[go: up one dir, main page]

CN1844396A - Genes regulating rice tiller angle and their encoded proteins and their applications - Google Patents

Genes regulating rice tiller angle and their encoded proteins and their applications Download PDF

Info

Publication number
CN1844396A
CN1844396A CN 200610078950 CN200610078950A CN1844396A CN 1844396 A CN1844396 A CN 1844396A CN 200610078950 CN200610078950 CN 200610078950 CN 200610078950 A CN200610078950 A CN 200610078950A CN 1844396 A CN1844396 A CN 1844396A
Authority
CN
China
Prior art keywords
sequence
seq
gene
rice
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610078950
Other languages
Chinese (zh)
Other versions
CN100572538C (en
Inventor
孙传清
余柏胜
林中伟
李海霞
李晓娇
朱作峰
付永彩
李家洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Agricultural University
Original Assignee
China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Agricultural University filed Critical China Agricultural University
Priority to CNB2006100789501A priority Critical patent/CN100572538C/en
Publication of CN1844396A publication Critical patent/CN1844396A/en
Application granted granted Critical
Publication of CN100572538C publication Critical patent/CN100572538C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention discloses a section of gene and its protein with controlling rice tillering angulations, and its application. The purpose is that providing a section of gene and its protein with controlling rice tillering angulations, and applying the gene and protein in controlling rice tillering angulations. The gene's cDNA has one of nucleotide sequences as follow: 1) the SEQ ID NO: 2 or SEQ ID NO: 4 DNA sequence in sequence table; 2) coding the DNA sequence of SEQ ID NO: 1 in the sequence table; 3) the nucleotide sequence that can hybrid with restrict DNA sequence of SEQ ID NO: 2 in the sequence table at high strict condition. The gene and its protein have important theory and operation significance in studying the molecular mechanism of rice tillering angulations and controlling rice plant type. The invention has extensive application and market outlook in agriculture field.

Description

调控水稻分蘖角度的基因及其编码蛋白与应用Genes regulating rice tiller angle and their encoded proteins and their application

技术领域technical field

本发明涉及植物基因及其编码蛋白与应用,特别是涉及一个调控水稻分蘖角度的基因及其编码蛋白与其在调控水稻分蘖角度中的应用。The invention relates to a plant gene and its coded protein and its application, in particular to a gene for regulating tillering angle of rice and its coded protein and its application in regulating the tillering angle of rice.

背景技术Background technique

水稻的株型控制其不同组织在植株上的立体分布,它能对稻田的空间、光、温度、水分、湿度等进行适当的分配与调节,促进植株正常发育。水稻的株型包括分蘖角度,叶序,穗型及株高等,其中分蘖角度是影响株型的一个重要因素。分蘖角度是指分蘖与主茎和其它分蘖之间的夹角(Xu Y B,McCouch S R,Shen Z T.Transgressivesegregation of tiller angle in rice caused by complementary gene action.CropSci,1998,38:12~19.),过大的分蘖角度不仅浪费空间,减少单位面积内的水稻种植密度导致产量降低,而且不利于水稻的机械化收割;反之,过小的分蘖角度会使植株的生长过于局促,通风透光不畅,导致分蘖之间恶性竞争,群体的光合效率降低,湿度大而易于染病。因此,合理的分蘖角度有利于调节水稻群体的密度,提高群体的光合效率,促进水稻生长从而提高产量。目前,改善水稻的分蘖角度对育种工作者来讲仍然是一项费时费力的工作,而将优良的控制分蘖角度的基因直接转入水稻就能极大的提高这项工作的效率。The plant type of rice controls the three-dimensional distribution of its different tissues on the plant. It can properly allocate and adjust the space, light, temperature, water, and humidity of the paddy field to promote the normal development of the plant. The plant type of rice includes tiller angle, phyllotaxy, panicle type and plant height, among which tiller angle is an important factor affecting plant type. Tiller angle refers to the angle between the tiller and the main stem and other tillers (Xu Y B, McCouch S R, Shen Z T. Transgressive segregation of tiller angle in rice caused by complementary gene action. CropSci, 1998, 38: 12~19 .), too large a tiller angle not only wastes space, reduces the rice planting density per unit area and leads to a decrease in yield, but also is not conducive to the mechanized harvesting of rice; on the contrary, too small a tiller angle will make the growth of the plant too cramped, ventilated and light-transmitting Unsmooth, leading to vicious competition between tillers, the photosynthetic efficiency of the group is reduced, and the humidity is high and it is easy to be infected. Therefore, a reasonable tillering angle is conducive to adjusting the density of rice populations, improving the photosynthetic efficiency of the population, promoting rice growth and increasing yield. At present, improving the tiller angle of rice is still a time-consuming and labor-intensive task for breeders, and the direct transfer of genes that control the tiller angle into rice can greatly improve the efficiency of this work.

研究表明,水稻的分蘖角度受到多个基因的调控。Takahashi对水稻分蘖角度大的散生突变体和分蘖直立生长的突变体进行研究后发现这两种表型分别由一对隐性基因la和er(o)控制(Takahashi M.Linkage groups and gene schemes of somestriking morphological characters in Japanese rice.Symp Rice Genet CytogenetInternal Rice Inst(1963),Elsevier Amsterdam,1963,215~236.);Abenes,Abe和李培金等分别将la基因定位在水稻的第11染色体上,并认为水稻散生突变体与植物的负向地性相关;负向地性是指植物在生长过程中会逆着重力的方向生长;水稻la突变体分蘖对重力不敏感,它会与主茎形成一个大的夹角而平展(Abenes MLP,TabienRE,McCouch SR,Ikeda R,Ronad P,Khush GS,Huang N.Orientation and integrationof the classical and molecular genetic maps of chromosome 11 in rice.Euphytica,1994,76:81~87.;Abe K,Takahashi H,Suge H.Lazy gene(la)responsible for both an agravitropism of seeding and lazy habit of tillergrowth in rice(Oryza.sativa L.).J Plant Res,1996,109(1096):381~386.;李培金,曾大力,刘新仿,徐聃,谷岱,李家洋,钱前.水稻散生突变体的遗传和基因定位研究.科学通报,2003,48(21):2271~2274.)。籼稻与粳稻的株型存在较大差异,一般籼稻的分蘖角度比粳稻大,通过建立籼、粳稻之间的高代回交群体,DH群体和重组自交系已定位多个QTL,并使主效的QTL分解成单个孟德尔因子成为可能。Yamamoto等通过籼粳回交群体定位一个源于籼稻的显性单基因Spk(t),它控制松散株型(Yamamoto T,Sasaki T,Yano M.Genetic analysis of spreading stubusingind-ica/japonica backcrossed progenies in rice.Breeding Sci,1997,47:141~144.);Li等利用Lemont/特青的籼粳交F2:4分离群体同样定位到这个控制分蘖角度位于第9染色体的主基因Ta,并定位了4个QTL(QTa1、QTa2、QTa5和QTa8)(Li Z,Paterson AH,Pinson SRM,Khush GS.A major gene,Tall,and QTLs affectingtiller and leaf angles.Rice Genet Newsl,1998,15:154~159.);钱前等利用株型松散的籼稻窄叶青8号与株型紧凑的粳稻京系17产生的花培DH群体,检测到3个控制分蘖角度的QTL(qTA-9a、qTA-9b和qTA-12)(钱前,何平,滕胜,曾大力,朱立煌.水稻分蘖角度的QTL分析.遗传学报,2001,28(1):29~32.)。沈圣泉等利用协青早B/密阳46所构建的重组自交系定位到了两个2个加性效应显著的QTLs(qTA8-2和qTA9-2)(沈圣泉,庄杰云,包劲松,郑康乐,夏英武,舒庆尧.水稻分蘖最大角度的QTL分析.农业生物技术学报,2005,13(1):16~20.)。Studies have shown that tiller angle in rice is regulated by multiple genes. Takahashi found that these two phenotypes were controlled by a pair of recessive genes la and er(o) respectively after studying the scattered mutants with large tiller angles and the mutants with upright growth in rice (Takahashi M. Linkage groups and gene schemes of somestriking morphological characters in Japanese rice. Symp Rice Genet Cytogenet Internal Rice Inst (1963), Elsevier Amsterdam, 1963, 215-236.); Abenes, Abe and Li Peijin respectively located the la gene on the 11th chromosome of rice, and thought that Rice sporadic mutants are associated with negative gravitropism of plants; negative gravitropism means that plants will grow against the direction of gravity during growth; rice la mutant tillers are not sensitive to gravity, and it will form a Large angle and flat (Abenes MLP, Tabien RE, McCouch SR, Ikeda R, Ronad P, Khush GS, Huang N. Orientation and integration of the classical and molecular genetic maps of chromosome 11 in rice. Euphytica, 1994, 76: 81~ 87.; Abe K, Takahashi H, Suge H. Lazy gene(la) responsible for both an agravitropism of seeding and lazy habit of tillergrowth in rice(Oryza.sativa L.). J Plant Res, 1996, 109(1096): 381~386.; Li Peijin, Zeng Dali, Liu Xinfang, Xu Dan, Gu Dai, Li Jiayang, Qian Qian. Genetics and gene mapping of rice sporadic mutants. Science Bulletin, 2003, 48(21): 2271~2274.) . The plant types of indica rice and japonica rice are quite different. Generally, the tiller angle of indica rice is larger than that of japonica rice. Through the establishment of high-generation backcross populations between indica and japonica rice, multiple QTLs have been mapped in the DH population and recombinant inbred lines, and the main It is possible to decompose effective QTLs into individual Mendelian factors. Yamamoto et al. identified a dominant single gene Spk(t) from indica rice through the indica-japonica backcross population, which controls the loose plant type (Yamamoto T, Sasaki T, Yano M. Genetic analysis of spreading stubusing ind-ica/japonica backcrossed progenies in rice. Breeding Sci, 1997, 47: 141-144.); Li et al. used the Lemont/Teqing indica-japonica cross F2: 4 segregation population to also locate the main gene Ta that controls tiller angle on chromosome 9, and located 4 QTLs (QTa1, QTa2, QTa5 and QTa8) (Li Z, Paterson AH, Pinson SRM, Khush GS.A major gene, Tall, and QTLs affecting tiller and leaf angles. Rice Genet Newsl, 1998, 15:154~159. ); Qianqian et al. detected three QTLs controlling tiller angle (qTA-9a, qTA-9b and qTA-12) (Qian Qian, He Ping, Teng Sheng, Zeng Dali, Zhu Lihuang. QTL Analysis of Rice Tiller Angle. Acta Genetica Sinica, 2001, 28(1): 29-32.). Shen Shengquan et al. used the recombinant inbred line constructed by Xieqingzao B/Miyang 46 to locate two QTLs (qTA8-2 and qTA9-2) with significant additive effects (Shen Shengquan, Zhuang Jieyun, Bao Jinsong, Zheng Kangle, Xia Yingwu, Shu Qingyao. QTL Analysis of Rice Tiller Maximum Angle. Journal of Agricultural Biotechnology, 2005, 13(1): 16~20.).

发明内容Contents of the invention

本发明的目的是提供一个调控水稻分蘖角度的基因。The purpose of the present invention is to provide a gene regulating rice tiller angle.

