number after 2 weeks) 10% (2 plants); 75mg/L concentration Kan plant rooting rate 40% (8 plants); 50mg/L concentration Kan plant rooting 60% (12 strains); 0mg/L concentration can see the rooting rate of 90% (18 strains). After 2 weeks to 1 month, under the concentration of 100mg/L Kan, the unrooted plants did not take root all the time, and the leaves turned yellow or turned white; under the concentrations of 75mg/L and 50mg/L Kan, 3 and 2 long roots were increased respectively Roots also appeared in the remaining 2 strains at a concentration of 0 mg/L.
步骤2.快速PCR检测。 Step 2. Rapid PCR detection.
利用GenStar快速植物PCR试剂盒及说明书进行转基因植物的PCR检测,使用引物为: Use the GenStar Rapid Plant PCR Kit and instructions for PCR detection of transgenic plants, the primers used are:
Actin1PF:5'CCTCAGCATTGTTCATCGGTAGTT3', Actin1PF: 5'CCTCAGCATTGTTCATCGGTAGTT3',
IntronR:5'TGTGTCACTCAAAACCAGATAAAC3',和 IntronR: 5'TGTGTCACTCAAAACCAGATAAAC3', and
NptIIF:5'GATACCGTAAAGCACGAGGAA3' NptIIF: 5'GATACCGTAAAGCACGAGGAA3'
NptIIR:5'TGACTGGGCACAACAGACAAT3' NptIIR: 5'TGACTGGGCACAACAGACAAT3'
应用特异引物对抗性植株进行病毒基因的PCR检测。 Use specific primers to detect the virus gene in the resistant plants by PCR.
以NptIIF和NptIIR为引物,进行NptII抗性标记基因的检测,扩增目的片段应为673bp片段。 Use NptIIF and NptIIR as primers to detect the NptII resistance marker gene, and the amplified target fragment should be a 673bp fragment.
以载体启动子区设计上游引物Actin1PF和载体中内含子IntronR为下游引物,扩增目的片段来检测插入片段,根据如图6的检测结果确定阳性转基因植株。 Design the upstream primer Actin1PF in the vector promoter region and the intron IntronR in the vector as the downstream primer, amplify the target fragment to detect the inserted fragment, and determine the positive transgenic plants according to the detection results shown in Figure 6.
步骤3.转基因植株Southern杂交分析 Step 3. Southern hybridization analysis of transgenic plants
对经PCR检测的阳性植株,取其嫩叶,用CTAB法提取总DNA,用EcoRⅠ酶切,进行Southern杂交分析,进一步确定外源目的片段在不同转基因植株中的整合情况。操作如下: For the positive plants detected by PCR, the young leaves were taken, the total DNA was extracted by CTAB method, digested with EcoRI, and analyzed by Southern hybridization to further confirm the integration of the exogenous target fragment in different transgenic plants. The operation is as follows:
探针标记: Probe labeling:
以对经PCR检测的阳性植株的DNA为模板,用dUTP(Roche)混合物进行二次PCR扩增得dUTP地高辛标记的探针。 Using the DNA of the positive plants detected by PCR as a template, the dUTP (Roche) mixture was used for secondary PCR amplification to obtain dUTP digoxin-labeled probes.
基因组大量酶切: Mass genome digestion:
(1)酶切体系: (1) Enzyme digestion system:
基因组DNA60ug约100ul Genomic DNA60ug about 100ul
10×BufferH60ul 10×BufferH60ul
内切酶(EcoRI)30ul Endonuclease (EcoRI) 30ul
终体积600ul Final volume 600ul
(2)37℃温浴过夜;取5ul酶切产物电泳分析,检测酶切效果; (2) Incubate overnight at 37°C; take 5ul of the digested product for electrophoresis analysis to detect the digesting effect;
(3)酶切完全后,加入0.1倍体积(60ul)3mol/LNaAc和2倍(1200ul)体积的无水乙醇(-20℃),混匀后于-20℃放置2h; (3) After complete digestion, add 0.1 times (60ul) volume of 3mol/L NaAc and 2 times (1200ul) volume of absolute ethanol (-20°C), mix well and place at -20°C for 2 hours;
(4)12000rpm,4℃离心10min,小心弃上清;加入1ml75%乙醇洗一遍,于超净台吹干沉淀,溶于30ulddH2O中备用。 (4) Centrifuge at 12000rpm at 4°C for 10min, carefully discard the supernatant; add 1ml of 75% ethanol to wash once, blow dry the precipitate in an ultra-clean bench, dissolve in 30ulddH2O for later use.
(5)用0.5×TBE配制1%的琼脂糖凝胶,凝胶厚度约为0.5cm左右;加入检测样品:30ul(约10ug)DNA酶切浓缩液加6×溴酚兰溶液;120V电压(约为6V/cm)电泳5min,待溴酚兰进入胶中以后,将电压降至100V(约为4V/cm),电泳2h。 (5) Prepare 1% agarose gel with 0.5×TBE, the thickness of the gel is about 0.5cm; add the test sample: 30ul (about 10ug) DNA digestion concentrate solution plus 6×bromophenol blue solution; 120V voltage ( About 6V/cm) electrophoresis for 5min, after the bromophenol blue enters the gel, reduce the voltage to 100V (about 4V/cm), electrophoresis for 2h.
