[go: up one dir, main page]

CN1709908A - A kind of tomato RNA virus host factor and its coding gene and application - Google Patents

A kind of tomato RNA virus host factor and its coding gene and application Download PDF

Info

Publication number
CN1709908A
CN1709908A CN 200510076655 CN200510076655A CN1709908A CN 1709908 A CN1709908 A CN 1709908A CN 200510076655 CN200510076655 CN 200510076655 CN 200510076655 A CN200510076655 A CN 200510076655A CN 1709908 A CN1709908 A CN 1709908A
Authority
CN
China
Prior art keywords
gene
totom1
sequence
tomato
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510076655
Other languages
Chinese (zh)
Other versions
CN100432101C (en
Inventor
陈保善
程海荣
蒙姣荣
刘遥测
林海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CNB2005100766558A priority Critical patent/CN100432101C/en
Publication of CN1709908A publication Critical patent/CN1709908A/en
Application granted granted Critical
Publication of CN100432101C publication Critical patent/CN100432101C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

This invention has disclosed a tomato RNA virus host factor gene and its coding gene and application. Its purpose is to offer a tomato RNA virus host factor gene and its coding gene and application of antivirus plant breeding. This tomato RNA virus host factor gene is a protein with one of amino residues as followed: 1. SEQ ID No.1 in the sequence list;2. Amino residue sequence of SEQ ID No.1 in the sequence list, through substitution by 1 to 10 amino residues, lacunae or addition and protein with virus copy effect.This tomato RNA virus host factor gene, Gene ToTOM1 and method to control this gene's expression, have greater actual meaning and wide application prospect of antivirus plant breeding.

Description

一种番茄RNA病毒寄主因子及其编码基因与应用A kind of tomato RNA virus host factor and its coding gene and application

技术领域technical field

本发明涉及生物技术领域中的蛋白及其编码基因与应用,特别是涉及一种番茄RNA病毒寄主因子及其编码基因与其在植物抗病毒育种上的应用。The invention relates to a protein and its coding gene and application in the field of biotechnology, in particular to a tomato RNA virus host factor and its coding gene and its application in plant anti-virus breeding.

背景技术Background technique

番茄是一种重要的水果型蔬菜。在其生长发育过程中,容易受到各种病害的危害,其中以病毒性病害最为严重。目前报道的侵染番茄的病毒大多数是RNA病毒,其中最常见的RNA病毒有7种,即黄瓜花叶病毒(Cucumber mosaic virus,CMV)、烟草花叶病毒(Tabacco mosaic virus,TMV)、番茄花叶病毒(Tomato mosaic virus,ToMV)、马铃薯Y病毒(Potato virus Y,PVY)、番茄丛矮病毒(Tomato bushy stunt virus,TBSV)、番茄不孕病毒(Tomato aspermy virus,TAV)和番茄褪绿斑病毒(Tomatochlorotic spot virus,TCSV)。Tomato is an important fruit-type vegetable. During its growth and development, it is vulnerable to various diseases, among which viral diseases are the most serious. Most of the viruses infecting tomato reported so far are RNA viruses, of which seven are the most common, namely, cucumber mosaic virus (CMV), tobacco mosaic virus (Tabacco mosaic virus, TMV), tomato Tomato mosaic virus (ToMV), Potato virus Y (PVY), Tomato bushy stunt virus (TBSV), Tomato aspermy virus (TAV), and tomato chlorosis Spot virus (Tomatochlorotic spot virus, TCSV).

由于病毒是严格的专性寄生物,至今还没有严格选择性的化学药剂能有效地用于植物病毒病的防治。在生产实践中主要以清除毒源和切断病毒的传播途径、用化学药剂杀死介体昆虫和培育抗病新品种等预防性措施来控制病毒病的危害,其中以培育抗病新品种最为经济有效。然而,常规的抗病育种方法过程繁琐,需要大量的人力物力,更重要的是抗病基因常与不良农艺形状基因连锁,难以达到抗病优质的生产要求;另一方面,抗性基因资源的缺乏也限制了常规育种方面的应用。植物基因工程在育种上的应用为植物病毒病的防治开辟了新的途径(Powell A.P.,N elson R.S.,HoffmanN.,et al.Delay of disease development in transgenic plants that express thetobacco mosaic virus coat protein gene.Science,1986,232:738-743)。目前获得抗病毒转基因植株的方法主要有两种:一是将来源于病毒自身的基因或基因的调控序列(如病毒的外壳蛋白基因、复制酶基因及其片段、运动蛋白基因及其3’或5’端非编码区、病毒反义RNA、核酶基因以及病毒卫星RNA等)导入受体植物,从而获得病毒起源的抗性(pathogen-derived resistance)的抗病毒植株(Lomonossoff G.P.,1995.Pathogen-derived Resistance to Plant Viruses,Annu.Rev.Phytopathol.,33:323-343),但是利用这种方法得到的抗病毒植株一般表现为垂直抗病性,而且,这一方法存在一定的潜在的危险因素,即用于转化植物的病毒序列有可能与田间存在的病毒发生重组,从而产生新的病毒;另一种方法是利用植物本身的抗病基因(如N基因)来获得抗病毒植物(Goldbach R.,Bucher E.,and Prins M.2003.Resistancemechanisms to plant viruses:an review.Virus Research.,92:207-212)。Since viruses are strictly obligate parasites, no strictly selective chemical agents can be effectively used for the prevention and treatment of plant virus diseases. In production practice, the hazards of viral diseases are mainly controlled by preventive measures such as removing the source of the virus and cutting off the transmission route of the virus, killing vector insects with chemical agents, and cultivating new disease-resistant varieties. Among them, cultivating new disease-resistant varieties is the most economical efficient. However, the conventional disease-resistant breeding method is cumbersome and requires a lot of manpower and material resources. More importantly, disease-resistant genes are often linked with poor agronomic shape genes, making it difficult to meet the production requirements of disease-resistant and high-quality. On the other hand, the availability of resistant gene resources The lack also limits its application in conventional breeding. The application of plant genetic engineering in breeding has opened up new ways for the prevention and treatment of plant virus diseases (Powell A.P., N elson R.S., HoffmanN., et al.Delay of disease development in transgenic plants that express thetobacco mosaic virus coat protein gene.Science , 1986, 232:738-743). At present, there are mainly two methods for obtaining anti-virus transgenic plants: one is to introduce the gene or regulatory sequence of the gene derived from the virus itself (such as the coat protein gene of the virus, the replicase gene and its fragments, the motor protein gene and its 3' or 5' end non-coding region, viral antisense RNA, ribozyme gene and viral satellite RNA, etc.) into recipient plants, thereby obtaining virus-resistant (pathogen-derived resistance) virus-resistant plants of origin (Lomonossoff G.P., 1995. Pathogen -derived Resistance to Plant Viruses, Annu.Rev.Phytopathol., 33:323-343), but the virus-resistant plants obtained by this method generally show vertical disease resistance, and there is a certain potential danger in this method Factors, that is, the viral sequences used to transform plants may recombine with viruses existing in the field to produce new viruses; another method is to use the plant's own disease resistance genes (such as N genes) to obtain virus-resistant plants (Goldbach R., Bucher E., and Prins M. 2003. Resistance mechanisms to plant viruses: an review. Virus Research., 92: 207-212).

对病毒寄主因子基因的研究,为抗病毒基因工程提供了一条新的途径。寄主因子(Host Factors)是指在病毒侵染过程(包括病毒入侵、病毒基因表达、病毒粒子装配及释放等)中寄主细胞提供给病毒的一切便利条件,也称寄主蛋白(host proteins)或细胞蛋白(cellular proteins)。寄主细胞内如果缺少这些寄主因子,病毒便不能复制或复制的效率大大降低(Ahlquist P.,Noueiry,A.O.,and Lee,W.M.,et al.,2003.Host Factor in Positive-Strand RNA Viruses Genome Replication.Journalof Virology,77(15):8181-8126.)。因此,通过抑制或沉默寄主细胞中支持病毒复制的基因,将有可能使其不支持病毒在寄主细胞内的复制和维持,从而获得广谱性的抗病毒植株。The study of virus host factor genes provides a new way for antiviral genetic engineering. Host factors refer to all the convenient conditions provided by the host cell to the virus during the virus infection process (including virus invasion, viral gene expression, virion assembly and release, etc.), also known as host proteins or cell protein (cellular proteins). If these host factors are lacking in the host cell, the virus will not be able to replicate or the efficiency of replication will be greatly reduced (Ahlquist P., Noueiry, A.O., and Lee, W.M., et al., 2003.Host Factor in Positive-Strand RNA Viruses Genome Replication. Journal of Virology, 77(15):8181-8126.). Therefore, by inhibiting or silencing the genes that support virus replication in host cells, it will be possible to make them unable to support virus replication and maintenance in host cells, thereby obtaining broad-spectrum virus-resistant plants.

发明内容Contents of the invention

本发明的目的是提供一种番茄RNA病毒寄主因子及其编码基因。The purpose of the present invention is to provide a tomato RNA virus host factor and its coding gene.

本发明所提供的番茄RNA病毒寄主因子,名称为ToTOM1,来源于番茄属番茄(Lycopersicon esculentum Miller),是具有下述氨基酸残基序列之一的蛋白质:The tomato RNA virus host factor provided by the present invention is called ToTOM1, which is derived from Lycopersicon esculentum Miller and is a protein having one of the following amino acid residue sequences:

1)序列表中的SEQ ID №:1;1) SEQ ID №: 1 in the sequence listing;

2)将序列表中SEQ ID №:1的氨基酸残基序列经过一至十个氨基酸残基的取代、缺失或添加且具有支持病毒复制作用的蛋白质。2) Substitution, deletion or addition of one to ten amino acid residues to the amino acid residue sequence of SEQ ID №: 1 in the sequence listing and a protein capable of supporting virus replication.

序列表中的SEQ ID №:1由288个氨基酸残基组成。包含多个高疏水性的区域,推测该蛋白是一种具有6-7个跨膜结构域的跨膜蛋白,与拟南芥AToTOM1基因在氨基酸水平上的同源性为74.9%。SEQ ID No. 1 in the sequence listing consists of 288 amino acid residues. Containing multiple highly hydrophobic regions, it is speculated that the protein is a transmembrane protein with 6-7 transmembrane domains, and the homology with Arabidopsis AToTOM1 gene at the amino acid level is 74.9%.

编码序列表中SEQ ID №:1蛋白质序列的多核苷酸也属于本发明的保护范围。The polynucleotide encoding the protein sequence of SEQ ID №: 1 in the sequence listing also belongs to the protection scope of the present invention.

番茄RNA病毒寄主因子的编码基因(ToTOM1)包括番茄RNA病毒寄主因子的cDNA基因和番茄RNA病毒寄主因子的基因组基因。其基因组基因,是下述核苷酸序列之一:The gene encoding the host factor of tomato RNA virus (ToTOM1) includes the cDNA gene of host factor of tomato RNA virus and the genome gene of host factor of tomato RNA virus. Its genome gene is one of the following nucleotide sequences:

1)序列表中SEQ ID №:2的DNA序列;1) The DNA sequence of SEQ ID №: 2 in the sequence listing;

2)在高严谨条件下可与序列表中SEQ ID №:2限定的DNA序列杂交的核苷酸序列。2) A nucleotide sequence that can hybridize to the DNA sequence defined by SEQ ID No. 2 in the sequence listing under high stringency conditions.

序列表中的SEQ ID №:2由6727个碱基组成,具有11个外显子和10个内含子,自5′端的第1-158位碱基为该基因组基因的第一个外显子,自5′端的第838-928位碱基为该基因组基因的第二个外显子,自5′端的第1015-1067位碱基为该基因组基因的第三个外显子,自5′端的第1941-2033位碱基为该基因组基因的第四个外显子,自5′端的第2109-2180位碱基为该基因组基因的第五个外显子,自5′端的第3052-3131位碱基为该基因组基因的第六个外显子,自5′端的第3236-3274位碱基为该基因组基因的第七个外显子,自5′端的第3498-3561位碱基为该基因组基因的第八个外显子,自5′端的第5842-5895位碱基为该基因组基因的第九个外显子,自5′端的第6342-6419位碱基为该基因组基因的第十个外显子,自5′端的第6497-6727位碱基为该基因组基因的第十一个外显子,自5′端的第9-11位碱基为该基因组基因的起始密码子ATG,自5′端的第6587-6589位碱基为该基因组基因的终止密码子TGA;自5′端的第159-837位碱基为该基因组基因的第一个内含子,自5′端的第929-1014位碱基为该基因组基因的第二个内含子,自5′端的第1068-1940位碱基为该基因组基因的第三个内含子,自5′端的第2032-2108位碱基为该基因组基因的第四个内含子,自5′端的第2181-3051位碱基为该基因组基因的第五个内含子,自5′端的第3132-3235位碱基为该基因组基因的第六个内含子,自5′端的第3273-3497位碱基为该基因组基因的第七个内含子,自5′端的第3562-5841位碱基为该基因组基因的第八个内含子,自5′端的第5996-6341位碱基为该基因组基因的第九个内含子,自5′端的第6420-6496位碱基为该基因组基因的第十个内含子。SEQ ID № in the sequence listing: 2 consists of 6727 bases, has 11 exons and 10 introns, and the 1st-158th base from the 5' end is the first exon of the genome gene The 838-928th base from the 5' end is the second exon of the genome gene, and the 1015-1067th base from the 5' end is the third exon of the genome gene, from 5' The 1941-2033 bases at the 'end are the fourth exon of the genome gene, the 2109-2180 bases from the 5' end are the fifth exon of the genome gene, and the 3052nd bases from the 5' end Base -3131 is the sixth exon of the genome gene, bases 3236-3274 from the 5' end are the seventh exon of the genome gene, bases 3498-3561 from the 5' end The base is the eighth exon of the genome gene, the 5842-5895th base from the 5' end is the ninth exon of the genome gene, and the 6342-6419th base from the 5' end is the genome The tenth exon of the gene, the 6497-6727th base from the 5' end is the eleventh exon of the genome gene, and the 9th-11th base from the 5' end is the beginning of the genome gene The start codon ATG, the 6587-6589th base from the 5' end is the stop codon TGA of the genomic gene; the 159th-837th base from the 5' end is the first intron of the genomic gene, from Bases 929-1014 at the 5' end are the second intron of the genome gene, bases 1068-1940 at the 5' end are the third intron of the genome gene, bases at the 5' end are the third intron Bases 2032-2108 are the fourth intron of the genome gene, bases 2181-3051 from the 5' end are the fifth intron of the genome gene, bases 3132-3235 from the 5' end The base is the sixth intron of the genome gene, the 3273-3497 base from the 5' end is the seventh intron of the genome gene, and the 3562-5841 base from the 5' end is the The eighth intron of the genome gene, bases 5996-6341 from the 5' end are the ninth intron of the genome gene, bases 6420-6496 from the 5' end are the bases 6420-6496 of the genome gene Ten introns.

其cDNA基因,是下述核苷酸序列之一:Its cDNA gene is one of the following nucleotide sequences:

1)序列表中SEQ ID №:3的DNA序列;1) The DNA sequence of SEQ ID №: 3 in the sequence listing;

2)在高严谨条件下可与序列表中SEQ ID №:3限定的DNA序列杂交的核苷酸序列。2) A nucleotide sequence that can hybridize to the DNA sequence defined by SEQ ID No. 3 in the sequence listing under high stringency conditions.

