CN1709908A - A kind of tomato RNA virus host factor and its coding gene and application - Google Patents
A kind of tomato RNA virus host factor and its coding gene and application Download PDFInfo
- Publication number
- CN1709908A CN1709908A CN 200510076655 CN200510076655A CN1709908A CN 1709908 A CN1709908 A CN 1709908A CN 200510076655 CN200510076655 CN 200510076655 CN 200510076655 A CN200510076655 A CN 200510076655A CN 1709908 A CN1709908 A CN 1709908A
- Authority
- CN
- China
- Prior art keywords
- gene
- totom1
- sequence
- tomato
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 124
- 235000007688 Lycopersicon esculentum Nutrition 0.000 title claims abstract description 78
- 108010015268 Integration Host Factors Proteins 0.000 title claims abstract description 21
- 241001493065 dsRNA viruses Species 0.000 title claims abstract description 20
- 240000003768 Solanum lycopersicum Species 0.000 title description 83
- 238000000034 method Methods 0.000 claims abstract description 29
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 19
- 230000002155 anti-virotic effect Effects 0.000 claims abstract description 7
- 230000014509 gene expression Effects 0.000 claims abstract description 3
- 241000227653 Lycopersicon Species 0.000 claims abstract 6
- 230000000694 effects Effects 0.000 claims abstract 2
- 241000196324 Embryophyta Species 0.000 claims description 98
- 230000009261 transgenic effect Effects 0.000 claims description 64
- 239000012634 fragment Substances 0.000 claims description 63
- 239000002299 complementary DNA Substances 0.000 claims description 28
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 15
- 239000002773 nucleotide Substances 0.000 claims description 11
- 125000003729 nucleotide group Chemical group 0.000 claims description 11
- 125000000539 amino acid group Chemical group 0.000 claims description 10
- 239000013604 expression vector Substances 0.000 claims description 9
- 238000009396 hybridization Methods 0.000 claims description 9
- 108091030071 RNAI Proteins 0.000 claims description 5
- 241000894006 Bacteria Species 0.000 claims description 4
- 230000029812 viral genome replication Effects 0.000 claims description 4
- 241000219193 Brassicaceae Species 0.000 claims description 2
- 241000208292 Solanaceae Species 0.000 claims description 2
- 230000008034 disappearance Effects 0.000 claims 1
- 241000700605 Viruses Species 0.000 abstract description 32
- 238000006467 substitution reaction Methods 0.000 abstract description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 abstract 3
- 238000003976 plant breeding Methods 0.000 abstract 2
- 239000000047 product Substances 0.000 description 37
- 108020004414 DNA Proteins 0.000 description 32
- 230000009368 gene silencing by RNA Effects 0.000 description 25
- 230000009182 swimming Effects 0.000 description 25
- 239000013612 plasmid Substances 0.000 description 22
- 239000013598 vector Substances 0.000 description 22
- 238000012228 RNA interference-mediated gene silencing Methods 0.000 description 21
- 108091008146 restriction endonucleases Proteins 0.000 description 19
- 238000001514 detection method Methods 0.000 description 17
- 238000001976 enzyme digestion Methods 0.000 description 15
- 238000000246 agarose gel electrophoresis Methods 0.000 description 14
- 241000724252 Cucumber mosaic virus Species 0.000 description 13
- 239000013613 expression plasmid Substances 0.000 description 13
- 230000029087 digestion Effects 0.000 description 12
- 201000010099 disease Diseases 0.000 description 12
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 12
- 241000723873 Tobacco mosaic virus Species 0.000 description 11
- 238000011081 inoculation Methods 0.000 description 11
- 230000000692 anti-sense effect Effects 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- 238000012408 PCR amplification Methods 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 8
- 208000024891 symptom Diseases 0.000 description 8
- 230000009466 transformation Effects 0.000 description 8
- 241000589158 Agrobacterium Species 0.000 description 7
- 108020005544 Antisense RNA Proteins 0.000 description 7
- 101000702488 Rattus norvegicus High affinity cationic amino acid transporter 1 Proteins 0.000 description 7
- 239000003184 complementary RNA Substances 0.000 description 7
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 208000035240 Disease Resistance Diseases 0.000 description 6
- 238000009395 breeding Methods 0.000 description 6
- 229930027917 kanamycin Natural products 0.000 description 6
- 229960000318 kanamycin Drugs 0.000 description 6
- 229930182823 kanamycin A Natural products 0.000 description 6
- 241000219194 Arabidopsis Species 0.000 description 5
- 108700026244 Open Reading Frames Proteins 0.000 description 5
- 230000001488 breeding effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000012163 sequencing technique Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- 241000219318 Amaranthus Species 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000002105 Southern blotting Methods 0.000 description 4
- 238000010367 cloning Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- 101000611165 Arabidopsis thaliana Tobamovirus multiplication protein 1 Proteins 0.000 description 3
- 108700024394 Exon Proteins 0.000 description 3
- 108091092195 Intron Proteins 0.000 description 3
- 108091092724 Noncoding DNA Proteins 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 230000030279 gene silencing Effects 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000008223 sterile water Substances 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 101710132601 Capsid protein Proteins 0.000 description 2
- 241000219312 Chenopodium Species 0.000 description 2
- 101710094648 Coat protein Proteins 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 241000620209 Escherichia coli DH5[alpha] Species 0.000 description 2
- 101710125418 Major capsid protein Proteins 0.000 description 2
- 101710141454 Nucleoprotein Proteins 0.000 description 2
- 108091036407 Polyadenylation Proteins 0.000 description 2
- 241000723762 Potato virus Y Species 0.000 description 2
- 101710083689 Probable capsid protein Proteins 0.000 description 2
- 238000012300 Sequence Analysis Methods 0.000 description 2
- 244000061456 Solanum tuberosum Species 0.000 description 2
- 235000002595 Solanum tuberosum Nutrition 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 241000724280 Tomato aspermy virus Species 0.000 description 2
- 241000710145 Tomato bushy stunt virus Species 0.000 description 2
- 241000016009 Tomato chlorotic spot orthotospovirus Species 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- OJOBTAOGJIWAGB-UHFFFAOYSA-N acetosyringone Chemical compound COC1=CC(C(C)=O)=CC(OC)=C1O OJOBTAOGJIWAGB-UHFFFAOYSA-N 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000013043 chemical agent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- SEOVTRFCIGRIMH-UHFFFAOYSA-N indole-3-acetic acid Chemical compound C1=CC=C2C(CC(=O)O)=CNC2=C1 SEOVTRFCIGRIMH-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 238000004382 potting Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- JQXXHWHPUNPDRT-WLSIYKJHSA-N rifampicin Chemical compound O([C@](C1=O)(C)O/C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)\C=C\C=C(C)/C(=O)NC=2C(O)=C3C([O-])=C4C)C)OC)C4=C1C3=C(O)C=2\C=N\N1CC[NH+](C)CC1 JQXXHWHPUNPDRT-WLSIYKJHSA-N 0.000 description 2
- 229960001225 rifampicin Drugs 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 108091005703 transmembrane proteins Proteins 0.000 description 2
- 102000035160 transmembrane proteins Human genes 0.000 description 2
- FFRBMBIXVSCUFS-UHFFFAOYSA-N 2,4-dinitro-1-naphthol Chemical compound C1=CC=C2C(O)=C([N+]([O-])=O)C=C([N+]([O-])=O)C2=C1 FFRBMBIXVSCUFS-UHFFFAOYSA-N 0.000 description 1
- NJIFPLAJSVUQOZ-JBDRJPRFSA-N Ala-Cys-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](C)N NJIFPLAJSVUQOZ-JBDRJPRFSA-N 0.000 description 1
- ZDYNWWQXFRUOEO-XDTLVQLUSA-N Ala-Gln-Tyr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O ZDYNWWQXFRUOEO-XDTLVQLUSA-N 0.000 description 1
- GGNHBHYDMUDXQB-KBIXCLLPSA-N Ala-Glu-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)N GGNHBHYDMUDXQB-KBIXCLLPSA-N 0.000 description 1
- QQACQIHVWCVBBR-GVARAGBVSA-N Ala-Ile-Tyr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O QQACQIHVWCVBBR-GVARAGBVSA-N 0.000 description 1
- BFMIRJBURUXDRG-DLOVCJGASA-N Ala-Phe-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C)CC1=CC=CC=C1 BFMIRJBURUXDRG-DLOVCJGASA-N 0.000 description 1
- PEFFAAKJGBZBKL-NAKRPEOUSA-N Arg-Ala-Ile Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O PEFFAAKJGBZBKL-NAKRPEOUSA-N 0.000 description 1
- GXXWTNKNFFKTJB-NAKRPEOUSA-N Arg-Ile-Ser Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(O)=O GXXWTNKNFFKTJB-NAKRPEOUSA-N 0.000 description 1
- IIAXFBUTKIDDIP-ULQDDVLXSA-N Arg-Leu-Phe Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O IIAXFBUTKIDDIP-ULQDDVLXSA-N 0.000 description 1
- CLICCYPMVFGUOF-IHRRRGAJSA-N Arg-Lys-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O CLICCYPMVFGUOF-IHRRRGAJSA-N 0.000 description 1
- BTJVOUQWFXABOI-IHRRRGAJSA-N Arg-Lys-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CCCNC(N)=N BTJVOUQWFXABOI-IHRRRGAJSA-N 0.000 description 1
- LXMKTIZAGIBQRX-HRCADAONSA-N Arg-Phe-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CC=CC=C2)NC(=O)[C@H](CCCN=C(N)N)N)C(=O)O LXMKTIZAGIBQRX-HRCADAONSA-N 0.000 description 1
- CPTXATAOUQJQRO-GUBZILKMSA-N Arg-Val-Ser Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CO)C(O)=O CPTXATAOUQJQRO-GUBZILKMSA-N 0.000 description 1
- BZWRLDPIWKOVKB-ZPFDUUQYSA-N Asn-Leu-Ile Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O BZWRLDPIWKOVKB-ZPFDUUQYSA-N 0.000 description 1
- NJIKKGUVGUBICV-ZLUOBGJFSA-N Asp-Ala-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC(O)=O NJIKKGUVGUBICV-ZLUOBGJFSA-N 0.000 description 1
- KNMRXHIAVXHCLW-ZLUOBGJFSA-N Asp-Asn-Ser Chemical compound C([C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CO)C(=O)O)N)C(=O)O KNMRXHIAVXHCLW-ZLUOBGJFSA-N 0.000 description 1
- KTTCQQNRRLCIBC-GHCJXIJMSA-N Asp-Ile-Ala Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O KTTCQQNRRLCIBC-GHCJXIJMSA-N 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 235000002566 Capsicum Nutrition 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 240000006162 Chenopodium quinoa Species 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 241000219104 Cucurbitaceae Species 0.000 description 1
- PRXCTTWKGJAPMT-ZLUOBGJFSA-N Cys-Ala-Ser Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O PRXCTTWKGJAPMT-ZLUOBGJFSA-N 0.000 description 1
- RESAHOSBQHMOKH-KKUMJFAQSA-N Cys-Phe-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)[C@H](CS)N RESAHOSBQHMOKH-KKUMJFAQSA-N 0.000 description 1
- INKFLNZBTSNFON-CIUDSAMLSA-N Gln-Ala-Arg Chemical compound NC(=O)CC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O INKFLNZBTSNFON-CIUDSAMLSA-N 0.000 description 1
- QKWBEMCLYTYBNI-GVXVVHGQSA-N Gln-Lys-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CCC(N)=O QKWBEMCLYTYBNI-GVXVVHGQSA-N 0.000 description 1
- CMFBOXUBWMZZMD-BPUTZDHNSA-N Gln-Trp-Gln Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CCC(=O)N)N CMFBOXUBWMZZMD-BPUTZDHNSA-N 0.000 description 1
- DMYACXMQUABZIQ-NRPADANISA-N Glu-Ser-Val Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O DMYACXMQUABZIQ-NRPADANISA-N 0.000 description 1
- FCKPEGOCSVZPNC-WHOFXGATSA-N Gly-Ile-Phe Chemical compound NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 FCKPEGOCSVZPNC-WHOFXGATSA-N 0.000 description 1
- WCORRBXVISTKQL-WHFBIAKZSA-N Gly-Ser-Ser Chemical compound NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O WCORRBXVISTKQL-WHFBIAKZSA-N 0.000 description 1
- JBCLFWXMTIKCCB-UHFFFAOYSA-N H-Gly-Phe-OH Natural products NCC(=O)NC(C(O)=O)CC1=CC=CC=C1 JBCLFWXMTIKCCB-UHFFFAOYSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- WCHONUZTYDQMBY-PYJNHQTQSA-N His-Pro-Ile Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(O)=O WCHONUZTYDQMBY-PYJNHQTQSA-N 0.000 description 1
- GYXDQXPCPASCNR-NHCYSSNCSA-N His-Val-Asn Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CC1=CN=CN1)N GYXDQXPCPASCNR-NHCYSSNCSA-N 0.000 description 1
- GGXUJBKENKVYNV-ULQDDVLXSA-N His-Val-Phe Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)NC(=O)[C@H](CC2=CN=CN2)N GGXUJBKENKVYNV-ULQDDVLXSA-N 0.000 description 1
- 206010020649 Hyperkeratosis Diseases 0.000 description 1
- DXUJSRIVSWEOAG-NAKRPEOUSA-N Ile-Arg-Cys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CS)C(=O)O)N DXUJSRIVSWEOAG-NAKRPEOUSA-N 0.000 description 1
- UAVQIQOOBXFKRC-BYULHYEWSA-N Ile-Asn-Gly Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O UAVQIQOOBXFKRC-BYULHYEWSA-N 0.000 description 1
- SYVMEYAPXRRXAN-MXAVVETBSA-N Ile-Cys-Phe Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)N SYVMEYAPXRRXAN-MXAVVETBSA-N 0.000 description 1
- 241000880493 Leptailurus serval Species 0.000 description 1
- ZDSNOSQHMJBRQN-SRVKXCTJSA-N Leu-Asp-His Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N ZDSNOSQHMJBRQN-SRVKXCTJSA-N 0.000 description 1
- QCSFMCFHVGTLFF-NHCYSSNCSA-N Leu-Asp-Val Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O QCSFMCFHVGTLFF-NHCYSSNCSA-N 0.000 description 1
- KXODZBLFVFSLAI-AVGNSLFASA-N Leu-His-Glu Chemical compound OC(=O)CC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(C)C)CC1=CN=CN1 KXODZBLFVFSLAI-AVGNSLFASA-N 0.000 description 1
- KYIIALJHAOIAHF-KKUMJFAQSA-N Leu-Leu-His Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CN=CN1 KYIIALJHAOIAHF-KKUMJFAQSA-N 0.000 description 1
- DDVHDMSBLRAKNV-IHRRRGAJSA-N Leu-Met-Leu Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(C)C)C(O)=O DDVHDMSBLRAKNV-IHRRRGAJSA-N 0.000 description 1
- MAXILRZVORNXBE-PMVMPFDFSA-N Leu-Phe-Trp Chemical compound C([C@H](NC(=O)[C@@H](N)CC(C)C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)C1=CC=CC=C1 MAXILRZVORNXBE-PMVMPFDFSA-N 0.000 description 1
- KWLWZYMNUZJKMZ-IHRRRGAJSA-N Leu-Pro-Leu Chemical compound CC(C)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(O)=O KWLWZYMNUZJKMZ-IHRRRGAJSA-N 0.000 description 1
- GQZMPWBZQALKJO-UWVGGRQHSA-N Lys-Gly-Arg Chemical compound [H]N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(O)=O GQZMPWBZQALKJO-UWVGGRQHSA-N 0.000 description 1
- KEPWSUPUFAPBRF-DKIMLUQUSA-N Lys-Ile-Phe Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O KEPWSUPUFAPBRF-DKIMLUQUSA-N 0.000 description 1