DNA变性: DNA denaturation:
(1)溴酚兰迁移至距胶孔8-10cm(3/4)左右停止电泳,从胶槽中取出胶块,将胶块泳道以外多余部分切去,准确量出胶的长和宽,切去凝胶一角作为记号; (1) Bromophenol blue migrates to about 8-10cm (3/4) away from the gel hole to stop electrophoresis, take out the gel block from the gel tank, cut off the excess part of the gel block outside the swimming lane, and accurately measure the length and width of the gel. Cut off a corner of the gel as a mark;
(2)胶盛于大培养皿,浸漫Denaturation溶液,摇床上温和摇动15min×2次,使DNA变性; (2) Glue is placed in a large Petri dish, soaked in Denaturation solution, and gently shaken on a shaker for 15min x 2 times to denature the DNA;
(3)将胶用ddH2O稍微洗涤,放入Nenutralization溶液中没过胶15min×2次(不摇动)。转膜/固定膜: (3) Wash the gel slightly with ddH2O, put it into the Nenutralization solution and submerge the gel for 15min x 2 times (without shaking). Transfer film/Fixed film:
(1)利用whatman磨具(TurboBlotterTM转印器),按要求叠好,放好4层大吸水纸,再放5层4*7cm吸水纸,顶层放2层光滑吸水纸;光滑吸水纸上方放好一张略微大于下方吸水纸的尼龙膜(2*SSC预泡5min)用玻棒小心赶走尼龙膜与光滑吸水纸之间的气泡;取出凝胶,用刀片小心地将胶孔处突出的凝胶切平,胶孔向上放在吸水布正中。用玻棒赶走凝胶与滤纸之间气泡;剪一条3倍于胶宽的盐桥纸,覆盖在胶上,并折叠两端沟通磨具沟中20×SSC,其上覆盖一张吸水纸; (1) Use whatman abrasive tool (TurboBlotter TM transfer device), stack as required, put 4 layers of large absorbent paper, then put 5 layers of 4*7cm absorbent paper, put 2 layers of smooth absorbent paper on the top layer; above the smooth absorbent paper Put a nylon membrane slightly larger than the lower absorbent paper (2*SSC pre-soaked for 5min) and carefully drive away the air bubbles between the nylon membrane and the smooth absorbent paper with a glass rod; take out the gel, and carefully protrude the gel hole with a blade The gel is cut flat, and the gel hole is placed in the middle of the absorbent cloth. Use a glass rod to drive away the air bubbles between the gel and the filter paper; cut a strip of salt bridge paper 3 times the width of the gel, cover it on the gel, fold both ends to communicate with the 20×SSC in the mold groove, and cover it with an absorbent paper ;
(2)转膜4h后取出尼龙膜,放于一张滤纸上,用铅笔在尼龙膜上标明点样孔的位置和样品号; (2) After transferring the membrane for 4 hours, take out the nylon membrane, put it on a piece of filter paper, and use a pencil to mark the position of the sampling hole and the sample number on the nylon membrane;
(3)取出尼龙膜,结合DNA的一面向上,平放于一张10×SSC浸泡的滤纸上,紫外交联1200*100uj/cm2交联两次。 (3) Take out the nylon membrane, put the DNA-bound side up on a piece of filter paper soaked in 10×SSC, and crosslink twice with ultraviolet crosslinking 1200*100uj/cm2.
预杂交、杂交: Pre-hybridization, hybridization:
(1)预杂交:将尼龙膜放入杂交管,加入适量30ml42℃预热的杂交液,于杂交炉中42℃预杂交30min; (1) Pre-hybridization: put the nylon membrane into the hybridization tube, add an appropriate amount of 30ml hybridization solution preheated at 42°C, and pre-hybridize in the hybridization oven at 42°C for 30 minutes;
(2)探针变性:取适量探针(在1ml的杂交液中加入约25ng探针),加入ddH2O到100ul,95℃5min,迅速置于冰上; (2) Probe denaturation: take an appropriate amount of probe (approximately 25ng of probe is added to 1ml of hybridization solution), add ddH2O to 100ul, 95°C for 5min, and quickly place on ice;
(3)将变性的探针加入到42℃预热的杂交液,轻轻混匀,防止泡泡使背景变深; (3) Add the denatured probe to the hybridization solution preheated at 42°C, and mix gently to prevent bubbles from darkening the background;
(4)倒出预杂交液,加入杂交液,轻摇,41℃(NptII)杂交4h或过夜。 (4) Pour out the pre-hybridization solution, add the hybridization solution, shake gently, and hybridize at 41°C (NptII) for 4 hours or overnight.
洗膜与显色检测: Membrane washing and color detection:
(1)将杂交好的膜取出放入大小合适、干净的塑料盒中,室温下用低严谨洗膜液漂洗2次(漂洗时轻轻摇动),每次5min; (1) Take out the hybridized membrane and put it into a clean plastic box of suitable size, rinse twice with low stringency washing solution at room temperature (shake gently when rinsing), 5 minutes each time;
(2)用68℃预热的高严谨洗膜液68℃漂洗两次,每次15min; (2) Rinse twice at 68°C with 68°C preheated high-rigority washing solution for 15 minutes each time;
(3)Washingbuffer轻轻漂洗3min; (3) Gently rinse with Washingbuffer for 3 minutes;
(4)加入50ml1×blockingsolution室温抚育30min; (4) Add 50ml 1×blockingsolution and incubate for 30min at room temperature;
(5)加入20mlAnti-bodysolution室温反应30min; (5) Add 20ml Anti-bodysolution and react at room temperature for 30 minutes;
(6)用Washingbuffer洗膜2次,每次15min; (6) Wash the membrane twice with Washingbuffer, 15min each time;
(7)加入20mlDetectionbuffer平衡2-5min; (7) Add 20ml Detectionbuffer to balance for 2-5min;
(8)将膜置于一个干净的培养皿中,加入适量Colorsubstratesolution,避光显色16h,不要摇动;倒掉显色液,加入TEbuffer漂洗5min停止显色反应。 (8) Put the membrane in a clean petri dish, add an appropriate amount of Colorsubstratesolution, and develop the color in the dark for 16 hours without shaking; pour off the color developing solution, add TEbuffer and rinse for 5 minutes to stop the color developing reaction.
主要试剂及配制: Main reagents and preparation:
(1)20×SSC:称取175.3gNaCl和88.2g柠檬酸钠,溶于800ml蒸馏水中,用HCl调pH至7.0,用蒸馏水定容至1L,高压灭菌,室温保存; (1) 20×SSC: Weigh 175.3g NaCl and 88.2g sodium citrate, dissolve in 800ml distilled water, adjust the pH to 7.0 with HCl, dilute to 1L with distilled water, autoclave, and store at room temperature;
(2)1MTris-HCl(pH8.0):称取12.114gTris-base,溶于80ml蒸馏水中,用HCl调pH至8.0后,用蒸馏水定容至100ml,高压灭菌,室温保存; (2) 1MTris-HCl (pH8.0): Weigh 12.114g Tris-base, dissolve in 80ml distilled water, adjust the pH to 8.0 with HCl, dilute to 100ml with distilled water, autoclave, and store at room temperature;
(3)0.5MEDTA(pH8.0):称取18.61gEDTA,溶于80ml蒸馏水中,用NaOH调pH至8.0后,用蒸馏水定容至100ml,高压灭菌,室温保存; (3) 0.5MEDTA (pH8.0): Weigh 18.61g of EDTA, dissolve in 80ml of distilled water, adjust the pH to 8.0 with NaOH, dilute to 100ml with distilled water, autoclave, and store at room temperature;
(4)TEBuffer:取1MTris-HCl(pH8.0)5ml,0.5MEDTA(pH8.0)1ml,用蒸馏水定容至500ml,调PH至8.0,高压灭菌,室温保存; (4) TEBuffer: Take 5ml of 1MTris-HCl (pH8.0), 1ml of 0.5MEDTA (pH8.0), dilute to 500ml with distilled water, adjust the pH to 8.0, autoclave, and store at room temperature;
(5)10%SDS:称取10gSDS,溶于90ml蒸馏水中,加热至68℃溶解,用盐酸调pH至7.2,定容至100ml; (5) 10% SDS: Weigh 10g of SDS, dissolve in 90ml of distilled water, heat to 68°C to dissolve, adjust the pH to 7.2 with hydrochloric acid, and dilute to 100ml;
(6)MaleicAcidBuffer:称取11.067g马来酸和8.766gNaCl溶于800ml蒸馏水中,用NaOH(固)调pH至7.5,用蒸馏水定容至1L,高压灭菌,室温保存; (6) Maleic Acid Buffer: Weigh 11.067g of maleic acid and 8.766g of NaCl and dissolve in 800ml of distilled water, adjust the pH to 7.5 with NaOH (solid), adjust the volume to 1L with distilled water, autoclave, and store at room temperature;
(7)WashingBuffer:MaleicAcidBuffer灭菌后加入0.3%(v/v)吐温20; (7) WashingBuffer: Add 0.3% (v/v) Tween 20 to MaleicAcidBuffer after sterilization;
(8)DetectionBuffer:称取1.1688gNaCl溶于100ml蒸馏水中,加20ml1MTris-HCl(pH8.0),用NaOH调pH至9.5后,用蒸馏水定容至200ml,高压灭菌,室温保存; (8) DetectionBuffer: Weigh 1.1688g NaCl and dissolve it in 100ml distilled water, add 20ml 1MTris-HCl (pH8.0), adjust the pH to 9.5 with NaOH, adjust the volume to 200ml with distilled water, autoclave, and store at room temperature;
(9)变性液Ⅰ(Denaturation溶液):16gNaOH、58.43gNaCl定容至1L,高压灭菌,室温保存; (9) Denaturation solution Ⅰ (Denaturation solution): 16gNaOH, 58.43gNaCl, dilute to 1L, autoclave, store at room temperature;
(10)变性液Ⅱ(Nenutralization溶液):58.43gNaCl、0.5MTris-HCl(pH7.2)500ml定容至1L,高压灭菌,室温保存。 (10) Denaturing solution II (Nenutralization solution): 58.43g NaCl, 0.5MTris-HCl (pH7.2) 500ml, dilute to 1L, autoclave, store at room temperature.