本发明所提供的调控水稻分蘖角度的基因,名称为compact1(简称com1),来源于稻属水稻(Oryza sativa L.),其cDNA是下述核苷酸序列之一:The gene regulating the tiller angle of rice provided by the present invention is called compact1 (abbreviated as com1), which is derived from Oryza rice (Oryza sativa L.), and its cDNA is one of the following nucleotide sequences:

1)序列表中SEQ ID №:2或SEQ ID №:4的DNA序列;1) The DNA sequence of SEQ ID №: 2 or SEQ ID №: 4 in the sequence listing;

2)编码序列表中SEQ ID №:1的DNA序列;2) The DNA sequence of SEQ ID №: 1 in the coding sequence list;

3)在高严谨条件下可与序列表中SEQ ID №:2或SEQ ID №:4限定的DNA序列杂交的核苷酸序列。3) A nucleotide sequence that can hybridize to the DNA sequence defined by SEQ ID №: 2 or SEQ ID №: 4 in the sequence listing under high stringency conditions.

所述高严谨条件为在0.1×SSPE(或0.1×SSC)、0.1%SDS的溶液中,65℃条件下杂交并洗膜。The high stringency condition is to hybridize and wash the membrane at 65° C. in a solution of 0.1×SSPE (or 0.1×SSC) and 0.1% SDS.

序列表中的SEQ ID №:2由948个碱基组成,其编码序列为自5’端第21-800位碱基,编码具有序列表中SEQ ID №:1的氨基酸残基序列的蛋白质,自5’端第210-281位碱基编码ZNF-NFX锌指蛋白结构域;序列表中的SEQ ID №:4由2637个碱基组成,自5′端第832-2382位碱基为其基因组DNA的第四个内含子序列。SEQ ID №: 2 in the sequence listing consists of 948 bases, and its coding sequence is the 21st-800th base from the 5' end, encoding a protein with the amino acid residue sequence of SEQ ID №: 1 in the sequence listing, Bases 210-281 from the 5' end encode the ZNF-NFX zinc finger protein domain; SEQ ID No. 4 in the sequence listing consists of 2637 bases, and bases 832-2382 from the 5' end are its The fourth intron sequence of genomic DNA.

其基因组基因,是下述核苷酸序列之一:Its genome gene is one of the following nucleotide sequences:

1)序列表中SEQ ID №:3的DNA序列;1) The DNA sequence of SEQ ID №: 3 in the sequence listing;

2)在高严谨条件下可与序列表中SEQ ID №:3限定的DNA序列杂交的核苷酸序列。2) A nucleotide sequence that can hybridize to the DNA sequence defined by SEQ ID No. 3 in the sequence listing under high stringency conditions.

所述高严谨条件为在0.1×SSPE(或0.1×SSC)、0.1%SDS的溶液中,65℃条件下杂交并洗膜。The high stringency condition is to hybridize and wash the membrane at 65° C. in a solution of 0.1×SSPE (or 0.1×SSC) and 0.1% SDS.

序列表中的SEQ ID №:3由3137个碱基组成,自5′端第1-57位碱基为该基因组基因的第一个外显子,自5′端第58-224位碱基为该基因组基因的第一个内含子,自5′端第225-291位碱基为该基因组基因的第二个外显子,自5′端第292-394位碱基为该基因组基因的第二个内含子,自5′端第395-1011位碱基为该基因组基因的第三个外显子,自5′端第1012-1241位碱基为该基因组基因的第三个内含子,自5′端第1242-1331位碱基为该基因组基因的第四个外显子,自5′端第1332-2883位碱基为该基因组基因的第四个内含子,自5′端第2884-3137位碱基为该基因组基因的第五个外显子,自5′端第46-48位碱基为该基因组基因的起始密码子ATG,自5′端第1323-1325位碱基为该基因组基因的终止密码子TAA,自5’端第505-576位碱基编码ZNF-NFX锌指蛋白结构域;自5′端第2882位碱基为控制水稻株型的SNP位点,该碱基为A时,水稻为分蘖角度大的分散株型,该碱基为G时,水稻为分蘖角度小的紧凑株型。SEQ ID № in the sequence listing: 3 consists of 3137 bases, bases 1-57 from the 5' end are the first exon of the genome gene, bases 58-224 from the 5' end It is the first intron of the genome gene, and the 225-291 base from the 5' end is the second exon of the genome gene, and the 292-394 base from the 5' end is the genome gene The second intron from the 395th-1011th base of the 5' end is the third exon of the genome gene, and the 1012th-1241th base from the 5' end is the third exon of the genome gene Intron, the 1242-1331 base from the 5' end is the fourth exon of the genome gene, and the 1332-2883 base from the 5' end is the fourth intron of the genome gene, Bases 2884-3137 from the 5' end are the fifth exon of the genome gene, bases 46-48 from the 5' end are the start codon ATG of the genome gene, bases from the 5' end Bases 1323-1325 are the stop codon TAA of the genome gene, bases 505-576 from the 5' end encode the ZNF-NFX zinc finger protein domain; bases 2882 from the 5' end are control rice strains When the base is A, the rice is a dispersed plant type with a large tiller angle; when the base is G, the rice is a compact plant type with a small tiller angle.

本发明调控水稻分蘖角度基因编码的蛋白(compact1,简称com1),具有下述氨基酸残基序列之一:The protein (compact1, com1 for short) encoded by the gene regulating rice tiller angle of the present invention has one of the following amino acid residue sequences:

1)序列表中的SEQ ID №:1;1) SEQ ID №: 1 in the sequence listing;

2)将序列表中SEQ ID №:1的氨基酸残基序列经过一至十个氨基酸残基的取代、缺失或添加且具有调控水稻分蘖角度功能的蛋白质。2) The amino acid residue sequence of SEQ ID №: 1 in the sequence table is substituted, deleted or added with one to ten amino acid residues, and has the function of regulating rice tiller angle.

序列表中的SEQ ID №:1由259个氨基酸残基组成,自氨基端(N端)第64-87位氨基酸残基为ZNF-NFX锌指蛋白结构域。SEQ ID №1 in the sequence listing consists of 259 amino acid residues, and amino acid residues 64-87 from the amino terminal (N-terminal) are ZNF-NFX zinc finger protein domains.

含有本发明基因的表达载体、转基因细胞系及宿主菌均属于本发明的保护范围。The expression vector, transgenic cell line and host bacteria containing the gene of the present invention all belong to the protection scope of the present invention.

扩增com1中任一片段的引物对也在本发明的保护范围之内。The primer pair for amplifying any fragment in com1 is also within the protection scope of the present invention.

本发明的另一个目的是提供一种调控水稻分蘖角度的方法。Another object of the present invention is to provide a method for regulating rice tiller angle.

本发明所提供的调控水稻分蘖角度的方法,是将所述调控水稻分蘖角度的基因com1导入水稻组织或细胞,水稻分蘖角度获得调控。The method for regulating tillering angle of rice provided by the present invention is to introduce the gene com1 regulating tillering angle of rice into rice tissues or cells, and the tillering angle of rice is regulated.

所述调控水稻分蘖角度的基因com1可通过含有com1的植物表达载体导入外植体;用于构建所述植物表达载体的出发载体可为任意一种双元农杆菌载体或可用于植物微弹轰击的载体等,如pCAMBIA1301-UbiN(GenBank号:AF234296)、pBI121、pBin19、pCAMBIA2301、pCAMBIA1300或其它衍生植物表达载体。The gene com1 that regulates the rice tiller angle can be introduced into explants through a plant expression vector containing com1; the starting vector for constructing the plant expression vector can be any binary Agrobacterium vector or can be used for plant microprojectile bombardment vectors, etc., such as pCAMBIA1301-UbiN (GenBank No.: AF234296), pBI121, pBin19, pCAMBIA2301, pCAMBIA1300 or other derived plant expression vectors.

使用com1构建植物表达载体时,在其转录起始核苷酸前可加上任何一种增强型、组成型、组织特异型或诱导型启动子,如花椰菜花叶病毒(CAMV)35S启动子、泛生素基因Ubiquitin启动子(pUbi)和水稻肌动蛋白基因启动子(Actin)等,它们可单独使用或与其它的植物启动子结合使用;此外,使用本发明的基因构建植物表达载体时,还可使用增强子,包括翻译增强子或转录增强子,这些增强子区域可以是ATG起始密码子或邻接区域起始密码子等,但必需与编码序列的阅读框相同,以保证整个序列的正确翻译。所述翻译控制信号和起始密码子的来源是广泛的,可以是天然的,也可以是合成的。翻译起始区域可以来自转录起始区域或结构基因。When com1 is used to construct a plant expression vector, any enhanced, constitutive, tissue-specific or inducible promoter can be added before its transcription initiation nucleotide, such as the cauliflower mosaic virus (CAMV) 35S promoter, Ubiquitin gene Ubiquitin promoter (pUbi) and rice actin gene promoter (Actin), etc., they can be used alone or in combination with other plant promoters; in addition, when using the gene of the present invention to construct a plant expression vector, Enhancers can also be used, including translation enhancers or transcription enhancers, and these enhancer regions can be ATG start codons or adjacent region start codons, etc., but must be the same as the reading frame of the coding sequence to ensure the integrity of the entire sequence. translate correctly. The sources of the translation control signals and initiation codons are extensive and can be natural or synthetic. The translation initiation region can be from a transcription initiation region or a structural gene.

为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用植物表达载体进行加工,如加入可在植物中表达的编码可产生颜色变化的酶或发光化合物的基因(GUS基因、GFP基因、萤光素酶基因等)、具有抗性的抗生素标记物(庆大霉素标记物、卡那霉素标记物等)或是抗化学试剂标记基因(如抗除莠剂基因)等。从转基因植物的安全性考虑,可不加任何选择性标记基因,直接以逆境筛选转化植株。In order to facilitate the identification and screening of transgenic plant cells or plants, the plant expression vectors used can be processed, such as adding genes (GUS genes, GFP genes, fluorescent luciferase gene, etc.), antibiotic markers with resistance (gentamycin marker, kanamycin marker, etc.) or chemical resistance marker genes (such as herbicide resistance genes), etc. Considering the safety of the transgenic plants, the transformed plants can be screened directly by adversity without adding any selectable marker gene.

以pCAMBIA1301-UbiN为出发载体,构建的植物表达载体为pCambia1301-UbiN-COM1。Using pCAMBIA1301-UbiN as the starting vector, the constructed plant expression vector is pCambia1301-UbiN-COM1.

携带有本发明调控水稻分蘖角度基因com1的植物表达载体可通过使用Ti质粒、Ri质粒、植物病毒载体、直接DNA转化、微注射、电导、农杆菌介导等常规生物学方法转化水稻细胞或组织,并将转化的水稻细胞或组织培育成植株。The plant expression vector carrying the rice tiller angle regulating gene com1 of the present invention can transform rice cells or tissues by conventional biological methods such as Ti plasmid, Ri plasmid, plant virus vector, direct DNA transformation, microinjection, conduction, Agrobacterium mediation, etc. and cultivating transformed rice cells or tissues into plants.

本发明提供了一个调控水稻分蘖角度的基因及其编码蛋白。该基因对于水稻分蘖角度分子机制的研究,以及水稻株型的调控具有重要的理论及实际意义,并为改良作物的株型提供了一条经济、快速、有效的途径。本发明在农业领域具有广阔的应用和市场前景。The invention provides a gene for regulating rice tiller angle and its encoded protein. The gene has important theoretical and practical significance for the study of the molecular mechanism of rice tiller angle and the regulation of rice plant type, and provides an economical, fast and effective way to improve the plant type of crops. The invention has broad application and market prospects in the agricultural field.

下面结合具体实施例对本发明做进一步说明。The present invention will be further described below in conjunction with specific embodiments.