- MVQGZYIOMXAFQG-GUBZILKMSA-N Met-Ala-Arg Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCCNC(N)=N MVQGZYIOMXAFQG-GUBZILKMSA-N 0.000 description 1
- UAPZLLPGGOOCRO-IHRRRGAJSA-N Met-Asn-Phe Chemical compound CSCC[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)N UAPZLLPGGOOCRO-IHRRRGAJSA-N 0.000 description 1
- XZFYRXDAULDNFX-UHFFFAOYSA-N N-L-cysteinyl-L-phenylalanine Natural products SCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XZFYRXDAULDNFX-UHFFFAOYSA-N 0.000 description 1
- XMBSYZWANAQXEV-UHFFFAOYSA-N N-alpha-L-glutamyl-L-phenylalanine Natural products OC(=O)CCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XMBSYZWANAQXEV-UHFFFAOYSA-N 0.000 description 1
- KZNQNBZMBZJQJO-UHFFFAOYSA-N N-glycyl-L-proline Natural products NCC(=O)N1CCCC1C(O)=O KZNQNBZMBZJQJO-UHFFFAOYSA-N 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- VADLTGVIOIOKGM-BZSNNMDCSA-N Phe-His-Leu Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@@H](N)CC=1C=CC=CC=1)C1=CN=CN1 VADLTGVIOIOKGM-BZSNNMDCSA-N 0.000 description 1
- YZJKNDCEPDDIDA-BZSNNMDCSA-N Phe-His-Lys Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(O)=O)NC(=O)[C@@H](N)CC=1C=CC=CC=1)C1=CN=CN1 YZJKNDCEPDDIDA-BZSNNMDCSA-N 0.000 description 1
- MIICYIIBVYQNKE-QEWYBTABSA-N Phe-Ile-Gln Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)N MIICYIIBVYQNKE-QEWYBTABSA-N 0.000 description 1
- MJQFZGOIVBDIMZ-WHOFXGATSA-N Phe-Ile-Gly Chemical compound N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)O MJQFZGOIVBDIMZ-WHOFXGATSA-N 0.000 description 1
- IAOZOFPONWDXNT-IXOXFDKPSA-N Phe-Ser-Thr Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(O)=O IAOZOFPONWDXNT-IXOXFDKPSA-N 0.000 description 1
- KLYYKKGCPOGDPE-OEAJRASXSA-N Phe-Thr-Leu Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(O)=O KLYYKKGCPOGDPE-OEAJRASXSA-N 0.000 description 1
- APZNYJFGVAGFCF-JYJNAYRXSA-N Phe-Val-Val Chemical compound CC(C)[C@H](NC(=O)[C@@H](NC(=O)[C@@H](N)Cc1ccccc1)C(C)C)C(O)=O APZNYJFGVAGFCF-JYJNAYRXSA-N 0.000 description 1
- 241000070023 Phoenicopterus roseus Species 0.000 description 1
- 235000016761 Piper aduncum Nutrition 0.000 description 1
- 235000017804 Piper guineense Nutrition 0.000 description 1
- 244000203593 Piper nigrum Species 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- PCWLNNZTBJTZRN-AVGNSLFASA-N Pro-Pro-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H]1NCCC1 PCWLNNZTBJTZRN-AVGNSLFASA-N 0.000 description 1
- KHRLUIPIMIQFGT-AVGNSLFASA-N Pro-Val-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O KHRLUIPIMIQFGT-AVGNSLFASA-N 0.000 description 1
- 108020005543 Satellite RNA Proteins 0.000 description 1
- KCGIREHVWRXNDH-GARJFASQSA-N Ser-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CO)N KCGIREHVWRXNDH-GARJFASQSA-N 0.000 description 1
- GZGFSPWOMUKKCV-NAKRPEOUSA-N Ser-Pro-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CO GZGFSPWOMUKKCV-NAKRPEOUSA-N 0.000 description 1
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 1
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- GNHRVXYZKWSJTF-HJGDQZAQSA-N Thr-Asp-Lys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CCCCN)C(=O)O)N)O GNHRVXYZKWSJTF-HJGDQZAQSA-N 0.000 description 1
- KPMIQCXJDVKWKO-IFFSRLJSSA-N Thr-Val-Glu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O KPMIQCXJDVKWKO-IFFSRLJSSA-N 0.000 description 1
- AZBIIKDSDLVJAK-VHWLVUOQSA-N Trp-Ile-Asn Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)N AZBIIKDSDLVJAK-VHWLVUOQSA-N 0.000 description 1
- UPUNWAXSLPBMRK-XTWBLICNSA-N Trp-Thr-Thr Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O UPUNWAXSLPBMRK-XTWBLICNSA-N 0.000 description 1
- COLXBVRHSKPKIE-NYVOZVTQSA-N Trp-Trp-Asp Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CC(O)=O)C(O)=O COLXBVRHSKPKIE-NYVOZVTQSA-N 0.000 description 1
- WGBFZZYIWFSYER-BVSLBCMMSA-N Trp-Val-Tyr Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)O)NC(=O)[C@H](CC2=CNC3=CC=CC=C32)N WGBFZZYIWFSYER-BVSLBCMMSA-N 0.000 description 1
- KCPFDGNYAMKZQP-KBPBESRZSA-N Tyr-Gly-Leu Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)NCC(=O)N[C@@H](CC(C)C)C(O)=O KCPFDGNYAMKZQP-KBPBESRZSA-N 0.000 description 1
- USYGMBIIUDLYHJ-GVARAGBVSA-N Tyr-Ile-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 USYGMBIIUDLYHJ-GVARAGBVSA-N 0.000 description 1
- MQGGXGKQSVEQHR-KKUMJFAQSA-N Tyr-Ser-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 MQGGXGKQSVEQHR-KKUMJFAQSA-N 0.000 description 1
- LAYSXAOGWHKNED-XPUUQOCRSA-N Val-Gly-Ser Chemical compound CC(C)[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O LAYSXAOGWHKNED-XPUUQOCRSA-N 0.000 description 1
- BTWMICVCQLKKNR-DCAQKATOSA-N Val-Leu-Ser Chemical compound CC(C)[C@H]([NH3+])C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C([O-])=O BTWMICVCQLKKNR-DCAQKATOSA-N 0.000 description 1
- CKTMJBPRVQWPHU-JSGCOSHPSA-N Val-Phe-Gly Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)NCC(=O)O)N CKTMJBPRVQWPHU-JSGCOSHPSA-N 0.000 description 1
- DEGUERSKQBRZMZ-FXQIFTODSA-N Val-Ser-Ala Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O DEGUERSKQBRZMZ-FXQIFTODSA-N 0.000 description 1
- CEKSLIVSNNGOKH-KZVJFYERSA-N Val-Thr-Ala Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](C)C(=O)O)NC(=O)[C@H](C(C)C)N)O CEKSLIVSNNGOKH-KZVJFYERSA-N 0.000 description 1
- PQSNETRGCRUOGP-KKHAAJSZSA-N Val-Thr-Asn Chemical compound CC(C)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@H](C(O)=O)CC(N)=O PQSNETRGCRUOGP-KKHAAJSZSA-N 0.000 description 1
- DFQZDQPLWBSFEJ-LSJOCFKGSA-N Val-Val-Asn Chemical compound CC(C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(=O)N)C(=O)O)N DFQZDQPLWBSFEJ-LSJOCFKGSA-N 0.000 description 1
- 108010081404 acein-2 Proteins 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000009418 agronomic effect Effects 0.000 description 1
- 108010047495 alanylglycine Proteins 0.000 description 1
- 238000012197 amplification kit Methods 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- 210000000349 chromosome Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- FSXRLASFHBWESK-UHFFFAOYSA-N dipeptide phenylalanyl-tyrosine Natural products C=1C=C(O)C=CC=1CC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FSXRLASFHBWESK-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 108010008237 glutamyl-valyl-glycine Proteins 0.000 description 1
- 108010090037 glycyl-alanyl-isoleucine Proteins 0.000 description 1
- 108010050848 glycylleucine Proteins 0.000 description 1
- 108010015792 glycyllysine Proteins 0.000 description 1
- 108010081551 glycylphenylalanine Proteins 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 108010085325 histidylproline Proteins 0.000 description 1
- 208000006278 hypochromic anemia Diseases 0.000 description 1
- 239000003617 indole-3-acetic acid Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 108010044374 isoleucyl-tyrosine Proteins 0.000 description 1
- 108010078274 isoleucylvaline Proteins 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 108010083708 leucyl-aspartyl-valine Proteins 0.000 description 1
- 108010073472 leucyl-prolyl-proline Proteins 0.000 description 1
- 108010026228 mRNA guanylyltransferase Proteins 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 244000000042 obligate parasite Species 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 108700004756 oxidizing) 2-oxoglutarate-oxygen oxidoreductase (20-hydroxylating gibberellin Proteins 0.000 description 1
- 108010084572 phenylalanyl-valine Proteins 0.000 description 1
- 108010073101 phenylalanylleucine Proteins 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108010015796 prolylisoleucine Proteins 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000008261 resistance mechanism Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000012882 rooting medium Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- UZKQTCBAMSWPJD-UQCOIBPSSA-N trans-Zeatin Natural products OCC(/C)=C\CNC1=NC=NC2=C1N=CN2 UZKQTCBAMSWPJD-UQCOIBPSSA-N 0.000 description 1
- UZKQTCBAMSWPJD-FARCUNLSSA-N trans-zeatin Chemical compound OCC(/C)=C/CNC1=NC=NC2=C1N=CN2 UZKQTCBAMSWPJD-FARCUNLSSA-N 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 230000006648 viral gene expression Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 230000010464 virion assembly Effects 0.000 description 1
- 230000010463 virion release Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229940023877 zeatin Drugs 0.000 description 1
Images
Landscapes
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
技术领域technical field
本发明涉及生物技术领域中的蛋白及其编码基因与应用,特别是涉及一种番茄RNA病毒寄主因子及其编码基因与其在植物抗病毒育种上的应用。The invention relates to a protein and its coding gene and application in the field of biotechnology, in particular to a tomato RNA virus host factor and its coding gene and its application in plant anti-virus breeding.
背景技术Background technique
番茄是一种重要的水果型蔬菜。在其生长发育过程中,容易受到各种病害的危害,其中以病毒性病害最为严重。目前报道的侵染番茄的病毒大多数是RNA病毒,其中最常见的RNA病毒有7种,即黄瓜花叶病毒(Cucumber mosaic virus,CMV)、烟草花叶病毒(Tabacco mosaic virus,TMV)、番茄花叶病毒(Tomato mosaic virus,ToMV)、马铃薯Y病毒(Potato virus Y,PVY)、番茄丛矮病毒(Tomato bushy stunt virus,TBSV)、番茄不孕病毒(Tomato aspermy virus,TAV)和番茄褪绿斑病毒(Tomatochlorotic spot virus,TCSV)。Tomato is an important fruit-type vegetable. During its growth and development, it is vulnerable to various diseases, among which viral diseases are the most serious. Most of the viruses infecting tomato reported so far are RNA viruses, of which seven are the most common, namely, cucumber mosaic virus (CMV), tobacco mosaic virus (Tabacco mosaic virus, TMV), tomato Tomato mosaic virus (ToMV), Potato virus Y (PVY), Tomato bushy stunt virus (TBSV), Tomato aspermy virus (TAV), and tomato chlorosis Spot virus (Tomatochlorotic spot virus, TCSV).
由于病毒是严格的专性寄生物,至今还没有严格选择性的化学药剂能有效地用于植物病毒病的防治。在生产实践中主要以清除毒源和切断病毒的传播途径、用化学药剂杀死介体昆虫和培育抗病新品种等预防性措施来控制病毒病的危害,其中以培育抗病新品种最为经济有效。然而,常规的抗病育种方法过程繁琐,需要大量的人力物力,更重要的是抗病基因常与不良农艺形状基因连锁,难以达到抗病优质的生产要求;另一方面,抗性基因资源的缺乏也限制了常规育种方面的应用。植物基因工程在育种上的应用为植物病毒病的防治开辟了新的途径(Powell A.P.,N elson R.S.,HoffmanN.,et al.Delay of disease development in transgenic plants that express thetobacco mosaic virus coat protein gene.Science,1986,232:738-743)。目前获得抗病毒转基因植株的方法主要有两种:一是将来源于病毒自身的基因或基因的调控序列(如病毒的外壳蛋白基因、复制酶基因及其片段、运动蛋白基因及其3’或5’端非编码区、病毒反义RNA、核酶基因以及病毒卫星RNA等)导入受体植物,从而获得病毒起源的抗性(pathogen-derived resistance)的抗病毒植株(Lomonossoff G.P.,1995.Pathogen-derived Resistance to Plant Viruses,Annu.Rev.Phytopathol.,33:323-343),但是利用这种方法得到的抗病毒植株一般表现为垂直抗病性,而且,这一方法存在一定的潜在的危险因素,即用于转化植物的病毒序列有可能与田间存在的病毒发生重组,从而产生新的病毒;另一种方法是利用植物本身的抗病基因(如N基因)来获得抗病毒植物(Goldbach R.,Bucher E.,and Prins M.2003.Resistancemechanisms to plant viruses:an review.Virus Research.,92:207-212)。Since viruses are strictly obligate parasites, no strictly selective chemical agents can be effectively used for the prevention and treatment of plant virus diseases. In production practice, the hazards of viral diseases are mainly controlled by preventive measures such as removing the source of the virus and cutting off the transmission route of the virus, killing vector insects with chemical agents, and cultivating new disease-resistant varieties. Among them, cultivating new disease-resistant varieties is the most economical efficient. However, the conventional disease-resistant breeding method is cumbersome and requires a lot of manpower and material resources. More importantly, disease-resistant genes are often linked with poor agronomic shape genes, making it difficult to meet the production requirements of disease-resistant and high-quality. On the other hand, the availability of resistant gene resources The lack also limits its application in conventional breeding. The application of plant genetic engineering in breeding has opened up new ways for the prevention and treatment of plant virus diseases (Powell A.P., N elson R.S., HoffmanN., et al.Delay of disease development in transgenic plants that express thetobacco mosaic virus coat protein gene.Science , 1986, 232:738-743). At present, there are mainly two methods for obtaining anti-virus transgenic plants: one is to introduce the gene or regulatory sequence of the gene derived from the virus itself (such as the coat protein gene of the virus, the replicase gene and its fragments, the motor protein gene and its 3' or 5' end non-coding region, viral antisense RNA, ribozyme gene and viral satellite RNA, etc.) into recipient plants, thereby obtaining virus-resistant (pathogen-derived resistance) virus-resistant plants of origin (Lomonossoff G.P., 1995. Pathogen -derived Resistance to Plant Viruses, Annu.Rev.Phytopathol., 33:323-343), but the virus-resistant plants obtained by this method generally show vertical disease resistance, and there is a certain potential danger in this method Factors, that is, the viral sequences used to transform plants may recombine with viruses existing in the field to produce new viruses; another method is to use the plant's own disease resistance genes (such as N genes) to obtain virus-resistant plants (Goldbach R., Bucher E., and Prins M. 2003. Resistance mechanisms to plant viruses: an review. Virus Research., 92: 207-212).
对病毒寄主因子基因的研究,为抗病毒基因工程提供了一条新的途径。寄主因子(Host Factors)是指在病毒侵染过程(包括病毒入侵、病毒基因表达、病毒粒子装配及释放等)中寄主细胞提供给病毒的一切便利条件,也称寄主蛋白(host proteins)或细胞蛋白(cellular proteins)。寄主细胞内如果缺少这些寄主因子,病毒便不能复制或复制的效率大大降低(Ahlquist P.,Noueiry,A.O.,and Lee,W.M.,et al.,2003.Host Factor in Positive-Strand RNA Viruses Genome Replication.Journalof Virology,77(15):8181-8126.)。因此,通过抑制或沉默寄主细胞中支持病毒复制的基因,将有可能使其不支持病毒在寄主细胞内的复制和维持,从而获得广谱性的抗病毒植株。The study of virus host factor genes provides a new way for antiviral genetic engineering. Host factors refer to all the convenient conditions provided by the host cell to the virus during the virus infection process (including virus invasion, viral gene expression, virion assembly and release, etc.), also known as host proteins or cell protein (cellular proteins). If these host factors are lacking in the host cell, the virus will not be able to replicate or the efficiency of replication will be greatly reduced (Ahlquist P., Noueiry, A.O., and Lee, W.M., et al., 2003.Host Factor in Positive-Strand RNA Viruses Genome Replication. Journal of Virology, 77(15):8181-8126.). Therefore, by inhibiting or silencing the genes that support virus replication in host cells, it will be possible to make them unable to support virus replication and maintenance in host cells, thereby obtaining broad-spectrum virus-resistant plants.