(11)低严谨洗膜液:将20×SSC用蒸馏水稀释成2×SSC,并按100:1(2×SSC:10%SDS)加入10%SDS,配成2×SSC/0.1%SDS; (11) Low stringency washing solution: Dilute 20×SSC with distilled water to 2×SSC, and add 10% SDS at a ratio of 100:1 (2×SSC: 10%SDS) to make 2×SSC/0.1%SDS;
(12)高严谨洗膜液:将20×SSC用蒸馏水稀释成0.5×SSC,并按100:1(2×SSC:10%SDS)加入10%SDS,配成0.5×SSC/0.1%SDS; (12) High-rigority washing solution: dilute 20×SSC with distilled water to 0.5×SSC, and add 10% SDS at a ratio of 100:1 (2×SSC: 10%SDS) to make 0.5×SSC/0.1%SDS;
(13)BlockingSolution:用MaleicAcidBuffer将10×Blockingsolution稀释10倍(新鲜配制); (13) BlockingSolution: Dilute 10×Blockingsolution 10 times with Maleic Acid Buffer (freshly prepared);
(14)AntibodySolution:将Anti-Digoxigenin-AP10000rpm离心5min,按1:5000用BlockingSolution稀释; (14) AntibodySolution: Centrifuge Anti-Digoxigenin-AP10000rpm for 5min, and dilute it with BlockingSolution at 1:5000;
(15)Colorsubstratesolution:将NBT/BCIP按1:50(200ul:10ml)用DetectionBuffer稀释,避光保存; (15) Colorsubstratesolution: Dilute NBT/BCIP at 1:50 (200ul: 10ml) with DetectionBuffer, and store in the dark;
本发明共获得63PCR阳性转化植株(其中1A9个、2A11个、2B12个、3A8个、CP13个、CMV510个),部分southern杂交结果如图7,发现阳性植株多以多拷贝形式存在。 A total of 63 PCR-positive transformed plants (among them 1A9, 2A11, 2B12, 3A8, CP13, and CMV510) were obtained in the present invention. Part of the results of southern hybridization are shown in Figure 7, and it was found that most of the positive plants existed in the form of multiple copies.
步骤4.转基因植株siRNA前体的RT-PCR检测 Step 4. RT-PCR detection of siRNA precursor in transgenic plants
对经过步骤2分子检测为阳性的番茄转基因株系,提取RNA,反转录合成cDNA,利用1AF~CMV5和IntronR为引物,RT-PCR检测siRNA前体的表达,结果如图8,显示各阳性株系的前体都有表达,证明所构建植物表达载体已成功转化到番茄中并获得了表达。 For the tomato transgenic lines that were positive in the molecular detection in step 2, RNA was extracted, and cDNA was synthesized by reverse transcription. Using 1AF~CMV5 and IntronR as primers, RT-PCR was used to detect the expression of siRNA precursors. The results are shown in Figure 8, showing that each positive The precursors of the strains all express, which proves that the constructed plant expression vector has been successfully transformed into tomato and obtained expression.
实施例3.扦插繁殖转基因植株确定各靶标基因转基因株系的抗性。 Example 3. Cutting Propagation of Transgenic Plants The resistance of each target gene transgenic line was determined.
由于转基因阳性植株T0代从无菌室转到大田成活后需要留种,不适合直接接种病毒。因此本发明采用扦插的方式进行营养扩繁,能解决这一问题。同时,由于是营养繁殖,扦插扩繁能为后续嫁接提供更多的同遗传背景的砧木材料。 Since the T0 generation of transgenic positive plants needs to be preserved after being transferred from the sterile room to the field for survival, it is not suitable for direct virus inoculation. Therefore the present invention adopts the mode of cuttage to carry out vegetative propagation, can solve this problem. At the same time, due to vegetative propagation, cutting propagation can provide more rootstock materials with the same genetic background for subsequent grafting.
步骤1.待植株长至一定高度,母株用于获取种子,取叶腋部生长出的侧芽,或取带一个结的茎段,将侧芽或茎段收集于干净的三角瓶中,加入含0.2mg/LIBA的无菌水50ml,1~2周后侧芽底部会发出新根(茎段稍迟)。将生根后的植株转入灭菌后的培养基中,置于温室中培养。快速PCR检测扦插苗都为阳性。 Step 1. When the plant grows to a certain height, the mother plant is used to obtain seeds, take the lateral buds grown from the leaf axils, or take the stem section with a knot, collect the lateral buds or stem sections in a clean triangular flask, add 0.2 mg/LIBA sterile water 50ml, after 1 to 2 weeks, new roots will emerge from the bottom of the lateral buds (stems later). The rooted plants were transferred to the sterilized medium and placed in the greenhouse for cultivation. The cutting seedlings were all positive in rapid PCR detection.
等扦插苗4叶展开时用于后续病毒接种检测。 When the four leaves of the cutting seedlings are unfolded, they are used for subsequent virus inoculation detection.