序列表中的SEQ ID №:3由1282个碱基组成,其开放阅读框架(ORF)为自5′端第31-897位碱基,编码具有序列表中SEQ ID №:1的氨基酸残基序列的蛋白质;SEQ ID №: 3 in the sequence listing consists of 1282 bases, and its open reading frame (ORF) is the 31st-897th base from the 5′ end, encoding the amino acid residues with SEQ ID №: 1 in the sequence listing sequence of proteins;

上述高严谨条件可为用0.1×SSPE(或0.1×SSC),0.1%SDS的溶液,在65℃下杂交并洗膜。The above-mentioned high stringency conditions can be 0.1×SSPE (or 0.1×SSC), 0.1% SDS solution, hybridization at 65° C. and washing the membrane.

含有上述番茄RNA病毒寄主因子编码基因的表达载体、转基因细胞系和宿主菌以及扩增番茄RNA病毒寄主因子编码基因中任一片段的引物也属于本发明的保护范围。The expression vector containing the gene encoding the host factor of tomato RNA virus, the transgenic cell line and the host bacterium, and the primers for amplifying any fragment of the gene encoding the host factor of tomato RNA virus also belong to the protection scope of the present invention.

本发明的另一个目的是提供一种培育抗病毒植物的方法。Another object of the present invention is to provide a method for breeding virus-resistant plants.

本发明所提供的培育抗病毒植物的方法,是将ToTOM1的反义基因片段或ToTOM1的RNA干扰表达载体导入植物中,得到转基因植株。The method for cultivating virus-resistant plants provided by the present invention is to introduce the antisense gene fragment of ToTOM1 or the RNA interference expression vector of ToTOM1 into plants to obtain transgenic plants.

可按照植物基因工程领域中的常规方法,将ToTOM1的反义基因片段或ToTOM1的RNA干扰表达载体导入转化植物细胞或组织,如农杆菌介导转化法、基因枪介导转化法或花粉管通道法等。被转化的植物宿主既可为茄科、十字花科或葫芦科的植物。According to conventional methods in the field of plant genetic engineering, the antisense gene fragment of ToTOM1 or the RNA interference expression vector of ToTOM1 can be introduced into transformed plant cells or tissues, such as Agrobacterium-mediated transformation, gene gun-mediated transformation or pollen tube passage law etc. The transformed plant host can be a plant of Solanaceae, Brassicaceae or Cucurbitaceae.

本发明所提供的番茄RNA病毒寄主因子ToTOM1是一种RNA病毒在植物体内存活的相关蛋白,通过转反义基因片段或RNA干扰的方法沉默植物体内的该蛋白的编码基因可得到抗病毒的植物。转基因植株的抗病性实验结果显示,转ToTOM1反义RNA的转基因番茄显著抑制了CMV在番茄中的积累量,与对照非转基因植株相比,发病时间明显推迟,症状也显著减轻,此外,转ToTOM1的RNA干扰质粒的转基因番茄植株TMV的积累量也比对照非转基因番茄显著减少,表明番茄ToTOM1是CMV和TMV的一个寄主因子基因,通过抑制或沉默ToTOM1可获得抗CMV和TMV的番茄品种。本发明的番茄RNA病毒寄主因子基因ToTOM1及其抑制该基因表达的方法,在抗病毒植物培育和育种中具有较大的实际意义和广阔的应用前景。The tomato RNA virus host factor ToTOM1 provided by the present invention is a related protein for the survival of RNA viruses in plants, and the virus-resistant plants can be obtained by silencing the gene encoding the protein in plants by transfecting antisense gene fragments or RNA interference . The results of the disease resistance experiment of transgenic plants showed that the transgenic tomato transfected with ToTOM1 antisense RNA significantly inhibited the accumulation of CMV in tomato. The accumulation of TMV in the transgenic tomato plants with the RNA interference plasmid of ToTOM1 was also significantly reduced compared with the control non-transgenic tomato, indicating that tomato ToTOM1 is a host factor gene of CMV and TMV, and tomato varieties resistant to CMV and TMV can be obtained by inhibiting or silencing ToTOM1. The tomato RNA virus host factor gene ToTOM1 and the method for inhibiting the gene expression of the present invention have great practical significance and broad application prospects in the cultivation and breeding of anti-virus plants.

附图说明Description of drawings

图1为ToTOM1的3’RACE产物的琼脂糖凝胶电泳图谱Figure 1 is the agarose gel electrophoresis profile of the 3' RACE product of ToTOM1

图2为含ToTOM1的3’RACE产物的重组质粒的BamH I和Xho I酶切鉴定图谱Figure 2 is the BamH I and Xho I enzyme digestion identification map of the recombinant plasmid containing the 3' RACE product of ToTOM1

图3为ToTOM1的5’RACE产物的琼脂糖凝胶电泳图谱Figure 3 is the agarose gel electrophoresis profile of the 5'RACE product of ToTOM1

图4为含ToTOM1的5’RACE产物的重组质粒的EcoR I酶切鉴定图谱Figure 4 is the EcoR I enzyme digestion identification map of the recombinant plasmid containing the 5' RACE product of ToTOM1

图5为PCR扩增的ToTOM1的基因组基因片段的琼脂糖凝胶电泳图谱Figure 5 is the agarose gel electrophoresis profile of the genomic gene fragment of ToTOM1 amplified by PCR

图6为含ToTOM1的基因组基因片段的重组质粒的琼脂糖凝胶电泳图谱Fig. 6 is the agarose gel electrophoresis pattern of the recombinant plasmid containing the genome gene fragment of ToTOM1

图7为含ToTOM1基因片段的重组质粒的酶切鉴定图谱Figure 7 is the enzyme digestion identification map of the recombinant plasmid containing the ToTOM1 gene fragment

图8为转基因用植物表达载体pBI121Figure 8 is the plant expression vector pBI121 for transgenic use

图9为PCR扩增的ToTOM1基因组片段的琼脂糖凝胶电泳图谱Figure 9 is the agarose gel electrophoresis pattern of the ToTOM1 genome fragment amplified by PCR

图10为外源片段在pUCm-T中连接方向的酶切鉴定图谱Figure 10 is the enzyme digestion identification map of the connection direction of the exogenous fragments in pUCm-T

图11为ToTOM1的植物转化质粒pBIT1-2的酶切鉴定图谱Figure 11 is the enzyme digestion identification map of the plant transformation plasmid pBIT1-2 of ToTOM1

图12为PCR扩增的用于构建RNA干扰表达质粒的ToTOM1 cDNA片段的琼脂糖凝胶电泳图谱Figure 12 is the agarose gel electrophoresis profile of the ToTOM1 cDNA fragment used to construct the RNA interference expression plasmid for PCR amplification

图13为重组质粒pUCGAT1(-370)的酶切鉴定图谱Figure 13 is the enzyme digestion identification map of the recombinant plasmid pUCGAT1 (-370)

图14为RNA干扰中间载体pUCGAToTOM1(RNAi-370)的酶切鉴定图谱Figure 14 is the enzyme digestion identification map of the RNA interference intermediate vector pUCGAToTOM1 (RNAi-370)

图15为RNA干扰表达质粒pBIToTOM1(RNAi-370)的Pst I酶切鉴定图谱Figure 15 is the Pst I enzyme digestion identification map of RNA interference expression plasmid pBIToTOM1 (RNAi-370)

图16为转化有反义ToTOM1的抗Kn番茄植株的PCR鉴定图谱Figure 16 is the PCR identification map of the Kn-resistant tomato plant transformed with antisense ToTOM1

图17为PCR鉴定转化有反义ToTOM1的阳性植株的Southern杂交检测结果Figure 17 is the Southern hybridization detection result of positive plants transformed with antisense ToTOM1 by PCR

图18为抗卡那霉素的表达RNA干扰片段的转基因植株的35S、NOS、内源ToTOM1基因和NPTII基因的PCR检测结果Figure 18 is the PCR detection result of 35S, NOS, endogenous ToTOM1 gene and NPTII gene of the transgenic plant expressing RNA interference fragment resistant to kanamycin

图19为PCR反应阳性的独立RNA干扰转基因植株的Southern杂交图谱Figure 19 is the Southern hybridization pattern of independent RNA interference transgenic plants with positive PCR reaction

图20为接种CMV 10天后非转基因植株Figure 20 shows the non-transgenic plants after 10 days of inoculation with CMV

图21为接种CMV 10天后反义RNA转基因植株Figure 21 is antisense RNA transgenic plant after inoculating CMV 10 days

图22为接种CMV 25天后非转基因植株Figure 22 is non-transgenic plants after inoculation with CMV 25 days

图23为接种CMV 25天后表达反义RNA转基因植株Figure 23 is the transgenic plant expressing antisense RNA 25 days after inoculation with CMV

具体实施方式Detailed ways

下述实施例中所用方法如无特别说明均为常规方法,所用番茄品种为购自广西农科院的“超级大明星”。The methods used in the following examples are conventional methods unless otherwise specified, and the tomato variety used is "Super Star" purchased from Guangxi Academy of Agricultural Sciences.

实施例1、番茄寄主因子基因ToTOM1的全长cDNA序列的克隆Embodiment 1, the cloning of the full-length cDNA sequence of tomato host factor gene ToTOM1

1、ToTOM1 3’端cDNA的克隆1. Cloning of ToTOM1 3' end cDNA

根据GenBank搜寻到的与拟南芥AtTOM1[gi:9967414]具有一定同源性的番茄EST序列BE458681(528nt)[gi:9502983]设计两条正向引物扩增ToTOM1 3’端的cDNA序列,引物序列如下:According to the tomato EST sequence BE458681 (528nt) [gi: 9502983] found in GenBank that has a certain homology with Arabidopsis AtTOM1 [gi: 9967414], two forward primers were designed to amplify the cDNA sequence at the 3' end of ToTOM1, the primer sequence as follows:

Tomato Tom1-A:5’CTCCCTTTGTGCTTCC-TATGGTCT 3’;Tomato Tom1-A: 5'CTCCCTTTGTGCTTCC-TATGGTCT 3';

Tomato Tom1-1:5’GGGTACCCGAGTATGGCTGGACAAC 3’利用3’RACE System for Rapid Amplication of cDNA Ends试剂盒(Invitrogen公司,目录号18373-027)合成ToTOM1 3’端的cDNA序列。提取番茄的总RNA,反转录合成其第一链cDNA,以此第一链cDNA为模板,在引物Tomato Tom1-A和上述试剂盒提供的引物AUAP:5’GGCCACGCGTCGACTAGTAC3’引导下,进行第一次PCR,再以第一次PCR产物为模板,在引物Tomato Tom1-1和引物AUAP的引导下,进行第二次PCR,反应结束后对PCR进行1.2%琼脂糖凝胶电泳检测,检测结果如图1所示(泳道M为GeneRuler 1kb DNA Ladder,泳道1为ToTOM1的3’RACE产物),表明扩增出一条长度约1000bp的特异性条带。回收该特异性PCR产物,将其与载体pCR2.1-TOPO(Invitrogen公司)连接,将连接产物转化大肠杆菌DH5α,经筛选后挑选阳性克隆提质粒,用限制性内切酶BamHI和Xho I进行双酶切鉴定,酶切鉴定结果如图2所示(泳道M为GeneRuler 1kb DNA ladder,泳道1为ToTOM1的3’RACE PCR片段,泳道2-5为含ToTOM1的3’RACE PCR片段的重组质粒的BamH I和Xho I酶切产物),表明克隆到的长度约1000bp的ToTOM1的3’RACE PCR片段已正确插入到载体TOPO TA中,将该重组载体命名为pCToT1-3。对pCToT1-3进行DNA序列测定,测序结果表明所插入的DNA片段长度为1077bp,具有序列表中SEQ ID №:3的自5’端第206-1282位的DNA序列,该DNA片段的3’端具有长度为15个碱基的poly(A)尾。Tomato Tom1-1: 5'GGGTACCCGAGTATGGCTGGACAAC 3'Use the 3'RACE System for Rapid Aplication of cDNA Ends kit (Invitrogen, catalog number 18373-027) to synthesize the cDNA sequence of ToTOM1 3' end. The total RNA of tomato was extracted, and its first-strand cDNA was synthesized by reverse transcription. Using the first-strand cDNA as a template, under the guidance of the primer Tomato Tom1-A and the primer AUAP provided by the above kit: 5'GGCCACGCGTCGACTAGTAC3', the first The first PCR, and then use the first PCR product as a template, under the guidance of primer Tomato Tom1-1 and primer AUAP, carry out the second PCR, after the reaction, carry out 1.2% agarose gel electrophoresis detection to PCR, the detection result is as follows As shown in Figure 1 (lane M is GeneRuler 1kb DNA Ladder, and lane 1 is the 3'RACE product of ToTOM1), it shows that a specific band with a length of about 1000bp was amplified. Recover this specific PCR product, connect it with carrier pCR2.1-TOPO (Invitrogen Company), transform Escherichia coli DH5α with the connected product, select positive clone to extract plasmid after screening, carry out with restriction endonuclease BamHI and Xho I Double enzyme digestion identification, the results of enzyme digestion identification are shown in Figure 2 (lane M is the GeneRuler 1kb DNA ladder, lane 1 is the 3'RACE PCR fragment of ToTOM1, and lanes 2-5 are recombinant plasmids containing the 3'RACE PCR fragment of ToTOM1 BamH I and Xho I digestion products), indicating that the cloned 3'RACE PCR fragment of ToTOM1 with a length of about 1000 bp has been correctly inserted into the vector TOPO TA, and the recombinant vector was named pCToT1-3. The DNA sequence of pCToT1-3 was determined, and the sequencing results showed that the inserted DNA fragment was 1077bp in length, and had the DNA sequence from 206-1282 at the 5' end of SEQ ID №3 in the sequence table, and the 3' of the DNA fragment The end has a poly(A) tail of 15 bases in length.