发明内容Contents of the invention
本发明的目的是提供一种番茄RNA病毒寄主因子及其编码基因。The purpose of the present invention is to provide a tomato RNA virus host factor and its coding gene.
本发明所提供的番茄RNA病毒寄主因子,名称为ToTOM1,来源于番茄属番茄(Lycopersicon esculentum Miller),是具有下述氨基酸残基序列之一的蛋白质:The tomato RNA virus host factor provided by the present invention is called ToTOM1, which is derived from Lycopersicon esculentum Miller and is a protein having one of the following amino acid residue sequences:
1)序列表中的SEQ ID №:1;1) SEQ ID №: 1 in the sequence listing;
2)将序列表中SEQ ID №:1的氨基酸残基序列经过一至十个氨基酸残基的取代、缺失或添加且具有支持病毒复制作用的蛋白质。2) Substitution, deletion or addition of one to ten amino acid residues to the amino acid residue sequence of SEQ ID №: 1 in the sequence listing and a protein capable of supporting virus replication.
序列表中的SEQ ID №:1由288个氨基酸残基组成。包含多个高疏水性的区域,推测该蛋白是一种具有6-7个跨膜结构域的跨膜蛋白,与拟南芥AToTOM1基因在氨基酸水平上的同源性为74.9%。SEQ ID No. 1 in the sequence listing consists of 288 amino acid residues. Containing multiple highly hydrophobic regions, it is speculated that the protein is a transmembrane protein with 6-7 transmembrane domains, and the homology with Arabidopsis AToTOM1 gene at the amino acid level is 74.9%.
编码序列表中SEQ ID №:1蛋白质序列的多核苷酸也属于本发明的保护范围。The polynucleotide encoding the protein sequence of SEQ ID №: 1 in the sequence listing also belongs to the protection scope of the present invention.
番茄RNA病毒寄主因子的编码基因(ToTOM1)包括番茄RNA病毒寄主因子的cDNA基因和番茄RNA病毒寄主因子的基因组基因。其基因组基因,是下述核苷酸序列之一:The gene encoding the host factor of tomato RNA virus (ToTOM1) includes the cDNA gene of host factor of tomato RNA virus and the genome gene of host factor of tomato RNA virus. Its genome gene is one of the following nucleotide sequences:
1)序列表中SEQ ID №:2的DNA序列;1) The DNA sequence of SEQ ID №: 2 in the sequence listing;
2)在高严谨条件下可与序列表中SEQ ID №:2限定的DNA序列杂交的核苷酸序列。2) A nucleotide sequence that can hybridize to the DNA sequence defined by SEQ ID No. 2 in the sequence listing under high stringency conditions.
序列表中的SEQ ID №:2由6727个碱基组成,具有11个外显子和10个内含子,自5′端的第1-158位碱基为该基因组基因的第一个外显子,自5′端的第838-928位碱基为该基因组基因的第二个外显子,自5′端的第1015-1067位碱基为该基因组基因的第三个外显子,自5′端的第1941-2033位碱基为该基因组基因的第四个外显子,自5′端的第2109-2180位碱基为该基因组基因的第五个外显子,自5′端的第3052-3131位碱基为该基因组基因的第六个外显子,自5′端的第3236-3274位碱基为该基因组基因的第七个外显子,自5′端的第3498-3561位碱基为该基因组基因的第八个外显子,自5′端的第5842-5895位碱基为该基因组基因的第九个外显子,自5′端的第6342-6419位碱基为该基因组基因的第十个外显子,自5′端的第6497-6727位碱基为该基因组基因的第十一个外显子,自5′端的第9-11位碱基为该基因组基因的起始密码子ATG,自5′端的第6587-6589位碱基为该基因组基因的终止密码子TGA;自5′端的第159-837位碱基为该基因组基因的第一个内含子,自5′端的第929-1014位碱基为该基因组基因的第二个内含子,自5′端的第1068-1940位碱基为该基因组基因的第三个内含子,自5′端的第2032-2108位碱基为该基因组基因的第四个内含子,自5′端的第2181-3051位碱基为该基因组基因的第五个内含子,自5′端的第3132-3235位碱基为该基因组基因的第六个内含子,自5′端的第3273-3497位碱基为该基因组基因的第七个内含子,自5′端的第3562-5841位碱基为该基因组基因的第八个内含子,自5′端的第5996-6341位碱基为该基因组基因的第九个内含子,自5′端的第6420-6496位碱基为该基因组基因的第十个内含子。SEQ ID № in the sequence listing: 2 consists of 6727 bases, has 11 exons and 10 introns, and the 1st-158th base from the 5' end is the first exon of the genome gene The 838-928th base from the 5' end is the second exon of the genome gene, and the 1015-1067th base from the 5' end is the third exon of the genome gene, from 5' The 1941-2033 bases at the 'end are the fourth exon of the genome gene, the 2109-2180 bases from the 5' end are the fifth exon of the genome gene, and the 3052nd bases from the 5' end Base -3131 is the sixth exon of the genome gene, bases 3236-3274 from the 5' end are the seventh exon of the genome gene, bases 3498-3561 from the 5' end The base is the eighth exon of the genome gene, the 5842-5895th base from the 5' end is the ninth exon of the genome gene, and the 6342-6419th base from the 5' end is the genome The tenth exon of the gene, the 6497-6727th base from the 5' end is the eleventh exon of the genome gene, and the 9th-11th base from the 5' end is the beginning of the genome gene The start codon ATG, the 6587-6589th base from the 5' end is the stop codon TGA of the genomic gene; the 159th-837th base from the 5' end is the first intron of the genomic gene, from Bases 929-1014 at the 5' end are the second intron of the genome gene, bases 1068-1940 at the 5' end are the third intron of the genome gene, bases at the 5' end are the third intron Bases 2032-2108 are the fourth intron of the genome gene, bases 2181-3051 from the 5' end are the fifth intron of the genome gene, bases 3132-3235 from the 5' end The base is the sixth intron of the genome gene, the 3273-3497 base from the 5' end is the seventh intron of the genome gene, and the 3562-5841 base from the 5' end is the The eighth intron of the genome gene, bases 5996-6341 from the 5' end are the ninth intron of the genome gene, bases 6420-6496 from the 5' end are the bases 6420-6496 of the genome gene Ten introns.
其cDNA基因,是下述核苷酸序列之一:Its cDNA gene is one of the following nucleotide sequences:
1)序列表中SEQ ID №:3的DNA序列;1) The DNA sequence of SEQ ID №: 3 in the sequence listing;
2)在高严谨条件下可与序列表中SEQ ID №:3限定的DNA序列杂交的核苷酸序列。2) A nucleotide sequence that can hybridize to the DNA sequence defined by SEQ ID No. 3 in the sequence listing under high stringency conditions.
序列表中的SEQ ID №:3由1282个碱基组成,其开放阅读框架(ORF)为自5′端第31-897位碱基,编码具有序列表中SEQ ID №:1的氨基酸残基序列的蛋白质;SEQ ID №: 3 in the sequence listing consists of 1282 bases, and its open reading frame (ORF) is the 31st-897th base from the 5′ end, encoding the amino acid residues with SEQ ID №: 1 in the sequence listing sequence of proteins;
上述高严谨条件可为用0.1×SSPE(或0.1×SSC),0.1%SDS的溶液,在65℃下杂交并洗膜。The above-mentioned high stringency conditions can be 0.1×SSPE (or 0.1×SSC), 0.1% SDS solution, hybridization at 65° C. and washing the membrane.
含有上述番茄RNA病毒寄主因子编码基因的表达载体、转基因细胞系和宿主菌以及扩增番茄RNA病毒寄主因子编码基因中任一片段的引物也属于本发明的保护范围。The expression vector containing the gene encoding the host factor of tomato RNA virus, the transgenic cell line and the host bacterium, and the primers for amplifying any fragment of the gene encoding the host factor of tomato RNA virus also belong to the protection scope of the present invention.
本发明的另一个目的是提供一种培育抗病毒植物的方法。Another object of the present invention is to provide a method for breeding virus-resistant plants.
本发明所提供的培育抗病毒植物的方法,是将ToTOM1的反义基因片段或ToTOM1的RNA干扰表达载体导入植物中,得到转基因植株。The method for cultivating virus-resistant plants provided by the present invention is to introduce the antisense gene fragment of ToTOM1 or the RNA interference expression vector of ToTOM1 into plants to obtain transgenic plants.
可按照植物基因工程领域中的常规方法,将ToTOM1的反义基因片段或ToTOM1的RNA干扰表达载体导入转化植物细胞或组织,如农杆菌介导转化法、基因枪介导转化法或花粉管通道法等。被转化的植物宿主既可为茄科、十字花科或葫芦科的植物。According to conventional methods in the field of plant genetic engineering, the antisense gene fragment of ToTOM1 or the RNA interference expression vector of ToTOM1 can be introduced into transformed plant cells or tissues, such as Agrobacterium-mediated transformation, gene gun-mediated transformation or pollen tube passage law etc. The transformed plant host can be a plant of Solanaceae, Brassicaceae or Cucurbitaceae.
本发明所提供的番茄RNA病毒寄主因子ToTOM1是一种RNA病毒在植物体内存活的相关蛋白,通过转反义基因片段或RNA干扰的方法沉默植物体内的该蛋白的编码基因可得到抗病毒的植物。转基因植株的抗病性实验结果显示,转ToTOM1反义RNA的转基因番茄显著抑制了CMV在番茄中的积累量,与对照非转基因植株相比,发病时间明显推迟,症状也显著减轻,此外,转ToTOM1的RNA干扰质粒的转基因番茄植株TMV的积累量也比对照非转基因番茄显著减少,表明番茄ToTOM1是CMV和TMV的一个寄主因子基因,通过抑制或沉默ToTOM1可获得抗CMV和TMV的番茄品种。本发明的番茄RNA病毒寄主因子基因ToTOM1及其抑制该基因表达的方法,在抗病毒植物培育和育种中具有较大的实际意义和广阔的应用前景。The tomato RNA virus host factor ToTOM1 provided by the present invention is a related protein for the survival of RNA viruses in plants, and the virus-resistant plants can be obtained by silencing the gene encoding the protein in plants by transfecting antisense gene fragments or RNA interference . The results of the disease resistance experiment of transgenic plants showed that the transgenic tomato transfected with ToTOM1 antisense RNA significantly inhibited the accumulation of CMV in tomato. The accumulation of TMV in the transgenic tomato plants with the RNA interference plasmid of ToTOM1 was also significantly reduced compared with the control non-transgenic tomato, indicating that tomato ToTOM1 is a host factor gene of CMV and TMV, and tomato varieties resistant to CMV and TMV can be obtained by inhibiting or silencing ToTOM1. The tomato RNA virus host factor gene ToTOM1 and the method for inhibiting the gene expression of the present invention have great practical significance and broad application prospects in the cultivation and breeding of anti-virus plants.
附图说明Description of drawings
图1为ToTOM1的3’RACE产物的琼脂糖凝胶电泳图谱Figure 1 is the agarose gel electrophoresis profile of the 3' RACE product of ToTOM1
图2为含ToTOM1的3’RACE产物的重组质粒的BamH I和Xho I酶切鉴定图谱Figure 2 is the BamH I and Xho I enzyme digestion identification map of the recombinant plasmid containing the 3' RACE product of ToTOM1
图3为ToTOM1的5’RACE产物的琼脂糖凝胶电泳图谱Figure 3 is the agarose gel electrophoresis profile of the 5'RACE product of ToTOM1
图4为含ToTOM1的5’RACE产物的重组质粒的EcoR I酶切鉴定图谱Figure 4 is the EcoR I enzyme digestion identification map of the recombinant plasmid containing the 5' RACE product of ToTOM1
图5为PCR扩增的ToTOM1的基因组基因片段的琼脂糖凝胶电泳图谱Figure 5 is the agarose gel electrophoresis profile of the genomic gene fragment of ToTOM1 amplified by PCR
图6为含ToTOM1的基因组基因片段的重组质粒的琼脂糖凝胶电泳图谱Fig. 6 is the agarose gel electrophoresis pattern of the recombinant plasmid containing the genome gene fragment of ToTOM1
图7为含ToTOM1基因片段的重组质粒的酶切鉴定图谱Figure 7 is the enzyme digestion identification map of the recombinant plasmid containing the ToTOM1 gene fragment
图8为转基因用植物表达载体pBI121Figure 8 is the plant expression vector pBI121 for transgenic use
图9为PCR扩增的ToTOM1基因组片段的琼脂糖凝胶电泳图谱Figure 9 is the agarose gel electrophoresis pattern of the ToTOM1 genome fragment amplified by PCR
图10为外源片段在pUCm-T中连接方向的酶切鉴定图谱Figure 10 is the enzyme digestion identification map of the connection direction of the exogenous fragments in pUCm-T
图11为ToTOM1的植物转化质粒pBIT1-2的酶切鉴定图谱Figure 11 is the enzyme digestion identification map of the plant transformation plasmid pBIT1-2 of ToTOM1
图12为PCR扩增的用于构建RNA干扰表达质粒的ToTOM1 cDNA片段的琼脂糖凝胶电泳图谱Figure 12 is the agarose gel electrophoresis profile of the ToTOM1 cDNA fragment used to construct the RNA interference expression plasmid for PCR amplification
图13为重组质粒pUCGAT1(-370)的酶切鉴定图谱Figure 13 is the enzyme digestion identification map of the recombinant plasmid pUCGAT1 (-370)
图14为RNA干扰中间载体pUCGAToTOM1(RNAi-370)的酶切鉴定图谱Figure 14 is the enzyme digestion identification map of the RNA interference intermediate vector pUCGAToTOM1 (RNAi-370)
图15为RNA干扰表达质粒pBIToTOM1(RNAi-370)的Pst I酶切鉴定图谱Figure 15 is the Pst I enzyme digestion identification map of RNA interference expression plasmid pBIToTOM1 (RNAi-370)
图16为转化有反义ToTOM1的抗Kn番茄植株的PCR鉴定图谱Figure 16 is the PCR identification map of the Kn-resistant tomato plant transformed with antisense ToTOM1
图17为PCR鉴定转化有反义ToTOM1的阳性植株的Southern杂交检测结果Figure 17 is the Southern hybridization detection result of positive plants transformed with antisense ToTOM1 by PCR
图18为抗卡那霉素的表达RNA干扰片段的转基因植株的35S、NOS、内源ToTOM1基因和NPTII基因的PCR检测结果Figure 18 is the PCR detection result of 35S, NOS, endogenous ToTOM1 gene and NPTII gene of the transgenic plant expressing RNA interference fragment resistant to kanamycin
图19为PCR反应阳性的独立RNA干扰转基因植株的Southern杂交图谱Figure 19 is the Southern hybridization pattern of independent RNA interference transgenic plants with positive PCR reaction
图20为接种CMV 10天后非转基因植株Figure 20 shows the non-transgenic plants after 10 days of inoculation with CMV
图21为接种CMV 10天后反义RNA转基因植株Figure 21 is antisense RNA transgenic plant after inoculating
图22为接种CMV 25天后非转基因植株Figure 22 is non-transgenic plants after inoculation with CMV 25 days
图23为接种CMV 25天后表达反义RNA转基因植株Figure 23 is the transgenic plant expressing antisense RNA 25 days after inoculation with CMV
具体实施方式Detailed ways
下述实施例中所用方法如无特别说明均为常规方法,所用番茄品种为购自广西农科院的“超级大明星”。The methods used in the following examples are conventional methods unless otherwise specified, and the tomato variety used is "Super Star" purchased from Guangxi Academy of Agricultural Sciences.