步骤2.扦插苗CMV病毒的接种体系的确定 Step 2. Determination of the inoculation system of cutting seedling CMV virus
按以下国标操作法对扦插苗(对照MoneyMaker;MM)接种病毒,21天后很多扦插苗并无明显症状产生,而在50~60天后才出现典型症状。认为这是由于扦插苗相对于实生苗,已度过童期进入成熟期,其耐病能力有了一定提高。为缩短鉴定时间和获得可靠的抗病性结果,本发明将摩擦接种(两次)改为连续三次(间隔1周),观察发现所有对照扦插苗均在30天左右出现症状。因此确定,扦插苗从母株上分离成活后,待扦插植株4叶展开开始接种CMV病毒,隔一周复接一次,共3次,生长30后调查CMV病毒抗性。 The cutting seedlings (compared to MoneyMaker; MM) were inoculated with the virus according to the following national standard operation method. After 21 days, many cutting seedlings had no obvious symptoms, and typical symptoms appeared only after 50-60 days. It is believed that this is because the cutting seedlings have passed the childhood stage and entered the mature stage compared with the seedlings, and their disease resistance has been improved to a certain extent. In order to shorten the identification time and obtain reliable disease resistance results, the present invention changed the rubbing inoculation (twice) to three consecutive times (with an interval of 1 week), and observed that all control cuttings showed symptoms in about 30 days. Therefore, it was determined that after the cutting seedlings were isolated and survived from the mother plant, the CMV virus was inoculated after the 4 leaves of the cutting plants were unfolded, and the inoculation was repeated every other week, a total of 3 times, and the CMV virus resistance was investigated after 30 years of growth.
操作步骤: Steps:
(1)配制0.03mol/L、pH8.0磷酸缓冲液。A:0.03mol/L磷酸氢二钠溶液:称取10.74克Na2HPO4溶于1000mL水中,摇匀。B:0.03mol/L磷酸二氢钾溶液:称取4.08克磷酸二氢钾溶于1000mL水中摇匀。用B液调配A液pH值为8.0。 (1) Prepare 0.03mol/L, pH8.0 phosphate buffer. A: 0.03mol/L disodium hydrogen phosphate solution: Weigh 10.74g Na2HPO4 and dissolve in 1000mL water, shake well. B: 0.03mol/L Potassium Dihydrogen Phosphate Solution: Weigh 4.08g of Potassium Dihydrogen Phosphate, dissolve it in 1000mL of water and shake well. Prepare liquid A with liquid B to have a pH of 8.0.
(2)病毒的制备:番茄CMV病毒在普通烟“枯斑三生”上繁殖,病毒发病后采下称重,按1:5的比例加磷酸缓冲液,捣碎,双层纱布过滤后立即使用。 (2) Preparation of the virus: Tomato CMV virus was propagated on the common tobacco "Blade Sansheng". The virus was collected and weighed after the onset of the virus, and the phosphate buffer was added at a ratio of 1:5, smashed, and immediately filtered through double-layer gauze. use.
(3)接种方法:在番茄长至2片真叶时进行第一次接种,摩擦接种(用喷粉器将金刚砂(600目)撒至待接种植株的表面;采用摩擦接种法,即充分洗净的手指蘸取接种悬浮液,在叶面轻度摩擦造成微伤,每株接种第1~2片真叶,接种后立即用清水冲洗叶面上多余的病毒汁液。接种两次,间隔3d~5d。接种在温室内进行,接种当天的室内温度为26℃~30℃,以后白天温度尽量控制在24℃~30℃,夜间不低于20℃,常规光照,正常栽培管理。 (3) Inoculation method: The first inoculation is carried out when the tomato grows to 2 true leaves, and friction inoculation (use a duster to sprinkle emery (600 mesh) on the surface of the plant to be inoculated; use the friction inoculation method, that is, fully wash Dip the inoculation suspension with a clean finger, rub it slightly on the leaf surface to cause slight injuries, inoculate the first to second true leaves of each plant, and rinse the excess virus juice on the leaf surface with clean water immediately after inoculation. Inoculate twice, with an interval of 3 days ~5d.The inoculation is carried out in the greenhouse, the indoor temperature on the day of inoculation is 26°C-30°C, after that, the daytime temperature should be controlled at 24°C-30°C as much as possible, and the nighttime should not be lower than 20°C, with regular light and normal cultivation management.
(4)病情调查与分级标准 (4) Disease investigation and grading standards
表1黄瓜花叶病毒引起的番茄病毒病病情级别的划分 Table 1 Classification of disease severity of tomato virus disease caused by cucumber mosaic virus
(5)调查时间:在接种后约21d进行。 (5) Survey time: about 21 days after inoculation.
(6)病情记载:调查记载每一鉴定植株的病情级别,并计算病情指数。病情指数按下列公式计算: (6) Disease record: investigate and record the disease level of each identified plant, and calculate the disease index. The disease index is calculated according to the following formula:
式中:DI——病情指数; In the formula: DI - disease index;
∑——各病情级别代表数值与相对应的各病情级别植株数乘积的总和; ∑——the sum of the product of the representative value of each disease level and the corresponding number of plants of each disease level;
s——各病情级别的代表数值; s——the representative value of each disease level;
n——各病情级别的植株数; n——the number of plants of each disease level;
N——调查总植株数; N - the total number of plants under investigation;
S——最高病情级别的代表数值。 S——The representative value of the highest disease level.
(7)抗性评价:当感病对照材料达到其相应感病程度(DI≥50),该批次鉴定视为有效。依据鉴定材料3次重复的病情指数平均值确定其抗性水平,划分标准见下表。 (7) Resistance evaluation: When the susceptible control material reaches its corresponding susceptibility level (DI≥50), the identification of this batch is considered valid. The resistance level is determined based on the average value of the disease index of the identified materials for 3 repetitions, and the classification criteria are shown in the table below.
番茄对黄瓜花叶病毒病抗性的评价标准 Evaluation Standards of Tomato Resistance to Cucumber Mosaic Virus
步骤3.转基因株系扦插苗病毒抗性鉴定 Step 3. Identification of transgenic line cutting seedling virus resistance
按上述方法接种病毒后,对T0代转基因番茄进行病毒抗性鉴定。具体为,每个T0代转基因母株扦插繁殖10株左右,接种病毒后统计抗性结果,结果如下表(图9): After the virus was inoculated according to the above method, the virus resistance of the T0 generation transgenic tomato was identified. Specifically, about 10 transgenic mother plants of each T0 generation were propagated by cuttings, and the resistance results were counted after the virus was inoculated. The results are shown in the following table (Figure 9):
表中结果可以看出,所有转基因株系均有较高程度的CMV病毒抗性,其中大部分为高抗植株,且CMV5相对于其他株系并不明显,可能的原因是所调查的转基因高抗株系很多,其优势并未体现。 It can be seen from the results in the table that all transgenic lines have a high degree of CMV virus resistance, most of which are highly resistant plants, and CMV5 is not obvious compared with other lines, the possible reason is that the investigated transgenic lines have high There are many resistant strains, but their advantages have not been reflected.