附图说明Description of drawings

图1为株型紧凑系IL55与株型松散系IR24的对比图Figure 1 is a comparison of the compact line IL55 and the loose line IR24

图2A为Asominory渗入片段在全部染色体上的分布图Figure 2A is the distribution of Asominory introgression fragments on all chromosomes

图2B为Asominory渗入片段在第9号染色体上的精细定位图谱Figure 2B is the fine mapping map of Asominory introgression fragments on chromosome 9

图3A为com1与RM201,CP8,CP3,CP5及RM1026的定位图谱Figure 3A is the localization map of com1 and RM201, CP8, CP3, CP5 and RM1026

图3B为开发的RM201和CP8之间的8个SSPL标记的定位图谱及候选com1的分布示意图Figure 3B is a schematic diagram of the localization map of the 8 SSPL markers developed between RM201 and CP8 and the distribution of candidate com1

图3C为IL55和IR24中6个候选com1的cDNA的琼脂糖凝胶电泳检测结果Figure 3C is the agarose gel electrophoresis detection results of the cDNAs of 6 candidate com1 in IL55 and IR24

图4为IL55和IR24中第四个内含子的剪接示意图Figure 4 is a schematic diagram of the splicing of the fourth intron in IL55 and IR24

图5为不同分散株型和紧凑株型水稻中LOC_Os09g35980的cDNA的琼脂糖凝胶电泳检测结果Figure 5 shows the results of agarose gel electrophoresis detection of cDNA of LOC_Os09g35980 in rice with different scattered plant types and compact plant types

图6为pCambia1301-UbiN-COM1植物表达载体的部分物理图谱Figure 6 is a partial physical map of the pCambia1301-UbiN-COM1 plant expression vector

图7为株型分散的com1转基因植株Figure 7 shows com1 transgenic plants with scattered plant types

图8为com1转基因植株的PCR检测结果Figure 8 is the PCR detection result of com1 transgenic plants

具体实施方式Detailed ways

下述实施例中所用方法如无特别说明均为常规方法,所用引物合成及测序工作均由上海生工生物工程有限公司完成。The methods used in the following examples are conventional methods unless otherwise specified, and the primer synthesis and sequencing work are all completed by Shanghai Sangon Bioengineering Co., Ltd.

实施例1、调控水稻分蘖角度的转录因子基因compact1的获得Example 1. Acquisition of transcription factor gene compact1 regulating rice tiller angle

水稻品种:Asominori,IR24,东乡野生稻,元江野生稻,特青,9311,桂朝2号,E32,日本晴,秋光,水源349(均来源于中国农业大学农学与生物技术学院水稻组种子库)。Rice varieties: Asominori, IR24, Dongxiang wild rice, Yuanjiang wild rice, Teqing, 9311, Guichao 2, E32, Nipponbare, Qiuguang, Shuiyuan 349 (all from the rice group seed bank of the College of Agronomy and Biotechnology, China Agricultural University) .