实施例1、番茄寄主因子基因ToTOM1的全长cDNA序列的克隆
1、ToTOM1 3’端cDNA的克隆1. Cloning of ToTOM1 3' end cDNA
根据GenBank搜寻到的与拟南芥AtTOM1[gi:9967414]具有一定同源性的番茄EST序列BE458681(528nt)[gi:9502983]设计两条正向引物扩增ToTOM1 3’端的cDNA序列,引物序列如下:According to the tomato EST sequence BE458681 (528nt) [gi: 9502983] found in GenBank that has a certain homology with Arabidopsis AtTOM1 [gi: 9967414], two forward primers were designed to amplify the cDNA sequence at the 3' end of ToTOM1, the primer sequence as follows:
Tomato Tom1-A:5’CTCCCTTTGTGCTTCC-TATGGTCT 3’;Tomato Tom1-A: 5'CTCCCTTTGTGCTTCC-TATGGTCT 3';
Tomato Tom1-1:5’GGGTACCCGAGTATGGCTGGACAAC 3’利用3’RACE System for Rapid Amplication of cDNA Ends试剂盒(Invitrogen公司,目录号18373-027)合成ToTOM1 3’端的cDNA序列。提取番茄的总RNA,反转录合成其第一链cDNA,以此第一链cDNA为模板,在引物Tomato Tom1-A和上述试剂盒提供的引物AUAP:5’GGCCACGCGTCGACTAGTAC3’引导下,进行第一次PCR,再以第一次PCR产物为模板,在引物Tomato Tom1-1和引物AUAP的引导下,进行第二次PCR,反应结束后对PCR进行1.2%琼脂糖凝胶电泳检测,检测结果如图1所示(泳道M为GeneRuler 1kb DNA Ladder,泳道1为ToTOM1的3’RACE产物),表明扩增出一条长度约1000bp的特异性条带。回收该特异性PCR产物,将其与载体pCR2.1-TOPO(Invitrogen公司)连接,将连接产物转化大肠杆菌DH5α,经筛选后挑选阳性克隆提质粒,用限制性内切酶BamHI和Xho I进行双酶切鉴定,酶切鉴定结果如图2所示(泳道M为GeneRuler 1kb DNA ladder,泳道1为ToTOM1的3’RACE PCR片段,泳道2-5为含ToTOM1的3’RACE PCR片段的重组质粒的BamH I和Xho I酶切产物),表明克隆到的长度约1000bp的ToTOM1的3’RACE PCR片段已正确插入到载体TOPO TA中,将该重组载体命名为pCToT1-3。对pCToT1-3进行DNA序列测定,测序结果表明所插入的DNA片段长度为1077bp,具有序列表中SEQ ID №:3的自5’端第206-1282位的DNA序列,该DNA片段的3’端具有长度为15个碱基的poly(A)尾。Tomato Tom1-1: 5'GGGTACCCGAGTATGGCTGGACAAC 3'Use the 3'RACE System for Rapid Aplication of cDNA Ends kit (Invitrogen, catalog number 18373-027) to synthesize the cDNA sequence of ToTOM1 3' end. The total RNA of tomato was extracted, and its first-strand cDNA was synthesized by reverse transcription. Using the first-strand cDNA as a template, under the guidance of the primer Tomato Tom1-A and the primer AUAP provided by the above kit: 5'GGCCACGCGTCGACTAGTAC3', the first The first PCR, and then use the first PCR product as a template, under the guidance of primer Tomato Tom1-1 and primer AUAP, carry out the second PCR, after the reaction, carry out 1.2% agarose gel electrophoresis detection to PCR, the detection result is as follows As shown in Figure 1 (lane M is GeneRuler 1kb DNA Ladder, and
2、ToTOM1 5’端cDNA的克隆2. Cloning of ToTOM1 5' end cDNA
根据GenBank搜寻到的与拟南芥ATOM1具有一定同源性的番茄EST序列BE458681(528nt)[gi:9502983]设计两条正向引物扩增ToTOM1 5’端的cDNA序列,引物序列如下:According to the tomato EST sequence BE458681 (528nt) [gi:9502983] found in GenBank that has a certain homology with Arabidopsis ATOM1, two forward primers were designed to amplify the cDNA sequence at the 5' end of ToTOM1. The primer sequences are as follows:
Tomato Tom1-2:5’CCACCATATAGCAGAAAGCCCAAGG-3’;Tomato Tom1-2: 5'CCACCATATAGCAGAAAGCCCAAGG-3';
Tomato Tom1-B:5’TCCTGAGCTTATCTGTTGGTAAACTCCTAGCCT-3’Tomato Tom1-B: 5'TCCTGAGCTTATCTGTTGGTAAACTCCTAGCCT-3'
利用SMARTTMRACE cDNA Amplification试剂盒(Clontech公司,目录号K1881-1)合成ToTOM1 5’端的cDNA序列。提取番茄的总RNA,反转录合成其第一链cDNA,以此第一链cDNA为模板,在引物Tomato Tom1-2和上述试剂盒提供的引物UPM:5’CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT 3’的引导下进行第一次PCR,再以第一次PCR产物(稀释100倍)为模板,在引物Tomato Tom1-B和引物NUP:5’-AAGCAGTGGTATCAACGCAGAGT-3’的引导下进行第二次PCR,反应结束后对PCR产物进行1.2%琼脂糖凝胶电泳检测,检测结果如图3所示(泳道M为100bp DNA Ladder Plus泳道1为ToTOM1的5’RACE产物),表明扩增出一条长度约500bp的特异性条带。回收该特异性PCR产物,将其与载体TOPO TA连接,将连接产物转化大肠杆菌DH5α,经筛选后挑选阳性克隆提质粒,用限制性内切酶EcoR I进行酶切鉴定,酶切鉴定结果如图4所示(泳道M为GeneRuler 1kb DNA ladder,泳道1为ToTOM1的5’RACEPCR片段,ToTOM1的3’RACE PCR片段,泳道2-5为含ToTOM1的5’RACE PCR片段的重组质粒的EcoR I酶切产物),表明克隆到的长度约500bp的目的片段已正确插入到载体TOPO TA中,将该重组载体命名为pCToT1-5。对pCToT1-5进行DNA序列测定,测序结果表明所插入的DNA片段长度为448bp,具有序列表中SEQ ID №:3的自5’端第1-448位的DNA序列。The cDNA sequence at the 5' end of ToTOM1 was synthesized using the SMARTTMRACE cDNA Amplification Kit (Clontech, catalog number K1881-1). The total RNA of tomato was extracted, and its first-strand cDNA was synthesized by reverse transcription. Using the first-strand cDNA as a template, under the guidance of the primer Tomato Tom1-2 and the primer UPM provided by the above kit: 5'CTAATACGACTCACTATAGGGCAAGCAGTGGTATCAACGCAGAGT 3', the second One PCR, then use the first PCR product (diluted 100 times) as a template, and carry out the second PCR under the guidance of primer Tomato Tom1-B and primer NUP: 5'-AAGCAGTGGTATCAACGCAGAGT-3', after the reaction, perform PCR The product was detected by 1.2% agarose gel electrophoresis, and the detection result is shown in Figure 3 (lane M is 100bp DNA
3、ToTOM1全长cDNA的获得3. Obtaining the full-length cDNA of ToTOM1
对步骤1和步骤2获得的5’RACE PCR片段和3’RACE PCR片段进行序列分析,分析结果表明两片段具有一段长度为243nt的重叠区,此重叠区在步骤2获得的5’RACE PCR片段的5’端的第279位碱基处有一个限制性内切酶Mun I的酶切位点,在载体pCToT1-3和pCToT1-5的序列上有一个限制性内切酶Xha I的酶切位点。利用Mun I和Xba I两个酶切位点将3’RACE和5’RACE的cDNA连接起来,得到ToTOM1的全长cDNA。对该全长cDNA进行测序,测序结果表明该序列具有序列表中SEQ ID №:3的核苷酸序列,序列表中SEQ ID №:3由1282个核苷酸组成,3’端具有长度为15个碱基的poly(A)尾。用Vector NTI软件对ToTOM1全长的cDNA序列进行序列分析,分析结果表明其开放阅读框架(ORF)为自5’端第31-897位碱基,其5’端非编码区长度为30个碱基,3’端非编码区长度为385个碱基,编码序列表中SEQ ID №:1的氨基酸残基序列,将ToTOM1与拟南芥AtTOM1编码的氨基酸残基序列进行同源性比较,ToTOM1与拟南芥AtTOM1在氨基酸水平上的同源性为74.9%。用Kyte & Doolittle的方法(Kyte & Doolittle,A simple method for displaying the hydropathiccharacter of a protein,J Mol Biol,157(1):105-132)对ToTOM1编码的蛋白质的疏水性进行分析,结果表明ToTOM1编码的蛋白质具有高疏水性的区域,推断该蛋白是一种具有6-7个跨膜结构域的跨膜蛋白。Sequence analysis of the 5'RACE PCR fragment and 3'RACE PCR fragment obtained in
实施例2、番茄ToTOM1基因组片段的克隆
根据已获得的番茄ToTOM1的全长cDNA序列及其编码区的自5’端第23-45位碱基序列和自5’端第1035-1012位碱基序列设计引物扩增ToTOM1的基因组序列,引物序列如下:According to the obtained full-length cDNA sequence of tomato ToTOM1 and the 23-45 nucleotide sequence from the 5' end and the 1035-1012 nucleotide sequence from the 5' end of the obtained full-length cDNA sequence of tomato ToTOM1 and its coding region, primers were designed to amplify the genome sequence of ToTOM1, The primer sequences are as follows:
ToTOM 1-D:5’-GAGCTGAAATGGCTAGGTTGCCG-3’;ToTOM 1-D: 5'-GAGCTGAAATGGCTAGGTTGCCG-3';
ToTOM 1-E:5’-CGTTGAATCTTTGCCTTTCCGCAG-3’以番茄的总DNA为模板,在引物ToTOM1-D和引物ToTOM1-E的引导下,进行PCR扩增,反应结束后对PCR进行0.8%琼脂糖凝胶电泳检测,检测结果如图5所示(泳道M为GeneRuler 1kb DNA ladder,泳道1为PCR扩增的ToTOM1的基因组片段),表明扩增出一条长度约6.7kb的特异性条带。回收该特异性扩增产物,将其克隆到载体pCR2.1-TOPO(Invitrogen公司)中,对其进行0.8%琼脂糖凝胶电泳检测,检测结果如图6所示(泳道1为CK:pCR2.1-TOPO,泳道1-6为含有ToTOM1基因组片段的重组质粒),然后用限制性内切酶Sac I和Xba I进行酶切鉴定,酶切鉴定结果如图7所示(泳道M为GeneRuler 1kb DNA ladder,泳道1为含有ToTOM1基因组基因片段的重组质粒的Sac I和Xba I酶切产物),表明克隆到的长度约6.7kb的目的片段已正确插入到载体pCR2.1 TOPO中,将含有该目的片段的重组质粒命名为pT1DE-9。对pT1DE-9进行DNA序列测定,测序结果表明ToTOM1的基因组基因具有序列表中SEQ ID№:2的多核苷酸序列,该序列由6727个碱基组成,将其与ToTOM1的全长cDNA序列进行比对,比对结果表明ToTOM1的基因组基因具有11个外显子和10个内含子,自5′端的第1-158位碱基为该基因组基因的第一个外显子,自5′端的第838-928位碱基为该基因组基因的第二个外显子,自5′端的第1015-1067位碱基为该基因组基因的第三个外显子,自5′端的第1941-2033位碱基为该基因组基因的第四个外显子,自5′端的第2109-2180位碱基为该基因组基因的第五个外显子,自5′端的第3052-3131位碱基为该基因组基因的第六个外显子,自5′端的第3236-3274位碱基为该基因组基因的第七个外显子,自5′端的第3498-3561位碱基为该基因组基因的第八个外显子,自5′端的第5842-5895位碱基为该基因组基因的第九个外显子,自5′端的第6342-6419位碱基为该基因组基因的第十个外显子,自5′端的第6497-6727位碱基为该基因组基因的第十一个外显子,自5′端的第9-11位碱基为该基因组基因的起始密码子ATG,自5′端的第6587-6589位碱基为该基因组基因的终止密码子TGA;自5′端的第159-837位碱基为该基因组基因的第一个内含子,自5′端的第929-1014位碱基为该基因组基因的第二个内含子,自5′端的第1068-1940位碱基为该基因组基因的第三个内含子,自5′端的第2032-2108位碱基为该基因组基因的第四个内含子,自5′端的第2181-3051位碱基为该基因组基因的第五个内含子,自5′端的第3132-3235位碱基为该基因组基因的第六个内含子,自5′端的第3273-3497位碱基为该基因组基因的第七个内含子,自5′端的第3562-5841位碱基为该基因组基因的第八个内含子,自5′端的第5996-6341位碱基为该基因组基因的第九个内含子,自5′端的第6420-6496位碱基为该基因组基因的第十个内含子。ToTOM 1-E: 5'-CGTTGAATCTTTGCCTTTCCGCAG-3'Using the total tomato DNA as a template, PCR amplification was carried out under the guidance of primers ToTOM1-D and primers ToTOM1-E. After the reaction, PCR was performed on 0.8% agarose Gel electrophoresis detection, the detection results are shown in Figure 5 (lane M is the GeneRuler 1kb DNA ladder, and
实施例3、转基因番茄植株的获得
一、植物表达载体的构建1. Construction of plant expression vectors
本实施例中所用的二元表达载体为pBI121(Clontech),其物理图谱如图8所示,具有T-DNA整合的必需序列,以卡那霉素抗性基因作为选择标记基因,从多克隆位点插入的外源基因由CaMV 35S启动子控制。The binary expression vector used in this example is pBI121 (Clontech), its physical map is shown in Figure 8, it has the necessary sequence for T-DNA integration, and the kanamycin resistance gene is used as the selection marker gene. The foreign gene inserted into the site is controlled by the CaMV 35S promoter.