注:绝大部分高抗植株按分类计算公式为免疫类型(即无症状),但我们在这些植株的部分重复株(扦插株系)中却检测到CMV病毒,只是含量很低,鉴于RNAi为转录后水平的基因沉默现象,我们认为转基因植株不同于严格意义上的免疫植株,它不能保证CMV完全不侵染植株。因此,我们将此类抗病株系都统一归为高抗类型。 Note: The vast majority of high-resistant plants are immune types (ie asymptomatic) according to the classification formula, but we have detected CMV virus in some duplicate strains (cutting strains) of these plants, but the content is very low. Given that RNAi is The phenomenon of gene silencing at the post-transcriptional level, we believe that transgenic plants are different from immune plants in the strict sense, and it cannot guarantee that CMV will not infect plants completely. Therefore, we collectively classify such disease-resistant strains as high-resistance types.
结果证明,利用转基因产生的RNA干扰对抗CMV病毒是十分有效的。为便于后期管理,将各株系按抗性重新编号为T01A1~9等(T0表示T0代,1A表示转基因植株对应的靶标基因,1~9表示对应株系;后续编号原则与此相同)。 The results proved that the use of transgene-generated RNA interference to fight against CMV virus is very effective. In order to facilitate later management, the lines were renumbered as T01A1~9 according to the resistance (T0 means T0 generation, 1A means the target gene corresponding to the transgenic plant, and 1~9 means the corresponding line; the subsequent numbering principle is the same).
实施例4.鉴定T1代植株病毒抗性;以抗性植株(T0和T1代)为砧木,嫁接野生型植株;接种CMV病毒,检测获得病毒抗性的嫁接植株。 Example 4. Identifying the virus resistance of T1 generation plants; using resistant plants (T0 and T1 generation) as rootstocks, grafting wild-type plants; inoculating CMV virus, and detecting the grafted plants that obtained virus resistance.
步骤1.对T1代进行攻毒筛选 Step 1. Challenge screening of T1 generation
由于本发明中,番茄留种是以自交繁殖的方式,T1代番茄中会有自交重组与分离的现象。因此,有必要对T1代种子进行分子鉴定和病毒接种鉴定。我们以抗性植株T0代为试材,获得种子,播种繁殖获得T1代植株,通过快速PCR的方法鉴定出其中的转基因阳性的植株,用于后续病毒抗性鉴定,按实施例3步骤2的方法接种CMV,鉴定其抗病毒的能力。结果如下表: Because in the present invention, tomato seeds are reserved in a self-propagation mode, there will be self-recombination and separation phenomena in the T1 generation tomato. Therefore, molecular identification and virus inoculation identification of T1 generation seeds are necessary. We used the T0 generation of resistant plants as test materials, obtained seeds, sowed and propagated to obtain T1 generation plants, and identified transgene-positive plants among them by a rapid PCR method for subsequent virus resistance identification, according to the method in step 2 of Example 3 Inoculate CMV and identify its antiviral ability. The results are as follows:
本发明通过T1代植株的CMV攻毒,发现虽抗性性状有所分离,但大多数阳性T1植株同样具有很高的CMV抗性。 In the present invention, through the CMV challenge of T1 generation plants, it is found that although the resistance traits are separated, most positive T1 plants also have high CMV resistance.
步骤2.转基因T0和T1代植株作为砧木对嫁接植株CMV的抗性研究 Step 2. Transgenic T0 and T1 generation plants are used as rootstocks to study the resistance of grafted plants to CMV
为验证CMV抗性是否能在接穗中保持,本发明利用高抗类型的转基因T0和T1代为砧木嫁接易感品种(MoneyMaker;MM)。嫁接方法,如图11。 In order to verify whether CMV resistance can be maintained in the scion, the present invention uses high-resistant transgenic T0 and T1 as rootstocks to graft susceptible varieties (MoneyMaker; MM). Grafting method, as shown in Figure 11.
对于T0代,我们选取了所有高抗植株的扦插苗,每个株系扩繁5株,用做砧木。嫁接非转基因植株、易感品种(MM)接穗。待芽长至3~4叶张开,开始按扦插苗CMV病毒的接种体系方法进行病毒接种鉴定。对于T1代,由于子代植株株系太多,我们仅选取了部分株系进行试验。 For the T0 generation, we selected cutting seedlings of all high-resistant plants, and propagated 5 plants for each line, and used them as rootstocks. Graft non-transgenic plants, susceptible varieties (MM) scions. When the buds grow to 3-4 leaves open, begin to carry out virus inoculation identification according to the inoculation system method of cutting seedling CMV virus. For the T1 generation, because there are too many strains in the progeny, we only selected some strains for the experiment.
嫁接操作如下: The grafting operation is as follows:
参考(Shaharuddin,N.A.,Han,Y.,Li,H.andGrierson,D.2006.Themechanismofgrafttransmissionofsenseandantisensegenesilencingintomatoplants.FEBSLett.28-29,6579-86.) Reference (Shaharuddin, N.A., Han, Y., Li, H. and Grierson, D. 2006. The mechanism of graft transmission of sense and antisense genes silencing into matoplants. FEBS Lett. 28-29, 6579-86.)
(1)培养番茄植株,待砧木长至20~30cm高后,切去顶端顶芽(约5cm),用刀片从切口顶端往下,劈开约1.5~2cm长的口。 (1) Cultivate tomato plants. After the rootstock grows to a height of 20-30 cm, cut off the top bud (about 5 cm), and use a blade to split the opening about 1.5-2 cm long from the top of the cut.
(2)取接穗品种的芽(约3~5cm),顶部留2片真叶处用刀片将茎向下削成楔形,楔形的两个切面要求平整,切面长度应与砧木切口的深度一致,立即将接穗插入砧木切口内,轻微用力插紧,用嫁接夹固定(或用保鲜膜包扎)。 (2) Take the buds of the scion variety (about 3-5cm), and use a blade to cut the stem downwards into a wedge shape at the place where 2 true leaves are left at the top. Immediately insert the scion into the rootstock incision, insert it tightly with slight force, and fix it with grafting clips (or wrap it with plastic wrap).
(3)嫁接好的植株套上一次性塑料袋或放入塑料密闭小棚内,以保持植株周边湿度。嫁接后注意观察温室温湿度,温度保持在23~25℃左右,湿度保持85%~90%。 (3) Cover the grafted plants with disposable plastic bags or put them in a plastic airtight shed to keep the humidity around the plants. After grafting, pay attention to observe the temperature, room temperature and humidity. The temperature is kept at about 23-25°C, and the humidity is kept at 85%-90%.