以粳稻Asominori为供体,籼稻IR24为受体,构建高代回交群体(BC3F4),从中发现了分蘖角度小的株型紧凑系,选择其中一个株型紧凑且仅在分蘖角度表型上与IR24存在差异的株系IL55(株型紧凑系IL55与株型松散系IR24的对比图见图1),将其与IR24杂交构建了一个包含12,000个单株的F2分离群体。在这个F2群体中,株型分散的个体与株型紧凑个体的比例为9104∶2896,符合3∶1的比例,表明这个控制株型的基因是个隐性基因,命名为compact1(com1)。为了将com1基因分离出来,首先比较了株型同等紧凑且其它表型一致的两个系IL55和IL65的基因型发现两者只在第9号染色体上有一共同的Asominori渗入片段(Asominori渗入片段在全部染色体上的分布图见图2A,Asominori渗入片段在第9号染色体上的定位图见图2B,说明com1可能位于第9号染色体上,这与前人研究的在第9号染色体可能存在一个主效QTL的结果一致(Yamamoto T,Sasaki T,Yano M.Genetic analysis of spreadingstubusing indica/japonica backcrossed progenies in rice.Breeding Sci,1997,47:141~144.;李培金,曾大力,刘新仿,徐聃,谷岱,李家洋,钱前.水稻散生突变体的遗传和基因定位研究.科学通报,2003,48(21):2271~2274.;钱前,何平,滕胜,曾大力,朱立煌.水稻分蘖角度的QTL分析.遗传学报,2001,28(1):29~32.;沈圣泉,庄杰云,包劲松,郑康乐,夏英武,舒庆尧.水稻分蘖最大角度的QTL分析.农业生物技术学报,2005,13(1):16~20.)。使用位于第9号染色体Asominory渗入片段上的SSR标记对400个株型表现为紧凑的个体进行连锁分析后发现RM201和RM1026与com1基因紧密连锁,并将com1基因卡在这个区段里,然后根据这一区段里的网上基因组序列开发了三个简单序列长度多态性(SSLP)标记CP3,CP5,CP8将com1基因初步定位在RM201和CP8之间的区段上,com1与这两个标记的距离分别为4.0cM和2.4cM(见图3A)。接着利用2496个株型紧凑的隐性单株进行com1的精细定位,根据RM201和CP8之间的基因组序列相继开发了8个SSPL标记(见图3B),最终将com1压缩在P4和P6之间35Kb的范围内,并且P5与com1共分离。在此35Kb范围内,根据TIGR水稻基因组注释(HTTP://WWW.TIGR.ORG)找到了6个基因,分别为:LOC_Os09g35980,LOC_Os09g35990,LOC_Os09g36000,LOC_Os09g36010,LOC_Os09g36020,LOC_Os09g36030(见图3B)。比较IR24和IL55株系中这6个基因的cDNA,1%琼脂糖凝胶电泳检测结果如图3C所示(泳道M为1Kb-3Kb范围的Marker),检测结果表明两者LOC_Os09g35980的cDNA存在巨大差异,前者约为1kb,而后者约为2.5Kb。为找出存在这种巨大差异的原因,分别比较IR24和IL55中LOC_Os09g35980基因的基因组序列和cDNA序列。LOC_Os09g35980(与AK066042全长cDNA对应)的基因组DNA由五个外显子和四个内含子组成,具有序列表中SEQ ID №:3的核苷酸序列,序列表中的SEQ ID №:3由3137个碱基组成,自5′端第1-57位碱基为该基因组基因的第一个外显子,自5′端第58-224位碱基为该基因组基因的第一个内含子,自5′端第225-291位碱基为该基因组基因的第二个外显子,自5′端第292-394位碱基为该基因组基因的第二个内含子,自5′端第395-1011位碱基为该基因组基因的第三个外显子,自5′端第1012-1241位碱基为该基因组基因的第三个内含子,自5′端第1242-1331位碱基为该基因组基因的第四个外显子,自5′端第1332-2883位碱基为该基因组基因的第四个内含子,自5′端第2884-3137位碱基为该基因组基因的第五个外显子,自5′端第46-48位碱基为该基因组基因的起始密码子ATG,自5′端第1323-1325位碱基为该基因组基因的终止密码子TAA,自5’端第505-576位碱基编码ZNF-NFX锌指蛋白结构域。回收上述两个cDNA片断并对其进行测序,测序结果表明IR24中LOC_Os09g35980的cDNA具有序列表中SEQ ID №:2的核苷酸序列,序列表中的SEQ ID №:2由948个碱基组成,其编码序列为自5’端第21-800位碱基,编码具有序列表中SEQ ID №:1的氨基酸残基序列的蛋白质,自5’端第210-281位碱基编码ZNF-NFX锌指蛋白结构域;IL55中LOC_Os09g35980的cDNA具有序列表中SEQ ID №:4的核苷酸序列,序列表中的SEQ ID №:4由2637个碱基组成,自5′端第832-2382位碱基为LOC_Os09g35980基因组DNA的第四个内含子序列。在IR24中,LOC_Os09g35980基因组DNA的四个内含子都能正常剪接,而在IL55中只有前面三个内含子能正常剪接,第四个内含子无法剪接。IR24中LOC_Os09g35980的基因组DNA具有序列表中SEQ ID №:5的核苷酸序列,IL55中LOC_Os09g35980的基因组DNA具有序列表中SEQ ID №:6的核苷酸序列,两者的LOC_Os09g35980的基因组DNA序列存在12个差异:在第三个外显子有一个单核苷酸(SNP)差异(即SEQ ID №:3中自5′端第996位碱基),第五个外显子上有两个SNP差异(即分别位于SEQ ID №:3中自5′端第2984位和第2988位碱基),一个4bp的缺失片段(即SEQ ID №:3中自5′端第68-71位碱基)和两个SNP(即分别位于SEQ ID №:3中自5′端第381位和第1083位碱基)分别位于前面三个内含子中,在第四个内含子中存在6个SNP差异(即分别位于SEQ ID №:3中自5′端第1409位、2382位、2387位、2653位、2686位、2879位碱基)和一个1bp缺失片段(即SEQ ID №:3中自5′端第2768位碱基),在第四个内含子中的6个SNP差异中,其中一个SNP处于第四个内含子的3’端剪接位点(AG(IR24)→GG(IL55),即SEQ ID №:3中自5′端第2882-2883位碱基)上,这使得在IL55中的第四个内含子无法剪接(见图4,图4中的图A为IR24和IL55的内含子与外显子的结构示意图,图B为IR24和IL55内含子的剪接示意图),与上述测序检测结果相符。令人奇怪的是,终止密码子处在第四个外显子的3’末端(SEQ ID №:3中自5′端第1323-1325位碱基为该基因组基因的终止密码子TAA),由于在IR24和IL55中,这个基因的前面三个内含子都能正常剪接,这样在这个两株系中这个基因可翻译的cDNA是等长的。为验证LOC_Os09g35980是否是com1基因,并确认究竟是位于第三个外显子的SNP差异还是第四个内含子剪接失败导致了IR24和IL55的表型差异,选择株型分散的东乡野生稻(DXCWR)和元江野生稻(YJCWR),四个籼稻特青(TQ),9311,桂朝2号(GC-2)和E32;株型紧凑的三个粳稻日本晴(NP),秋光(QG)和水源349(sewon349),比较它们中LOC_Os09g35980的基因组DNA和cDNA序列,cDNA序列的检测结果如图5所示(s表示分散株型,c表示紧凑株型),发现株型分散的东乡野生稻,元江野生稻,特青,9311,桂潮2号,E32的LOC_Os09g35980的cDNA与IR24的等长(约1kb),而株型紧凑的日本晴,秋光和水原349的LOC_Os09g35980的cDNA与IL55的等长(约2.5Kb),证明只有第四个内含子剪接处的SNP(SEQ ID №:3中自5′端第2882位碱基)与其表型紧密连锁,即分蘖角度大的分散株型的LOC_Os09g35980的第四个内含子剪接位点的碱基为AG,分蘖角度小的紧凑株型的LOC_Os09g35980的第四个内含子剪接位点的碱基为GG(见图5)。接着选取6个株型分散的籼稻植株和16个株型紧凑的粳稻植株,用上述相同的方法进一步验证了第四个内含子剪接处的SNP与株型紧密连锁。上述分析结果表明LOC_Os09g35980就是com1基因,将该基因编码的蛋白命名为compact1(简称com1),该蛋白具有序列表中SEQ ID №:1的氨基酸残基序列,序列表中的SEQ ID №:1由259个氨基酸残基组成,自氨基端(N端)第64-87位氨基酸残基为ZNF-NFX锌指蛋白结构域。Using the japonica rice Asominori as the donor and the indica rice IR24 as the recipient, a high-generation backcross population (BC3F4) was constructed, from which a compact line with a small tiller angle was found. The line IL55 with differences in IR24 (see Figure 1 for the comparison of the compact line IL55 and the loose line IR24) was crossed with IR24 to construct a F2 segregation population containing 12,000 individuals. In this F2 population, the ratio of scattered individuals to compact individuals was 9104:2896, in line with the ratio of 3:1, indicating that the gene controlling plant type is a recessive gene, named compact1 (com1). In order to isolate the com1 gene, the genotypes of the two lines IL55 and IL65 with the same compact plant type and other phenotypes were compared first, and it was found that the two only had a common Asominori introgression segment on chromosome 9 (the Asominori introgression segment was in The distribution map on all chromosomes is shown in Figure 2A, and the location map of Asominori infiltrated fragments on chromosome 9 is shown in Figure 2B, indicating that com1 may be located on chromosome 9, which is consistent with previous studies that there may be a The results of the main QTL were consistent (Yamamoto T, Sasaki T, Yano M. Genetic analysis of spreading stubusing indica/japonica backcrossed progenies in rice. Breeding Sci, 1997, 47: 141-144.; Li Peijin, Zeng Dali, Liu Xinfang, Xu Dan, Gu Dai, Li Jiayang, Qian Qian. Inheritance and gene mapping of rice sporadic mutants. Science Bulletin, 2003, 48(21): 2271-2274.; Qian Qian, He Ping, Teng Sheng, Zeng Dali, Zhu Lihuang. Rice tillering QTL analysis of angle. Acta Genetics, 2001, 28(1): 29~32.; Shen Shengquan, Zhuang Jieyun, Bao Jinsong, Zheng Kangle, Xia Yingwu, Shu Qingyao. QTL analysis of rice tillering maximum angle. Journal of Agricultural Biotechnology, 2005, 13(1): 16~20.). Linkage analysis of 400 compact individuals using SSR markers located on the Asominory introgression segment of chromosome 9 revealed that RM201 and RM1026 are closely linked to the com1 gene and will The com1 gene is stuck in this section, and then according to the online genome sequence in this section, three Simple Sequence Length Polymorphism (SSLP) markers CP3, CP5, and CP8 were developed to initially locate the com1 gene between RM201 and CP8 On the segment of com1, the distances between com1 and these two markers are 4.0cM and 2.4cM respectively (see Figure 3A). Then, 2496 compact recessive individual plants were used to fine-map com1, according to the distance between RM201 and CP8 Eight SSPL markers were successively developed for the genome sequence (see Figure 3B), and com1 was finally compressed in the range of 35Kb between P4 and P6, and P5 was co-segregated with com1. Within this 35Kb range, according to the TIGR rice genome annotation ( HTTP://WWW.TIGR.ORG) found 6 genes, namely: LOC_Os09g35980, LOC_Os09g35990, LOC_Os09g36000, LOC_Os09g36010, LOC_Os09g36020, LOC_Os09g36030 (see Figure 3B). Compare IR24 and IL655 genes in the cDNA The detection results of 1% agarose gel electrophoresis are shown in Figure 3C (lane M is a Marker in the range of 1Kb-3Kb), and the detection results show that there is a huge difference between the two cDNAs of LOC_Os09g35980, the former is about 1kb, and the latter is about 2.5Kb. To find out the reason for this large discrepancy, the genomic and cDNA sequences of the LOC_Os09g35980 gene in IR24 and IL55 were compared, respectively. The genomic DNA of LOC_Os09g35980 (corresponding to the full-length cDNA of AK066042) consists of five exons and four introns, has the nucleotide sequence of SEQ ID №: 3 in the sequence listing, and SEQ ID №: 3 in the sequence listing Consisting of 3137 bases, bases 1-57 from the 5' end are the first exon of the genome gene, and bases 58-224 from the 5' end are the first intron of the genome gene Intron, bases 225-291 from the 5' end are the second exon of the genome gene, bases 292-394 from the 5' end are the second intron of the genome gene, since Bases 395-1011 at the 5' end are the third exon of the genome gene, bases 1012-1241 at the 5' end are the third intron of the genome gene, bases at the 5' end are the third intron Bases 1242-1331 are the fourth exon of the genome gene, bases 1332-2883 from the 5' end are the fourth intron of the genome gene, bases from the 5' end 2884-3137 The base is the fifth exon of the genome gene, the 46th-48th base from the 5' end is the start codon ATG of the genome gene, and the 1323-1325th base from the 5' end is the genome The stop codon TAA of the gene encodes the ZNF-NFX zinc finger protein domain from the 505th-576th base at the 5' end. The above two cDNA fragments were recovered and sequenced. The sequencing results showed that the cDNA of LOC_Os09g35980 in IR24 had the nucleotide sequence of SEQ ID №: 2 in the sequence listing, and the SEQ ID №: 2 in the sequence listing consisted of 948 bases , its coding sequence is the 21st-800th base from the 5' end, which encodes a protein with the amino acid residue sequence of SEQ ID №1 in the sequence listing, and the 210th-281st base from the 5' end encodes ZNF-NFX Zinc finger protein domain; the cDNA of LOC_Os09g35980 in IL55 has the nucleotide sequence of SEQ ID №: 4 in the sequence listing, and the SEQ ID №: 4 in the sequence listing consists of 2637 bases, from 5′ end 832-2382 The base is the fourth intron sequence of LOC_Os09g35980 genomic DNA. In IR24, the four introns of LOC_Os09g35980 genomic DNA could be spliced normally, but in IL55, only the first three introns could be spliced normally, and the fourth intron could not be spliced. The genomic DNA of LOC_Os09g35980 in IR24 has the nucleotide sequence of SEQ ID №: 5 in the sequence table, the genomic DNA of LOC_Os09g35980 in IL55 has the nucleotide sequence of SEQ ID №: 6 in the sequence table, and the genomic DNA sequence of LOC_Os09g35980 in both There are 12 differences: there is a single nucleotide (SNP) difference in the third exon (ie, the 996th base from the 5' end in SEQ ID №: 3), and two in the fifth exon. A SNP difference (that is, respectively located at the 2984th and 2988th bases from the 5' end in SEQ ID №: 3), a 4bp deletion fragment (that is, the 68th-71st positions from the 5' end in SEQ ID №: 3 base) and two SNPs (that is, respectively located at the 381st and 1083rd bases from the 5' end in SEQ ID №3) are respectively located in the first three introns, and exist in the fourth intron 6 SNP differences (that is, respectively located at 1409, 2382, 2387, 2653, 2686, and 2879 bases from the 5′ end of SEQ ID №: 3) and a 1bp deletion fragment (that is, SEQ ID №: 2768th base from the 5' end of 3), among the 6 SNP differences in the fourth intron, one of the SNPs is at the 3' end splice site of the fourth intron (AG(IR24) → GG (IL55), that is, on the 2882-2883 bases from the 5' end in SEQ ID №: 3), this makes the fourth intron in IL55 unable to be spliced (see Figure 4, in Figure 4 Figure A is a schematic diagram of the structure of introns and exons of IR24 and IL55, and Figure B is a schematic diagram of the splicing of IR24 and IL55 introns), which are consistent with the above sequencing results. Surprisingly, the stop codon is at the 3' end of the fourth exon (the 1323-1325th base from the 5' end in SEQ ID №3 is the stop codon TAA of the genome gene), Since the first three introns of this gene can be spliced normally in IR24 and IL55, the translatable cDNA of this gene in these two lines is of equal length. In order to verify whether LOC_Os09g35980 is the com1 gene, and confirm whether the SNP difference located in the third exon or the splicing failure of the fourth intron caused the phenotypic differences of IR24 and IL55, Dongxiang wild rice with scattered plant types ( DXCWR) and Yuanjiang wild rice (YJCWR), four indica rice Teqing (TQ), 9311, Guichao 2 (GC-2) and E32; three compact japonica rice Nipponbare (NP), Qiuguang (QG) and Shuiyuan 349 (sewon349), compared the genomic DNA and cDNA sequences of LOC_Os09g35980 among them, the detection results of the cDNA sequences are shown in Figure 5 (s indicates a scattered plant type, c indicates a compact plant type), and found that Dongxiang wild rice with scattered plant types, The cDNA of LOC_Os09g35980 of Yuanjiang wild rice, Teqing, 9311, Guichao 2, E32 is the same length as that of IR24 (about 1 kb), while the cDNA of LOC_Os09g35980 of compact plant type Nipponbare, Qiuguang and Suwon 349 is the same length as that of IL55 ( About 2.5Kb), it proves that only the SNP at the splicing site of the fourth intron (base 2882 from the 5′ end in SEQ ID №3) is closely linked to its phenotype, that is, LOC_Os09g35980 of the scattered plant type with large tiller angle The base of the splicing site of the fourth intron is AG, and the base of the splicing site of the fourth intron of LOC_Os09g35980, which is a compact plant with a small tiller angle, is GG (see Figure 5). Next, 6 indica plants with scattered plant type and 16 japonica plants with compact plant type were selected, and the same method as above was used to further verify that the SNP at the splicing site of the fourth intron was closely linked to the plant type. The above analysis results show that LOC_Os09g35980 is the com1 gene, and the protein encoded by this gene is named compact1 (abbreviated as com1). Composed of 259 amino acid residues, amino acid residues 64-87 from the amino terminal (N-terminal) are ZNF-NFX zinc finger protein domains.

实施例2、com1转基因水稻的获得及其PCR检测Example 2, the acquisition of com1 transgenic rice and its PCR detection

一、com1植物表达载体的构建1. Construction of com1 plant expression vector

根据IR24的com1的全长cDNA序列设计引物,并在引物两端分别引入限制性内切酶Sma I和Spe I识别位点及保护碱基,引物序列如下:Primers were designed according to the full-length cDNA sequence of com1 of IR24, and restriction endonuclease Sma I and Spe I recognition sites and protective bases were respectively introduced at both ends of the primers. The primer sequences are as follows:

CDS-P-ATG:5’- TGCCCCGGGCGTACTGTCTGGCTTTCTCTTCTGGT-3’(带下划线碱基为限制性内切酶Sma I识别位点及保护碱基);CDS-P-ATG: 5'- TGCCCCGGG CGTACTGTCTGGCTTTCTCTTCTGGT-3' (underlined bases are restriction endonuclease Sma I recognition sites and protected bases);

CDS-P-TGA:5’- CACTAGTAGGACTATTCTTCATCACTGGCG-3’(带下划线碱基为限制性内切酶Spe I识别位点及保护碱基)CDS-P-TGA: 5'- CACTAGT AGGACTATTCTTCATCACTGGCG-3' (underlined bases are restriction endonuclease Spe I recognition sites and protected bases)

利用TRIZOL试剂提取IR24苗期时(三叶一心)叶片的RNA,以此RNA为模板,使用MMLV反转录酶进行反转录得到cDNA,再以此cDNA为模板,在引物CDS-P-ATG和引物CDS-P-TGA的引导下,用常规PCR法扩增水稻com1的CDS序列,反应结束后,对PCR扩增产物进行1%琼脂糖凝胶电泳检测,回收并纯化948bp的DNA片段,将其克隆入植物表达载体pCambia1301-UbiN(GenBank号:AF234297)多克隆位点的SmaI和SpeI酶切位点之间,得到水稻com1的植物表达载体,命名为pCambia1301-UbiN-COM1,该载体的部分物理图谱如图6所示。Use TRIZOL reagent to extract the RNA of the leaves of IR24 seedling stage (three leaves and one heart), use this RNA as a template, use MMLV reverse transcriptase to perform reverse transcription to obtain cDNA, and then use this cDNA as a template, in the primer CDS-P-ATG Under the guidance of the primer CDS-P-TGA, the CDS sequence of rice com1 was amplified by the conventional PCR method. After the reaction, the PCR amplification product was detected by 1% agarose gel electrophoresis, and a 948bp DNA fragment was recovered and purified. It is cloned into the plant expression vector pCambia1301-UbiN (GenBank No.: AF234297) between the SmaI and SpeI restriction sites of the multiple cloning site to obtain the plant expression vector of rice com1, which is called pCambia1301-UbiN-COM1. Part of the physical map is shown in Figure 6.