1、含有ToTOM1基因组基因反义片段的植物表达载体的构建1. Construction of a plant expression vector containing an antisense fragment of the ToTOM1 genome gene
根据实施例2克隆的番茄ToTOM1的cDNA序列,设计一对特异引物Tomato Tom1-1(5’-GGGTACCCGAGTATGGCTGGACAAC-3’)和Tomato Tom1-2(5’-CCACCATATAGCAGAAAGCCCAAGG-3’)。以番茄的总DNA为模板,在引物Tomato Tom1-1和引物Tomato Tom1-2的引导下,进行PCR扩增,反应结束后对PCR产物进行0.8%琼脂糖凝胶电泳检测,检测结果如图9所示(泳道M为1Kb DNA Marker,泳道1为PCR扩增产物),表明扩增出一条长度约2.6kb的特异性条带。回收该特异性扩增产物并进行两端测序,测序结果表明该DNA片段为ToTOM1的一段核苷酸片段。将回收的ToTOM1的特异性扩增产物经纯化后克隆到载体pUCm-T(上海生工)中,并用限制性内切酶Kpn I进行酶切鉴定,酶切鉴定结果如图10所示(泳道M为1Kb DNA Marker,泳道1为回收片段与pUCm-T的正向连接产物,泳道2为回收片段与pUCm-T的反向连接产物的Kpn I酶切产物,泳道3为回收片段与pUCm-T的正向连接产物的Kpn I酶切产物),表明该基因片段分别以正向与反向的形式连接到载体pUCm-T中,将其中反向连接的重组质粒命名为pUT1-2。将已克隆在pUT1-2中的ToTOM1片段用限制性内切酶EcoR V和Xba I切下,经凝胶电泳后回收该DNA片段,将其连接到经Sma I和XbaI双酶切的载体pBI121上,得到ToTOM1的植物转化质粒pBIT1-2,对其用限制性内切酶HindIII进行酶切鉴定,酶切鉴定结果如图11所示(泳道M为1kb DNA Marker,泳道1为未经酶切的重组质粒pBIT1-2,泳道2为pBIT1-2的HindIII酶切产物),表明ToTOM1的DNA片段已正确连接到载体pBI121中,获得了构建正确的ToTOM1的植物表达载体。According to the cDNA sequence of the tomato ToTOM1 cloned in Example 2, a pair of specific primers Tomato Tom1-1 (5'-GGGTACCCGAGTATGGCTGGACAAC-3') and Tomato Tom1-2 (5'-CCACCATATAGCAGAAAGCCCAAGG-3') were designed. Using the total DNA of tomato as a template, under the guidance of primer Tomato Tom1-1 and primer Tomato Tom1-2, PCR amplification was carried out. After the reaction, the PCR product was detected by 0.8% agarose gel electrophoresis. The detection result is shown in Figure 9 As shown (swimming lane M is 1Kb DNA Marker, and
2、番茄ToTOM1的RNAi干扰表达质粒的构建2. Construction of tomato ToTOM1 RNAi interference expression plasmid
根据番茄ToTOM1的全长cDNA序列设计两条引物,引物序列如下:Two primers were designed according to the full-length cDNA sequence of tomato ToTOM1, and the primer sequences are as follows:
ToTOM1-RNAi-2F(879-899):CCTC AGATCTGCACAATACCACCCAAT(划线部分碱基为Bgl II识别位点);ToTOM1-RNAi-2F (879-899): CCTC AGATCT GCACAATACCACCCAAT (the underlined base is the Bgl II recognition site);
ToTOM1-RNAi-2R(1258-1227):CCTC ACTAGTAAAGGAGATCCAGAACATC(划线部分碱基为Spe I识别位点)ToTOM1-RNAi-2R (1258-1227): CCTC ACTAGT AAAGGAGATCCAGAACATC (underlined bases are Spe I recognition sites)
以含有番茄ToTOM1全长cDNA的质粒为模板,在引物ToTOM1-RNAi-2F(879-899)和引物ToTOM1-RNAi-2R(1258-1227)的引导下,进行PCR扩增,得到两端分别含有限制性内切酶Bgl II和Spe I识别位点的ToTOM1的cDNA片段,命名为TT1,该DNA片段的1.2%琼脂糖凝胶电泳检测结果如图12所示(泳道M为GeneRuler 100bp DNAladder,泳道1为TT1),表明扩增到了370bp的DNA片段,与预期结果一致。回收该片段,将其用限制性内切酶Bgl II和Spe I双酶切后克隆到经同样酶双酶切的RNA干扰载体pUCGA(构建方法:以马铃薯总DNA为模板,在引物GA-F:5’-AGG
GAGCTC CTCGAG
ACTAGT
AGATCTG GTACGGACCGTACTACTCTATTCG-3’(划线部分碱基依次为限制性内切酶Sac I、Xho I、Spe I和Bgl II的识别位点)和引物GA-R:5’-AGGGGATCCCTATATAATTTAAGTGGAAAAAAAGGTTAAC-3’(划线部分碱基为限制性内切酶BamHI的识别位点)的引导下进行PCR扩增,得到马铃薯GA20氧化酶基因的第一个内含子片段(199bp),对该片段用Sac I和BamH I酶切,与经同样酶双酶切的载体pUC18(TaKaRa公司)连接,将获得的重组载体命名为pUCGA)上,得到含有该回收片段的重组载体,命名为pUCGAT1(-370),对该重组载体用限制性内切酶Pst I进行酶切鉴定,结果如图13(泳道M为GeneRuler 100bp DNA ladder,泳道1为pUCGA的Pst I酶切产物,泳道2为pUCGAT1(-370)的Pst I酶切产物)所示,表明该回收DNA片段已正确连接入载体pUCGA中。用限制性内切酶Xba I和BamHI对pUCGAT1(-370)进行双酶切后,再与经Bgl II和Spe I双酶切的TT1连接,得到ToTOM1的重组RNA干扰中间质粒,命名为pUCGAToTOM1(RNAi-370)。对该重组RNA干扰中间载体用限制性内切酶Pst I进行酶切鉴定,结果如图14所示(泳道M为GeneRuler 100bp DNA ladder,泳道1为pUCGAT1(-370)的Pst I酶切产物,泳道2为pUCGAToTOM1(RNAi-370)的PstI酶切产物)。将连有ToTOM1的RNA干扰片段TT1的RNA干扰质粒pUCGAToTOM1(RNAi-370)用限制性内切酶Sal I酶切后补平,再用限制性内切酶Spe I进行酶切,经1.2%琼脂糖凝胶电泳后回收长度约900bp的小片段,将回收片段连接到经限制性内切酶EcoR V和Xba I双酶切的载体pBI121上,得到番茄ToTOM1的RNAi干扰植物表达质粒,命名为pBI121ToTOM1(RNAi-370),将其用限制性内切酶Pst I进行酶切鉴定,结果如图15所示(泳道M1为GeneRuler 100bp DNA ladder,泳道M2为GeneRuler 1kb DNA ladder,泳道1为pBI121的Pst I酶切产物,泳道2为pBIToTOM1(RNAi-370)的Pst I酶切产物),表明获得了构建正确的番茄ToTOM1的RNAi干扰植物表达质粒。Using the plasmid containing the full-length cDNA of tomato ToTOM1 as a template, PCR amplification was carried out under the guidance of primers ToTOM1-RNAi-2F (879-899) and primers ToTOM1-RNAi-2R (1258-1227), and the two ends contained respectively The cDNA fragment of ToTOM1 of restriction endonuclease Bgl II and Spe I recognition site, named after TT1, the 1.2% agarose gel electrophoresis detection result of this DNA fragment is as shown in Figure 12 (swimming lane M is GeneRuler 100bp DNAladder, swimming
二、番茄的遗传转化2. Genetic transformation of tomato
1、三亲结合将植物表达质粒pBIT1-2导入农杆菌1. Three-parent combination to introduce plant expression plasmid pBIT1-2 into Agrobacterium
分别将含植物表达质粒pBIT1-2的大肠杆菌与含有辅助质粒pRK2073的大肠杆菌和农杆菌EHA105进行三亲本结合(Rogers S.G.,Horsch R.B.,and Fraley R.T.1986.Gene transfer in plant:production of transformed plants using Ti-plasmidvectors.Methods Enzymol.,118:627-640),在含50mg/L利福平(Rif)和50mg/L卡那霉素的LA平板进行筛选,得到含有植物表达质粒pBIT1-2的农杆菌转化子。E. coli containing the plant expression plasmid pBIT1-2 was combined with E. coli containing the helper plasmid pRK2073 and Agrobacterium EHA105 respectively (Rogers S.G., Horsch R.B., and Fraley R.T.1986. Gene transfer in plant: production of transformed plants using Ti-plasmidvectors.Methods Enzymol., 118: 627-640), screened on the LA plate containing 50mg/L rifampicin (Rif) and 50mg/L kanamycin, obtained the agricultural agent containing the plant expression plasmid pBIT1-2 Bacillus transformants.
2、番茄的遗传转化2. Genetic transformation of tomato
1)用含表达质粒pBIT1-2的农杆菌EHA105感染外植体1) Infect the explants with Agrobacterium EHA105 containing the expression plasmid pBIT1-2
将步骤1获得的含植物表达质粒pBIT1-2的农杆菌在含50mg/L利福平(Rif)和50mg/L卡那霉素的YEB平板上划线,置于28℃恒温中培养约24h,长出菌落后挑取单菌落接种于含相同抗生素的YEB液体培养基中,28℃恒温摇床(200转/分)培养约24h至OD600为04-0.6,转入无菌离心管中,3000rpm离心10min,弃上清液,将收集的菌体用MS培养液清洗一次并重新悬浮,稀释50倍后用于番茄的转化。参考JavierPozueta-Romero等人的方法(Pozueta-romero,J.,Houlnè,G.,
,L.,et al.2001.Enhanced regeneration of tomato and pepper seedling explants forAgrobactereium-mediated transformation.Plant cell,Tissue and organ culture.,67:173-180)制备Flamingo Bill外植体,具体方法为:将番茄的种子一个个地分开,用蒸馏水洗3次,然后用80%乙醇浸泡并不停地搅动2分钟,另加4-6滴100%的Tween-80,倒去乙醇溶液,再用无菌水洗涤2-3次:加入有效氯为1%的NaClO溶液和4-6滴100%Tween-80在搅拌器上搅动15分钟,把NaClO溶液倒去,用无菌水洗2次,再重复二次,直至番茄种子的颜色由褐色变为金黄色,用无菌水冲洗6-10次,在无菌滤纸上晾干。晾干后把种子接入装有1/2MS培养基(含1.5%的蔗糖)的培养瓶中,在25-28℃的光照培养箱中培养7天,再把培养瓶放在超净台中,打开盖子,并补充培养瓶中的水分,使无菌苗在开放的环境下培养15个小时,然后将培养的无菌苗的一侧子叶从叶柄基部连同顶芽及周围分生组织全部切去,只留一侧子叶,另外将无菌苗的大一部分根系切去只保留长度为2-3cm的胚根作为外植体。Streak the Agrobacterium containing the plant expression plasmid pBIT1-2 obtained in
将外植体放入活化的含表达质粒pBIT1-2的农杆菌EHA105的MS液体培养基中(另加终浓度为100μmol/L的乙酰丁香酮),不停地摇动10分钟,取出后用无菌水冲洗两次,然后一根根地放入倒有MS共培养培养基(在MS基本培养基的基础上添加玉米素0.15mg/L和吲哚乙酸0.05mg/L)的15cm直径的大培养皿中,封口,在光照培养箱中培养2天。Put the explants into the activated MS liquid medium of Agrobacterium EHA105 containing the expression plasmid pBIT1-2 (additionally acetosyringone with a final concentration of 100 μmol/L), shake it continuously for 10 minutes, take it out and use a sterile Bacteria water was washed twice, and then one by one was put into a 15cm-diameter large tube filled with MS co-cultivation medium (adding 0.15 mg/L zeatin and 0.05 mg/L indole acetic acid on the basis of MS basic medium). Seal the petri dish and culture it in a light incubator for 2 days.
2)分化诱导2) Differentiation induction
培养2天后,将含表达质粒pBIT1-2的农杆菌EHA105转化后的外植体转接入分化筛选培养基中(在MS基本培养基的基础上添加了ZT 0.15mg/L,IAA 0.05mg/L,Km 50mg/L和Cef 200mg/L),继续在光照培养箱中培养2-3个星期,培养条件为25-28℃,15小时光照,9小时黑暗。After culturing for 2 days, the explants transformed with Agrobacterium EHA105 containing the expression plasmid pBIT1-2 were transferred into the differentiation and selection medium (adding ZT 0.15 mg/L, IAA 0.05 mg/L on the basis of MS basic medium). L, Km 50mg/L and Cef 200mg/L), continue to cultivate in the light incubator for 2-3 weeks, the culture condition is 25-28 ℃, 15 hours of light, 9 hours of darkness.
3)转基因植株的生根、炼苗及移栽3) Rooting, hardening and transplanting of transgenic plants
将在分化筛选培养基中生长正常的植株(长到高度约2-3cm)从愈伤组织上切下,插入生根培养基中(在MS基本培养基的基础上添加了Km 50mg/L,Cef 150mg/L,NAA 0.2mg/L),25-28℃,15小时光照,9小时黑暗条件下培养直至生根。待再生苗的根系长约3cm时将培养瓶的盖子打开并补充水分,在25-28℃,光照条件为15小时/天下,放置3-4天,然后将植株慢慢地拔出,洗净根部所带的琼脂,移植到土壤中,保持土壤的湿度,并将温度控制在25-30℃。The normal plant (grow up to about 2-3cm in height) in the differentiation screening medium was excised from the callus and inserted into the rooting medium (adding Km 50mg/L on the basis of MS basic medium, Cef 150mg/L, NAA 0.2mg/L), 25-28°C, 15 hours of light, 9 hours of darkness until rooted. When the root system of the regenerated seedlings is about 3cm long, open the lid of the culture bottle and add water. Place it for 3-4 days at 25-28°C and light conditions of 15 hours/day, then slowly pull out the plants and wash them. The agar carried by the root is transplanted into the soil, the humidity of the soil is kept, and the temperature is controlled at 25-30°C.
用上述同样方法将番茄ToTOM1的RNAi干扰表达质粒转化番茄植株。The same method as above was used to transform tomato plants with the RNAi interference expression plasmid of tomato ToTOM1.
三、转基因植株的分子鉴定3. Molecular identification of transgenic plants
1、反义RNA转基因植株的分子鉴定1. Molecular identification of antisense RNA transgenic plants
共获得19株卡那霉素(Kn)抗性反义RNA转基因植株。在盆栽前对小苗进行外源基因的PCR检测,具体方法为:取抗Kn的转基因番茄植株叶片,用CTAB法提取番茄植株叶片的总DNA,并以此为模板,在引物Tomato-ToTOM1-1和根据35S启动子序列设计的一条引物序列:5’-AATCTTCGTCAACATGGTGGAGCAC-3’的引导下,进行PCR检测,结果如图16所示(泳道M为lambda/HindIII+EcoRI,泳道1-19为用转化有反义ToTOM1的不同转基因植株的总DNA为模板的PCR扩增产物,泳道20为阳性对照,以质粒pBIT1-2为模板的PCR扩增产物),表明19株中有12株转基因植物中能扩增出大小约为3300bp的外源目的基因片段。将PCR鉴定的阳性转基因番茄植株命名为T1、T2、T3、T4、T5、T6、T7、T8、T9、T10、T11、T12,编号分别对应图16中的泳道1、2、3、4、7、8、9、10、13、14、17和19。A total of 19 kanamycin (Kn) resistant antisense RNA transgenic plants were obtained. The PCR detection of exogenous genes was carried out on the seedlings before potting. The specific method was: take the Kn-resistant transgenic tomato plant leaves, extract the total DNA of the tomato plant leaves with the CTAB method, and use this as a template, and use the primer Tomato-ToTOM1-1 And a primer sequence designed according to the 35S promoter sequence: under the guidance of 5'-AATCTTCGTCAACATGGTGGAGCAC-3', PCR detection was carried out, and the results are shown in Figure 16 (swimming lane M is lambda/HindIII+EcoRI, and swimming lanes 1-19 are transformed with The total DNA of different transgenic plants with antisense ToTOM1 is the PCR amplification product of the template, and
将PCR鉴定的阳性转基因植株进行盆栽,4个星期后提取其总DNA,用Sal I酶切后经0.7%琼脂糖凝胶电泳分离,通过向下毛细管法转移到杂交膜上,与P32标记的以Tomato-ToTOM1-1以及35S启动子上的一条引物:5’-AATCTTCGTCAACATGGTGGAGCAC-3’获得的PCR片段进行Sonthern杂交,结果如图图17所示(泳道M为1kb DNA marker,泳道CK为非转基因植株,泳道T1-T12为不同的转基因株系),表明除了出现内源ToTOM1的杂交带外(图中箭头所示),还有外源ToTOM1的杂交带,所有PCR检测阳性的植株均有外源ToTOM1片段的插入。由Sal I酶切片段显示的大小差异判断,一半以上的转基因植株的外源基因片段插入到染色体的不同位点,即属于不同的转基因株系。部分植株的插入片段大小相近(如T1、T3),不易判断,还需用其它酶切后再进行杂交分析才能确定。不过,番茄的染色体碱基数目巨大,外源基因插入到同一位置的可能性极小,所以,所得到的转基因植株有可能均是不同的株系。图17还显示出大多数转基因植株是单拷贝的,但有3株是双拷贝的(T4、T9、T10)。The positive transgenic plants identified by PCR were planted in pots, and the total DNA was extracted after 4 weeks, digested with Sal I, separated by 0.7% agarose gel electrophoresis, transferred to the hybridization membrane by the downward capillary method, and labeled with P 32 The PCR fragment obtained by Tomato-ToTOM1-1 and a primer on the 35S promoter: 5'-AATCTTCGTCAACATGGTGGAGCAC-3' was used for Southern hybridization. The results are shown in Figure 17 (lane M is 1kb DNA marker, lane CK is non- Transgenic plants, lanes T1-T12 are different transgenic lines), indicating that in addition to the hybridization band of endogenous ToTOM1 (indicated by the arrow in the figure), there is also a hybridization band of exogenous ToTOM1, and all PCR-positive plants have Insertion of exogenous ToTOM1 fragments. Judging from the size difference of the Sal I digested fragments, more than half of the transgenic plants had exogenous gene fragments inserted into different sites on the chromosome, that is, they belonged to different transgenic lines. The insert fragments in some plants are similar in size (such as T1, T3), so it is not easy to judge, and it needs to be cut with other enzymes and then hybridized to confirm. However, the number of chromosomal bases in tomato is huge, and the possibility of exogenous genes being inserted into the same position is very small, so the obtained transgenic plants may all be different lines. Figure 17 also shows that most of the transgenic plants are single copy, but 3 plants are double copy (T4, T9, T10).