2、ToTOM1 5’端cDNA的克隆2. Cloning of ToTOM1 5' end cDNA

根据GenBank搜寻到的与拟南芥ATOM1具有一定同源性的番茄EST序列BE458681(528nt)[gi:9502983]设计两条正向引物扩增ToTOM1 5’端的cDNA序列,引物序列如下:According to the tomato EST sequence BE458681 (528nt) [gi:9502983] found in GenBank that has a certain homology with Arabidopsis ATOM1, two forward primers were designed to amplify the cDNA sequence at the 5' end of ToTOM1. The primer sequences are as follows:

Tomato Tom1-2:5’CCACCATATAGCAGAAAGCCCAAGG-3’;Tomato Tom1-2: 5'CCACCATATAGCAGAAAGCCCAAGG-3';

Tomato Tom1-B:5’TCCTGAGCTTATCTGTTGGTAAACTCCTAGCCT-3’Tomato Tom1-B: 5'TCCTGAGCTTATCTGTTGGTAAACTCCTAGCCT-3'

利用SMARTTMRACE cDNA Amplification试剂盒(Clontech公司,目录号K1881-1)合成ToTOM1 5’端的cDNA序列。提取番茄的总RNA,反转录合成其第一链cDNA,以此第一链cDNA为模板,在引物Tomato Tom1-2和上述试剂盒提供的引物UPM:5’CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT 3’的引导下进行第一次PCR,再以第一次PCR产物(稀释100倍)为模板,在引物Tomato Tom1-B和引物NUP:5’-AAGCAGTGGTATCAACGCAGAGT-3’的引导下进行第二次PCR,反应结束后对PCR产物进行1.2%琼脂糖凝胶电泳检测,检测结果如图3所示(泳道M为100bp DNA Ladder Plus泳道1为ToTOM1的5’RACE产物),表明扩增出一条长度约500bp的特异性条带。回收该特异性PCR产物,将其与载体TOPO TA连接,将连接产物转化大肠杆菌DH5α,经筛选后挑选阳性克隆提质粒,用限制性内切酶EcoR I进行酶切鉴定,酶切鉴定结果如图4所示(泳道M为GeneRuler 1kb DNA ladder,泳道1为ToTOM1的5’RACEPCR片段,ToTOM1的3’RACE PCR片段,泳道2-5为含ToTOM1的5’RACE PCR片段的重组质粒的EcoR I酶切产物),表明克隆到的长度约500bp的目的片段已正确插入到载体TOPO TA中,将该重组载体命名为pCToT1-5。对pCToT1-5进行DNA序列测定,测序结果表明所插入的DNA片段长度为448bp,具有序列表中SEQ ID №:3的自5’端第1-448位的DNA序列。The cDNA sequence at the 5' end of ToTOM1 was synthesized using the SMARTTMRACE cDNA Amplification Kit (Clontech, catalog number K1881-1). The total RNA of tomato was extracted, and its first-strand cDNA was synthesized by reverse transcription. Using the first-strand cDNA as a template, under the guidance of the primer Tomato Tom1-2 and the primer UPM provided by the above kit: 5'CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT 3', the second One PCR, then use the first PCR product (diluted 100 times) as a template, and carry out the second PCR under the guidance of primer Tomato Tom1-B and primer NUP: 5'-AAGCAGTGGTATCAACGCAGAGT-3', after the reaction, perform PCR The product was detected by 1.2% agarose gel electrophoresis, and the detection result is shown in Figure 3 (lane M is 100bp DNA Ladder Plus lane 1 is the 5' RACE product of ToTOM1), indicating that a specific band with a length of about 500bp was amplified . Recover the specific PCR product, connect it with the carrier TOPO TA, transform the ligated product into Escherichia coli DH5α, select the positive clone to extract the plasmid after screening, and use the restriction endonuclease EcoR I for enzyme digestion identification. The enzyme digestion identification results are as follows: As shown in Figure 4 (swimming lane M is GeneRuler 1kb DNA ladder, and swimming lane 1 is the 5'RACE PCR fragment of ToTOM1, and the 3'RACE PCR fragment of ToTOM1, and swimming lane 2-5 is the EcoR I of the recombinant plasmid containing the 5'RACE PCR fragment of ToTOM1 enzyme digestion product), it shows that the cloned target fragment with a length of about 500bp has been correctly inserted into the vector TOPO TA, and the recombinant vector is named pCToT1-5. The DNA sequence of pCToT1-5 was determined, and the sequencing results showed that the inserted DNA fragment was 448bp in length, and had the DNA sequence from 1-448 of the 5' end of SEQ ID №: 3 in the sequence listing.

3、ToTOM1全长cDNA的获得3. Obtaining the full-length cDNA of ToTOM1

对步骤1和步骤2获得的5’RACE PCR片段和3’RACE PCR片段进行序列分析,分析结果表明两片段具有一段长度为243nt的重叠区,此重叠区在步骤2获得的5’RACE PCR片段的5’端的第279位碱基处有一个限制性内切酶Mun I的酶切位点,在载体pCToT1-3和pCToT1-5的序列上有一个限制性内切酶Xha I的酶切位点。利用Mun I和Xba I两个酶切位点将3’RACE和5’RACE的cDNA连接起来,得到ToTOM1的全长cDNA。对该全长cDNA进行测序,测序结果表明该序列具有序列表中SEQ ID №:3的核苷酸序列,序列表中SEQ ID №:3由1282个核苷酸组成,3’端具有长度为15个碱基的poly(A)尾。用Vector NTI软件对ToTOM1全长的cDNA序列进行序列分析,分析结果表明其开放阅读框架(ORF)为自5’端第31-897位碱基,其5’端非编码区长度为30个碱基,3’端非编码区长度为385个碱基,编码序列表中SEQ ID №:1的氨基酸残基序列,将ToTOM1与拟南芥AtTOM1编码的氨基酸残基序列进行同源性比较,ToTOM1与拟南芥AtTOM1在氨基酸水平上的同源性为74.9%。用Kyte & Doolittle的方法(Kyte & Doolittle,A simple method for displaying the hydropathiccharacter of a protein,J Mol Biol,157(1):105-132)对ToTOM1编码的蛋白质的疏水性进行分析,结果表明ToTOM1编码的蛋白质具有高疏水性的区域,推断该蛋白是一种具有6-7个跨膜结构域的跨膜蛋白。Sequence analysis of the 5'RACE PCR fragment and 3'RACE PCR fragment obtained in step 1 and step 2 shows that the two fragments have an overlapping region with a length of 243nt, and the 5'RACE PCR fragment obtained in step 2 There is a restriction endonuclease Mun I cutting site at the 279th base at the 5' end of the vector, and there is a restriction endonuclease Xha I cutting site in the sequence of the vector pCToT1-3 and pCToT1-5 point. The cDNAs of 3'RACE and 5'RACE were connected by Mun I and Xba I restriction sites to obtain the full-length cDNA of ToTOM1. The full-length cDNA is sequenced, and the sequencing results show that the sequence has the nucleotide sequence of SEQ ID №: 3 in the sequence listing. SEQ ID №: 3 in the sequence listing consists of 1282 nucleotides, and the 3' end has a length of 15 base poly(A) tail. Sequence analysis was performed on the full-length cDNA sequence of ToTOM1 with Vector NTI software, and the analysis results showed that its open reading frame (ORF) was from the 31st to 897th bases at the 5' end, and the length of the 5' non-coding region was 30 bases base, the length of the 3' non-coding region is 385 bases, the amino acid residue sequence of SEQ ID №: 1 in the coding sequence list, the homology comparison between ToTOM1 and the amino acid residue sequence encoded by Arabidopsis AtTOM1, ToTOM1 The amino acid homology with Arabidopsis AtTOM1 is 74.9%. The hydrophobicity of the protein encoded by ToTOM1 was analyzed by the method of Kyte & Doolittle (Kyte & Doolittle, A simple method for displaying the hydropathic character of a protein, J Mol Biol, 157(1):105-132), and the results showed that ToTOM1 encoded The protein has a highly hydrophobic region, inferring that the protein is a transmembrane protein with 6-7 transmembrane domains.

实施例2、番茄ToTOM1基因组片段的克隆Embodiment 2, the cloning of tomato ToTOM1 genome fragment

根据已获得的番茄ToTOM1的全长cDNA序列及其编码区的自5’端第23-45位碱基序列和自5’端第1035-1012位碱基序列设计引物扩增ToTOM1的基因组序列,引物序列如下:According to the obtained full-length cDNA sequence of tomato ToTOM1 and the 23-45 nucleotide sequence from the 5' end and the 1035-1012 nucleotide sequence from the 5' end of the obtained full-length cDNA sequence of tomato ToTOM1 and its coding region, primers were designed to amplify the genome sequence of ToTOM1, The primer sequences are as follows:

ToTOM 1-D:5’-GAGCTGAAATGGCTAGGTTGCCG-3’;ToTOM 1-D: 5'-GAGCTGAAATGGCTAGGTTGCCG-3';

ToTOM 1-E:5’-CGTTGAATCTTTGCCTTTCCGCAG-3’以番茄的总DNA为模板,在引物ToTOM1-D和引物ToTOM1-E的引导下,进行PCR扩增,反应结束后对PCR进行0.8%琼脂糖凝胶电泳检测,检测结果如图5所示(泳道M为GeneRuler 1kb DNA ladder,泳道1为PCR扩增的ToTOM1的基因组片段),表明扩增出一条长度约6.7kb的特异性条带。回收该特异性扩增产物,将其克隆到载体pCR2.1-TOPO(Invitrogen公司)中,对其进行0.8%琼脂糖凝胶电泳检测,检测结果如图6所示(泳道1为CK:pCR2.1-TOPO,泳道1-6为含有ToTOM1基因组片段的重组质粒),然后用限制性内切酶Sac I和Xba I进行酶切鉴定,酶切鉴定结果如图7所示(泳道M为GeneRuler 1kb DNA ladder,泳道1为含有ToTOM1基因组基因片段的重组质粒的Sac I和Xba I酶切产物),表明克隆到的长度约6.7kb的目的片段已正确插入到载体pCR2.1 TOPO中,将含有该目的片段的重组质粒命名为pT1DE-9。对pT1DE-9进行DNA序列测定,测序结果表明ToTOM1的基因组基因具有序列表中SEQ ID№:2的多核苷酸序列,该序列由6727个碱基组成,将其与ToTOM1的全长cDNA序列进行比对,比对结果表明ToTOM1的基因组基因具有11个外显子和10个内含子,自5′端的第1-158位碱基为该基因组基因的第一个外显子,自5′端的第838-928位碱基为该基因组基因的第二个外显子,自5′端的第1015-1067位碱基为该基因组基因的第三个外显子,自5′端的第1941-2033位碱基为该基因组基因的第四个外显子,自5′端的第2109-2180位碱基为该基因组基因的第五个外显子,自5′端的第3052-3131位碱基为该基因组基因的第六个外显子,自5′端的第3236-3274位碱基为该基因组基因的第七个外显子,自5′端的第3498-3561位碱基为该基因组基因的第八个外显子,自5′端的第5842-5895位碱基为该基因组基因的第九个外显子,自5′端的第6342-6419位碱基为该基因组基因的第十个外显子,自5′端的第6497-6727位碱基为该基因组基因的第十一个外显子,自5′端的第9-11位碱基为该基因组基因的起始密码子ATG,自5′端的第6587-6589位碱基为该基因组基因的终止密码子TGA;自5′端的第159-837位碱基为该基因组基因的第一个内含子,自5′端的第929-1014位碱基为该基因组基因的第二个内含子,自5′端的第1068-1940位碱基为该基因组基因的第三个内含子,自5′端的第2032-2108位碱基为该基因组基因的第四个内含子,自5′端的第2181-3051位碱基为该基因组基因的第五个内含子,自5′端的第3132-3235位碱基为该基因组基因的第六个内含子,自5′端的第3273-3497位碱基为该基因组基因的第七个内含子,自5′端的第3562-5841位碱基为该基因组基因的第八个内含子,自5′端的第5996-6341位碱基为该基因组基因的第九个内含子,自5′端的第6420-6496位碱基为该基因组基因的第十个内含子。ToTOM 1-E: 5'-CGTTGAATCTTTGCCTTTCCGCAG-3'Using the total tomato DNA as a template, PCR amplification was carried out under the guidance of primers ToTOM1-D and primers ToTOM1-E. After the reaction, PCR was performed on 0.8% agarose Gel electrophoresis detection, the detection results are shown in Figure 5 (lane M is the GeneRuler 1kb DNA ladder, and lane 1 is the genomic fragment of ToTOM1 amplified by PCR), indicating that a specific band with a length of about 6.7kb was amplified. The specific amplification product was recovered, cloned into the vector pCR2.1-TOPO (Invitrogen Company), and detected by 0.8% agarose gel electrophoresis, and the detection results were shown in Figure 6 (swimming lane 1 is CK: pCR2 .1-TOPO, swimming lanes 1-6 are recombinant plasmids containing ToTOM1 genome fragments), then carry out enzyme digestion identification with restriction endonuclease Sac I and Xba I, the enzyme digestion identification results are as shown in Figure 7 (swimming lane M is GeneRuler 1kb DNA ladder, lane 1 is the Sac I and Xba I digestion product of the recombinant plasmid containing the ToTOM1 genome gene fragment), indicating that the cloned target fragment of about 6.7kb in length has been correctly inserted into the vector pCR2.1 TOPO, and will contain The recombinant plasmid of the target fragment was named pT1DE-9. The DNA sequence of pT1DE-9 was determined, and the sequencing results showed that the genomic gene of ToTOM1 had the polynucleotide sequence of SEQ ID No. 2 in the sequence table, which consisted of 6727 bases, and it was compared with the full-length cDNA sequence of ToTOM1 Alignment, the comparison results show that the genomic gene of ToTOM1 has 11 exons and 10 introns, and the 1st-158th base from the 5' end is the first exon of the genomic gene, from the 5' The 838-928th base at the end is the second exon of the genome gene, the 1015-1067th base from the 5' end is the third exon of the genome gene, and the 1941-1067th base from the 5' end is the third exon of the genome gene Base 2033 is the fourth exon of the genome gene, bases 2109-2180 from the 5' end are the fifth exon of the genome gene, bases 3052-3131 from the 5' end It is the sixth exon of the genome gene, the 3236-3274 base from the 5' end is the seventh exon of the genome gene, and the 3498-3561 base from the 5' end is the genome gene The eighth exon of , the 5842-5895th base from the 5' end is the ninth exon of the genome gene, and the 6342-6419th base from the 5' end is the tenth exon of the genome gene Exons, bases 6497-6727 from the 5' end are the eleventh exon of the genome gene, bases 9-11 from the 5' end are the start codon ATG of the genome gene, The 6587-6589th base from the 5' end is the stop codon TGA of the genomic gene; the 159th-837th base from the 5' end is the first intron of the genomic gene, and the 929th base from the 5' end The -1014th base is the second intron of the genome gene, and the 1068-1940th base from the 5' end is the third intron of the genome gene, and the 2032-2108th base from the 5' end The base is the fourth intron of the genome gene, the 2181-3051 base from the 5' end is the fifth intron of the genome gene, and the 3132-3235 base from the 5' end is the genome The sixth intron of the gene, the 3273-3497 base from the 5' end is the seventh intron of the genome gene, and the 3562-5841 base from the 5' end is the eighth intron of the genome gene The 5996-6341 base from the 5' end is the ninth intron of the genome gene, and the 6420-6496 base from the 5' end is the tenth intron of the genome gene .

实施例3、转基因番茄植株的获得Embodiment 3, the acquisition of transgenic tomato plants

一、植物表达载体的构建1. Construction of plant expression vectors

本实施例中所用的二元表达载体为pBI121(Clontech),其物理图谱如图8所示,具有T-DNA整合的必需序列,以卡那霉素抗性基因作为选择标记基因,从多克隆位点插入的外源基因由CaMV 35S启动子控制。The binary expression vector used in this example is pBI121 (Clontech), its physical map is shown in Figure 8, it has the necessary sequence for T-DNA integration, and the kanamycin resistance gene is used as the selection marker gene. The foreign gene inserted into the site is controlled by the CaMV 35S promoter.