(4)嫁接3~4天后开始逐步换气(逐步掀开塑料袋),嫁接后5~10天,嫁接伤口完全愈合,接穗心叶有“吐水”现象,10天后进行正常管理,如适当追施肥水、加强虫害和叶部病害的防治等。在嫁接植株生长期间,砧木真叶的叶腋处会萌发侧芽,应及时抹去这些侧芽,防止侧芽对接穗产生不良影响。 (4) After 3 to 4 days of grafting, start to gradually ventilate (open the plastic bag gradually). 5 to 10 days after grafting, the grafting wound is completely healed, and the heart leaves of the scion have the phenomenon of "spitting water". After 10 days, carry out normal management. Fertilizing water, strengthening the control of insect pests and leaf diseases, etc. During the growth of grafted plants, side buds will germinate in the leaf axils of the true leaves of the rootstock, and these side buds should be wiped off in time to prevent the side buds from having adverse effects on the scion.
结果发现(如下表),T0代不同嫁接株系展现了不同病毒抗性,且大部分为高抗。但相对于转基因植株(砧木),部分对应的嫁接植株(接穗)CMV抗性有所下降,这可能与不同植株的RNA沉默信号传递效率、转基因插入片段拷贝数(或siRNA表达量)、嫁接愈合程度以及接穗芽体生长状态有关。嫁接结果表明,以高抗CMV病毒转基因植株为砧木嫁接感病接穗品种,可以有效的提高接穗品种的病毒抗性。高抗性的T1砧木同样能赋予接穗很高的病毒抗性(图10)。进一步证明通过改良砧木的方式利用嫁接技术是提高接穗品种病毒抗性的有效方法。 The results showed that (as shown in the table below), different grafted lines of the T0 generation showed different virus resistance, and most of them were highly resistant. However, compared with the transgenic plants (rootstock), the CMV resistance of some corresponding grafted plants (scions) has decreased, which may be related to the RNA silencing signal transmission efficiency of different plants, the copy number of transgene inserts (or siRNA expression), graft healing. The degree is related to the growth state of the scion bud. The results of grafting showed that grafting susceptible scion varieties with highly resistant CMV virus transgenic plants as rootstocks can effectively improve the virus resistance of scion varieties. Highly resistant T1 rootstocks also imparted high virus resistance to scions (Fig. 10). It is further proved that the use of grafting technology by improving the rootstock is an effective method to improve the virus resistance of scion varieties.
步骤3.分子检测砧木与接穗抗生素抗性基因。 Step 3. Molecular detection of rootstock and scion antibiotic resistance genes.
本发明提高植株病毒抗性的方法,主要采用嫁接转基因砧木的方式实现。同时这一方法,又能巧妙的避免另一重大的关于转基因安全方面的问题,即降低或避免抗生素抗性基因漂移的可能性。 The method for improving plant virus resistance of the present invention is mainly realized by grafting transgenic rootstocks. At the same time, this method can cleverly avoid another major problem about the safety of transgenics, that is, to reduce or avoid the possibility of antibiotic resistance gene drift.
本发明以接穗叶片为试材,以转基因植株叶片为对照,提取各自RNA,反转录合成cDNA,并以之为模板通过RT-PCR的方法检测NptII基因的表达,验证嫁接株系中接穗的转基因成分。 The present invention uses scion leaf as test material, takes transgenic plant leaf as contrast, extracts respective RNA, reverse transcription synthesizes cDNA, and uses it as template to detect the expression of NptII gene by the method of RT-PCR, verifies the expression of scion in the grafted strain. Genetically modified ingredients.
结果如图12,接穗中无NptII的转录本。从理论上分析,接穗中未经基因转化过程,不可能存在植物表达载体中用到的抗生素抗性标记基因。因此,可以保证在接穗品种所产生的有性配子中,也不可能存在抗生素抗性标记基因。 The result is shown in Figure 12, there is no transcript of NptII in the scion. Theoretically, without the gene transformation process in the scion, it is impossible to have the antibiotic resistance marker gene used in the plant expression vector. Therefore, it can be guaranteed that antibiotic resistance marker genes cannot exist in the sexual gametes produced by scion varieties.
110湖南农业大学 110 Hunan Agricultural University
120一种使接穗品种获得病毒抗性的方法及RNA干扰载体pCAMBIA2300-CP与转基因方法 120 A method for obtaining virus resistance in scion varieties, RNA interference vector pCAMBIA2300-CP and transgenic method
130P11551NYDHN 130P11551NYDHN
16030 16030
170PatentInversion3.3 170PatentInversion3.3
2101 2101
211276 211276
212DNA 212DNA
213片段1A 213 Fragment 1A
4001 4001
tggatgcgtcctgtgcccgagggtattgtttattctgtcggttataatgaacgcggttta60 tggatgcgtcctgtgcccgagggtattgtttatctgtcggttataatgaacgcggttta60
ggtccgaagtctgatggagagctttacattgtcaatagtgaatgcgtgatctgtaacagt120 ggtccgaagtctgatggagagctttacattgtcaatagtgaatgcgtgatctgtaacagt120
gaatctttatccactgtcacgcgttctcttcaagctccaaccgggaccattagtcaagtt180 gaatctttatccactgtcacgcgttctcttcaagctccaaccgggaccattagtcaagtt180
gacggagttgctggttgtgggaaaaccacggcaattaaatccatttttgagccgtccact240 gacggagttgctggttgtgggaaaaccacggcaattaaatccatttttgagccgtccact240
gacatgatcgttaccgcgaacaagaagtccgcccaa276 gacatgatcgttaccgcgaacaagaagtccgcccaa276
2102 2102
211277 211277
212DNA 212DNA
213片段2A1 213 Fragment 2A1
4002 4002
tgtccaacgccaaccatcgcgattcctccggatttaaaccgtgctactgatcgtgttgat60 tgtccaacgccaaccatcgcgattcctccggatttaaaccgtgctactgatcgtgttgat60
atcaatttagttcaatccatttgtgactcgactctgcccactcgtagtattacgacgact120 atcaatttagttcaatccatttgtgactcgactctgcccactcgtagtattacgacgact120
cttttcatcaagtgttcgtcgaaagtgcagactattctatagatctggatcatgttagac180 cttttcatcaagtgttcgtcgaaagtgcagactattctatagatctggatcatgttagac180
ttcgacagtctgatcttattgcaaaaattccagattcagggcatatgataccggttctga240 ttcgacagtctgatcttattgcaaaaattccagattcagggcatatgataccggttctga240
acaccgggagcggtcacaagagagtaggtacaacgaa277 acaccgggagcggtcacaagagagtaggtacaacgaa277
2103 2103
211259 211259
212DNA 212DNA
213片段2B 213 Fragment 2B
4003 4003
tggctcgtatggtggaggcgaagaagcagagacgaaggtctcacaaacagaatcgacggg60 tggctcgtatggtggaggcgaagaagcagagacgaaggtctcacaaacagaatcgacggg60
aacgaggtcacaaaagtcccagcgagagagcgcgttcaaatctcagactattccgcttcc120 aacgaggtcacaaaagtcccagcgagagagcgcgttcaaatctcagactattccgcttcc120
taccgttctatcaagtggatggttcggaactgacagggtcatgccgccatgtgaacgtgg180 taccgttctatcaagtggatggttcggaactgacagggtcatgccgccatgtgaacgtgg180
cggagttacccgagtctgaggcctctcgtttagagttatcggcggaagaccatgattttg240 cggagttaccccgagtctgaggcctctcgtttagagttatcggcggaagaccatgattttg240
acgatacagattggttcgc259 acgatacagattggttcgc259
2104 2104
211239 211239
212DNA 212DNA
213片段3A 213 Fragment 3A
4004 4004