2、RNA干扰转基因植株的鉴定2. Identification of RNA interference transgenic plants
共获得93株抗卡那霉素的RNA干扰转基因植株。盆栽前作初步的PCR检测,在引物Kam-R:5’-GATCTGGATCGTTTCGCATG-3’和引物Kam-F:5’-AAGGCGATAGAAGGCGATGC-3’的引导下扩增NPTII,在引物NOS-F:5’-TGCTACCHAHCTCHAATTTC-3’和NOS-R:5‘-ACGACGGCCAGTGAATTCCC-3’的引导下扩增NOS,在引物35S-F:5’-AATCTTCGTCAACATGGTGGAGCAC-3’和ToTOM1-RNAi-2F(的引导下扩增35S,在引物TA-TOM1-1:5’-GGGTACCCGAGTATGGCTGGACAAC-3’和TA-TOM1-2:5’-CCACCATATAGCAGAAAGCCCAAGG-3’的引导下扩增ToTOM1,其中63株抗性植株的NPTII、NOS、35S和内源ToTOM1基因检测为阳性,部分检测结果如图18所示(泳道M为GeneRuler 100bp DNA ladder,泳道1-5为抗性植株的35S检测(泳道1-5依次为MLC-ToTOM1-RNAi-370-11,-49,-71,-79,-80),泳道6-10为NOS检测(泳道6-10依次为MLC-ToTOM1-RNAi-370-11,-49,-71,-79,-80),泳道11-15为内源ToTOM1检测(泳道11-15依次为MLC-ToTOM1-RNAi-370-11,-49,-71,-79,-80),泳道16-20为NPTII基因检测(泳道16-20依次为MLC-ToTOM1-RNAi-370-11,-49,-71,-79,-80)。将阳性植株进行盆栽。一个月后用同样的方法进行检测,结果在32株中仅有3株(MLC-TOTOM1-RNAi370-71,-79和-80)仍有阳性信号。提取这3株呈阳性转基因植株的总DNA,用EcoR I完全酶切后经0.7%琼脂糖凝胶电泳分离,通过向下毛细管法转移到杂交膜上,与P32标记的RNA干扰TT1片段进行Sonthern杂交,结果如图19所示(泳道M为GeneRuler 1kb DNAladder,泳道ck(-)为非转基因番茄的EcoR I酶切产物,ck(+)为pBITOTOM1RNAi-370的EcoR I酶切产物,泳道1为MLC-TOTOM1-RNAi370-80,泳道2为MLC-TOTOM1-RNAi370-79,泳道3为MLC-TOTOM1-RNAi370-71),表明除了4.2kb的内源杂交带外,所有的转基因植株均出现一条大小不同的第二条杂交带,证明RNA干扰片段已整合到番茄基因组上。A total of 93 kanamycin-resistant RNA interference transgenic plants were obtained. Do a preliminary PCR test before potting, amplify NPTII under the guidance of primer Kam-R: 5'-GATCTGGATCGTTTCGCATG-3' and primer Kam-F: 5'-AAGGCGATAGAAGGCGATGC-3', and amplify NPTII under the guidance of primer NOS-F: 5'-TGCTACCHAHCTCHAATTTC -3' and NOS-R: Amplify NOS under the guidance of 5'-ACGACGGCCAGTGAATTCCC-3', amplify 35S under the guidance of primer 35S-F: 5'-AATCTTCGTCAACATGGTGGAGCAC-3' and ToTOM1-RNAi-2F (, in Under the guidance of primers TA-TOM1-1: 5'-GGGTACCCGAGTATGGCTGGACAAC-3' and TA-TOM1-2: 5'-CCACCATATAGCAGAAAGCCCAAGG-3', ToTOM1 was amplified, and the NPTII, NOS, 35S and endogenous The ToTOM1 gene test was positive, and some test results are shown in Figure 18 (lane M is the GeneRuler 100bp DNA ladder, and lanes 1-5 are the 35S detection of resistant plants (lanes 1-5 are MLC-ToTOM1-RNAi-370-11 in sequence) , -49, -71, -79, -80), lanes 6-10 are NOS detection (lanes 6-10 are MLC-ToTOM1-RNAi-370-11, -49, -71, -79, -80) , lanes 11-15 are endogenous ToTOM1 detection (lanes 11-15 are followed by MLC-ToTOM1-RNAi-370-11, -49, -71, -79, -80), lanes 16-20 are NPTII gene detection (lanes 16-20 are successively MLC-ToTOM1-RNAi-370-11,-49,-71,-79,-80). Positive plants are carried out potted. Detect with the same method after one month, the result is only in 32 strains There are 3 strains (MLC-TOTOM1-RNAi370-71, -79 and -80) still have positive signals. Extract the total DNA of these 3 positive transgenic plants, and go through 0.7% agarose gel electrophoresis after complete digestion with EcoRI Separation, transferred to the hybridization membrane by downward capillary method, and performed Southern hybridization with the P32-labeled RNA interference TT1 fragment, the results are shown in Figure 19 (swimming lane M is GeneRuler 1kb DNAladder, and swimming lane ck(-) is the EcoR of non-transgenic tomato I digestion product, ck(+) is the EcoR I digestion product of pBITOTOM1RNAi-370,
实施例4、转基因植株的抗病性检测
一、反义RNA转基因植株的抗病性实验1. Disease resistance experiment of antisense RNA transgenic plants
采用摩擦接种法,用黄瓜花叶病毒(CMV)对实施例3获得所有5-6叶期转基因番茄进行摩擦接种,以相同生长期的非转基因番茄为对照。Using the rubbing inoculation method, all the transgenic tomatoes at the 5-6 leaf stage obtained in Example 3 were rubbed inoculated with cucumber mosaic virus (CMV), and non-transgenic tomatoes at the same growth stage were used as controls.
1、症状表现1. Symptoms
接种CMV 10天后,非转基因的番茄实生苗对照开始出现花叶症状,新长出的叶片明显失绿(图20),而转基因植株表现正常(图21);二十五天时,对照非转基因植株的症状已非常严重,新长出的叶片几乎完全失绿,而且新叶畸形(图22)。此时的转基因植株虽然也表现症状,但比对照要明显减轻,叶片仅有些褪绿(图23)。After 10 days of inoculation with CMV, the non-transgenic tomato seedling control began to show mosaic symptoms, and the newly grown leaves were obviously chlorotic (Figure 20), while the transgenic plants were normal (Figure 21); at 25 days, the control non-transgenic plants The symptoms of the disease are very serious, and the newly grown leaves are almost completely chlorotic, and the new leaves are deformed (Figure 22). Although the transgenic plants at this time also showed symptoms, they were significantly lighter than those of the control, and the leaves were only slightly chlorotic (Fig. 23).
2、转基因番茄植株内病毒相对量的测定2. Determination of the Relative Quantity of Viruses in Transgenic Tomato Plants
以苋色藜为枯斑寄主,用生物定量法测定转基因番茄植株内病毒相对含量。接种二十天后,取番茄植株的部分新叶(约0.5g)磨成匀浆,分别接种到枯斑寄主植物苋色藜的叶片,每个处理接2张叶片,设2个重复,五天后统计枯斑的数目并进行差异显著性分析。结果如表1所示,表明以转基因番茄为接种源,在苋色藜上形成的枯斑数均显著低于对照实生番茄植株。其中转基因植株T9形成的枯斑数(34.5个/叶)仅为对照(119个/叶)的29%。不同的转基因株系在苋色藜上形成的枯斑的数量有明显的差异,如T1植株的枯斑数(68.5个/叶)比T9植株(34.5个/叶)高出近1倍。枯斑试验表明,转反义ToTOM1番茄的CMV浓度要明显低于非转基因番茄。The relative content of virus in transgenic tomato plants was determined by bioquantitative method using Chenopodium chinensis as the host of dead spot. Twenty days after inoculation, take some new leaves (about 0.5g) of the tomato plants and grind them into a homogenate, and inoculate them into the leaves of the host plant Amaranthus amaranthus, respectively. Each treatment receives 2 leaves, and 2 replicates are set. After five days, The number of dead spots was counted and a significant difference analysis was performed. The results are shown in Table 1, which indicated that the number of dead spots formed on Amaranthus quinoa was significantly lower than that of control tomato plants when the transgenic tomato was used as the inoculation source. The number of dead spots formed by the transgenic plant T9 (34.5/leaf) was only 29% of that of the control (119/leaf). The number of dead spots formed by different transgenic lines on Chenopodium amaranthus was significantly different. For example, the number of dead spots of T1 plants (68.5/leaf) was nearly 1 times higher than that of T9 plants (34.5/leaf). Blight test showed that the CMV concentration of antisense ToTOM1 tomato was significantly lower than that of non-transgenic tomato.
表1 转反义ToTOM1基因番茄在枯斑寄主苋色藜上的生物定量
二、表达RNA干扰片段转基因植株的抗病性实验2. Disease resistance experiment of transgenic plants expressing RNA interference fragments
采用摩擦接种法,用烟草花叶病毒(TMV)对实施例3获得的3株RNA干扰转基因植株(5-6叶期)进行接种实验,以处于相同生长期的的非转基因番茄为对照,观察并记录结果,结果表明接种10天后,非转基因番茄苗呈现斑驳症状,而转基因植株无任何症状表现。接种70天后,非转基因植株仍表现为斑驳症状,转基因植株仍无任何症状表现。75天后,称取转基因植株和对照植株的新生叶(倒数第三张新生叶)0.1g,用DAS-ELISA法测定转基因植株内的病毒含量,具体方法为:样品加1ml包被缓冲液(0.015 M Na2CO3,0.035 M NaHCO3,pH9.6)磨成匀浆,稀释1000倍后进行检测,检测结果如表2所示,表明所有的转基因植株内TMV的浓度均明显低于非转基因植株。Adopt rubbing inoculation method, use tobacco mosaic virus (TMV) to carry out inoculation experiment to 3 RNA interference transgenic plants (5-6 leaf stage) that
表2 表达ToTOM1 RNA干扰片段转基因植株的TMV的DAS-ELISA定量
序列表Sequence Listing
<160>3<160>3
<210>1<210>1
<211>288<211>288
<212>PRT<212>PRT
<213>番茄属番茄(Lycopersicon esculentum Miller)<213>Lycopersicon esculentum Miller
<400>1<400>1
Met Ala Arg Leu Pro Leu Gly Ser Ser Pro Ile Asp Ile Ala Gly ProMet Ala Arg Leu Pro Leu Gly Ser Ser Ser Pro Ile Asp Ile Ala Gly Pro
1 5 10 151 5 10 15
Val Thr Asn Trp Trp Asp His Val Asn Glu Ser Val Gln Trp Gln AspVal Thr Asn Trp Trp Asp His Val Asn Glu Ser Val Gln Trp Gln Asp
20 25 3020 25 30
Gly Ile Phe Tyr Ser Leu Cys Ala Ser Tyr Gly Leu Val Ser Ala ValGly Ile Phe Tyr Ser Leu Cys Ala Ser Tyr Gly Leu Val Ser Ala Val
35 40 4535 40 45
Ala Leu Ile Gln Leu Ile Arg Ile Asp Leu Arg Val Pro Glu Tyr GlyAla Leu Ile Gln Leu Ile Arg Ile Asp Leu Arg Val Pro Glu Tyr Gly
50 55 6050 55 60
Trp Thr Thr Gln Lys Val Phe His Leu Met Asn Phe Val Val Asn GlyTrp Thr Thr Gln Lys Val Phe His Leu Met Asn Phe Val Val Asn Gly
65 70 75 8065 70 75 80
Val Arg Ala Ile Val Phe Gly Phe His Lys His Val Phe Leu Leu HisVal Arg Ala Ile Val Phe Gly Phe His Lys His Val Phe Leu Leu His
85 90 9585 90 95
Tyr Lys Val Leu Thr Leu Ala Ile Leu Asp Leu Pro Gly Leu Leu PheTyr Lys Val Leu Thr Leu Ala Ile Leu Asp Leu Pro Gly Leu Leu Phe
100 105 110100 105 110
Phe Ser Thr Phe Thr Leu Leu Val Leu Phe Trp Ala Glu Ile Tyr HisPhe Ser Thr Phe Thr Leu Leu Val Leu Phe Trp Ala Glu Ile Tyr His
115 120 125115 120 125
Gln Ala Arg Ser Leu Pro Thr Asp Lys Leu Arg Ile Ser Tyr Ile AlaGln Ala Arg Ser Leu Pro Thr Asp Lys Leu Arg Ile Ser Tyr Ile Ala
130 135 140130 135 140
Ile Asn Gly Ala Ile Tyr Phe Ile Gln Ala Cys Ile Trp Val Tyr LeuIle Asn Gly Ala Ile Tyr Phe Ile Gln Ala Cys Ile Trp Val Tyr Leu
145 150 155 160145 150 155 160
Trp Ile Asn Asp Asn Ser Thr Val Glu Phe Ile Gly Lys Ile Phe MetTrp Ile Asn Asp Asn Ser Thr Val Glu Phe Ile Gly Lys Ile Phe Met
165 170 175165 170 175
Ala Val Val Ser Val Ile Ala Ala Leu Gly Phe Leu Leu Tyr Gly GlyAla Val Val Ser Val Ile Ala Ala Leu Gly Phe Leu Leu Tyr Gly Gly
180 185 190180 185 190
Arg Leu Phe Leu Met Leu Arg Arg Phe Pro Ile Glu Sar Lys Gly ArgArg Leu Phe Leu Met Leu Arg Arg Phe Pro Ile Glu Sar Lys Gly Arg
195 200 205195 200 205
Arg Lys Lys Leu His Glu Val Gly Ser Val Thr Ala Ile Cys Phe ThrArg Lys Lys Leu His Glu Val Gly Ser Val Thr Ala Ile Cys Phe Thr
210 215 220210 215 220
Cys Phe Leu Ile Arg Cys Phe Val Val Val Leu Ser Ala Phe Asp SerCys Phe Leu Ile Arg Cys Phe Val Val Val Leu Ser Ala Phe Asp Ser
225 230 235 240225 230 235 240
Asp Ala Ser Leu Asp Val Leu Asp His Pro Val Leu Asn Leu Ile TyrAsp Ala Ser Leu Asp Val Leu Asp His Pro Val Leu Asn Leu Ile Tyr
245 250 255245 250 255
Tyr Leu Leu Val Glu Ile Leu Pro Ser Ala Leu Val Leu Tyr Ile LeuTyr Leu Leu Val Glu Ile Leu Pro Ser Ala Leu Val Leu Tyr Ile Leu
260 265 270260 265 270
Arg Lys Leu Pro Pro Lys Arg Val Ser Ala Gln Tyr His Pro Ile SerArg Lys Leu Pro Pro Lys Arg Val Ser Ala Gln Tyr His Pro Ile Ser
275 280 285275 280 285
<210>2<210>2
<211>6727<211>6727
<212>DNA<212>DNA
<213>番茄属番茄(Lycopersicon esculentum Miller)<213>Lycopersicon esculentum Miller
<400>2<400>2
gagctgaaat ggctaggttg ccgcttgggt cgtcgccgat tgacatcgcc ggtccggtga 60gagctgaaat ggctaggttg ccgcttgggt cgtcgccgat tgacatcgcc ggtccggtga 60
ccaactggtg ggaccacgtc aacgaatccg ttcagtggca agatgggatt ttctactccc 120ccaactggtg ggaccacgtc aacgaatccg ttcagtggca agatgggatt ttctactccc 120
tttgtgcttc ctatggtctt gtttcagcag ttgccctagt aagtttctct ttctcttcca 180tttgtgcttc ctatggtctt gtttcagcag ttgccctagt aagtttctct ttctcttcca 180
ttctcttttt ctgctctgta gatatgtaaa gattggtttt ttctttcctt tttgtgaatt 240ttctcttttt ctgctctgta gatatgtaaa gattggtttt ttctttcctt tttgtgaatt 240
tcacgatcaa agtagagttt gggagctgaa atgccggaat tgatgttaga tgatttatat 300tcacgatcaa agtagagttt gggagctgaa atgccggaat tgatgttaga tgattatat 300
tttcaactcc tactaatttg atgttgagat gcagttgata gaattgcagt gtctagttca 360tttcaactcc tactaatttg atgttgagat gcagttgata gaattgcagt gtctagttca 360
tgtataaagt caagtacttg ctgttagttg tttttttttt cgtaacttct gttaaaaatg 420tgtataaagt caagtacttg ctgttagttg tttttttttt cgtaacttct gttaaaaatg 420
gaaaatcttg gttggtcaac tgtaggaatg aaataatgga gtagggaatc agacgagaat 480gaaaatcttg gttggtcaac tgtaggaatg aaataatgga gtagggaatc agacgagaat 480
gtttgattac caagtgcaat ttaggggttt ccattaagac aaattacggt atattttgtg 540gtttgattac caagtgcaat ttaggggttt ccattaagac aaattacggt atattttgtg 540
cttttttatg tcgctaataa aagtttggag cagtggactg actggttaat catacttctg 600cttttttatg tcgctaataa aagtttggag cagtggactg actggttaat catacttctg 600
gtaggttcgg ttagatggtt agtatttggg agtactcctt ttgtgtgtgc ttgtgaagct 660gtaggttcgg ttagatggtt agtatttggg agtactcctt ttgtgtgtgc ttgtgaagct 660