1、含有ToTOM1基因组基因反义片段的植物表达载体的构建1. Construction of a plant expression vector containing an antisense fragment of the ToTOM1 genome gene

根据实施例2克隆的番茄ToTOM1的cDNA序列,设计一对特异引物Tomato Tom1-1(5’-GGGTACCCGAGTATGGCTGGACAAC-3’)和Tomato Tom1-2(5’-CCACCATATAGCAGAAAGCCCAAGG-3’)。以番茄的总DNA为模板,在引物Tomato Tom1-1和引物Tomato Tom1-2的引导下,进行PCR扩增,反应结束后对PCR产物进行0.8%琼脂糖凝胶电泳检测,检测结果如图9所示(泳道M为1Kb DNA Marker,泳道1为PCR扩增产物),表明扩增出一条长度约2.6kb的特异性条带。回收该特异性扩增产物并进行两端测序,测序结果表明该DNA片段为ToTOM1的一段核苷酸片段。将回收的ToTOM1的特异性扩增产物经纯化后克隆到载体pUCm-T(上海生工)中,并用限制性内切酶Kpn I进行酶切鉴定,酶切鉴定结果如图10所示(泳道M为1Kb DNA Marker,泳道1为回收片段与pUCm-T的正向连接产物,泳道2为回收片段与pUCm-T的反向连接产物的Kpn I酶切产物,泳道3为回收片段与pUCm-T的正向连接产物的Kpn I酶切产物),表明该基因片段分别以正向与反向的形式连接到载体pUCm-T中,将其中反向连接的重组质粒命名为pUT1-2。将已克隆在pUT1-2中的ToTOM1片段用限制性内切酶EcoR V和Xba I切下,经凝胶电泳后回收该DNA片段,将其连接到经Sma I和XbaI双酶切的载体pBI121上,得到ToTOM1的植物转化质粒pBIT1-2,对其用限制性内切酶HindIII进行酶切鉴定,酶切鉴定结果如图11所示(泳道M为1kb DNA Marker,泳道1为未经酶切的重组质粒pBIT1-2,泳道2为pBIT1-2的HindIII酶切产物),表明ToTOM1的DNA片段已正确连接到载体pBI121中,获得了构建正确的ToTOM1的植物表达载体。According to the cDNA sequence of the tomato ToTOM1 cloned in Example 2, a pair of specific primers Tomato Tom1-1 (5'-GGGTACCCGAGTATGGCTGGACAAC-3') and Tomato Tom1-2 (5'-CCACCATATAGCAGAAAGCCCAAGG-3') were designed. Using the total DNA of tomato as a template, under the guidance of primer Tomato Tom1-1 and primer Tomato Tom1-2, PCR amplification was carried out. After the reaction, the PCR product was detected by 0.8% agarose gel electrophoresis. The detection result is shown in Figure 9 As shown (swimming lane M is 1Kb DNA Marker, and swimming lane 1 is PCR amplification product), indicating that a specific band with a length of about 2.6kb was amplified. The specific amplification product was recovered and sequenced at both ends, and the sequencing result showed that the DNA fragment was a nucleotide fragment of ToTOM1. The specific amplification product of recovered ToTOM1 was purified and cloned into the vector pUCm-T (Shanghai Shenggong), and was identified by restriction endonuclease Kpn I, and the results of the identification were shown in Figure 10 (swimming lane M is 1Kb DNA Marker, lane 1 is the forward ligation product of the recovered fragment and pUCm-T, lane 2 is the Kpn I digestion product of the reverse ligation product of the recovered fragment and pUCm-T, and lane 3 is the recovered fragment and pUCm- The Kpn I digested product of the forward connection product of T) indicates that the gene fragment is connected into the vector pUCm-T in the forward and reverse forms respectively, and the recombinant plasmid connected in reverse is named pUT1-2. The ToTOM1 fragment cloned in pUT1-2 was excised with restriction endonucleases EcoR V and Xba I, and the DNA fragment was recovered after gel electrophoresis, and connected to the vector pBI121 double digested with Sma I and Xba I Above, the plant transformation plasmid pBIT1-2 of ToTOM1 was obtained, and it was digested and identified with restriction endonuclease HindIII. The recombinant plasmid pBIT1-2, lane 2 is the HindIII digestion product of pBIT1-2), indicating that the DNA fragment of ToTOM1 has been correctly connected to the vector pBI121, and the plant expression vector of ToTOM1 was constructed correctly.

2、番茄ToTOM1的RNAi干扰表达质粒的构建2. Construction of tomato ToTOM1 RNAi interference expression plasmid

根据番茄ToTOM1的全长cDNA序列设计两条引物,引物序列如下:Two primers were designed according to the full-length cDNA sequence of tomato ToTOM1, and the primer sequences are as follows:

ToTOM1-RNAi-2F(879-899):CCTC AGATCTGCACAATACCACCCAAT(划线部分碱基为Bgl II识别位点);ToTOM1-RNAi-2F (879-899): CCTC AGATCT GCACAATACCACCCAAT (the underlined base is the Bgl II recognition site);

ToTOM1-RNAi-2R(1258-1227):CCTC ACTAGTAAAGGAGATCCAGAACATC(划线部分碱基为Spe I识别位点)ToTOM1-RNAi-2R (1258-1227): CCTC ACTAGT AAAGGAGATCCAGAACATC (underlined bases are Spe I recognition sites)

以含有番茄ToTOM1全长cDNA的质粒为模板,在引物ToTOM1-RNAi-2F(879-899)和引物ToTOM1-RNAi-2R(1258-1227)的引导下,进行PCR扩增,得到两端分别含有限制性内切酶Bgl II和Spe I识别位点的ToTOM1的cDNA片段,命名为TT1,该DNA片段的1.2%琼脂糖凝胶电泳检测结果如图12所示(泳道M为GeneRuler 100bp DNAladder,泳道1为TT1),表明扩增到了370bp的DNA片段,与预期结果一致。回收该片段,将其用限制性内切酶Bgl II和Spe I双酶切后克隆到经同样酶双酶切的RNA干扰载体pUCGA(构建方法:以马铃薯总DNA为模板,在引物GA-F:5’-AGG  GAGCTC CTCGAG  ACTAGT  AGATCTG GTACGGACCGTACTACTCTATTCG-3’(划线部分碱基依次为限制性内切酶Sac I、Xho I、Spe I和Bgl II的识别位点)和引物GA-R:5’-AGGGGATCCCTATATAATTTAAGTGGAAAAAAAGGTTAAC-3’(划线部分碱基为限制性内切酶BamHI的识别位点)的引导下进行PCR扩增,得到马铃薯GA20氧化酶基因的第一个内含子片段(199bp),对该片段用Sac I和BamH I酶切,与经同样酶双酶切的载体pUC18(TaKaRa公司)连接,将获得的重组载体命名为pUCGA)上,得到含有该回收片段的重组载体,命名为pUCGAT1(-370),对该重组载体用限制性内切酶Pst I进行酶切鉴定,结果如图13(泳道M为GeneRuler 100bp DNA ladder,泳道1为pUCGA的Pst I酶切产物,泳道2为pUCGAT1(-370)的Pst I酶切产物)所示,表明该回收DNA片段已正确连接入载体pUCGA中。用限制性内切酶Xba I和BamHI对pUCGAT1(-370)进行双酶切后,再与经Bgl II和Spe I双酶切的TT1连接,得到ToTOM1的重组RNA干扰中间质粒,命名为pUCGAToTOM1(RNAi-370)。对该重组RNA干扰中间载体用限制性内切酶Pst I进行酶切鉴定,结果如图14所示(泳道M为GeneRuler 100bp DNA ladder,泳道1为pUCGAT1(-370)的Pst I酶切产物,泳道2为pUCGAToTOM1(RNAi-370)的PstI酶切产物)。将连有ToTOM1的RNA干扰片段TT1的RNA干扰质粒pUCGAToTOM1(RNAi-370)用限制性内切酶Sal I酶切后补平,再用限制性内切酶Spe I进行酶切,经1.2%琼脂糖凝胶电泳后回收长度约900bp的小片段,将回收片段连接到经限制性内切酶EcoR V和Xba I双酶切的载体pBI121上,得到番茄ToTOM1的RNAi干扰植物表达质粒,命名为pBI121ToTOM1(RNAi-370),将其用限制性内切酶Pst I进行酶切鉴定,结果如图15所示(泳道M1为GeneRuler 100bp DNA ladder,泳道M2为GeneRuler 1kb DNA ladder,泳道1为pBI121的Pst I酶切产物,泳道2为pBIToTOM1(RNAi-370)的Pst I酶切产物),表明获得了构建正确的番茄ToTOM1的RNAi干扰植物表达质粒。Using the plasmid containing the full-length cDNA of tomato ToTOM1 as a template, PCR amplification was carried out under the guidance of primers ToTOM1-RNAi-2F (879-899) and primers ToTOM1-RNAi-2R (1258-1227), and the two ends contained respectively The cDNA fragment of ToTOM1 of restriction endonuclease Bgl II and Spe I recognition site, named after TT1, the 1.2% agarose gel electrophoresis detection result of this DNA fragment is as shown in Figure 12 (swimming lane M is GeneRuler 100bp DNAladder, swimming lane 1 is TT1), indicating that a 370bp DNA fragment was amplified, consistent with the expected result. The fragment was recovered, and cloned into the RNA interference vector pUCGA (construction method: using the total potato DNA as a template, after primer GA-F was double digested with restriction endonucleases Bgl II and Spe I) : 5'-AGG GAGCTC CTCGAG ACTAGT AGATCTG GTACGGACCGTACTACTCTATTCG-3' (the bases underlined are the recognition sites of restriction enzymes Sac I, Xho I, Spe I and Bgl II) and primer GA-R: 5' -AGG GGATCC CTATATAATTTAAGTGGAAAAAAAAGGTTAAC-3' (the underlined part of the base is the recognition site of the restriction endonuclease BamHI) under the guidance of PCR amplification to obtain the first intron fragment (199bp) of the potato GA20 oxidase gene , the fragment was digested with Sac I and BamH I, and connected with the carrier pUC18 (TaKaRa Company) that was double digested with the same enzyme, and the recombinant vector obtained was named pUCGA), and the recombinant vector containing the recovered fragment was obtained, named It is pUCGAT1 (-370), and the recombinant vector is identified by restriction endonuclease Pst I, and the results are shown in Figure 13 (swimming lane M is GeneRuler 100bp DNA ladder, swimming lane 1 is the Pst I digestion product of pUCGA, swimming lane 2 It is shown as the Pst I digestion product of pUCGAT1 (-370), indicating that the recovered DNA fragment has been correctly ligated into the vector pUCGA. pUCGAT1(-370) was double-digested with restriction endonucleases Xba I and BamHI, and then ligated with TT1 double-digested with Bgl II and Spe I to obtain the recombinant RNA interference intermediate plasmid of ToTOM1, which was named pUCGAToTOM1( RNAi-370). The recombinant RNA interference intermediate vector was identified by restriction endonuclease Pst I, and the results are shown in Figure 14 (swimming lane M is GeneRuler 100bp DNA ladder, and swimming lane 1 is the Pst I digestion product of pUCGAT1 (-370), Lane 2 is the PstI digested product of pUCGAToTOM1(RNAi-370)). The RNA interference plasmid pUCGAToTOM1 (RNAi-370) connected with the RNA interference fragment TT1 of ToTOM1 was digested with the restriction endonuclease Sal I and filled in, then digested with the restriction endonuclease Spe I, and passed through 1.2% agar After sugar gel electrophoresis, a small fragment with a length of about 900bp was recovered, and the recovered fragment was connected to the vector pBI121 double-digested with restriction endonucleases EcoR V and Xba I to obtain the RNAi interference plant expression plasmid of tomato ToTOM1, which was named pBI121ToTOM1 (RNAi-370), which was identified by restriction endonuclease Pst I, the results are shown in Figure 15 (swimming lane M1 is GeneRuler 100bp DNA ladder, swimming lane M2 is GeneRuler 1kb DNA ladder, and swimming lane 1 is the Pst of pBI121 I digestion product, swimming lane 2 is the Pst I digestion product of pBIToTOM1 (RNAi-370), indicating that the RNAi interference plant expression plasmid of constructing correct tomato ToTOM1 has been obtained.

二、番茄的遗传转化2. Genetic transformation of tomato

1、三亲结合将植物表达质粒pBIT1-2导入农杆菌1. Three-parent combination to introduce plant expression plasmid pBIT1-2 into Agrobacterium

分别将含植物表达质粒pBIT1-2的大肠杆菌与含有辅助质粒pRK2073的大肠杆菌和农杆菌EHA105进行三亲本结合(Rogers S.G.,Horsch R.B.,and Fraley R.T.1986.Gene transfer in plant:production of transformed plants using Ti-plasmidvectors.Methods Enzymol.,118:627-640),在含50mg/L利福平(Rif)和50mg/L卡那霉素的LA平板进行筛选,得到含有植物表达质粒pBIT1-2的农杆菌转化子。E. coli containing the plant expression plasmid pBIT1-2 was combined with E. coli containing the helper plasmid pRK2073 and Agrobacterium EHA105 respectively (Rogers S.G., Horsch R.B., and Fraley R.T.1986. Gene transfer in plant: production of transformed plants using Ti-plasmidvectors.Methods Enzymol., 118: 627-640), screened on the LA plate containing 50mg/L rifampicin (Rif) and 50mg/L kanamycin, obtained the agricultural agent containing the plant expression plasmid pBIT1-2 Bacillus transformants.

2、番茄的遗传转化2. Genetic transformation of tomato

1)用含表达质粒pBIT1-2的农杆菌EHA105感染外植体1) Infect the explants with Agrobacterium EHA105 containing the expression plasmid pBIT1-2

将步骤1获得的含植物表达质粒pBIT1-2的农杆菌在含50mg/L利福平(Rif)和50mg/L卡那霉素的YEB平板上划线,置于28℃恒温中培养约24h,长出菌落后挑取单菌落接种于含相同抗生素的YEB液体培养基中,28℃恒温摇床(200转/分)培养约24h至OD600为04-0.6,转入无菌离心管中,3000rpm离心10min,弃上清液,将收集的菌体用MS培养液清洗一次并重新悬浮,稀释50倍后用于番茄的转化。参考JavierPozueta-Romero等人的方法(Pozueta-romero,J.,Houlnè,G.,

Figure A20051007665500121
,L.,et al.2001.Enhanced regeneration of tomato and pepper seedling explants forAgrobactereium-mediated transformation.Plant cell,Tissue and organ culture.,67:173-180)制备Flamingo Bill外植体,具体方法为:将番茄的种子一个个地分开,用蒸馏水洗3次,然后用80%乙醇浸泡并不停地搅动2分钟,另加4-6滴100%的Tween-80,倒去乙醇溶液,再用无菌水洗涤2-3次:加入有效氯为1%的NaClO溶液和4-6滴100%Tween-80在搅拌器上搅动15分钟,把NaClO溶液倒去,用无菌水洗2次,再重复二次,直至番茄种子的颜色由褐色变为金黄色,用无菌水冲洗6-10次,在无菌滤纸上晾干。晾干后把种子接入装有1/2MS培养基(含1.5%的蔗糖)的培养瓶中,在25-28℃的光照培养箱中培养7天,再把培养瓶放在超净台中,打开盖子,并补充培养瓶中的水分,使无菌苗在开放的环境下培养15个小时,然后将培养的无菌苗的一侧子叶从叶柄基部连同顶芽及周围分生组织全部切去,只留一侧子叶,另外将无菌苗的大一部分根系切去只保留长度为2-3cm的胚根作为外植体。Streak the Agrobacterium containing the plant expression plasmid pBIT1-2 obtained in step 1 on a YEB plate containing 50mg/L rifampicin (Rif) and 50mg/L kanamycin, and culture it at a constant temperature of 28°C for about 24h After the colony grows, pick a single colony and inoculate it in the YEB liquid medium containing the same antibiotic, cultivate it on a constant temperature shaker (200 rpm) at 28°C for about 24 hours until the OD 600 is 04-0.6, and transfer it to a sterile centrifuge tube , centrifuged at 3000rpm for 10min, discarded the supernatant, washed the collected bacteria once with MS culture medium and resuspended, diluted 50 times and used for transformation of tomato. Referring to the methods of Javier Pozueta-Romero et al. (Pozueta-romero, J., Houlnè, G.,
Figure A20051007665500121
, L., et al.2001.Enhanced regeneration of tomato and pepper seedling explants for Agrobactereium-mediated transformation.Plant cell, Tissue and organ culture., 67:173-180) to prepare Flamingo Bill explants, the specific method is: tomato The seeds were separated one by one, washed 3 times with distilled water, then soaked with 80% ethanol and stirred continuously for 2 minutes, added 4-6 drops of 100% Tween-80, poured off the ethanol solution, and then rinsed with sterile water Wash 2-3 times: add NaClO solution with 1% available chlorine and 4-6 drops of 100% Tween-80, stir on the mixer for 15 minutes, pour out the NaClO solution, wash 2 times with sterile water, and repeat twice , until the color of the tomato seeds changes from brown to golden yellow, rinse 6-10 times with sterile water, and dry on sterile filter paper. After drying, insert the seeds into a culture bottle equipped with 1/2MS medium (containing 1.5% sucrose), cultivate them in a light incubator at 25-28°C for 7 days, and then put the culture bottle in a super-clean bench. Open the cover, and replenish the water in the culture bottle, cultivate the sterile seedlings in an open environment for 15 hours, and then cut off one side of the cultured sterile seedlings from the base of the petiole together with the terminal buds and the surrounding meristems. , only one side of the cotyledon is left, and a large part of the root system of the aseptic seedling is cut off in addition and only the radicle with a length of 2-3cm is kept as an explant.