aaagacccttcagcatcagtggaaactgttcgagtaacagcacataacacttgagggaca60 aaagacccttcagcatcagtggaaactgttcgagtaacagcacataacacttgagggaca60
ctcatgtatccttttgagcataattcaccaacatcatatccagacttaaagaaggaagca120 ctcatgtatccttttgagcataattcaccaacatcatatccagacttaaagaaggaagca120
atacgaccgtgggttacttcgggaacgaggggccggactgaaatagcattatcagcgcgc180 atacgaccgtgggttattcgggaacgaggggccggactgaaatagcattatcagcgcgc180
atccaatgatgccggcctaggtcacactcagtagccattttcttaatggcttcagggct239 atccaatgatgccggcctaggtcacactcagtagccattttcttaatggcttcagggct239
2105 2105
211211 211211
212DNA 212DNA
213片段CP 213 Fragment CP
4005 4005
tttacggactgtcacccacacggtagaatcaaatttcggcaaaggattaactcgaatttg60 tttacggactgtcacccacacggtagaatcaaatttcggcaaaggattaactcgaatttg60
aatgcgcgaaacaagcttcttatcatattccgtgactgaatcaggtagtaacaacctttt120 aatgcgcgaaacaagcttcttatcatattccgtgactgaatcaggtagtaacaacctttt120
accgtaataagacccacggtctatttttggtggctttagggtaatagatgtgaacgtgta180 accgtaataagaccccacggtctatttttggtggctttaggtaatagatgtgaacgtgta180
cccaggtctacagcgttcactccctacaaag211 cccaggtctacagcgttcactccctacaaag211
2106 2106
211600 211600
212DNA 212DNA
213融合片段CMV 213 fusion fragment CMV
4006 4006
ctgtgcccgagggtattgtttattctgtcggttataatgaacgcggtttaggtccgaagt60 ctgtgcccgagggtattgtttattctgtcggttataatgaacgcggtttaggtccgaagt60
ctgatggagagctttacattgtcaatagtgaatgcgtgatctgtaaatttaaaccgtgct120 ctgatggagagctttacattgtcaatagtgaatgcgtgatctgtaaatttaaaccgtgct120
actgatcgtgttgatatcaatttagttcaatccatttgtgactcgactctgcccactcgt180 actgatcgtgttgatatcaatttagttcaatccatttgtgactcgactctgcccactcgt180
agtattacgacgactcttttcatcaagcgtatggtggaggcgaagaagcagagacgaagg240 agtattacgacgactcttttcatcaagcgtatggtggaggcgaagaagcagagacgaagg240
tctcacaaacagaatcgacgggaacgaggtcacaaaagtcccagcgagagagcgcgttca300 tctcacaaacagaatcgacgggaacgaggtcacaaaagtcccagcgagagagcgcgttca300
aatctcagactattccgcttcctaccgttctatcaagacccttcagcatcagtggaaact360 aatctcagactattccgcttcctaccgttctatcaagacccttcagcatcagtggaaact360
gttcgagtaacagcacataacacttgagggacactcatgtatccttttgagcataattca420 gttcgagtaacagcacataacacttgagggacactcatgtatccttttgagcataattca420
ccaacatcatatccagacttaaagaaggaagcaatacgaccgtgttcggcaaaggattaa480 ccaacatcatatccagacttaaagaaggaagcaatacgaccgtgttcggcaaaggattaa480
ctcgaatttgaatgcgcgaaacaagcttcttatcatattccgtgactgaatcaggtagta540 ctcgaatttgaatgcgcgaaacaagcttcttatcatattccgtgactgaatcaggtagta540
acaaccttttaccgtaataagacccacggtctatttttggtggctttagggtaatagatg600 acaaccttttaccgtaataagaccacggtctatttttggtggctttagggtaatagatg600
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410012168.4A CN103947461B (en) | 2011-10-17 | 2011-10-17 | A method for obtaining virus resistance in scion varieties, RNA interference vector pCAMBIA2300-CP and transgenic method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110315208.9A CN102676564B (en) | 2011-10-17 | 2011-10-17 | Method enabling scion variety to obtain virus resistance, RNA (ribonucleic acid) interference vector and transgenosis method |
CN201410012168.4A CN103947461B (en) | 2011-10-17 | 2011-10-17 | A method for obtaining virus resistance in scion varieties, RNA interference vector pCAMBIA2300-CP and transgenic method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110315208.9A Division CN102676564B (en) | 2011-10-17 | 2011-10-17 | Method enabling scion variety to obtain virus resistance, RNA (ribonucleic acid) interference vector and transgenosis method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103947461A CN103947461A (en) | 2014-07-30 |
CN103947461B true CN103947461B (en) | 2016-03-23 |
Family
ID=46809116
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410012168.4A Expired - Fee Related CN103947461B (en) | 2011-10-17 | 2011-10-17 | A method for obtaining virus resistance in scion varieties, RNA interference vector pCAMBIA2300-CP and transgenic method |
CN201110315208.9A Expired - Fee Related CN102676564B (en) | 2011-10-17 | 2011-10-17 | Method enabling scion variety to obtain virus resistance, RNA (ribonucleic acid) interference vector and transgenosis method |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201110315208.9A Expired - Fee Related CN102676564B (en) | 2011-10-17 | 2011-10-17 | Method enabling scion variety to obtain virus resistance, RNA (ribonucleic acid) interference vector and transgenosis method |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN103947461B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103484480A (en) * | 2013-09-25 | 2014-01-01 | 中国热带农业科学院热带生物技术研究所 | Papaya ringspot virus genes and method for constructing RNA interference (RNAi) expression vectors of papaya ringspot virus genes |
CN106086063B (en) * | 2016-06-12 | 2020-01-10 | 浙江大学 | RNAi vector constructed based on isocaudarner and application thereof |
CN107258336A (en) * | 2017-06-29 | 2017-10-20 | 河南大学 | A kind of method that RNAi technology of grafting mediation promotes chrysanthemum Blooming |
CN110724759A (en) * | 2019-12-02 | 2020-01-24 | 中国农业科学院蔬菜花卉研究所 | INDEL molecular markers related to the content of folic acid in cucumber and its application |
CN110923212A (en) * | 2019-12-16 | 2020-03-27 | 潍坊科技学院 | Purification method and application for grafting tomato chlorosis virus by using tobacco as stock |
CN111154731A (en) * | 2020-01-07 | 2020-05-15 | 中国农业科学院植物保护研究所 | Tomato yellow leaf curl virus isolate TYLCV-BJ and infectious clone construction method and application |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1116238A (en) * | 1995-07-04 | 1996-02-07 | 北京大学 | Method for cultiating tomato with function of anti virus of mosaic of cucumber by gene engineering |
WO2005118805A1 (en) * | 2004-05-28 | 2005-12-15 | University Of Florida Research Foundation, Inc. | Materials and methods for providing resistance to plant pathogens in non-transgenic plant tissue |
CN1709908A (en) * | 2005-06-13 | 2005-12-21 | 广西大学 | A kind of tomato RNA virus host factor and its coding gene and application |