tatgaccttt tccaataagt agataagttt cattgaaggg tgttttttca tactttgatt 720tatgaccttt tccaataagt agataagttt cattgaaggg tgttttttca tactttgatt 720
aatatgtgtt tcagatacag tatttaccta atactgcatg tgtagagaac tgttttcctc 780aatatgtgtt tcagatacag tattaccta atactgcatg tgtagagaac tgttttcctc 780
gtggtgcttg cttagtcgca ggacttttgg ttgagtctat gagttaacta tgtgcagatt 840gtggtgcttg cttagtcgca ggacttttgg ttgagtctat gagttaacta tgtgcagatt 840
caattaatac gaattgattt gagggtaccc gagtatggct ggacaacaca aaaggtgttc 900caattaatac gaattgattt gagggtaccc gagtatggct ggacaacaca aaaggtgttc 900
catctgatga actttgttgt aaatggaggt aaagcggact cagactaaac aaaccgtcca 960catctgatga actttgttgt aaatggaggt aaagcggact cagactaaac aaaccgtcca 960
gctctttttc ttaatctgga attttgtttt aaatgcaaat cttttgtttt tcagttcgtg 1020gctctttttc ttaatctgga attttgtttt aaatgcaaat cttttgtttt tcagttcgtg 1020
caattgtctt tggatttcac aaacatgttt ttctgctcca ttataaggta atattctttc 1080caattgtctt tggatttcac aaacatgttt ttctgctcca ttataaggta atattctttc 1080
ttaaaagtaa cttttcaatt gtcaatattt tttcttaatt atgttcagtt tgttttcaat 1140ttaaaagtaa cttttcaatt gtcaatattt tttcttaatt atgttcagtt tgttttcaat 1140
agaacgcgac aatatatgca aacctgaata tattgccttt gttcttatca gccatttaac 1200agaacgcgac aatatatgca aacctgaata tattgccttt gttcttatca gccattaac 1200
ttttccccaa ataatggttc ttttcctata gtgcgtcaac ttacatagga actatcaaaa 1260ttttccccaa ataatggttc ttttcctata gtgcgtcaac ttacatagga actatcaaaa 1260
atcaaaatta ggtcagaact gtacctagaa aatttatcac ctgatgggac cattttcaag 1320atcaaaatta ggtcagaact gtacctagaa aatttatcac ctgatgggac cattttcaag 1320
gcaagtgcat gcatgttact tttgctgatt ggagctgtag gctttcttat atctttgaca 1380gcaagtgcat gcatgttact tttgctgatt ggagctgtag gctttcttat atctttgaca 1380
ctcttaactt tgagcttaat ttgacatttt agattcctta ccttctaatt tatttattcg 1440ctcttaactt tgagcttaat ttgacatttt agattcctta ccttctaatt tattattcg 1440
gaaggtcatc ctgctctctt acagctagta caatccaata gcagttcagc aatccttgtt 1500gaaggtcatc ctgctctctt acagctagta caatccaata gcagttcagc aatccttgtt 1500
tgttaatgtg tgagctaatt ggattgaaag cacattagta tatacattct gtctttcaga 1560tgttaatgtg tgagctaatt ggattgaaag cacattagta tatacattct gtctttcaga 1560
ttccagtttg aagcttatca cctagttact catcttttac ttgccctaaa attttggttt 1620ttccagtttg aagcttatca cctagttact catcttttac ttgccctaaa attttggttt 1620
gactgtgatg ggccgatgac attgttcaag tgcttagttc ctctgcagcc agcaacaccg 1680gactgtgatg ggccgatgac attgttcaag tgcttagttc ctctgcagcc agcaacaccg 1680
tagtgttacc atgtcaatcc tttagctttg actatcattt tattgagatg aattttctgt 1740tagtgttacc atgtcaatcc tttagctttg actatcattt tattgagatg aattttctgt 1740
tagcaataac gaatctactg aaagcacctc ccctttacga cttccgtgat ctctttcctt 1800tagcaataac gaatctactg aaagcacctc ccctttacga cttccgtgat ctctttcctt 1800
catttgggtg ggctactaat ggccccgtcc ctttttagcc cgataactta agaagtagaa 1860catttgggtg ggctactaat ggccccgtcc ctttttagcc cgataactta agaagtagaa 1860
ataattaaca tgcccacaac tgcctcttaa actgctgcct aattgttaac ctgatgttag 1920ataattaaca tgcccacaac tgcctcttaa actgctgcct aattgttaac ctgatgttag 1920
atttgcttca cgataaccag gtgctgactc tggcaatatt ggacctacca gggctccttt 1980atttgcttca cgataaccag gtgctgactc tggcaatatt ggacctacca gggctccttt 1980
tcttttcaac attcacactc cttgttctat tttgggctga gatatatccc caggcaagtg 2040tcttttcaac attcacactc cttgttctat tttgggctga gatatatccc caggcaagtg 2040
aagttatagc atcttgcagg caaactgtaa atctattgat tctaaccctt gcatttatgt 2100aagttatagc atcttgcagg caaactgtaa atctattgat tctaaccctt gcatttatgt 2100
aatggcaggc taggagttta ccaacagata agctcaggat ttcttatatt gccattaatg 2160aatggcaggc taggagttta ccaacagata agctcaggat ttcttatatt gccattaatg 2160
gtgccatata cttcattcag gtttgctaca aatgtatccc ctgctcatac gctattggac 2220gtgccatata cttcattcag gtttgctaca aatgtatccc ctgctcatac gctattggac 2220
atcatggttg ttcatatgga aatataatcg atcaagtatt attacttatt tttattttgt 2280atcatggttg ttcatatgga aatataatcg atcaagtatt attacttatt tttattttgt 2280
ctctagtaat atgtgaattc ctttaagatt cttttacgcc agtcaaaccc atctactttt 2340ctctagtaat atgtgaattc ctttaagatt cttttacgcc agtcaaaccc atctactttt 2340
gggttctatt tgataacccc ttgtattttg gtggtgacag gggtggatta gtgtagaagt 2400gggttctatt tgataacccc ttgtattttg gtggtgacag gggtggatta gtgtagaagt 2400
tatgggttca actgaaaaag ggttcctgga acccaacatt agctcaaacc ctgtatatat 2460tatgggttca actgaaaaag ggttcctgga acccaacatt agctcaaacc ctgtatatat 2460
gttaaaaatt ttgtaaacaa gtaaacataa tagattttga acccactaaa tcaatcgggt 2520gttaaaaatt ttgtaaacaa gtaaacataa tagattttga accactaaa tcaatcgggt 2520
tgtggtagaa tttctgagac acataaagtt cgaatcctgg agccgcctca ttgatctgtg 2580tgtggtagaa tttctgagac acataaagtt cgaatcctgg agccgcctca ttgatctgtg 2580
ggcatatgtg tgcttctcaa tatgtggaat tctgagatat tcttctttct caaaatgtta 2640ggcatatgtg tgcttctcaa tatgtggaat tctgagatat tcttctttct caaaatgtta 2640
tgccgggtta acctggggta acatgctagg agaaaagttt aattcggagc tctccatcta 2700tgccgggtta acctggggta acatgctagg agaaaagttt aattcggagc tctccatcta 2700
cttccattat caaatattca tagcttggtt ccggttatac ctttaattat tttttcgaga 2760cttccattat caaatattca tagcttggtt ccggttatac ctttaattat tttttcgaga 2760
accgatggaa tatctttcca agaccttgca ataaattttt acagaaccat atgcaaattt 2820accgatggaa tatctttcca agaccttgca ataaattttt acagaaccat atgcaaattt 2820
agccttgaaa tagggctaga ttctcctaat ccccatcccc tgagaaccct atctcttccc 2880agccttgaaa tagggctaga ttctcctaat ccccatcccc tgagaaccct atctcttccc 2880
tttcctaaag gatagagcat ttctaaataa ataaagatgt ccattgttct tgatttcttg 2940tttcctaaag gatagagcat ttctaaataa ataaagatgt ccattgttct tgatttcttg 2940
gtgaacattt cctatcgacc cgcttgtctc aaaagctaag aatcttcttc agtcttcctg 3000gtgaacattt cctatcgacc cgcttgtctc aaaagctaag aatcttcttc agtcttcctg 3000
gttttatctc aggtaataaa ctaaatacaa ctgaaaaatc gtttttgtca ggcctgtatc 3060gttttatctc aggtaataaa ctaaatacaa ctgaaaaatc gtttttgtca ggcctgtatc 3060
tgggtttacc tctggatcaa tgacaatagc acagtggaat tcattgggaa gatatttatg 3120tgggtttacc tctggatcaa tgacaatagc acagtggaat tcattgggaa gatatttatg 3120
gcagttgtat ctcttatata tcaattttct ccttttgccc tattttactg aaggttagat 3180gcagttgtat ctcttatata tcaattttct ccttttgccc tattttactg aaggttagat 3180
ctgctttcaa agttattgct ttctttaacc ttgcatgttt attgggcagt gtatcagtta 3240ctgctttcaa agttattgct ttctttaacc ttgcatgttt attgggcagt gtatcagtta 3240
ttgcagcctt gggctttctg ctatatggtg gaaggtgaat taagctctaa ttttctctgg 3300ttgcagcctt gggctttctg ctatatggtg gaaggtgaat taagctctaa ttttctctgg 3300
gcattaatct tctaaagcat tattgagatt atcagttatt gcagccttgg gctttctgct 3360gcattaatct tctaaagcat tattgagatt atcagttat gcagccttgg gctttctgct 3360
atatggtgga agggaattta agttctaatt ttctctgggc atttatcttc taaagcatta 3420atatggtgga agggaattta agttctaatt ttctctgggc atttatcttc taaagcatta 3420
ttgatgattc ttagatgacc ttagacatga ttaaatttca ttgtttttct tggggaattg 3480ttgatgattc ttagatgacc ttagacatga ttaaatttca ttgtttttct tggggaattg 3480
gtttttacaa tcatcaggtt atttctcatg ctgcggcgct tccctattga atctaaaggg 3540gtttttacaa tcatcaggtt atttctcatg ctgcggcgct tccctattga atctaaaggg 3540
aggagaaaga agcttcatga ggtttgtgta ctatacatct gtcttcctct ttctttttct 3600aggagaaaga agcttcatga ggtttgtgta ctatacatct gtcttcctct ttctttttct 3600
ttttttcttt tcttttaact ggtaaagatt tttacacttt tatcttctta ctttatgtat 3660ttttttcttt tcttttaact ggtaaagatt tttacacttt tatcttctta ctttatgtat 3660
acagaggtta gtgctgtagt ttggcataga atacgtttgc atgtaaggca taagatgtat 3720acagaggtta gtgctgtagt ttggcataga atacgtttgc atgtaaggca taagatgtat 3720
tcctcacaaa cttaagttct ccctacagca ccgagaggga gaaacttttt aaacatgaag 3780tcctcacaaa cttaagttct ccctacagca ccgagaggga gaaacttttt aaacatgaag 3780
tttgattaat ttccttgtcc taagaagtcc tgctaattgt tctgctatat tataatctta 3840tttgattaat ttccttgtcc taagaagtcc tgctaattgt tctgctatat tataatctta 3840
acttgtgggt gaatgactgc tatatttagt ccagataaca tttaagtgga gagataagag 3900acttgtgggt gaatgactgc tatatttagt ccagataaca tttaagtgga gagataagag 3900
taaggctatc tctgagattg tataatttaa ttctaaaatg ataattaaca agaacagatg 3960taaggctatc tctgagattg tataatttaa ttctaaaatg ataattaaca agaacagatg 3960
gaaccttgtt atgacattct tattcagaca tttttattca gtgcgtgaag gggtaacctt 4020gaaccttgtt atgacattct tattcagaca tttttatca gtgcgtgaag gggtaacctt 4020
ttggtcatgg atccactaaa ctgtcaaagg ctggtgcata cttctttttc tatttagttt 4080ttggtcatgg atccactaaa ctgtcaaagg ctggtgcata cttctttttc tattagttt 4080
gtgtcacata atttgtttga cttacaccat aagctcaact ccagcaaatt attaatttct 4140gtgtcacata atttgtttga cttacaccat aagctcaact ccagcaaatt attaatttct 4140
gtagctgcta tctgatggga ctgttcaaag ttgtttggat atacatagac agaagatgtc 4200gtagctgcta tctgatggga ctgttcaaag ttgtttggat atacatagac agaagatgtc 4200
aagtaataaa gattgcctaa caaaatgagc aggaatgtaa caaattataa catacaacat 4260aagtaataaa gattgcctaa caaaatgagc aggaatgtaa caaattataa catacaacat 4260
tagggtacca actgttgatg tctcccttct ctagattcct cttttttgat gattaagtaa 4320tagggtacca actgttgatg tctcccttct ctagattcct cttttttgat gattaagtaa 4320
gattttatta aaccatctgc agcaccaaca aggtgtaaga gtgcccgata gtagctagaa 4380gattttatta aaccatctgc agcaccaaca aggtgtaaga gtgcccgata gtagctagaa 4380
atttattcct ttaacaatat aaggagtcaa ttaactccac tatatggtca aaatcactag 4440atttattcct ttaacaatat aaggagtcaa ttaactccac tatatggtca aaatcactag 4440
cagcatcctg cttcaaaaat tcatgttctg taagcatttc aatgggcatt actaaaggta 4500cagcatcctg cttcaaaaat tcatgttctg taagcatttc aatgggcatt actaaaggta 4500
attaaaggaa cgtatgcttt aatcctgaaa gcagctgcag ttccctttct atattaacca 4560attaaaggaa cgtatgcttt aatcctgaaa gcagctgcag ttccctttct atattaacca 4560
tctgaaataa catagagaga ttctgtaagt tcctctgtat attttttaat aaggtcctct 4620tctgaaataa catagagaga ttctgtaagt tcctctgtat attttttaat aaggtcctct 4620
gtttcttctt tattccctgc attgtcatct ttgtactgcc tctaccaggc atcatccaaa 4680gtttcttctt tattccctgc attgtcatct ttgtactgcc tctaccaggc atcatccaaa 4680
caatcccaaa ccggtttaga aatatacacc aagttatcca tatgaatttg caacgtagga 4740caatcccaaa ccggtttaga aatatacacc aagttatcca tatgaatttg caacgtagga 4740
gtaactgtcc aaatgattta aagccctctt tgcagtagta ggatctggtg gagaagtgaa 4800gtaactgtcc aaatgatta aagccctctt tgcagtagta ggatctggtg gagaagtgaa 4800
atcttccctc tgtgctgggc tatcataang tacttatgtt tcattaaggg taatacccaa 4860atcttccctc tgtgctgggc tatcataang tacttatgtt tcattaaggg taatacccaa 4860
aaancagcca ctttgggagt agctctggtc ctccaaagtc atcttccatg actattagag 4920aaancagcca ctttgggagt agctctggtc ctccaaagtc atcttccatg actattagag 4920
ccaatattac cacattcttc cttaacaact aactgtatca tgctttaggt gagaagttcg 4980ccaatattac cacattcttc cttaacaact aactgtatca tgctttaggt gagaagttcg 4980
catcatccaa tgatccattt ccatcactcc ccctaattta acaactagca cacacagact 5040catcatccaa tgatccattt ccatcactcc ccctaattta acaactagca cacacagact 5040
gtacctagtg ttgatgattt ttttaagaaa aaaattgatg atttattcta cattggagat 5100gtacctagtg ttgatgattt ttttaagaaa aaaattgatg atttattcta cattggagat 5100
tccagcattc tcctttggag ggttctccaa tggtacgtcg aacactcttt gttgatgaca 5160tccagcattc tcctttggag ggttctccaa tggtacgtcg aacactcttt gttgatgaca 5160
agattatatt aacttgggaa gagttatttc agagttctgg tttccagtca tttgtcttgc 5220agattatatt aacttgggaa gagttatttc agagttctgg tttccagtca tttgtcttgc 5220
catagtttgt tcttctgctg ttatccactt tgacctttcc atctctgcaa actctcccca 5280catagtttgt tcttctgctg ttatccactt tgacctttcc atctctgcaa actctcccca 5280
tggatttccg attcatcttc ctaatacaac tccataagat gtgactgctt tactgcatca 5340tggatttccg attcatcttc ctaatacaac tccataagat gtgactgctt tactgcatca 5340
ttgtccatca attccatatt aatctttgat catcccttcc acatcttctc tttgttttcc 5400ttgtccatca attccatatt aatctttgat catcccttcc acatcttctc tttgttttcc 5400
atggccattt gaacttaaaa gacaataaat agtctgaagc tcttcactac tagtggctga 5460atggccattt gaacttaaaa gacaataaat agtctgaagc tcttcactac tagtggctga 5460
tttccttttc ttctctgttg atgaataaac aggaaaaaaa atatcttaga ttagtctgac 5520tttccttttc ttctctgttg atgaataaac aggaaaaaaa atatcttaga ttagtctgac 5520