将外植体放入活化的含表达质粒pBIT1-2的农杆菌EHA105的MS液体培养基中(另加终浓度为100μmol/L的乙酰丁香酮),不停地摇动10分钟,取出后用无菌水冲洗两次,然后一根根地放入倒有MS共培养培养基(在MS基本培养基的基础上添加玉米素0.15mg/L和吲哚乙酸0.05mg/L)的15cm直径的大培养皿中,封口,在光照培养箱中培养2天。Put the explants into the activated MS liquid medium of Agrobacterium EHA105 containing the expression plasmid pBIT1-2 (additionally acetosyringone with a final concentration of 100 μmol/L), shake it continuously for 10 minutes, take it out and use a sterile Bacteria water was washed twice, and then one by one was put into a 15cm-diameter large tube filled with MS co-cultivation medium (adding 0.15 mg/L zeatin and 0.05 mg/L indole acetic acid on the basis of MS basic medium). Seal the petri dish and culture it in a light incubator for 2 days.

2)分化诱导2) Differentiation induction

培养2天后,将含表达质粒pBIT1-2的农杆菌EHA105转化后的外植体转接入分化筛选培养基中(在MS基本培养基的基础上添加了ZT 0.15mg/L,IAA 0.05mg/L,Km 50mg/L和Cef 200mg/L),继续在光照培养箱中培养2-3个星期,培养条件为25-28℃,15小时光照,9小时黑暗。After culturing for 2 days, the explants transformed with Agrobacterium EHA105 containing the expression plasmid pBIT1-2 were transferred into the differentiation and selection medium (adding ZT 0.15 mg/L, IAA 0.05 mg/L on the basis of MS basic medium). L, Km 50mg/L and Cef 200mg/L), continue to cultivate in the light incubator for 2-3 weeks, the culture condition is 25-28 ℃, 15 hours of light, 9 hours of darkness.

3)转基因植株的生根、炼苗及移栽3) Rooting, hardening and transplanting of transgenic plants

将在分化筛选培养基中生长正常的植株(长到高度约2-3cm)从愈伤组织上切下,插入生根培养基中(在MS基本培养基的基础上添加了Km 50mg/L,Cef 150mg/L,NAA 0.2mg/L),25-28℃,15小时光照,9小时黑暗条件下培养直至生根。待再生苗的根系长约3cm时将培养瓶的盖子打开并补充水分,在25-28℃,光照条件为15小时/天下,放置3-4天,然后将植株慢慢地拔出,洗净根部所带的琼脂,移植到土壤中,保持土壤的湿度,并将温度控制在25-30℃。The normal plant (grow up to about 2-3cm in height) in the differentiation screening medium was excised from the callus and inserted into the rooting medium (adding Km 50mg/L on the basis of MS basic medium, Cef 150mg/L, NAA 0.2mg/L), 25-28°C, 15 hours of light, 9 hours of darkness until rooted. When the root system of the regenerated seedlings is about 3cm long, open the lid of the culture bottle and add water. Place it for 3-4 days at 25-28°C and light conditions of 15 hours/day, then slowly pull out the plants and wash them. The agar carried by the root is transplanted into the soil, the humidity of the soil is kept, and the temperature is controlled at 25-30°C.

用上述同样方法将番茄ToTOM1的RNAi干扰表达质粒转化番茄植株。The same method as above was used to transform tomato plants with the RNAi interference expression plasmid of tomato ToTOM1.

三、转基因植株的分子鉴定3. Molecular identification of transgenic plants

1、反义RNA转基因植株的分子鉴定1. Molecular identification of antisense RNA transgenic plants

共获得19株卡那霉素(Kn)抗性反义RNA转基因植株。在盆栽前对小苗进行外源基因的PCR检测,具体方法为:取抗Kn的转基因番茄植株叶片,用CTAB法提取番茄植株叶片的总DNA,并以此为模板,在引物Tomato-ToTOM1-1和根据35S启动子序列设计的一条引物序列:5’-AATCTTCGTCAACATGGTGGAGCAC-3’的引导下,进行PCR检测,结果如图16所示(泳道M为lambda/HindIII+EcoRI,泳道1-19为用转化有反义ToTOM1的不同转基因植株的总DNA为模板的PCR扩增产物,泳道20为阳性对照,以质粒pBIT1-2为模板的PCR扩增产物),表明19株中有12株转基因植物中能扩增出大小约为3300bp的外源目的基因片段。将PCR鉴定的阳性转基因番茄植株命名为T1、T2、T3、T4、T5、T6、T7、T8、T9、T10、T11、T12,编号分别对应图16中的泳道1、2、3、4、7、8、9、10、13、14、17和19。A total of 19 kanamycin (Kn) resistant antisense RNA transgenic plants were obtained. The PCR detection of exogenous genes was carried out on the seedlings before potting. The specific method was: take the Kn-resistant transgenic tomato plant leaves, extract the total DNA of the tomato plant leaves with the CTAB method, and use this as a template, and use the primer Tomato-ToTOM1-1 And a primer sequence designed according to the 35S promoter sequence: under the guidance of 5'-AATCTTCGTCAACATGGTGGAGCAC-3', PCR detection was carried out, and the results are shown in Figure 16 (swimming lane M is lambda/HindIII+EcoRI, and swimming lanes 1-19 are transformed with The total DNA of different transgenic plants with antisense ToTOM1 is the PCR amplification product of the template, and swimming lane 20 is the positive control, and the PCR amplification product using the plasmid pBIT1-2 as the template), showing that 12 of the 19 transgenic plants can An exogenous target gene fragment with a size of about 3300bp was amplified. The positive transgenic tomato plants identified by PCR were named T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, and the numbers corresponded to lanes 1, 2, 3, 4, 7, 8, 9, 10, 13, 14, 17 and 19.

将PCR鉴定的阳性转基因植株进行盆栽,4个星期后提取其总DNA,用Sal I酶切后经0.7%琼脂糖凝胶电泳分离,通过向下毛细管法转移到杂交膜上,与P32标记的以Tomato-ToTOM1-1以及35S启动子上的一条引物:5’-AATCTTCGTCAACATGGTGGAGCAC-3’获得的PCR片段进行Sonthern杂交,结果如图图17所示(泳道M为1kb DNA marker,泳道CK为非转基因植株,泳道T1-T12为不同的转基因株系),表明除了出现内源ToTOM1的杂交带外(图中箭头所示),还有外源ToTOM1的杂交带,所有PCR检测阳性的植株均有外源ToTOM1片段的插入。由Sal I酶切片段显示的大小差异判断,一半以上的转基因植株的外源基因片段插入到染色体的不同位点,即属于不同的转基因株系。部分植株的插入片段大小相近(如T1、T3),不易判断,还需用其它酶切后再进行杂交分析才能确定。不过,番茄的染色体碱基数目巨大,外源基因插入到同一位置的可能性极小,所以,所得到的转基因植株有可能均是不同的株系。图17还显示出大多数转基因植株是单拷贝的,但有3株是双拷贝的(T4、T9、T10)。The positive transgenic plants identified by PCR were planted in pots, and the total DNA was extracted after 4 weeks, digested with Sal I, separated by 0.7% agarose gel electrophoresis, transferred to the hybridization membrane by the downward capillary method, and labeled with P 32 The PCR fragment obtained by Tomato-ToTOM1-1 and a primer on the 35S promoter: 5'-AATCTTCGTCAACATGGTGGAGCAC-3' was used for Southern hybridization. The results are shown in Figure 17 (lane M is 1kb DNA marker, lane CK is non- Transgenic plants, lanes T1-T12 are different transgenic lines), indicating that in addition to the hybridization band of endogenous ToTOM1 (indicated by the arrow in the figure), there is also a hybridization band of exogenous ToTOM1, and all PCR-positive plants have Insertion of exogenous ToTOM1 fragments. Judging from the size difference of the Sal I digested fragments, more than half of the transgenic plants had exogenous gene fragments inserted into different sites on the chromosome, that is, they belonged to different transgenic lines. The insert fragments in some plants are similar in size (such as T1, T3), so it is not easy to judge, and it needs to be cut with other enzymes and then hybridized to confirm. However, the number of chromosomal bases in tomato is huge, and the possibility of exogenous genes being inserted into the same position is very small, so the obtained transgenic plants may all be different lines. Figure 17 also shows that most of the transgenic plants are single copy, but 3 plants are double copy (T4, T9, T10).

2、RNA干扰转基因植株的鉴定2. Identification of RNA interference transgenic plants

共获得93株抗卡那霉素的RNA干扰转基因植株。盆栽前作初步的PCR检测,在引物Kam-R:5’-GATCTGGATCGTTTCGCATG-3’和引物Kam-F:5’-AAGGCGATAGAAGGCGATGC-3’的引导下扩增NPTII,在引物NOS-F:5’-TGCTACCHAHCTCHAATTTC-3’和NOS-R:5‘-ACGACGGCCAGTGAATTCCC-3’的引导下扩增NOS,在引物35S-F:5’-AATCTTCGTCAACATGGTGGAGCAC-3’和ToTOM1-RNAi-2F(的引导下扩增35S,在引物TA-TOM1-1:5’-GGGTACCCGAGTATGGCTGGACAAC-3’和TA-TOM1-2:5’-CCACCATATAGCAGAAAGCCCAAGG-3’的引导下扩增ToTOM1,其中63株抗性植株的NPTII、NOS、35S和内源ToTOM1基因检测为阳性,部分检测结果如图18所示(泳道M为GeneRuler 100bp DNA ladder,泳道1-5为抗性植株的35S检测(泳道1-5依次为MLC-ToTOM1-RNAi-370-11,-49,-71,-79,-80),泳道6-10为NOS检测(泳道6-10依次为MLC-ToTOM1-RNAi-370-11,-49,-71,-79,-80),泳道11-15为内源ToTOM1检测(泳道11-15依次为MLC-ToTOM1-RNAi-370-11,-49,-71,-79,-80),泳道16-20为NPTII基因检测(泳道16-20依次为MLC-ToTOM1-RNAi-370-11,-49,-71,-79,-80)。将阳性植株进行盆栽。一个月后用同样的方法进行检测,结果在32株中仅有3株(MLC-TOTOM1-RNAi370-71,-79和-80)仍有阳性信号。提取这3株呈阳性转基因植株的总DNA,用EcoR I完全酶切后经0.7%琼脂糖凝胶电泳分离,通过向下毛细管法转移到杂交膜上,与P32标记的RNA干扰TT1片段进行Sonthern杂交,结果如图19所示(泳道M为GeneRuler 1kb DNAladder,泳道ck(-)为非转基因番茄的EcoR I酶切产物,ck(+)为pBITOTOM1RNAi-370的EcoR I酶切产物,泳道1为MLC-TOTOM1-RNAi370-80,泳道2为MLC-TOTOM1-RNAi370-79,泳道3为MLC-TOTOM1-RNAi370-71),表明除了4.2kb的内源杂交带外,所有的转基因植株均出现一条大小不同的第二条杂交带,证明RNA干扰片段已整合到番茄基因组上。A total of 93 kanamycin-resistant RNA interference transgenic plants were obtained. Do a preliminary PCR test before potting, amplify NPTII under the guidance of primer Kam-R: 5'-GATCTGGATCGTTTCGCATG-3' and primer Kam-F: 5'-AAGGCGATAGAAGGCGATGC-3', and amplify NPTII under the guidance of primer NOS-F: 5'-TGCTACCHAHCTCHAATTTC -3' and NOS-R: Amplify NOS under the guidance of 5'-ACGACGGCCAGTGAATTCCC-3', amplify 35S under the guidance of primer 35S-F: 5'-AATCTTCGTCAACATGGTGGAGCAC-3' and ToTOM1-RNAi-2F (, in Under the guidance of primers TA-TOM1-1: 5'-GGGTACCCGAGTATGGCTGGACAAC-3' and TA-TOM1-2: 5'-CCACCATATAGCAGAAAGCCCAAGG-3', ToTOM1 was amplified, and the NPTII, NOS, 35S and endogenous The ToTOM1 gene test was positive, and some test results are shown in Figure 18 (lane M is the GeneRuler 100bp DNA ladder, and lanes 1-5 are the 35S detection of resistant plants (lanes 1-5 are MLC-ToTOM1-RNAi-370-11 in sequence) , -49, -71, -79, -80), lanes 6-10 are NOS detection (lanes 6-10 are MLC-ToTOM1-RNAi-370-11, -49, -71, -79, -80) , lanes 11-15 are endogenous ToTOM1 detection (lanes 11-15 are followed by MLC-ToTOM1-RNAi-370-11, -49, -71, -79, -80), lanes 16-20 are NPTII gene detection (lanes 16-20 are successively MLC-ToTOM1-RNAi-370-11,-49,-71,-79,-80). Positive plants are carried out potted. Detect with the same method after one month, the result is only in 32 strains There are 3 strains (MLC-TOTOM1-RNAi370-71, -79 and -80) still have positive signals. Extract the total DNA of these 3 positive transgenic plants, and go through 0.7% agarose gel electrophoresis after complete digestion with EcoRI Separation, transferred to the hybridization membrane by downward capillary method, and performed Southern hybridization with the P32-labeled RNA interference TT1 fragment, the results are shown in Figure 19 (swimming lane M is GeneRuler 1kb DNAladder, and swimming lane ck(-) is the EcoR of non-transgenic tomato I digestion product, ck(+) is the EcoR I digestion product of pBITOTOM1RNAi-370, lane 1 is MLC-TOTOM1-RNAi370-80, lane 2 is MLC-TOTOM1-RNAi370-79, lane 3 is MLC-TOTOM1-RNAi370 -71), indicating that in addition to the 4.2kb endogenous hybridization band, all transgenic plants had a second hybridization band of different sizes, proving that the RNA interference fragment had been integrated into the tomato genome.

实施例4、转基因植株的抗病性检测Embodiment 4, detection of disease resistance of transgenic plants

一、反义RNA转基因植株的抗病性实验1. Disease resistance experiment of antisense RNA transgenic plants

采用摩擦接种法,用黄瓜花叶病毒(CMV)对实施例3获得所有5-6叶期转基因番茄进行摩擦接种,以相同生长期的非转基因番茄为对照。Using the rubbing inoculation method, all the transgenic tomatoes at the 5-6 leaf stage obtained in Example 3 were rubbed inoculated with cucumber mosaic virus (CMV), and non-transgenic tomatoes at the same growth stage were used as controls.

1、症状表现1. Symptoms

接种CMV 10天后,非转基因的番茄实生苗对照开始出现花叶症状,新长出的叶片明显失绿(图20),而转基因植株表现正常(图21);二十五天时,对照非转基因植株的症状已非常严重,新长出的叶片几乎完全失绿,而且新叶畸形(图22)。此时的转基因植株虽然也表现症状,但比对照要明显减轻,叶片仅有些褪绿(图23)。After 10 days of inoculation with CMV, the non-transgenic tomato seedling control began to show mosaic symptoms, and the newly grown leaves were obviously chlorotic (Figure 20), while the transgenic plants were normal (Figure 21); at 25 days, the control non-transgenic plants The symptoms of the disease are very serious, and the newly grown leaves are almost completely chlorotic, and the new leaves are deformed (Figure 22). Although the transgenic plants at this time also showed symptoms, they were significantly lighter than those of the control, and the leaves were only slightly chlorotic (Fig. 23).