二、转化水稻2. Transformation of rice

将步骤一构建的水稻com1的植物表达载体pCambia1301-UbiN-COM1用基因枪法转化株型紧凑的日本晴的成熟胚愈伤组织,用含50mg/L潮霉素的NB培养基[N6大量元素(朱至清等1974)Wang JJ(王敬驹),Sun JS(孙敬三),Zhu ZQ(朱至清)On theconditions for the induction of rice pollen plantlets and certain factorsaffecting the frequency of induction.Acta Bot Sin(植物学报),1974,16:43-54(in Chinese);B5微量元素、有机成分和铁盐(Gamborg,1968)Gamborg OL,MilerR A,Ojima K.Nutrient requirement of suspension cultures of soybean rootcells[J].Exp Cell Res,1968,50:151-158.]进行2轮筛选,每轮筛选20-30天,再经预分化、分化得到株型分散的转基因植株,如图7所示。The plant expression vector pCambia1301-UbiN-COM1 of the rice com1 constructed in step 1 was transformed into the mature embryo callus of the compact Nipponbare by the particle gun method, and the NB medium containing 50 mg/L hygromycin [N 6 macroelements ( Zhu Zhiqing et al. 1974) Wang JJ (Wang Jingju), Sun JS (Sun Jingsan), Zhu ZQ (Zhu Zhiqing) On the conditions for the induction of rice pollen plantlets and certain factors affecting the frequency of induction. Acta Bot Sin (Journal of Botany), 1974, 16 : 43-54 (in Chinese); B5 trace elements, organic components and iron salts (Gamborg, 1968) Gamborg OL, MilerR A, Ojima K.Nutrient requirement of suspension cultures of soybean rootcells[J].Exp Cell Res, 1968, 50:151-158.] Two rounds of screening were carried out, and each round was selected for 20-30 days, and then pre-differentiated and differentiated to obtain transgenic plants with dispersed plant types, as shown in FIG. 7 .

三、转基因水稻的PCR鉴定3. PCR Identification of Transgenic Rice

提取株型分散的转基因水稻的基因组DNA并以此为模板,在引物1:5’-GTACTGTCTGGCTTTCTCTTCTGGT-3’和引物2:5’-AGGACTATTCTTCATCACTGGCG-3’的引导下进行PCR检测,以转化有空载体pCambia1301-UbiN的植株为对照,PCR反应条件为:先94℃3min;然后94℃30sec,60℃30sec,72℃1min30sec,共30个循环;最后72℃10min。反应结束后,对扩增产物进行1%琼脂糖凝胶电泳检测,检测结果如图8所示(泳道1:阳性对照,泳道2:转化有空载体pCambiai301-UbiN的植株,泳道3-9:转化有pCambia1301-UbiN-COM1的阳性转基因植株,泳道M:Marker),阳性com1转基因植株可扩增出约1Kb的条带。Genomic DNA of transgenic rice with scattered plant types was extracted and used as a template for PCR detection under the guidance of primer 1: 5'-GTACTGTCTGGCTTTCTCTTCTGGT-3' and primer 2: 5'-AGGACTATTCTTCATCACTGGCG-3' to transform the empty vector The plants of pCambia1301-UbiN were used as the control, and the PCR reaction conditions were as follows: 94°C for 3min; then 94°C for 30sec, 60°C for 30sec, 72°C for 1min30sec, a total of 30 cycles; finally 72°C for 10min. After the reaction, the amplified products were detected by 1% agarose gel electrophoresis, and the detection results were as shown in Figure 8 (swimming lane 1: positive control, swimming lane 2: transformed plants with empty vector pCambiai301-UbiN, swimming lanes 3-9: Positive transgenic plants transformed with pCambia1301-UbiN-COM1, lane M: Marker), the positive com1 transgenic plants can amplify a band of about 1Kb.

经表型及PCR鉴定最终获得了7株阳性T0代com1转基因植株,其株型表现为分散,性状得到互补,表明本发明的com1可用于调控水稻株型。After phenotypic and PCR identification, 7 positive T0 generation com1 transgenic plants were finally obtained. The plant types were scattered and the characters were complemented, indicating that the com1 of the present invention can be used to regulate rice plant type.

序列表sequence listing

<160>6<160>6

<210>1<210>1

<211>259<211>259

<212>PRT<212>PRT

<213>稻属水稻(Oryza sativa L.indica)<213>Oryza sativa L. indica

<400>1<400>1

Met Ala Leu Lys Val Phe Asn Trp Leu Asn Arg Lys Lys His Ser AsnMet Ala Leu Lys Val Phe Asn Trp Leu Asn Arg Lys Lys His Ser Asn

1               5                   10                  151 5 10 15

Val Glu Tyr Cys Thr Ile Asn Glu Asn Lys Ala Met Glu Glu Lys GluVal Glu Tyr Cys Thr Ile Asn Glu Asn Lys Ala Met Glu Glu Lys Glu

            20                  25                  3020 25 30

Asp Ser Leu Arg Ala Ser Val Thr Glu Gln Asp Thr Glu Ala Leu LeuAsp Ser Leu Arg Ala Ser Val Thr Glu Gln Asp Thr Glu Ala Leu Leu

        35                  40                  4535 40 45

Leu Arg Asp Val Leu Ile Asn Gly Ile Leu Ala Ile Gly Thr Leu GlyLeu Arg Asp Val Leu Ile Asn Gly Ile Leu Ala Ile Gly Thr Leu Gly

    50                  55                  6050 55 60

His Asn Val Asn Ser Leu Cys Pro Glu Ser Cys Ile Glu Gln Asp GluHis Asn Val Asn Ser Leu Cys Pro Glu Ser Cys Ile Glu Gln Asp Glu

65                  70                  75                  8065 70 75 80

Pro Ile Ile Met Cys Asp Glu Lys Val Glu Gln Glu Lys Cys Glu GluPro Ile Ile Met Cys Asp Glu Lys Val Glu Gln Glu Lys Cys Glu Glu

                85                  90                  9585 90 95

Glu Lys Ala Glu Ala Lys Gln Asp Thr Pro Val Thr Ala Pro Ser GluGlu Lys Ala Glu Ala Lys Gln Asp Thr Pro Val Thr Ala Pro Ser Glu

            100                 105                 110100 105 110

Pro Ala Ser Ala Leu Glu Pro Ala Lys Met His Ser Ser Ser Met LysPro Ala Ser Ala Leu Glu Pro Ala Lys Met His Ser Ser Ser Met Lys

        115                 120                 125115 120 125

Glu Asp Asn Phe Met Cys Phe Val Lys Glu Glu Ile Leu Met His GlyGlu Asp Asn Phe Met Cys Phe Val Lys Glu Glu Ile Leu Met His Gly

    130                 135                 140130 135 140

Met Glu Val Glu Asp Val Pro Asn Ile Gln Glu Arg Pro Leu Leu MetMet Glu Val Glu Asp Val Pro Asn Ile Gln Glu Arg Pro Leu Leu Met

145                 150                 155                 160145 150 155 160

Leu Glu Lys Val Glu Lys Val Arg Thr Thr Leu Ala Asp Leu Phe AlaLeu Glu Lys Val Glu Lys Val Arg Thr Thr Leu Ala Asp Leu Phe Ala

                165                 170                 175165 170 175

Ala Glu Ala Phe Ser Ser Ser Asp Ala Glu Asp Lys Cys Tyr Pro LysAla Glu Ala Phe Ser Ser Ser Ser Asp Ala Glu Asp Lys Cys Tyr Pro Lys

            180                 185                 190180 185 190

Ile Val Ile Val Ala Gly Ala Ser Thr Ser Lys Pro Thr Ser Cys MetIle Val Ile Val Ala Gly Ala Ser Thr Ser Lys Pro Thr Ser Cys Met

        195                 200                 205195 200 205

Glu Lys Met His His Lys Lys Pro Thr Lys Pro Thr Ser Lys Pro LeuGlu Lys Met His His His Lys Lys Pro Thr Lys Pro Thr Ser Lys Pro Leu

    210                 215                 220210 215 220

Lys Ala Thr Arg Lys Leu Ser Arg Val Met Arg Lys Met Leu Gly LysLys Ala Thr Arg Lys Leu Ser Arg Val Met Arg Lys Met Leu Gly Lys

225                 230                 235                 240225 230 235 240

Lys Ile His Pro Glu Gln Leu Asn Gly Arg Ser Asn Ala Glu Gly ProLys Ile His Pro Glu Gln Leu Asn Gly Arg Ser Asn Ala Glu Gly Pro

                245                 250                 255245 250 255

Val Thr AlaVal Thr Ala

<210>2<210>2

<211>948<211>948

<212>cDNA<212> cDNA

<213>稻属水稻(Oryza sativa L.indica)<213>Oryza sativa L. indica

<400>2<400>2

ttcatattgg ttctagagag atggctctaa aggtgttcaa ttggctgaat cggaagaagc    60ttcatattgg ttctagagag atggctctaa aggtgttcaa ttggctgaat cggaagaagc 60

attctaatgt cgagtattgc accatcaatg agaacaaggc catggaagag aaggaagact    120attctaatgt cgagtattgc accatcaatg agaacaaggc catggaagag aaggaagact 120

ctctgcgtgc aagtgtgact gagcaagaca ctgaggccct gctgctccgt gatgtgctta    180ctctgcgtgc aagtgtgact gagcaagaca ctgaggccct gctgctccgt gatgtgctta 180

ttaatggtat acttgcaatt ggcacgctgg gccacaatgt aaactcactc tgtcctgagt    240ttaatggtat acttgcaatt ggcacgctgg gccacaatgt aaactcactc tgtcctgagt 240

cctgtattga acaagatgag cccatcatca tgtgtgatga gaaagtggaa caagagaagt    300cctgtattga acaagatgag cccatcatca tgtgtgatga gaaagtggaa caagagaagt 300

gcgaagaaga aaaggctgag gctaaacagg acacaccagt tacagcacca agtgaaccgg    360gcgaagaaga aaaggctgag gctaaacagg acacaccagt tacagcacca agtgaaccgg 360

catctgctct tgagcctgcc aagatgcact catcatcgat gaaagaagac aacttcatgt    420catctgctct tgagcctgcc aagatgcact catcatcgat gaaagaagac aacttcatgt 420

gctttgtgaa ggaggaaatc ctaatgcatg gcatggaagt ggaagatgtt cctaacatcc    480gctttgtgaa ggaggaaatc ctaatgcatg gcatggaagt ggaagatgtt cctaacatcc 480

aggaacgacc acttctgatg ttagagaagg tggagaaagt gagaactaca cttgccgatc    540aggaacgacc acttctgatg ttagagaagg tggagaaagt gagaactaca cttgccgatc 540

tatttgctgc agaagcattc tcatcaagtg atgcagagga taagtgttac ccgaaaatcg    600tatttgctgc agaagcattc tcatcaagtg atgcagagga taagtgttac ccgaaaatcg 600

tcattgttgc tggggcatcc acttcaaagc ctacgtcgtg catggagaag atgcatcaca    660tcattgttgc tggggcatcc acttcaaagc ctacgtcgtg catggagaag atgcatcaca 660

agaagccaac aaaaccaacg tcaaagccgc tgaaggctac gagaaaatta agtcgagtca    720agaagccaac aaaaccaacg tcaaagccgc tgaaggctac gagaaaatta agtcgagtca 720

tgaggaagat gttggggaag aagatccacc cagagcagct caatggacgt agcaatgcag    780tgaggaagat gttggggaag aagatccacc cagagcagct caatggacgt agcaatgcag 780

agggccctgt cactgcataa tgctaggatt tgttggatcc atcctcacgc ttcggattcc    840agggccctgt cactgcataa tgctaggatt tgttggatcc atcctcacgc ttcggattcc 840

ttgctcaaga gaaacatcca tgcatatcgt cgacagcgtt cgttcagtcc tcttcctttt    900ttgctcaaga gaaacatcca tgcatatcgt cgacagcgtt cgttcagtcc tcttcctttt 900

gttgttgttg ctgttgttat tattgttatt gttattgctg cctattcg                 948gttgttgttg ctgttgttat tattgttatt gttattgctg cctattcg 948