CN101321455A (en) * | 2004-02-23 | 2008-12-10 | 以色列国农业部 | Grafted plants resistant to viral diseases and method for producing the same |
CN101668858A (en) * | 2007-02-20 | 2010-03-10 | 耶路撒冷希伯来大学伊森姆研究发展公司 | Virus tolerant plants and its production method |
-
2011
- 2011-10-17 CN CN201410012168.4A patent/CN103947461B/en not_active Expired - Fee Related
- 2011-10-17 CN CN201110315208.9A patent/CN102676564B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1116238A (en) * | 1995-07-04 | 1996-02-07 | 北京大学 | Method for cultiating tomato with function of anti virus of mosaic of cucumber by gene engineering |
CN101321455A (en) * | 2004-02-23 | 2008-12-10 | 以色列国农业部 | Grafted plants resistant to viral diseases and method for producing the same |
WO2005118805A1 (en) * | 2004-05-28 | 2005-12-15 | University Of Florida Research Foundation, Inc. | Materials and methods for providing resistance to plant pathogens in non-transgenic plant tissue |
CN1709908A (en) * | 2005-06-13 | 2005-12-21 | 广西大学 | A kind of tomato RNA virus host factor and its coding gene and application |
CN101668858A (en) * | 2007-02-20 | 2010-03-10 | 耶路撒冷希伯来大学伊森姆研究发展公司 | Virus tolerant plants and its production method |
Non-Patent Citations (3)
Title |
---|
张瑜等.抗黄瓜花叶病毒RNAi载体的构建及烟草的转化.《安徽农业科学》.2010,第38卷(第23期),第12337-12340页. * |
番茄抗病毒基因工程研究进展;赵爽等;《生命科学研究》;20071231;第11卷(第4期);第83-86页 * |
白描等.植物RNAi的特点及其应用研究进展.《生物技术通报》.2009,(第8期),第6-10页. * |
Also Published As
Publication number | Publication date |
---|---|
CN103947461A (en) | 2014-07-30 |
CN102676564A (en) | 2012-09-19 |
CN102676564B (en) | 2014-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chaudhury et al. | Agrobacterium tumefaciens-mediated high frequency genetic transformation of an Indian cowpea (Vigna unguiculata L. Walp.) cultivar and transmission of transgenes into progeny | |
Petri et al. | High transformation efficiency in plum (Prunus domestica L.): a new tool for functional genomics studies in Prunus spp. | |
CN103947461B (en) | A method for obtaining virus resistance in scion varieties, RNA interference vector pCAMBIA2300-CP and transgenic method | |
Celikkol Akcay et al. | Agrobacterium tumefaciens-mediated genetic transformation of a recalcitrant grain legume, lentil (Lens culinaris Medik) | |
WO2000012735A9 (en) | Transgene assay using stable agrobacterium rhizogenes transformation | |
Zhang et al. | A simple and efficient in planta transformation method for pommelo (Citrus maxima) using Agrobacterium tumefaciens | |
WO2017000089A1 (en) | Biotechnological breeding method for obtaining antiviral seedless grapes | |
WO2017076306A1 (en) | Method for improving plant resistance to verticillium wilt using verticillium-wilt bacteria vdp4-atpase gene | |
Kumar et al. | Towards crop improvement in bell pepper (Capsicum annuum L.): Transgenics (uid A:: hpt II) by a tissue-culture-independent Agrobacterium-mediated in planta approach | |
Rajagopalan et al. | Improved cucumber transformation by a modified explant dissection and selection protocol | |
CN103952433B (en) | A kind of scion variety is made to obtain the method for virus resistance and rna interference vector pCAMBIA2300-2A and transgenic method | |
CN116355951B (en) | Construction method of melon VIGS silencing system based on bud vacuum infection | |
CN114921490B (en) | Genetic transformation method for agrobacterium-mediated white clover callus | |
Ahmed et al. | An efficient Agrobacterium-mediated genetic transformation method of lettuce (Lactuca sativa L.) with an aphidicidal gene, Pta (Pinellia ternata Agglutinin) | |
CN102676577B (en) | Method for improving resistance of jujube trees to jujube witches broom through agrobacterium rhizogenes mediation | |
CN103952435B (en) | A kind of scion variety is made to obtain the method for virus resistance and rna interference vector pCAMBIA2300-CMV5 and transgenic method | |
Korbin et al. | Transformation of gerbera plants with tomato spotted wilt virus (TSWV) nucleoprotein gene | |
CN103952434B (en) | A kind of scion variety is made to obtain the method for virus resistance and rna interference vector pCAMBIA2300-2B and transgenic method | |
CN103947462B (en) | A kind of scion variety is made to obtain the method for virus resistance and rna interference vector pCAMBIA2300-3A and transgenic method | |
Meng et al. | Transformation of PttKN1 gene to cockscomb | |
CN102994546B (en) | Method for enhancing virus resistance of grafted plants | |
CN106171981A (en) | The preparation method of a kind of cross-pollinatd plant callus high frequency regeneration system and the application in genetic transformation thereof | |
Liu et al. | Agrobacterium tumefaciens-mediated Genetic Transformation in Cucumber | |
CN105219794A (en) | A kind of photosensitizing effect that utilizes formulates the method for keeping away shade corn germplasm | |
Damiano et al. | Improving regeneration and transformation for resistance to sharka in Prunus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information |
Inventor after: Chen Wenting Inventor after: Bai Miao Inventor after: Yang Guoshun Inventor after: Zhong Xiaohong Inventor after: Xiong Xingyao Inventor after: Deng Ziniu Inventor after: Shi Xuehui Inventor after: Zhou Min Inventor before: Bai Miao Inventor before: Yang Guoshun Inventor before: Zhong Xiaohong Inventor before: Xiong Xingyao Inventor before: Deng Ziniu Inventor before: Shi Xuehui Inventor before: Chen Wenting Inventor before: Zhou Min |
|
CB03 | Change of inventor or designer information | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160323 Termination date: 20161017 |
|
CF01 | Termination of patent right due to non-payment of annual fee |