2、转基因番茄植株内病毒相对量的测定2. Determination of the Relative Quantity of Viruses in Transgenic Tomato Plants

以苋色藜为枯斑寄主,用生物定量法测定转基因番茄植株内病毒相对含量。接种二十天后,取番茄植株的部分新叶(约0.5g)磨成匀浆,分别接种到枯斑寄主植物苋色藜的叶片,每个处理接2张叶片,设2个重复,五天后统计枯斑的数目并进行差异显著性分析。结果如表1所示,表明以转基因番茄为接种源,在苋色藜上形成的枯斑数均显著低于对照实生番茄植株。其中转基因植株T9形成的枯斑数(34.5个/叶)仅为对照(119个/叶)的29%。不同的转基因株系在苋色藜上形成的枯斑的数量有明显的差异,如T1植株的枯斑数(68.5个/叶)比T9植株(34.5个/叶)高出近1倍。枯斑试验表明,转反义ToTOM1番茄的CMV浓度要明显低于非转基因番茄。The relative content of virus in transgenic tomato plants was determined by bioquantitative method using Chenopodium chinensis as the host of dead spot. Twenty days after inoculation, take some new leaves (about 0.5g) of the tomato plants and grind them into a homogenate, and inoculate them into the leaves of the host plant Amaranthus amaranthus, respectively. Each treatment receives 2 leaves, and 2 replicates are set. After five days, The number of dead spots was counted and a significant difference analysis was performed. The results are shown in Table 1, which indicated that the number of dead spots formed on Amaranthus quinoa was significantly lower than that of control tomato plants when the transgenic tomato was used as the inoculation source. The number of dead spots formed by the transgenic plant T9 (34.5/leaf) was only 29% of that of the control (119/leaf). The number of dead spots formed by different transgenic lines on Chenopodium amaranthus was significantly different. For example, the number of dead spots of T1 plants (68.5/leaf) was nearly 1 times higher than that of T9 plants (34.5/leaf). Blight test showed that the CMV concentration of antisense ToTOM1 tomato was significantly lower than that of non-transgenic tomato.

              表1  转反义ToTOM1基因番茄在枯斑寄主苋色藜上的生物定量     株系   枯斑平均数     t     t0.05     t0.01     显著性     CK   119.5     T1   68.5     7.408     2.365     3.499     极显著     T2   45.5     7.300     2.365     3.499     极显著     T3   63.5     7.743     2.365     3.499     极显著     T4   37.5     11.62     2.365     3.499     极显著     T5   37.5     9.133     2.365     3.499     极显著     T6   38.5     11.38     2.365     3.499     极显著     T9   34.5     8.933     2.365     3.499     极显著     T10   38.0     8.759     2.447     3.707     极显著 Table 1 Bioquantification of antisense ToTOM1 transgenic tomato on the host Amaranthus spp. strain Average number of dead spots t -value t 0.05 t 0.01 significant CK 119.5 T1 68.5 7.408 2.365 3.499 significant T2 45.5 7.300 2.365 3.499 significant T3 63.5 7.743 2.365 3.499 significant T4 37.5 11.62 2.365 3.499 significant T5 37.5 9.133 2.365 3.499 significant T6 38.5 11.38 2.365 3.499 significant T9 34.5 8.933 2.365 3.499 significant T10 38.0 8.759 2.447 3.707 significant

二、表达RNA干扰片段转基因植株的抗病性实验2. Disease resistance experiment of transgenic plants expressing RNA interference fragments

采用摩擦接种法,用烟草花叶病毒(TMV)对实施例3获得的3株RNA干扰转基因植株(5-6叶期)进行接种实验,以处于相同生长期的的非转基因番茄为对照,观察并记录结果,结果表明接种10天后,非转基因番茄苗呈现斑驳症状,而转基因植株无任何症状表现。接种70天后,非转基因植株仍表现为斑驳症状,转基因植株仍无任何症状表现。75天后,称取转基因植株和对照植株的新生叶(倒数第三张新生叶)0.1g,用DAS-ELISA法测定转基因植株内的病毒含量,具体方法为:样品加1ml包被缓冲液(0.015 M Na2CO3,0.035 M NaHCO3,pH9.6)磨成匀浆,稀释1000倍后进行检测,检测结果如表2所示,表明所有的转基因植株内TMV的浓度均明显低于非转基因植株。Adopt rubbing inoculation method, use tobacco mosaic virus (TMV) to carry out inoculation experiment to 3 RNA interference transgenic plants (5-6 leaf stage) that embodiment 3 obtains, take the non-transgenic tomato that is in the same growth period as contrast, observe The results were recorded, and the results showed that 10 days after inoculation, the non-transgenic tomato seedlings showed mottled symptoms, while the transgenic plants showed no symptoms. 70 days after inoculation, the non-transgenic plants still showed mottled symptoms, and the transgenic plants still had no symptoms. After 75 days, take by weighing 0.1 g of new leaves (the third last new leaf) of transgenic plants and control plants, and use the DAS-ELISA method to measure the virus content in the transgenic plants. The specific method is: add 1 ml of coating buffer (0.015 M Na 2 CO 3 , 0.035 M NaHCO 3 , pH 9.6) was ground into a homogenate, diluted 1000 times and tested. The test results are shown in Table 2, indicating that the concentration of TMV in all transgenic plants was significantly lower than that of non-transgenic plants .

          表2  表达ToTOM1 RNA干扰片段转基因植株的TMV的DAS-ELISA定量  株系     平均OD值     标准误(S.E.)     标准差(S.D.)     显著性  非转基因植株(对照)     1.982     0.0015     0.0026  MLC-TOTOM1-RNAi-370-71     0.328     0.0012     0.0020     极显著  MLC-TOTOM1-RNAi-370-79     0.231     0.0012     0.0026     极显著  MLC-TOTOM1-RNAi-370-80     0.491     0.0015     0.0021     极显著 Table 2 DAS-ELISA quantification of TMV in transgenic plants expressing ToTOM1 RNA interference fragment strain Average OD value Standard error (SE) Standard Deviation (SD) significant Non-transgenic plants (control) 1.982 0.0015 0.0026 MLC-TOTOM1-RNAi-370-71 0.328 0.0012 0.0020 significant MLC-TOTOM1-RNAi-370-79 0.231 0.0012 0.0026 significant MLC-TOTOM1-RNAi-370-80 0.491 0.0015 0.0021 significant

                          序列表Sequence Listing

<160>3<160>3

<210>1<210>1

<211>288<211>288

<212>PRT<212>PRT

<213>番茄属番茄(Lycopersicon esculentum Miller)<213>Lycopersicon esculentum Miller

<400>1<400>1

Met Ala Arg Leu Pro Leu Gly Ser Ser Pro Ile Asp Ile Ala Gly ProMet Ala Arg Leu Pro Leu Gly Ser Ser Ser Pro Ile Asp Ile Ala Gly Pro

1               5                   10                  151 5 10 15

Val Thr Asn Trp Trp Asp His Val Asn Glu Ser Val Gln Trp Gln AspVal Thr Asn Trp Trp Asp His Val Asn Glu Ser Val Gln Trp Gln Asp

            20                  25                  3020 25 30

Gly Ile Phe Tyr Ser Leu Cys Ala Ser Tyr Gly Leu Val Ser Ala ValGly Ile Phe Tyr Ser Leu Cys Ala Ser Tyr Gly Leu Val Ser Ala Val

        35                  40                  4535 40 45

Ala Leu Ile Gln Leu Ile Arg Ile Asp Leu Arg Val Pro Glu Tyr GlyAla Leu Ile Gln Leu Ile Arg Ile Asp Leu Arg Val Pro Glu Tyr Gly

    50                  55                  6050 55 60

Trp Thr Thr Gln Lys Val Phe His Leu Met Asn Phe Val Val Asn GlyTrp Thr Thr Gln Lys Val Phe His Leu Met Asn Phe Val Val Asn Gly

65                  70                  75                  8065 70 75 80

Val Arg Ala Ile Val Phe Gly Phe His Lys His Val Phe Leu Leu HisVal Arg Ala Ile Val Phe Gly Phe His Lys His Val Phe Leu Leu His

                85                  90                  9585 90 95

Tyr Lys Val Leu Thr Leu Ala Ile Leu Asp Leu Pro Gly Leu Leu PheTyr Lys Val Leu Thr Leu Ala Ile Leu Asp Leu Pro Gly Leu Leu Phe

            100                 105                 110100 105 110

Phe Ser Thr Phe Thr Leu Leu Val Leu Phe Trp Ala Glu Ile Tyr HisPhe Ser Thr Phe Thr Leu Leu Val Leu Phe Trp Ala Glu Ile Tyr His

        115                 120                 125115 120 125

Gln Ala Arg Ser Leu Pro Thr Asp Lys Leu Arg Ile Ser Tyr Ile AlaGln Ala Arg Ser Leu Pro Thr Asp Lys Leu Arg Ile Ser Tyr Ile Ala

    130                 135                 140130 135 140

Ile Asn Gly Ala Ile Tyr Phe Ile Gln Ala Cys Ile Trp Val Tyr LeuIle Asn Gly Ala Ile Tyr Phe Ile Gln Ala Cys Ile Trp Val Tyr Leu

145                 150                 155                 160145 150 155 160

Trp Ile Asn Asp Asn Ser Thr Val Glu Phe Ile Gly Lys Ile Phe MetTrp Ile Asn Asp Asn Ser Thr Val Glu Phe Ile Gly Lys Ile Phe Met

                165                 170                 175165 170 175

Ala Val Val Ser Val Ile Ala Ala Leu Gly Phe Leu Leu Tyr Gly GlyAla Val Val Ser Val Ile Ala Ala Leu Gly Phe Leu Leu Tyr Gly Gly

            180                 185                 190180 185 190

Arg Leu Phe Leu Met Leu Arg Arg Phe Pro Ile Glu Sar Lys Gly ArgArg Leu Phe Leu Met Leu Arg Arg Phe Pro Ile Glu Sar Lys Gly Arg

        195                 200                 205195 200 205

Arg Lys Lys Leu His Glu Val Gly Ser Val Thr Ala Ile Cys Phe ThrArg Lys Lys Leu His Glu Val Gly Ser Val Thr Ala Ile Cys Phe Thr

    210                 215                 220210 215 220

Cys Phe Leu Ile Arg Cys Phe Val Val Val Leu Ser Ala Phe Asp SerCys Phe Leu Ile Arg Cys Phe Val Val Val Leu Ser Ala Phe Asp Ser

225                 230                 235                 240225 230 235 240

Asp Ala Ser Leu Asp Val Leu Asp His Pro Val Leu Asn Leu Ile TyrAsp Ala Ser Leu Asp Val Leu Asp His Pro Val Leu Asn Leu Ile Tyr

                245                 250                 255245 250 255

Tyr Leu Leu Val Glu Ile Leu Pro Ser Ala Leu Val Leu Tyr Ile LeuTyr Leu Leu Val Glu Ile Leu Pro Ser Ala Leu Val Leu Tyr Ile Leu

            260                 265                 270260 265 270

Arg Lys Leu Pro Pro Lys Arg Val Ser Ala Gln Tyr His Pro Ile SerArg Lys Leu Pro Pro Lys Arg Val Ser Ala Gln Tyr His Pro Ile Ser

        275                 280                 285275 280 285

<210>2<210>2

<211>6727<211>6727

<212>DNA<212>DNA

<213>番茄属番茄(Lycopersicon esculentum Miller)<213>Lycopersicon esculentum Miller

<400>2<400>2

gagctgaaat ggctaggttg ccgcttgggt cgtcgccgat tgacatcgcc ggtccggtga     60gagctgaaat ggctaggttg ccgcttgggt cgtcgccgat tgacatcgcc ggtccggtga 60

ccaactggtg ggaccacgtc aacgaatccg ttcagtggca agatgggatt ttctactccc    120ccaactggtg ggaccacgtc aacgaatccg ttcagtggca agatgggatt ttctactccc 120

tttgtgcttc ctatggtctt gtttcagcag ttgccctagt aagtttctct ttctcttcca    180tttgtgcttc ctatggtctt gtttcagcag ttgccctagt aagtttctct ttctcttcca 180

ttctcttttt ctgctctgta gatatgtaaa gattggtttt ttctttcctt tttgtgaatt    240ttctcttttt ctgctctgta gatatgtaaa gattggtttt ttctttcctt tttgtgaatt 240

tcacgatcaa agtagagttt gggagctgaa atgccggaat tgatgttaga tgatttatat    300tcacgatcaa agtagagttt gggagctgaa atgccggaat tgatgttaga tgattatat 300

tttcaactcc tactaatttg atgttgagat gcagttgata gaattgcagt gtctagttca    360tttcaactcc tactaatttg atgttgagat gcagttgata gaattgcagt gtctagttca 360

tgtataaagt caagtacttg ctgttagttg tttttttttt cgtaacttct gttaaaaatg    420tgtataaagt caagtacttg ctgttagttg tttttttttt cgtaacttct gttaaaaatg 420

gaaaatcttg gttggtcaac tgtaggaatg aaataatgga gtagggaatc agacgagaat    480gaaaatcttg gttggtcaac tgtaggaatg aaataatgga gtagggaatc agacgagaat 480

gtttgattac caagtgcaat ttaggggttt ccattaagac aaattacggt atattttgtg    540gtttgattac caagtgcaat ttaggggttt ccattaagac aaattacggt atattttgtg 540

cttttttatg tcgctaataa aagtttggag cagtggactg actggttaat catacttctg    600cttttttatg tcgctaataa aagtttggag cagtggactg actggttaat catacttctg 600

gtaggttcgg ttagatggtt agtatttggg agtactcctt ttgtgtgtgc ttgtgaagct    660gtaggttcgg ttagatggtt agtatttggg agtactcctt ttgtgtgtgc ttgtgaagct 660

tatgaccttt tccaataagt agataagttt cattgaaggg tgttttttca tactttgatt     720tatgaccttt tccaataagt agataagttt cattgaaggg tgttttttca tactttgatt 720

aatatgtgtt tcagatacag tatttaccta atactgcatg tgtagagaac tgttttcctc     780aatatgtgtt tcagatacag tattaccta atactgcatg tgtagagaac tgttttcctc 780

gtggtgcttg cttagtcgca ggacttttgg ttgagtctat gagttaacta tgtgcagatt     840gtggtgcttg cttagtcgca ggacttttgg ttgagtctat gagttaacta tgtgcagatt 840

caattaatac gaattgattt gagggtaccc gagtatggct ggacaacaca aaaggtgttc     900caattaatac gaattgattt gagggtaccc gagtatggct ggacaacaca aaaggtgttc 900

catctgatga actttgttgt aaatggaggt aaagcggact cagactaaac aaaccgtcca     960catctgatga actttgttgt aaatggaggt aaagcggact cagactaaac aaaccgtcca 960

gctctttttc ttaatctgga attttgtttt aaatgcaaat cttttgtttt tcagttcgtg    1020gctctttttc ttaatctgga attttgtttt aaatgcaaat cttttgtttt tcagttcgtg 1020

caattgtctt tggatttcac aaacatgttt ttctgctcca ttataaggta atattctttc    1080caattgtctt tggatttcac aaacatgttt ttctgctcca ttataaggta atattctttc 1080