<210>3<210>3

<211>3137<211>3137

<212>DNA<212>DNA

<213>稻属水稻(Oryza sativa)<213>Oryza sativa

<220><220>

<221>misc-feature<221>misc-feature

<222>(2882)<222>(2882)

<223>n=a或g<223>n=a or g

<400>3<400>3

gtactgtctg gctttctctt ctggtttcat attggttcta gagagatggc tctaaaggta    60gtactgtctg gctttctctt ctggtttcat attggttcta gagagatggc tctaaaggta 60

cacagttagt tcatgctgat acaccatttg tccgtgtata gtgtatgctg taaagtacag    120cacagttagt tcatgctgat acaccatttg tccgtgtata gtgtatgctg taaagtacag 120

gtctttgcag tttctgtctc tcttaaacaa gtgcgttgga ttcaactcac tgttcttata    180gtctttgcag tttctgtctc tcttaaacaa gtgcgttgga ttcaactcac tgttcttata 180

tctaatgaga ttactggtga tttatgtttt tatggcacta ccaggtgttc aattggctga    240tctaatgaga ttactggtga tttatgtttt tatggcacta ccaggtgttc aattggctga 240

atcggaagaa gcattctaat gtcgagtatt gcaccatcaa tgagaacaag ggtaaggata    300atcggaagaa gcattctaat gtcgagtatt gcaccatcaa tgagaacaag ggtaaggata 300

ccaggatatc tctcttttat gtaccacatg ttttgttgtt ctcatgttgt caactcttgt    360ccaggatatc tctcttttat gtaccacatg ttttgttgtt ctcatgttgt caactcttgt 360

ttcttctctt ctattttttt tcctgatgga gtagccatgg aagagaagga agactctctg    420ttcttctctt ctattttttt tcctgatgga gtagccatgg aagagaagga agactctctg 420

cgtgcaagtg tgactgagca agacactgag gccctgctgc tccgtgatgt gcttattaat    480cgtgcaagtg tgactgagca agacactgag gccctgctgc tccgtgatgt gcttattaat 480

ggtatacttg caattggcac gctgggccac aatgtaaact cactctgtcc tgagtcctgt    540ggtatacttg caattggcac gctgggccac aatgtaaact cactctgtcc tgagtcctgt 540

attgaacaag atgagcccat catcatgtgt gatgagaaag tggaacaaga gaagtgcgaa    600attgaacaag atgagcccat catcatgtgt gatgagaaag tggaacaaga gaagtgcgaa 600

gaagaaaagg ctgaggctaa acaggacaca ccagttacag caccaagtga accggcatct    660gaagaaaagg ctgaggctaa acaggacaca ccagttacag caccaagtga accggcatct 660

gctcttgagc ctgccaagat gcactcatca tcgatgaaag aagacaactt catgtgcttt    720gctcttgagc ctgccaagat gcactcatca tcgatgaaag aagacaactt catgtgcttt 720

gtgaaggagg aaatcctaat gcatggcatg gaagtggaag atgttcctaa catccaggaa    780gtgaaggagg aaatcctaat gcatggcatg gaagtggaag atgttcctaa catccaggaa 780

cgaccacttc tgatgttaga gaaggtggag aaagtgagaa ctacacttgc cgatctattt    840cgaccacttc tgatgttaga gaaggtggag aaagtgagaa ctacacttgc cgatctattt 840

gctgcagaag cattctcatc aagtgatgca gaggataagt gttacccgaa aatcgtcatt    900gctgcagaag cattctcatc aagtgatgca gaggataagt gttacccgaa aatcgtcatt 900

gttgctgggg catccacttc aaagcctacg tcgtgcatgg agaagatgca tcacaagaag    960gttgctgggg catccacttc aaagcctacg tcgtgcatgg agaagatgca tcacaagaag 960

ccaacaaaac caacgtcaaa gccgctgaag gctacaagaa aattaagtcg agtatggttt    1020ccaacaaaac caacgtcaaa gccgctgaag gctacaagaa aattaagtcg agtatggttt 1020

tcttcgtctc tgctttattt gttaagcctt gttacattat attttactag tctggaattt    1080tcttcgtctc tgctttatt gttaagcctt gttacattta attttactag tctggaattt 1080

attacacttt gttccatggt cagtgcgcca catcttacac atatgtttta ccatatagct    1140attacacttt gttccatggt cagtgcgcca catcttacac atatgtttta ccatatagct 1140

acaactggag taagcattat gcatctagcc agtctttagt ggtaaatgat cactgacctg    1200acaactggag taagcattat gcatctagcc agtctttagt ggtaaatgat cactgacctg 1200

gaatgcacct ttttggtttt tgtcatctgt aaaataagta ggtcatgagg aagatgttgg    1260gaatgcacct ttttggtttt tgtcatctgt aaaataagta ggtcatgagg aagatgttgg 1260

ggaagaagat ccacccagag cagctcaatg gacgtagcaa tgcagagggc cctgtcactg    1320ggaagaagat ccaccccagag cagctcaatg gacgtagcaa tgcagagggc cctgtcactg 1320

cataatgcta ggtttgtgga caaaagtttc ctttctctat ctggcaattt attacctaga    1380cataatgcta ggtttgtgga caaaagtttc ctttctctat ctggcaattt attacctaga 1380

gtttttttaa agctgtctgt tgaactatac agggctcaag gcccttgtgt tttgcatacg    1440gtttttttaa agctgtctgt tgaactatac agggctcaag gcccttgtgt tttgcatacg 1440

attttgtacc tttccaaatt ttcttgattt ttacttggat tccattgttt gtaataaaat    1500attttgtacc tttccaaatt ttcttgattt ttacttggat tccatgttt gtaataaaat 1500

taggttaata tctgaggtag tatttgcata gaatggatac cttctaccaa agttatattt    1560taggttaata tctgaggtag tatttgcata gaatggatac cttctaccaa agttatattt 1560

gtttgtgggt cctagagcta gcatgaccca cgaatcacat tcaagaatat agtaattcgt    1620gtttgtgggt cctagagcta gcatgaccca cgaatcacat tcaagaatat agtaattcgt 1620

ttaggctaca tttcactagg aatagaacat atgaatattc tcaggtttaa taaggcagat    1680ttaggctaca tttcactagg aatagaacat atgaatattc tcaggtttaa taaggcagat 1680

gcaaaaaaga actgaatagc acaggaaagt aatttttcca tttcaagctt ctcacagtca    1740gcaaaaaaga actgaatagc acaggaaagt aatttttcca tttcaagctt ctcacagtca 1740

aaaacaagta atggttcaaa aattgaatat tctatcacct gttgcctcca tttatgtgga    1800aaaacaagta atggttcaaa aattgaatat tctatcacct gttgcctcca tttatgtgga 1800

actcacaaga gggtctaagt gctgcttgac actctgacct gtatttaaat aaaatgttat    1860actcacaaga gggtctaagt gctgcttgac actctgacct gtatttaaat aaaatgttat 1860

cacctattgc ctctgcttat tattgggatc tcaaaacaca atctattact gtgtatgcct    1920cacctattgc ctctgcttat tattgggatc tcaaaacaca atctattact gtgtatgcct 1920

tggcattttt taaaatctga gctgccccct tattcttcac attttctcag aaaaccatat    1980tggcattttt taaaatctga gctgccccct tattcttcac attttctcag aaaaccatat 1980

aaacttttag ataaatgaag cttttattga tctcagacaa ttacatcaag ttgatagaac    2040aaacttttag ataaatgaag cttttattga tctcagacaa ttacatcaag ttgatagaac 2040

caaactaaga acacttctgg cctctgataa tggaactgct gtttgtttaa gtagaaagaa    2100caaactaaga acacttctgg cctctgataa tggaactgct gtttgtttaa gtagaaagaa 2100

tggtgtgtgt attttaacgg ttggtgattg ggaattggga tgcagtgacc atggagactg    2160tggtgtgtgt attttaacgg ttggtgattg ggaattggga tgcagtgacc atggagactg 2160

tgttcttcag aatattttta agaaatagtg ttttcggtgg atcctatcat ggaactgcct    2220tgttcttcag aatattttta agaaatagtg ttttcggtgg atcctatcat ggaactgcct 2220

atggtggaaa gagcaatacg agttgaaaca tatagggatt aggaagcatg ggttcggact    2280atggtggaaa gagcaatacg agttgaaaca tatagggatt aggaagcatg ggttcggact 2280

aaaatgcatt cgttcctgcc atgatgcaaa gcttcattcg aagcaaaatg agcacatgcc    2340aaaatgcatt cgttcctgcc atgatgcaaa gcttcattcg aagcaaaatg agcacatgcc 2340

atggtacagt ggcgtgcaac gagcactgca attgcacacg acgtgcatgt tctgaaaaag    2400atggtacagt ggcgtgcaac gagcactgca attgcacacg acgtgcatgt tctgaaaaag 2400

gccagtggac actagacatg cagctaatcc tcttttgatg aattctatca tgaaaccaat    2460gccagtggac actagacatg cagctaatcc tcttttgatg aattctatca tgaaaccaat 2460

ggattcgttg aaaatctgaa caaattgatg gatttggtcc cagctgtaga aaggttggca    2520ggattcgttg aaaatctgaa caaattgatg gatttggtcc cagctgtaga aaggttggca 2520

aactcttctc gctcctgtat tattgtaggc tggagctatg atggaccaaa tcatcagaag    2580aactcttctc gctcctgtat tattgtaggc tggagctatg atggaccaaa tcatcagaag 2580

caaatttcac catatataag catctacttt tatctttttc tctattttaa aatgtgatca    2640caaatttcac catatataag catctacttt tatctttttc tctattttaa aatgtgatca 2640

tagtgaagtt atatacattc tatctgctta acgctccaca ttatccaaaa aaatgcatca    2700tagtgaagtt atatacattc tatctgctta acgctccaca ttatccaaaa aaatgcatca 2700

cactccatat tgggaacacg ttggtggttc tgaaccaaag tcgatctctt gatgccaatt    2760cactccatat tgggaacacg ttggtggttc tgaaccaaag tcgatctctt gatgccaatt 2760

ttttttttga gctggttgag tagtcgaact gggaacaatt actgcttgag gctacaaaat    2820ttttttttga gctggttgag tagtcgaact gggaacaatt actgcttgag gctacaaaat 2820

ttctggccga caatacgtct tgatcaggaa ctgactaaag aaattccctt tcaccttttg    2880ttctggccga caatacgtct tgatcaggaa ctgactaaag aaattccctt tcaccttttg 2880

cnggatttgt tggatccatc ctcacgcttc ggattccttg ctcaagagaa acatccatgc    2940cnggatttgt tggatccatc ctcacgcttc ggattccttg ctcaagagaa acatccatgc 2940

atatcgtcga cagcgttcgt tcagtcctct tccttttgtt gttggtgctg ttgttattat    3000atatcgtcga cagcgttcgt tcagtcctct tccttttgtt gttggtgctg ttgttattat 3000

tgttattgtt attgctgcct attcgctcgc cagtgatgaa gaatagtcct gcctatattt    3060tgttattgtt attgctgcct attcgctcgc cagtgatgaa gaatagtcct gcctatattt 3060

gcctgtagta cattgtaaag ctacagttga cgtgtcttgt aagaccctta ttattattgt    3120gcctgtagta cattgtaaag cctacagttga cgtgtcttgt aagaccctta ttatattgt 3120

ccataccacg acgtctc                                                   3137ccataccacg acgtctc 3137