tagatggaaa ctcaatatta acatatgatg tttctgaaga aagaatcttt tttatcatta 5580tagatggaaa ctcaatatta acatatgatg tttctgaaga aagaatcttt tttatcatta 5580
tttgtgaacc taaggagttc ttttgttctt caatgatcat tagtgaccaa ctcaagaaaa 5640tttgtgaacc taaggagttc ttttgttctt caatgatcat tagtgaccaa ctcaagaaaa 5640
tgatttattg gtctatctga ttgttctaac atcgtcttct acatcaccaa ccattaaatg 5700tgatttattg gtctatctga ttgttctaac atcgtcttct acatcaccaa ccattaaatg 5700
atgctgctgt gaatatgttt gtgttatctg aagttctaat gaattgtttc taggcatatg 5760atgctgctgt gaatatgttt gtgttatctg aagttctaat gaattgtttc taggcatatg 5760
catgcatgat aggtcatggc ttataattct taacatctct tactgtaaat catctgatct 5820catgcatgat aggtcatggc ttataattct taacatctct tactgtaaat catctgatct 5820
aatgtatgta tgtgaacaca ggttggatcg gtgactgcca tatgtttcac ctgtttcctc 5880aatgtatgta tgtgaacaca ggttggatcg gtgactgcca tatgtttcac ctgtttcctc 5880
attagatgct ttgtggttgt aaggctttat gtacctgttt ctttctccct atgctggtca 5940attagatgct ttgtggttgt aaggctttat gtacctgttt ctttctccct atgctggtca 5940
acctttttat catcccaagt ataacagtgt cctaagctcc attattaagc ttttgcaaaa 6000acctttttat catcccaagt ataacagtgt cctaagctcc atttattaagc ttttgcaaaa 6000
ctgggttaac caaaattaag ccacttctta agcttttttt acggggaagg tccaagcaag 6060ctgggttaac caaaattaag ccacttctta agcttttttt acggggaagg tccaagcaag 6060
gaaattgagt ttttacccca tcgggtgctt ttagtttgta agaggtgaaa ccattaggct 6120gaaattgagt ttttacccca tcgggtgctt ttagtttgta agaggtgaaa ccattaggct 6120
atctttatga aataaagggt tgcaacctat gccttccttc aggcttcagt caaaccataa 6180atctttatga aataaagggt tgcaacctat gccttccttc aggcttcagt caaaccataa 6180
cttactcctg ggaacaaata ataggaaaag gtagactaga gaataggaac atgatcaaaa 6240ccttactcctg ggaacaaata ataggaaaag gtagactaga gaataggaac atgatcaaaa 6240
aaagagaaag cataggttta aagtaaagct aaaccggcct caaatctcta actctcatgc 6300aaagagaaag cataggtta aagtaaagct aaaccggcct caaatctcta actctcatgc 6300
acatgagctt gttttctatg tctaatcttg gttcgctgca ggttgtgtta tctgcttttg 6360acatgagctt gttttctatg tctaatcttg gttcgctgca ggttgtgtta tctgcttttg 6360
attctgacgc atctcttgac gtcttggatc atcctgtttt gaatctgata tactacctgg 6420atctctgacgc atctcttgac gtcttggatc atcctgtttt gaatctgata tactacctgg 6420
tatgtatcat tttcgttatt tcatgttcct tgcgcttact gctttgtctg agtgatcaca 6480tatgtatcat tttcgttatt tcatgttcct tgcgcttact gctttgtctg agtgatcaca 6480
ttcttctctg tggcagctgg tagaaattct tccttcagct cttgtgctgt acatcctgcg 6540ttcttctctg tggcagctgg tagaaattct tccttcagct cttgtgctgt acatcctgcg 6540
aaaactgcct ccaaaaagag tgtctgcaca ataccaccca atcagttagc tgcagcagaa 6600aaaactgcct ccaaaaagag tgtctgcaca ataccaccca atcagttagc tgcagcagaa 6600
ttttatcgtt agtgatacac gttcccatgg tttctgttgc agaagctaac tggagttgtt 6660ttttatcgtt agtgatacac gttcccatgg tttctgttgc agaagctaac tggagttgtt 6660
caggaaaagt gaaactgcaa aaggatattc ggttgcaata attctgcgga aaggcaaaga 6720caggaaaagt gaaactgcaa aaggatattc ggttgcaata attctgcgga aaggcaaaga 6720
ttcaacg 6727ttcaacg 6727
<210>3<210>3
<211>1282<211>1282
<212>DNA<212>DNA
<213>番茄属番茄(Lycopersicon esculentum Miller)<213>Lycopersicon esculentum Miller
<400>3<400>3
acaacaagat aagcggaggg gagagctgaa atggctaggt tgccgcttgg gtcgtcgccg 60acaacaagat aagcggaggg gagagctgaa atggctaggt tgccgcttgg gtcgtcgccg 60
attgacatcg ccggtccggt gaccaactgg tgggaccacg tcaacgaatc cgttcagtgg 120attgacatcg ccggtccggt gaccaactgg tgggaccacg tcaacgaatc cgttcagtgg 120
caagatggga ttttctactc cctttgtgct tcctatggtc ttgtttcagc agttgcccta 180caagatggga ttttctactc cctttgtgct tcctatggtc ttgtttcagc agttgcccta 180
attcaattaa tacgaattga tttgagggta cccgagtatg gctggacaac acaaaaggtg 240attcaattaa tacgaattga tttgagggta cccgagtatg gctggacaac acaaaaggtg 240
ttccatctga tgaactttgt tgtaaatgga gttcgtgcaa ttgtctttgg atttcacaaa 300ttccatctga tgaactttgt tgtaaatgga gttcgtgcaa ttgtctttgg atttcacaaa 300
catgtttttc tgctccatta taaggtgctg actctggcaa tattggacct accagggctc 360catgtttttc tgctccatta taaggtgctg actctggcaa tattggacct accagggctc 360
cttttctttt caacattcac actccttgtt ctattttggg ctgagatata tcaccaggct 420cttttctttt caacattcac actccttgtt ctattttggg ctgagatata tcaccaggct 420
aggagtttac caacagataa gctcaggatt tcttatattg ccattaatgg tgccatatac 480aggagtttac caacagataa gctcaggatt tcttatattg ccattaatgg tgccatatac 480
ttcattcagg cctgtatctg ggtttacctc tggatcaatg acaatagcac agtggaattc 540ttcattcagg cctgtatctg ggtttacctc tggatcaatg acaatagcac agtggaattc 540
attgggaaga tatttatggc agttgtatca gttattgcag ccttgggctt tctgctatat 600attgggaaga tattatggc agttgtatca gttattgcag ccttgggctt tctgctatat 600
ggtggaaggt tatttctcat gctgcggcgc ttccctattg aatctaaagg gaggagaaag 660ggtggaaggt tatttctcat gctgcggcgc ttccctattg aatctaaagg gaggagaaag 660
aagcttcatg aggttggatc ggtgactgcc atatgtttca cctgtttcct cattagatgc 720aagcttcatg aggttggatc ggtgactgcc atatgtttca cctgtttcct cattagatgc 720
tttgtggttg tgttatctgc ttttgattct gacgcatctc ttgacgtctt ggatcatcct 780tttgtggttg tgttatctgc ttttgattct gacgcatctc ttgacgtctt ggatcatcct 780
gttttgaatc tgatatacta cctgctggta gaaattcttc cttcagctct tgtgctgtac 840gttttgaatc tgatatacta cctgctggta gaaattcttc cttcagctct tgtgctgtac 840
atcctgcgaa aactgcctcc aaaaagagtg tctgcacaat accacccaat cagttagctg 900atcctgcgaa aactgcctcc aaaaagagtg tctgcacaat accacccaat cagttagctg 900
cagcagaatt ttatcgttag tgatacacgt tcccatggtt tctgttgcag aagctaactg 960cagcagaatt ttatcgttag tgatacacgt tcccatggtt tctgttgcag aagctaactg 960
gagttgttca ggaaaagtga aactgcaaaa ggatattcgg ttgcaataat tctgcggaaa 1020gagttgttca ggaaaagtga aactgcaaaa ggatattcgg ttgcaataat tctgcggaaa 1020
ggcaaagatt caacgctttt ttggcagttg ttaaaacaga ggttaagctg ttttgcttac 1080ggcaaagatt caacgctttt ttggcagttg ttaaaacaga ggttaagctg ttttgcttac 1080
attatattgt ttctgtggtt ttagtgtgaa gcatgagaca aataagtgtt ccccacgtct 1140attatattgt ttctgtggtt ttagtgtgaa gcatgagaca aataagtgtt ccccacgtct 1140
gtgaaaaatc ctagtcatga tgtaatgacg cagagggtaa atctcagtat cgccattgta 1200gtgaaaaatc ctagtcatga tgtaatgacg cagagggtaa atctcagtat cgccattgta 1200
ctggcatgtt gtaactatga tgttctggat ctcctttact gcaatgactg atgtcctttg 1260ctggcatgtt gtaactatga tgttctggat ctcctttact gcaatgactg atgtcctttg 1260
tttggtcaaa aaaaaaaaaa aa 1282tttggtcaaa aaaaaaaaaa aa 1282
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100766558A CN100432101C (en) | 2005-06-13 | 2005-06-13 | Tomato RNA virus host factor and its coding gene and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100766558A CN100432101C (en) | 2005-06-13 | 2005-06-13 | Tomato RNA virus host factor and its coding gene and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1709908A true CN1709908A (en) | 2005-12-21 |
CN100432101C CN100432101C (en) | 2008-11-12 |
Family
ID=35706203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100766558A Expired - Fee Related CN100432101C (en) | 2005-06-13 | 2005-06-13 | Tomato RNA virus host factor and its coding gene and use thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100432101C (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103947461A (en) * | 2011-10-17 | 2014-07-30 | 湖南农业大学 | Method for enabling scion variety to acquire virus resistance as well as RNA (Ribonucleic Acid) interference vector pCAMBIA2300-CP and transgenic method |
CN103947462A (en) * | 2011-10-17 | 2014-07-30 | 湖南农业大学 | Method for enabling scion variety to acquire virus resistance as well as RNA (Ribonucleic Acid) interference vector pCAMBIA2300-3A and transgenic method |
CN115119498A (en) * | 2020-02-12 | 2022-09-27 | 国立研究开发法人农业·食品产业技术综合研究机构 | Tobacco mosaic virus-resistant tomato plant, method for producing tobacco mosaic virus-resistant tomato plant, method for imparting tobacco mosaic virus resistance to tomato plant, method for screening tobacco mosaic virus-resistant tomato plant, and method for detecting tobacco mosaic virus resistance of tomato plant |
-
2005
- 2005-06-13 CN CNB2005100766558A patent/CN100432101C/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103947461A (en) * | 2011-10-17 | 2014-07-30 | 湖南农业大学 | Method for enabling scion variety to acquire virus resistance as well as RNA (Ribonucleic Acid) interference vector pCAMBIA2300-CP and transgenic method |
CN103947462A (en) * | 2011-10-17 | 2014-07-30 | 湖南农业大学 | Method for enabling scion variety to acquire virus resistance as well as RNA (Ribonucleic Acid) interference vector pCAMBIA2300-3A and transgenic method |
CN103947461B (en) * | 2011-10-17 | 2016-03-23 | 湖南农业大学 | A method for obtaining virus resistance in scion varieties, RNA interference vector pCAMBIA2300-CP and transgenic method |
CN103947462B (en) * | 2011-10-17 | 2016-11-23 | 湖南农业大学 | A kind of scion variety is made to obtain the method for virus resistance and rna interference vector pCAMBIA2300-3A and transgenic method |
CN115119498A (en) * | 2020-02-12 | 2022-09-27 | 国立研究开发法人农业·食品产业技术综合研究机构 | Tobacco mosaic virus-resistant tomato plant, method for producing tobacco mosaic virus-resistant tomato plant, method for imparting tobacco mosaic virus resistance to tomato plant, method for screening tobacco mosaic virus-resistant tomato plant, and method for detecting tobacco mosaic virus resistance of tomato plant |
Also Published As
Publication number | Publication date |
---|---|
CN100432101C (en) | 2008-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1197970C (en) | Sugarcane bacilliform virus promoter | |
CN1251136A (en) | Plant with modified growth | |
CN1844396A (en) | Genes regulating rice tiller angle and their encoded proteins and their applications | |
CN1923850A (en) | Control gene of paddy leaf shape and application thereof | |
CN1807453A (en) | Bacterial leaf spot resistance related protein and its coding gene and uses | |
CN1582335A (en) | rice transposon gene | |
CN1842592A (en) | Gene and application thereof for endowing plant with redifferentiation ability | |
CN1831127A (en) | A key gene regulating chlorophyll metabolism and its method for establishing plant greening traits | |
CN101037695A (en) | Control gene of paddy pollen fertility and application | |
CN101062944A (en) | Vegetable disease-resistant protein and its coding gene and application | |
CN101037696A (en) | Paddy cool injury gene and application | |
CN1289523C (en) | Paddy rice potassium, sodium ion transport gene and its application | |
CN1257977C (en) | Improving drought-resistant property of plant by rice drought inducing gene promoter LEAP | |
CN1083884C (en) | Two kinds of encoding insecticidal protein gene and bivalent fused expression carrier and their application | |
CN1854154A (en) | Rice blast resistant related protein, its coding gene and use | |
CN1641030A (en) | Gene encoding cysteine protease and its promoter and method for producing male sterile rice | |
CN1709908A (en) | A kind of tomato RNA virus host factor and its coding gene and application | |
CN1190436A (en) | Intergenic regions of banana bunchy top virus | |
CN1297666C (en) | Plant transcriptional repressor, proteic nuclear factors binding thereto, and uses thereof | |
CN1778925A (en) | Plant epidermal hair specific expression promoter | |
CN1263862C (en) | Plant promoters and plant terminators | |
CN1840542A (en) | Rice tiller-related protein and its coding gene and application | |
CN1869231A (en) | Plant broad spectrum antidisease gene and its application | |
CN1807611A (en) | Alfalfa cysteine prolease and its coding gene and uses | |
CN1570111A (en) | Corn height related gene and coding protein and uses |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081112 Termination date: 20130613 |