ttaaaagtaa cttttcaatt gtcaatattt tttcttaatt atgttcagtt tgttttcaat    1140ttaaaagtaa cttttcaatt gtcaatattt tttcttaatt atgttcagtt tgttttcaat 1140

agaacgcgac aatatatgca aacctgaata tattgccttt gttcttatca gccatttaac    1200agaacgcgac aatatatgca aacctgaata tattgccttt gttcttatca gccattaac 1200

ttttccccaa ataatggttc ttttcctata gtgcgtcaac ttacatagga actatcaaaa    1260ttttccccaa ataatggttc ttttcctata gtgcgtcaac ttacatagga actatcaaaa 1260

atcaaaatta ggtcagaact gtacctagaa aatttatcac ctgatgggac cattttcaag    1320atcaaaatta ggtcagaact gtacctagaa aatttatcac ctgatgggac cattttcaag 1320

gcaagtgcat gcatgttact tttgctgatt ggagctgtag gctttcttat atctttgaca    1380gcaagtgcat gcatgttact tttgctgatt ggagctgtag gctttcttat atctttgaca 1380

ctcttaactt tgagcttaat ttgacatttt agattcctta ccttctaatt tatttattcg    1440ctcttaactt tgagcttaat ttgacatttt agattcctta ccttctaatt tattattcg 1440

gaaggtcatc ctgctctctt acagctagta caatccaata gcagttcagc aatccttgtt    1500gaaggtcatc ctgctctctt acagctagta caatccaata gcagttcagc aatccttgtt 1500

tgttaatgtg tgagctaatt ggattgaaag cacattagta tatacattct gtctttcaga    1560tgttaatgtg tgagctaatt ggattgaaag cacattagta tatacattct gtctttcaga 1560

ttccagtttg aagcttatca cctagttact catcttttac ttgccctaaa attttggttt    1620ttccagtttg aagcttatca cctagttact catcttttac ttgccctaaa attttggttt 1620

gactgtgatg ggccgatgac attgttcaag tgcttagttc ctctgcagcc agcaacaccg    1680gactgtgatg ggccgatgac attgttcaag tgcttagttc ctctgcagcc agcaacaccg 1680

tagtgttacc atgtcaatcc tttagctttg actatcattt tattgagatg aattttctgt    1740tagtgttacc atgtcaatcc tttagctttg actatcattt tattgagatg aattttctgt 1740

tagcaataac gaatctactg aaagcacctc ccctttacga cttccgtgat ctctttcctt    1800tagcaataac gaatctactg aaagcacctc ccctttacga cttccgtgat ctctttcctt 1800

catttgggtg ggctactaat ggccccgtcc ctttttagcc cgataactta agaagtagaa    1860catttgggtg ggctactaat ggccccgtcc ctttttagcc cgataactta agaagtagaa 1860

ataattaaca tgcccacaac tgcctcttaa actgctgcct aattgttaac ctgatgttag    1920ataattaaca tgcccacaac tgcctcttaa actgctgcct aattgttaac ctgatgttag 1920

atttgcttca cgataaccag gtgctgactc tggcaatatt ggacctacca gggctccttt    1980atttgcttca cgataaccag gtgctgactc tggcaatatt ggacctacca gggctccttt 1980

tcttttcaac attcacactc cttgttctat tttgggctga gatatatccc caggcaagtg    2040tcttttcaac attcacactc cttgttctat tttgggctga gatatatccc caggcaagtg 2040

aagttatagc atcttgcagg caaactgtaa atctattgat tctaaccctt gcatttatgt    2100aagttatagc atcttgcagg caaactgtaa atctattgat tctaaccctt gcatttatgt 2100

aatggcaggc taggagttta ccaacagata agctcaggat ttcttatatt gccattaatg    2160aatggcaggc taggagttta ccaacagata agctcaggat ttcttatatt gccattaatg 2160

gtgccatata cttcattcag gtttgctaca aatgtatccc ctgctcatac gctattggac    2220gtgccatata cttcattcag gtttgctaca aatgtatccc ctgctcatac gctattggac 2220

atcatggttg ttcatatgga aatataatcg atcaagtatt attacttatt tttattttgt    2280atcatggttg ttcatatgga aatataatcg atcaagtatt attacttatt tttattttgt 2280

ctctagtaat atgtgaattc ctttaagatt cttttacgcc agtcaaaccc atctactttt    2340ctctagtaat atgtgaattc ctttaagatt cttttacgcc agtcaaaccc atctactttt 2340

gggttctatt tgataacccc ttgtattttg gtggtgacag gggtggatta gtgtagaagt    2400gggttctatt tgataacccc ttgtattttg gtggtgacag gggtggatta gtgtagaagt 2400

tatgggttca actgaaaaag ggttcctgga acccaacatt agctcaaacc ctgtatatat    2460tatgggttca actgaaaaag ggttcctgga acccaacatt agctcaaacc ctgtatatat 2460

gttaaaaatt ttgtaaacaa gtaaacataa tagattttga acccactaaa tcaatcgggt    2520gttaaaaatt ttgtaaacaa gtaaacataa tagattttga accactaaa tcaatcgggt 2520

tgtggtagaa tttctgagac acataaagtt cgaatcctgg agccgcctca ttgatctgtg    2580tgtggtagaa tttctgagac acataaagtt cgaatcctgg agccgcctca ttgatctgtg 2580

ggcatatgtg tgcttctcaa tatgtggaat tctgagatat tcttctttct caaaatgtta    2640ggcatatgtg tgcttctcaa tatgtggaat tctgagatat tcttctttct caaaatgtta 2640

tgccgggtta acctggggta acatgctagg agaaaagttt aattcggagc tctccatcta    2700tgccgggtta acctggggta acatgctagg agaaaagttt aattcggagc tctccatcta 2700

cttccattat caaatattca tagcttggtt ccggttatac ctttaattat tttttcgaga    2760cttccattat caaatattca tagcttggtt ccggttatac ctttaattat tttttcgaga 2760

accgatggaa tatctttcca agaccttgca ataaattttt acagaaccat atgcaaattt    2820accgatggaa tatctttcca agaccttgca ataaattttt acagaaccat atgcaaattt 2820

agccttgaaa tagggctaga ttctcctaat ccccatcccc tgagaaccct atctcttccc    2880agccttgaaa tagggctaga ttctcctaat ccccatcccc tgagaaccct atctcttccc 2880

tttcctaaag gatagagcat ttctaaataa ataaagatgt ccattgttct tgatttcttg    2940tttcctaaag gatagagcat ttctaaataa ataaagatgt ccattgttct tgatttcttg 2940

gtgaacattt cctatcgacc cgcttgtctc aaaagctaag aatcttcttc agtcttcctg    3000gtgaacattt cctatcgacc cgcttgtctc aaaagctaag aatcttcttc agtcttcctg 3000

gttttatctc aggtaataaa ctaaatacaa ctgaaaaatc gtttttgtca ggcctgtatc    3060gttttatctc aggtaataaa ctaaatacaa ctgaaaaatc gtttttgtca ggcctgtatc 3060

tgggtttacc tctggatcaa tgacaatagc acagtggaat tcattgggaa gatatttatg    3120tgggtttacc tctggatcaa tgacaatagc acagtggaat tcattgggaa gatatttatg 3120

gcagttgtat ctcttatata tcaattttct ccttttgccc tattttactg aaggttagat    3180gcagttgtat ctcttatata tcaattttct ccttttgccc tattttactg aaggttagat 3180

ctgctttcaa agttattgct ttctttaacc ttgcatgttt attgggcagt gtatcagtta    3240ctgctttcaa agttattgct ttctttaacc ttgcatgttt attgggcagt gtatcagtta 3240

ttgcagcctt gggctttctg ctatatggtg gaaggtgaat taagctctaa ttttctctgg    3300ttgcagcctt gggctttctg ctatatggtg gaaggtgaat taagctctaa ttttctctgg 3300

gcattaatct tctaaagcat tattgagatt atcagttatt gcagccttgg gctttctgct    3360gcattaatct tctaaagcat tattgagatt atcagttat gcagccttgg gctttctgct 3360

atatggtgga agggaattta agttctaatt ttctctgggc atttatcttc taaagcatta    3420atatggtgga agggaattta agttctaatt ttctctgggc atttatcttc taaagcatta 3420

ttgatgattc ttagatgacc ttagacatga ttaaatttca ttgtttttct tggggaattg    3480ttgatgattc ttagatgacc ttagacatga ttaaatttca ttgtttttct tggggaattg 3480

gtttttacaa tcatcaggtt atttctcatg ctgcggcgct tccctattga atctaaaggg    3540gtttttacaa tcatcaggtt atttctcatg ctgcggcgct tccctattga atctaaaggg 3540

aggagaaaga agcttcatga ggtttgtgta ctatacatct gtcttcctct ttctttttct    3600aggagaaaga agcttcatga ggtttgtgta ctatacatct gtcttcctct ttctttttct 3600

ttttttcttt tcttttaact ggtaaagatt tttacacttt tatcttctta ctttatgtat    3660ttttttcttt tcttttaact ggtaaagatt tttacacttt tatcttctta ctttatgtat 3660

acagaggtta gtgctgtagt ttggcataga atacgtttgc atgtaaggca taagatgtat    3720acagaggtta gtgctgtagt ttggcataga atacgtttgc atgtaaggca taagatgtat 3720

tcctcacaaa cttaagttct ccctacagca ccgagaggga gaaacttttt aaacatgaag    3780tcctcacaaa cttaagttct ccctacagca ccgagaggga gaaacttttt aaacatgaag 3780

tttgattaat ttccttgtcc taagaagtcc tgctaattgt tctgctatat tataatctta    3840tttgattaat ttccttgtcc taagaagtcc tgctaattgt tctgctatat tataatctta 3840

acttgtgggt gaatgactgc tatatttagt ccagataaca tttaagtgga gagataagag    3900acttgtgggt gaatgactgc tatatttagt ccagataaca tttaagtgga gagataagag 3900

taaggctatc tctgagattg tataatttaa ttctaaaatg ataattaaca agaacagatg    3960taaggctatc tctgagattg tataatttaa ttctaaaatg ataattaaca agaacagatg 3960

gaaccttgtt atgacattct tattcagaca tttttattca gtgcgtgaag gggtaacctt    4020gaaccttgtt atgacattct tattcagaca tttttatca gtgcgtgaag gggtaacctt 4020

ttggtcatgg atccactaaa ctgtcaaagg ctggtgcata cttctttttc tatttagttt    4080ttggtcatgg atccactaaa ctgtcaaagg ctggtgcata cttctttttc tattagttt 4080

gtgtcacata atttgtttga cttacaccat aagctcaact ccagcaaatt attaatttct    4140gtgtcacata atttgtttga cttacaccat aagctcaact ccagcaaatt attaatttct 4140

gtagctgcta tctgatggga ctgttcaaag ttgtttggat atacatagac agaagatgtc    4200gtagctgcta tctgatggga ctgttcaaag ttgtttggat atacatagac agaagatgtc 4200

aagtaataaa gattgcctaa caaaatgagc aggaatgtaa caaattataa catacaacat    4260aagtaataaa gattgcctaa caaaatgagc aggaatgtaa caaattataa catacaacat 4260

tagggtacca actgttgatg tctcccttct ctagattcct cttttttgat gattaagtaa    4320tagggtacca actgttgatg tctcccttct ctagattcct cttttttgat gattaagtaa 4320

gattttatta aaccatctgc agcaccaaca aggtgtaaga gtgcccgata gtagctagaa    4380gattttatta aaccatctgc agcaccaaca aggtgtaaga gtgcccgata gtagctagaa 4380

atttattcct ttaacaatat aaggagtcaa ttaactccac tatatggtca aaatcactag    4440atttattcct ttaacaatat aaggagtcaa ttaactccac tatatggtca aaatcactag 4440

cagcatcctg cttcaaaaat tcatgttctg taagcatttc aatgggcatt actaaaggta    4500cagcatcctg cttcaaaaat tcatgttctg taagcatttc aatgggcatt actaaaggta 4500

attaaaggaa cgtatgcttt aatcctgaaa gcagctgcag ttccctttct atattaacca    4560attaaaggaa cgtatgcttt aatcctgaaa gcagctgcag ttccctttct atattaacca 4560

tctgaaataa catagagaga ttctgtaagt tcctctgtat attttttaat aaggtcctct    4620tctgaaataa catagagaga ttctgtaagt tcctctgtat attttttaat aaggtcctct 4620

gtttcttctt tattccctgc attgtcatct ttgtactgcc tctaccaggc atcatccaaa    4680gtttcttctt tattccctgc attgtcatct ttgtactgcc tctaccaggc atcatccaaa 4680

caatcccaaa ccggtttaga aatatacacc aagttatcca tatgaatttg caacgtagga    4740caatcccaaa ccggtttaga aatatacacc aagttatcca tatgaatttg caacgtagga 4740

gtaactgtcc aaatgattta aagccctctt tgcagtagta ggatctggtg gagaagtgaa    4800gtaactgtcc aaatgatta aagccctctt tgcagtagta ggatctggtg gagaagtgaa 4800

atcttccctc tgtgctgggc tatcataang tacttatgtt tcattaaggg taatacccaa    4860atcttccctc tgtgctgggc tatcataang tacttatgtt tcattaaggg taatacccaa 4860

aaancagcca ctttgggagt agctctggtc ctccaaagtc atcttccatg actattagag    4920aaancagcca ctttgggagt agctctggtc ctccaaagtc atcttccatg actattagag 4920

ccaatattac cacattcttc cttaacaact aactgtatca tgctttaggt gagaagttcg    4980ccaatattac cacattcttc cttaacaact aactgtatca tgctttaggt gagaagttcg 4980

catcatccaa tgatccattt ccatcactcc ccctaattta acaactagca cacacagact    5040catcatccaa tgatccattt ccatcactcc ccctaattta acaactagca cacacagact 5040

gtacctagtg ttgatgattt ttttaagaaa aaaattgatg atttattcta cattggagat    5100gtacctagtg ttgatgattt ttttaagaaa aaaattgatg atttattcta cattggagat 5100

tccagcattc tcctttggag ggttctccaa tggtacgtcg aacactcttt gttgatgaca    5160tccagcattc tcctttggag ggttctccaa tggtacgtcg aacactcttt gttgatgaca 5160

agattatatt aacttgggaa gagttatttc agagttctgg tttccagtca tttgtcttgc    5220agattatatt aacttgggaa gagttatttc agagttctgg tttccagtca tttgtcttgc 5220

catagtttgt tcttctgctg ttatccactt tgacctttcc atctctgcaa actctcccca    5280catagtttgt tcttctgctg ttatccactt tgacctttcc atctctgcaa actctcccca 5280

tggatttccg attcatcttc ctaatacaac tccataagat gtgactgctt tactgcatca    5340tggatttccg attcatcttc ctaatacaac tccataagat gtgactgctt tactgcatca 5340

ttgtccatca attccatatt aatctttgat catcccttcc acatcttctc tttgttttcc    5400ttgtccatca attccatatt aatctttgat catcccttcc acatcttctc tttgttttcc 5400

atggccattt gaacttaaaa gacaataaat agtctgaagc tcttcactac tagtggctga    5460atggccattt gaacttaaaa gacaataaat agtctgaagc tcttcactac tagtggctga 5460

tttccttttc ttctctgttg atgaataaac aggaaaaaaa atatcttaga ttagtctgac    5520tttccttttc ttctctgttg atgaataaac aggaaaaaaa atatcttaga ttagtctgac 5520

tagatggaaa ctcaatatta acatatgatg tttctgaaga aagaatcttt tttatcatta    5580tagatggaaa ctcaatatta acatatgatg tttctgaaga aagaatcttt tttatcatta 5580