<210>4<210>4

<211>2637<211>2637

<212>cDNA<212> cDNA

<213>稻属水稻(Oryza sativa L.japonica)<213>Oryza sativa L.japonica

<400>4<400>4

gtactgtctg gctttctctt ctggtttcat attggttcta gagagatggc tctaaaggtg    60gtactgtctg gctttctctt ctggtttcat attggttcta gagagatggc tctaaaggtg 60

ttcaattggc tgaatcggaa gaagcattct aatgtcgagt attgcaccat caatgagaac    120ttcaattggc tgaatcggaa gaagcattct aatgtcgagt attgcaccat caatgagaac 120

aaggccatgg aagagaagga agactctctg cgtgcaagtg tgactgagca agacactgag    180aaggccatgg aagagaagga agactctctg cgtgcaagtg tgactgagca agacactgag 180

gccctgctgc tccgtgatgt gcttattaat ggtatacttg caattggcac gctgggccac    240gccctgctgc tccgtgatgt gcttattaat ggtatacttg caattggcac gctgggccac 240

aatgtaaact cactctgtcc tgagtcctgt attgaacaag atgagcccat catcatgtgt    300aatgtaaact cactctgtcc tgagtcctgt attgaacaag atgagcccat catcatgtgt 300

gatgagaaag tggaacaaga gaagtgcgaa gaagaaaagg ctgaggctaa acaggacaca    360gatgagaaag tggaacaaga gaagtgcgaa gaagaaaagg ctgaggctaa acaggacaca 360

ccagttacag caccaagtga accggcatct gctcttgagc ctgccaagat gcactcatca    420ccagttacag caccaagtga accggcatct gctcttgagc ctgccaagat gcactcatca 420

tcgatgaaag aagacaactt catgtgcttt gtgaaggagg aaatcctaat gcatggcatg    480tcgatgaaag aagacaactt catgtgcttt gtgaaggagg aaatcctaat gcatggcatg 480

gaagtggaag atgttcctaa catccaggaa cgaccacttc tgatgttaga gaaggtggag    540gaagtggaag atgttcctaa catccaggaa cgaccacttc tgatgttaga gaaggtggag 540

aaagtgagaa ctacacttgc cgatctattt gctgcagaag cattctcatc aagtgatgca    600aaagtgagaa ctacacttgc cgatctattt gctgcagaag cattctcatc aagtgatgca 600

gaggataagt gttacccgaa aatcgtcatt gttgctgggg catccacttc aaagcctacg    660gaggataagt gttacccgaa aatcgtcatt gttgctgggg catccacttc aaagcctacg 660

tcgtgcatgg agaagatgca tcacaagaag ccaacaaaac caacgtcaaa gccgctgaag    720tcgtgcatgg agaagatgca tcacaagaag ccaacaaaac caacgtcaaa gccgctgaag 720

gctacaagaa aattaagtcg agtcatgagg aagatgttgg ggaagaagat ccacccagag    780gctacaagaa aattaagtcg agtcatgagg aagatgttgg ggaagaagat ccaccccagag 780

cagctcaatg gacgtagcaa tgcagagggc cctgtcactg cataatgcta ggtttgtgga    840cagctcaatg gacgtagcaa tgcagagggc cctgtcactg cataatgcta ggtttgtgga 840

caaaagtttc ctttctctat ctggcaattt attacctaga gtttttttaa agctgtctgt    900caaaagtttc ctttctctat ctggcaattt attacctaga gtttttttaa agctgtctgt 900

tgaactatac agggctcaag gcccttgtgt tttgcatacg attttgtacc tttccaaatt    960tgaactatac agggctcaag gcccttgtgt tttgcatacg attttgtacc tttccaaatt 960

ttcttgattt ttacttggat tccattgttt gtaataaaat taggttaata tctgaggtag    1020ttcttgattt ttacttggat tccattgttt gtaataaaat taggttaata tctgaggtag 1020

tatttgcata gaatggatac cttctaccaa agttatattt gtttgtgggt cctagagcta    1080tatttgcata gaatggatac cttctaccaa agttatattt gtttgtgggt cctagagcta 1080

gcatgaccca cgaatcacat tcaagaatat agtaattcgt ttaggctaca tttcactagg    1140gcatgaccca cgaatcacat tcaagaatat agtaattcgt ttaggctaca tttcactagg 1140

aatagaacat atgaatattc tcaggtttaa taaggcagat gcaaaaaaga actgaatagc    1200aatagaacat atgaatattc tcaggtttaa taaggcagat gcaaaaaaga actgaatagc 1200

acaggaaagt aatttttcca tttcaagctt ctcacagtca aaaacaagta atggttcaaa    1260acaggaaagt aatttttcca tttcaagctt ctcacagtca aaaacaagta atggttcaaa 1260

aattgaatat tctatcacct gttgcctcca tttatgtgga actcacaaga gggtctaagt    1320aattgaatat tctatcacct gttgcctcca tttatgtgga actcacaaga gggtctaagt 1320

gctgcttgac actctgacct gtatttaaat aaaatgttat cacctattgc ctctgcttat    1380gctgcttgac actctgacct gtatttaaat aaaatgttat cacctattgc ctctgcttat 1380

tattgggatc tcaaaacaca atctattact gtgtatgcct tggcattttt taaaatctga    1440tattgggatc tcaaaacaca atctattact gtgtatgcct tggcattttt taaaatctga 1440

gctgccccct tattcttcac attttctcag aaaaccatat aaacttttag ataaatgaag    1500gctgccccct tattcttcac attttctcag aaaaccatat aaacttttag ataaatgaag 1500

cttttattga tctcagacaa ttacatcaag ttgatagaac caaactaaga acacttctgg    1560cttttattga tctcagacaa ttacatcaag ttgatagaac caaactaaga acacttctgg 1560

cctctgataa tggaactgct gtttgtttaa gtagaaagaa tggtgtgtgt attttaacgg    1620cctctgataa tggaactgct gtttgtttaa gtagaaagaa tggtgtgtgt attttaacgg 1620

ttggtgattg ggaattggga tgcagtgacc atggagactg tgttcttcag aatattttta    1680ttggtgattg ggaattggga tgcagtgacc atggagactg tgttcttcag aatattttta 1680

agaaatagtg ttttcggtgg atcctatcat ggaactgcct atggtggaaa gagcaatacg    1740agaaatagtg ttttcggtgg atcctatcat ggaactgcct atggtggaaa gagcaatacg 1740

agttgaaaca tatagggatt aggaagcatg ggttcggact aaaatgcatt cgttcctgcc    1800agttgaaaca tatagggatt aggaagcatg ggttcggact aaaatgcatt cgttcctgcc 1800

atgatgcaaa gcttcattcg aagcaaaatg agcacatgcc atggtacagt ggcgtgcaac    1860atgatgcaaa gcttcattcg aagcaaaatg agcacatgcc atggtacagt ggcgtgcaac 1860

gagcactgca attgcacacg acgtgcatgt tctgaaaaag gccagtggac actagacatg    1920gagcactgca attgcacacg acgtgcatgt tctgaaaaag gccagtggac actagacatg 1920

cagctaatcc tcttttgatg aattctatca tgaaaccaat ggattcgttg aaaatctgaa    1980cagctaatcc tcttttgatg aattctatca tgaaaccaat ggattcgttg aaaatctgaa 1980

caaattgatg gatttggtcc cagctgtaga aaggttggca aactcttctc gctcctgtat    2040caaattgatg gatttggtcc cagctgtaga aaggttggca aactcttctc gctcctgtat 2040

tattgtaggc tggagctatg atggaccaaa tcatcagaag caaatttcac catatataag    2100tattgtaggc tggagctatg atggaccaaa tcatcagaag caaatttcac catatataag 2100

catctacttt tatctttttc tctattttaa aatgtgatca tagtgaagtt atatacattc    2160catctacttt tatctttttc tctattttaa aatgtgatca tagtgaagtt atatacattc 2160

tatctgctta acgctccaca ttatccaaaa aaatgcatca cactccatat tgggaacacg    2220tatctgctta acgctccaca ttatccaaaa aaatgcatca cactccatat tgggaacacg 2220

ttggtggttc tgaaccaaag tcgatctctt gatgccaatt ttttttttga gctggttgag    2280ttggtggttc tgaaccaaag tcgatctctt gatgccaatt ttttttttga gctggttgag 2280

tagtcgaact gggaacaatt actgcttgag gctacaaaat ttctggccga caatacgtct    2340tagtcgaact gggaacaatt actgcttgag gctacaaaat ttctggccga caatacgtct 2340

tgatcaggaa ctgactaaag aaattccctt tcaccttttg cgggatttgt tggatccatc    2400tgatcaggaa ctgactaaag aaattccctt tcaccttttg cgggatttgt tggatccatc 2400

ctcacgcttc ggattccttg ctcaagagaa acatccatgc atatcgtcga cagcgttcgt    2460ctcacgcttc ggattccttg ctcaagagaa acatccatgc atatcgtcga cagcgttcgt 2460

tcagtcctct tccttttgtt gttggtgctg ttgttattat tgttattgtt attgctgcct    2520tcagtcctct tccttttgtt gttggtgctg ttgttattat tgttattgtt attgctgcct 2520

attcgctcgc cagtgatgaa gaatagtcct gcctatattt gcctgtagta cattgtaaag    2580attcgctcgc cagtgatgaa gaatagtcct gcctatattt gcctgtagta cattgtaaag 2580

ctacagttga cgtgtcttgt aagaccctta ttattattgt ccataccacg acgtctc       2637cctacagttga cgtgtcttgt aagaccctta ttaattattgt ccataccacg acgtctc 2637