tttgtgaacc taaggagttc ttttgttctt caatgatcat tagtgaccaa ctcaagaaaa    5640tttgtgaacc taaggagttc ttttgttctt caatgatcat tagtgaccaa ctcaagaaaa 5640

tgatttattg gtctatctga ttgttctaac atcgtcttct acatcaccaa ccattaaatg    5700tgatttattg gtctatctga ttgttctaac atcgtcttct acatcaccaa ccattaaatg 5700

atgctgctgt gaatatgttt gtgttatctg aagttctaat gaattgtttc taggcatatg    5760atgctgctgt gaatatgttt gtgttatctg aagttctaat gaattgtttc taggcatatg 5760

catgcatgat aggtcatggc ttataattct taacatctct tactgtaaat catctgatct    5820catgcatgat aggtcatggc ttataattct taacatctct tactgtaaat catctgatct 5820

aatgtatgta tgtgaacaca ggttggatcg gtgactgcca tatgtttcac ctgtttcctc    5880aatgtatgta tgtgaacaca ggttggatcg gtgactgcca tatgtttcac ctgtttcctc 5880

attagatgct ttgtggttgt aaggctttat gtacctgttt ctttctccct atgctggtca    5940attagatgct ttgtggttgt aaggctttat gtacctgttt ctttctccct atgctggtca 5940

acctttttat catcccaagt ataacagtgt cctaagctcc attattaagc ttttgcaaaa    6000acctttttat catcccaagt ataacagtgt cctaagctcc atttattaagc ttttgcaaaa 6000

ctgggttaac caaaattaag ccacttctta agcttttttt acggggaagg tccaagcaag    6060ctgggttaac caaaattaag ccacttctta agcttttttt acggggaagg tccaagcaag 6060

gaaattgagt ttttacccca tcgggtgctt ttagtttgta agaggtgaaa ccattaggct    6120gaaattgagt ttttacccca tcgggtgctt ttagtttgta agaggtgaaa ccattaggct 6120

atctttatga aataaagggt tgcaacctat gccttccttc aggcttcagt caaaccataa    6180atctttatga aataaagggt tgcaacctat gccttccttc aggcttcagt caaaccataa 6180

cttactcctg ggaacaaata ataggaaaag gtagactaga gaataggaac atgatcaaaa    6240ccttactcctg ggaacaaata ataggaaaag gtagactaga gaataggaac atgatcaaaa 6240

aaagagaaag cataggttta aagtaaagct aaaccggcct caaatctcta actctcatgc    6300aaagagaaag cataggtta aagtaaagct aaaccggcct caaatctcta actctcatgc 6300

acatgagctt gttttctatg tctaatcttg gttcgctgca ggttgtgtta tctgcttttg    6360acatgagctt gttttctatg tctaatcttg gttcgctgca ggttgtgtta tctgcttttg 6360

attctgacgc atctcttgac gtcttggatc atcctgtttt gaatctgata tactacctgg    6420atctctgacgc atctcttgac gtcttggatc atcctgtttt gaatctgata tactacctgg 6420

tatgtatcat tttcgttatt tcatgttcct tgcgcttact gctttgtctg agtgatcaca    6480tatgtatcat tttcgttatt tcatgttcct tgcgcttact gctttgtctg agtgatcaca 6480

ttcttctctg tggcagctgg tagaaattct tccttcagct cttgtgctgt acatcctgcg    6540ttcttctctg tggcagctgg tagaaattct tccttcagct cttgtgctgt acatcctgcg 6540

aaaactgcct ccaaaaagag tgtctgcaca ataccaccca atcagttagc tgcagcagaa    6600aaaactgcct ccaaaaagag tgtctgcaca ataccaccca atcagttagc tgcagcagaa 6600

ttttatcgtt agtgatacac gttcccatgg tttctgttgc agaagctaac tggagttgtt    6660ttttatcgtt agtgatacac gttcccatgg tttctgttgc agaagctaac tggagttgtt 6660

caggaaaagt gaaactgcaa aaggatattc ggttgcaata attctgcgga aaggcaaaga    6720caggaaaagt gaaactgcaa aaggatattc ggttgcaata attctgcgga aaggcaaaga 6720

ttcaacg                                                              6727ttcaacg 6727

<210>3<210>3

<211>1282<211>1282

<212>DNA<212>DNA

<213>番茄属番茄(Lycopersicon esculentum Miller)<213>Lycopersicon esculentum Miller

<400>3<400>3

acaacaagat aagcggaggg gagagctgaa atggctaggt tgccgcttgg gtcgtcgccg      60acaacaagat aagcggaggg gagagctgaa atggctaggt tgccgcttgg gtcgtcgccg 60

attgacatcg ccggtccggt gaccaactgg tgggaccacg tcaacgaatc cgttcagtgg     120attgacatcg ccggtccggt gaccaactgg tgggaccacg tcaacgaatc cgttcagtgg 120

caagatggga ttttctactc cctttgtgct tcctatggtc ttgtttcagc agttgcccta     180caagatggga ttttctactc cctttgtgct tcctatggtc ttgtttcagc agttgcccta 180

attcaattaa tacgaattga tttgagggta cccgagtatg gctggacaac acaaaaggtg     240attcaattaa tacgaattga tttgagggta cccgagtatg gctggacaac acaaaaggtg 240

ttccatctga tgaactttgt tgtaaatgga gttcgtgcaa ttgtctttgg atttcacaaa     300ttccatctga tgaactttgt tgtaaatgga gttcgtgcaa ttgtctttgg atttcacaaa 300

catgtttttc tgctccatta taaggtgctg actctggcaa tattggacct accagggctc     360catgtttttc tgctccatta taaggtgctg actctggcaa tattggacct accagggctc 360

cttttctttt caacattcac actccttgtt ctattttggg ctgagatata tcaccaggct     420cttttctttt caacattcac actccttgtt ctattttggg ctgagatata tcaccaggct 420

aggagtttac caacagataa gctcaggatt tcttatattg ccattaatgg tgccatatac     480aggagtttac caacagataa gctcaggatt tcttatattg ccattaatgg tgccatatac 480

ttcattcagg cctgtatctg ggtttacctc tggatcaatg acaatagcac agtggaattc     540ttcattcagg cctgtatctg ggtttacctc tggatcaatg acaatagcac agtggaattc 540

attgggaaga tatttatggc agttgtatca gttattgcag ccttgggctt tctgctatat     600attgggaaga tattatggc agttgtatca gttattgcag ccttgggctt tctgctatat 600

ggtggaaggt tatttctcat gctgcggcgc ttccctattg aatctaaagg gaggagaaag     660ggtggaaggt tatttctcat gctgcggcgc ttccctattg aatctaaagg gaggagaaag 660

aagcttcatg aggttggatc ggtgactgcc atatgtttca cctgtttcct cattagatgc     720aagcttcatg aggttggatc ggtgactgcc atatgtttca cctgtttcct cattagatgc 720

tttgtggttg tgttatctgc ttttgattct gacgcatctc ttgacgtctt ggatcatcct     780tttgtggttg tgttatctgc ttttgattct gacgcatctc ttgacgtctt ggatcatcct 780

gttttgaatc tgatatacta cctgctggta gaaattcttc cttcagctct tgtgctgtac     840gttttgaatc tgatatacta cctgctggta gaaattcttc cttcagctct tgtgctgtac 840

atcctgcgaa aactgcctcc aaaaagagtg tctgcacaat accacccaat cagttagctg     900atcctgcgaa aactgcctcc aaaaagagtg tctgcacaat accacccaat cagttagctg 900

cagcagaatt ttatcgttag tgatacacgt tcccatggtt tctgttgcag aagctaactg     960cagcagaatt ttatcgttag tgatacacgt tcccatggtt tctgttgcag aagctaactg 960

gagttgttca ggaaaagtga aactgcaaaa ggatattcgg ttgcaataat tctgcggaaa    1020gagttgttca ggaaaagtga aactgcaaaa ggatattcgg ttgcaataat tctgcggaaa 1020

ggcaaagatt caacgctttt ttggcagttg ttaaaacaga ggttaagctg ttttgcttac    1080ggcaaagatt caacgctttt ttggcagttg ttaaaacaga ggttaagctg ttttgcttac 1080

attatattgt ttctgtggtt ttagtgtgaa gcatgagaca aataagtgtt ccccacgtct    1140attatattgt ttctgtggtt ttagtgtgaa gcatgagaca aataagtgtt ccccacgtct 1140

gtgaaaaatc ctagtcatga tgtaatgacg cagagggtaa atctcagtat cgccattgta    1200gtgaaaaatc ctagtcatga tgtaatgacg cagagggtaa atctcagtat cgccattgta 1200

ctggcatgtt gtaactatga tgttctggat ctcctttact gcaatgactg atgtcctttg    1260ctggcatgtt gtaactatga tgttctggat ctcctttact gcaatgactg atgtcctttg 1260

tttggtcaaa aaaaaaaaaa aa                                             1282tttggtcaaa aaaaaaaaaa aa 1282

Claims (10)

1, a kind of tomato RNA virus host factor is the protein with one of following amino acid residue sequences:
1) the SEQ ID № in the sequence table: 1;
2) with SEQ ID № in the sequence table: 1 amino acid residue sequence is through replacement, disappearance or the interpolation of one to ten amino-acid residue and have the protein of supporting the virus replication effect.
2, the encoding gene of the described tomato RNA virus host factor of claim 1.
3, encoding gene according to claim 2 is characterized in that: its genomic gene is one of following nucleotide sequence:
1) SEQ ID № in the sequence table: 2 dna sequence dna;
2) under the rigorous condition of height can with SEQ ID № in the sequence table: the nucleotide sequence of the 2 dna sequence dnas hybridization that limit.
4, encoding gene according to claim 2 is characterized in that: its cDNA gene is one of following nucleotide sequence:
1) SEQ ID № in the sequence table: 3 dna sequence dna;
2) under the rigorous condition of height can with SEQ ID № in the sequence table: the nucleotide sequence of the 3 dna sequence dnas hybridization that limit.
5, the expression vector that contains claim 2 or 3 or 4 described encoding genes.
6, the transgenic cell line that contains claim 2 or 3 or 4 described encoding genes.
7, the host bacterium that contains claim 2 or 3 or 4 described encoding genes.
8, a kind of method of cultivating antivirus plant is that the inverted defined gene fragment of ToTOM1 or the rnai expression carrier of ToTOM1 are imported in the plant, obtains transfer-gen plant.
9, method according to claim 8 is characterized in that: described by the plant of plant transformed host for Solanaceae, Cruciferae or cucurbit section.
10, claim 2 or the 3 or 4 described encoding genes application in cultivating antivirus plant.
CNB2005100766558A 2005-06-13 2005-06-13 Tomato RNA virus host factor and its coding gene and use thereof Expired - Fee Related CN100432101C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005100766558A CN100432101C (en) 2005-06-13 2005-06-13 Tomato RNA virus host factor and its coding gene and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005100766558A CN100432101C (en) 2005-06-13 2005-06-13 Tomato RNA virus host factor and its coding gene and use thereof

Publications (2)

Publication Number Publication Date
CN1709908A true CN1709908A (en) 2005-12-21
CN100432101C CN100432101C (en) 2008-11-12

Family

ID=35706203

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100766558A Expired - Fee Related CN100432101C (en) 2005-06-13 2005-06-13 Tomato RNA virus host factor and its coding gene and use thereof

Country Status (1)

Country Link
CN (1) CN100432101C (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103947461A (en) * 2011-10-17 2014-07-30 湖南农业大学 Method for enabling scion variety to acquire virus resistance as well as RNA (Ribonucleic Acid) interference vector pCAMBIA2300-CP and transgenic method
CN103947462A (en) * 2011-10-17 2014-07-30 湖南农业大学 Method for enabling scion variety to acquire virus resistance as well as RNA (Ribonucleic Acid) interference vector pCAMBIA2300-3A and transgenic method
CN115119498A (en) * 2020-02-12 2022-09-27 国立研究开发法人农业·食品产业技术综合研究机构 Tobacco mosaic virus-resistant tomato plant, method for producing tobacco mosaic virus-resistant tomato plant, method for imparting tobacco mosaic virus resistance to tomato plant, method for screening tobacco mosaic virus-resistant tomato plant, and method for detecting tobacco mosaic virus resistance of tomato plant

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103947461A (en) * 2011-10-17 2014-07-30 湖南农业大学 Method for enabling scion variety to acquire virus resistance as well as RNA (Ribonucleic Acid) interference vector pCAMBIA2300-CP and transgenic method
CN103947462A (en) * 2011-10-17 2014-07-30 湖南农业大学 Method for enabling scion variety to acquire virus resistance as well as RNA (Ribonucleic Acid) interference vector pCAMBIA2300-3A and transgenic method
CN103947461B (en) * 2011-10-17 2016-03-23 湖南农业大学 A method for obtaining virus resistance in scion varieties, RNA interference vector pCAMBIA2300-CP and transgenic method
CN103947462B (en) * 2011-10-17 2016-11-23 湖南农业大学 A kind of scion variety is made to obtain the method for virus resistance and rna interference vector pCAMBIA2300-3A and transgenic method
CN115119498A (en) * 2020-02-12 2022-09-27 国立研究开发法人农业·食品产业技术综合研究机构 Tobacco mosaic virus-resistant tomato plant, method for producing tobacco mosaic virus-resistant tomato plant, method for imparting tobacco mosaic virus resistance to tomato plant, method for screening tobacco mosaic virus-resistant tomato plant, and method for detecting tobacco mosaic virus resistance of tomato plant

Also Published As

Publication number Publication date
CN100432101C (en) 2008-11-12

Similar Documents

Publication Publication Date Title
CN1197970C (en) Sugarcane bacilliform virus promoter
CN1251136A (en) Plant with modified growth
CN1844396A (en) Genes regulating rice tiller angle and their encoded proteins and their applications
CN1923850A (en) Control gene of paddy leaf shape and application thereof
CN1807453A (en) Bacterial leaf spot resistance related protein and its coding gene and uses
CN1582335A (en) rice transposon gene
CN1842592A (en) Gene and application thereof for endowing plant with redifferentiation ability
CN1831127A (en) A key gene regulating chlorophyll metabolism and its method for establishing plant greening traits
CN101037695A (en) Control gene of paddy pollen fertility and application
CN101062944A (en) Vegetable disease-resistant protein and its coding gene and application
CN101037696A (en) Paddy cool injury gene and application
CN1289523C (en) Paddy rice potassium, sodium ion transport gene and its application
CN1257977C (en) Improving drought-resistant property of plant by rice drought inducing gene promoter LEAP
CN1083884C (en) Two kinds of encoding insecticidal protein gene and bivalent fused expression carrier and their application
CN1854154A (en) Rice blast resistant related protein, its coding gene and use
CN1641030A (en) Gene encoding cysteine protease and its promoter and method for producing male sterile rice
CN1709908A (en) A kind of tomato RNA virus host factor and its coding gene and application
CN1190436A (en) Intergenic regions of banana bunchy top virus
CN1297666C (en) Plant transcriptional repressor, proteic nuclear factors binding thereto, and uses thereof
CN1778925A (en) Plant epidermal hair specific expression promoter
CN1263862C (en) Plant promoters and plant terminators
CN1840542A (en) Rice tiller-related protein and its coding gene and application
CN1869231A (en) Plant broad spectrum antidisease gene and its application
CN1807611A (en) Alfalfa cysteine prolease and its coding gene and uses
CN1570111A (en) Corn height related gene and coding protein and uses

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081112

Termination date: 20130613