<210>5<210>5

<211>3086<211>3086

<212>DNA<212>DNA

<213>稻属水稻(Oryza sativa L.indica)<213>Oryza sativa L. indica

<400>5<400>5

atattggttc tagagagatg gctctaaagg tacacagttc atgctgatac accatttgtc    60atattggttc tagagagatg gctctaaagg tacacagttc atgctgatac accatttgtc 60

cgtgtatagt gtatgctgta aagtacaggt ctttgcagtt tctgtctctc ttaaacaagt    120cgtgtatagt gtatgctgta aagtacaggt ctttgcagtt tctgtctctc ttaaacaagt 120

gcgttggatt caactcactg ttcttatatc taatgagatt actggtgatt tatgttttta    180gcgttggatt caactcactg ttcttatatc taatgagatt actggtgatt tatgttttta 180

tggcactacc aggtgttcaa ttggctgaat cggaagaagc attctaatgt cgagtattgc    240tggcactacc aggtgttcaa ttggctgaat cggaagaagc attctaatgt cgagtattgc 240

accatcaatg agaacaaggg taaggatacc aggatatctc tcttttatgt accacatgtt    300accatcaatg agaacaaggg taaggatacc aggatatctc tcttttatgt accacatgtt 300

ttgttgttct catgttgtca actcttgttt cttctcttct atttttttcc ctgatggagt    360ttgttgttct catgttgtca actcttgttt cttctcttct atttttttcc ctgatggagt 360

agccatggaa gagaaggaag actctctgcg tgcaagtgtg actgagcaag acactgaggc    420agccatggaa gagaaggaag actctctgcg tgcaagtgtg actgagcaag acactgaggc 420

cctgctgctc cgtgatgtgc ttattaatgg tatacttgca attggcacgc tgggccacaa    480cctgctgctc cgtgatgtgc ttattaatgg tatacttgca attggcacgc tgggccacaa 480

tgtaaactca ctctgtcctg agtcctgtat tgaacaagat gagcccatca tcatgtgtga    540tgtaaactca ctctgtcctg agtcctgtat tgaacaagat gagcccatca tcatgtgtga 540

tgagaaagtg gaacaagaga agtgcgaaga agaaaaggct gaggctaaac aggacacacc    600tgagaaagtg gaacaagaga agtgcgaaga agaaaaggct gaggctaaac aggacacacc 600

agttacagca ccaagtgaac cggcatctgc tcttgagcct gccaagatgc actcatcatc    660agttacagca ccaagtgaac cggcatctgc tcttgagcct gccaagatgc actcatcatc 660

gatgaaagaa gacaacttca tgtgctttgt gaaggaggaa atcctaatgc atggcatgga    720gatgaaagaa gacaacttca tgtgctttgt gaaggaggaa atcctaatgc atggcatgga 720

agtggaagat gttcctaaca tccaggaacg accacttctg atgttagaga aggtggagaa    780agtggaagat gttcctaaca tccaggaacg accacttctg atgttagaga aggtggagaa 780

agtgagaact acacttgccg atctatttgc tgcagaagca ttctcatcaa gtgatgcaga    840agtgagaact acacttgccg atctatttgc tgcagaagca ttctcatcaa gtgatgcaga 840

ggataagtgt tacccgaaaa tcgtcattgt tgctggggca tccacttcaa agcctacgtc    900ggataagtgt tacccgaaaa tcgtcattgt tgctggggca tccacttcaa agcctacgtc 900

gtgcatggag aagatgcatc acaagaagcc aacaaaacca acgtcaaagc cgctgaaggc    960gtgcatggag aagatgcatc acaagaagcc aacaaaacca acgtcaaagc cgctgaaggc 960

tacgagaaaa ttaagtcgag tatggttttc ttcgtctctg ctttatttgt taagccttgt    1020tacgagaaaa ttaagtcgag tatggttttc ttcgtctctg ctttatttgt taagccttgt 1020

tacattatat tttactagtc tggaatttat aacactttgt tccatggtca gtgcgccaca    1080tacatttat tttactagtc tggaatttat aacactttgt tccatggtca gtgcgccaca 1080

tcttacacat atgttttacc atatagctac aactggagta agcattatgc atctagccag    1140tcttacacat atgttttacc atatagctac aactggagta agcatttatgc atctagccag 1140

tctttagtgg taaatgatca ctgacctgga atgcaccttt ttggtttttg tcatctgtaa    1200tctttagtgg taaatgatca ctgacctgga atgcaccttt ttggtttttg tcatctgtaa 1200

aataagtagg tcatgaggaa gatgttgggg aagaagatcc acccagagca gctcaatgga    1260aataagtagg tcatgaggaa gatgttgggg aagaagatcc accccagagca gctcaatgga 1260

cgtagcaatg cagagggccc tgtcactgca taatgctagg tttgtggaca aaagtttcct    1320cgtagcaatg cagagggccc tgtcactgca taatgctagg tttgtggaca aaagtttcct 1320

ttctctatct ggcaatttat tacctagagt ttttttaaag ctgtctgttg aactatgcag    1380ttctctatct ggcaatttat tacctagagt ttttttaaag ctgtctgttg aactatgcag 1380

ggctcaaggc ccttgtgttt tgcatacgat tttgtacctt tccaaatttt cttgattttt    1440ggctcaaggc ccttgtgttt tgcatacgat tttgtacctt tccaaatttt cttgattttt 1440

acttggattc cattgtttgt aataaaatta ggttaatatc tgaggtagta tttgcataga    1500acttggattc cattgtttgt aataaaatta ggttaatatc tgaggtagta tttgcataga 1500

atggatacct tctaccaaag ttatatttgt ttgtgggtcc tagagctagc atgacccacg    1560atggatacct tctaccaaag ttatatttgt ttgtgggtcc tagagctagc atgacccacg 1560

aatcacattc aagaatatag taattcgttt aggctacatt tcactaggaa tagaacatat    1620aatcacattc aagaatatag taattcgttt aggctacatt tcactaggaa tagaacatat 1620

gaatattctc aggtttaata aggcagatgc aaaaaagaac tgaatagcac aggaaagtaa    1680gaatattctc aggtttaata aggcagatgc aaaaaagaac tgaatagcac aggaaagtaa 1680

tttttccatt tcaagcttct cacagtcaaa aacaagtaat ggttcaaaaa ttgaatattc    1740tttttccatt tcaagcttct cacagtcaaa aacaagtaat ggttcaaaaa ttgaatattc 1740

tatcacctgt tgcctccatt tatgtggaac tcacaagagg gtctaagtgc tgcttgacac    1800tatcacctgt tgcctccatt tatgtggaac tcacaagagg gtctaagtgc tgcttgacac 1800

tctgacctgt atttaaataa aatgttatca cctattgcct ctgcttatta ttgggatctc    1860tctgacctgt atttaaataa aatgttatca cctattgcct ctgcttatta ttgggatctc 1860

aaaacacaat ctattactgt gtatgccttg gcatttttta aaatctgagc tgccccctta    1920aaaacacaat ctattactgt gtatgccttg gcatttttta aaatctgagc tgccccctta 1920

ttcttcacat tttctcagaa aaccatataa acttttagat aaatgaagct tttattgatc    1980ttcttcacat tttctcagaa aaccatataa acttttagat aaatgaagct tttattgatc 1980

tcagacaatt acatcaagtt gatagaacca aactaagaac acttctggcc tctgataatg    2040tcagacaatt acatcaagtt gatagaacca aactaagaac acttctggcc tctgataatg 2040

gaactgctgt ttgtttaagt agaaagaatg gtgtgtgtat tttaacggtt ggtgattggg    2100gaactgctgt ttgtttaagt agaaagaatg gtgtgtgtat tttaacggtt ggtgattggg 2100

aattgggatg cagtgaccat ggagactgtg ttcttcagaa tatttttaag aaatagtgtt    2160aattgggatg cagtgaccat ggagactgtg ttcttcagaa tatttttaag aaatagtgtt 2160

ttcggtggat cctatcatgg aactgcctat ggtggaaaga gcaatacgag ttgaaacata    2220ttcggtggat cctatcatgg aactgcctat ggtggaaaga gcaatacgag ttgaaacata 2220

tagggattag gaagcatggg ttcggactaa aatgcattcg ttcctgccat gatgcaaagc    2280tagggattag gaagcatggg ttcggactaa aatgcattcg ttcctgccat gatgcaaagc 2280

ttcattcgaa gcaaaatgag cacatgccat ggtacagtgg cgtgcaacga gcactgcaat    2340ttcattcgaa gcaaaatgag cacatgccat ggtacagtgg cgtgcaacga gcactgcaat 2340

tgcacacgat gtgcgtgttc tgaaaaaggc cagtggacac tagacatgca gctaatcctc    2400tgcacacgat gtgcgtgttc tgaaaaaggc cagtggacac tagacatgca gctaatcctc 2400

ttttgatgaa ttctatcatg aaaccaatgg attcgttgaa aatctgaaca aattgatgga    2460ttttgatgaa ttctatcatg aaaccaatgg attcgttgaa aatctgaaca aattgatgga 2460

tttggtccca gctgtagaaa ggttggcaaa ctcttctcgc tcctgtatta ttgtaggctg    2520tttggtccca gctgtagaaa ggttggcaaa ctcttctcgc tcctgtatta ttgtaggctg 2520

gagctatgat ggaccaaatc atcagaagca aatttcacca tatataagca tctactttta    2580gagctatgat ggaccaaatc atcagaagca aatttcacca tatataagca tctactttta 2580

tctttttctc tattttaaaa tgtgatcata gtgaagttat gtacattcta tctgcttaac    2640tctttttctc tattttaaaa tgtgatcata gtgaagttat gtacattcta tctgcttaac 2640

gctccacatt atctaaaaaa atgcatcaca ctccatattg ggaacacgtt ggtggttctg    2700gctccacatt atctaaaaaa atgcatcaca ctccatattg ggaacacgtt ggtggttctg 2700

aaccaaagtc gatctcttga tgccaatttt tttttgagct ggttgagtag tcgaactggg    2760aaccaaagtc gatctcttga tgccaatttt tttttgagct ggttgagtag tcgaactggg 2760

aacaattact gcttgaggct acaaaatttc tggccgacaa tacgtcttga tcaggaactg    2820aacaattact gcttgaggct acaaaatttc tggccgacaa tacgtcttga tcaggaactg 2820

actaaagaaa ttccctttca ccttttgcag gatttgttgg atccatcctc acgcttcgga    2880actaaagaaa ttccctttca ccttttgcag gatttgttgg atccatcctc acgcttcgga 2880

ttccttgctc aagagaaaca tccatgcata tcgtcgacag cgttcgttca gtcctcttcc    2940ttccttgctc aagagaaaca tccatgcata tcgtcgacag cgttcgttca gtcctcttcc 2940

ttttgttgtt gttgctgttg ttattattgt tattgttatt gctgcctatt cgctcgccag    3000ttttgttgtt gttgctgttg ttaattattgt tattgttatt gctgcctatt cgctcgccag 3000

tgatgaataa tagtcctgcc tatatttgcc tgtagtacat tgtaaagcta cagttgacgt    3060tgatgaataa tagtcctgcc tatatttgcc tgtagtacat tgtaaagcta cagttgacgt 3060

gtcttgtaag acccttatta ttattg                                         3086gtcttgtaag accctttatta ttatg 3086

<210>6<210>6

<211>3146<211>3146

<212>DNA<212>DNA

<213>稻属水稻(Oryza sativa L.)<213>Oryza sativa L.

<400>6<400>6

tctggctttc tcttctggtt tcatattggt tctagagaga tggctctaaa ggtacacagt    60tctggctttc tcttctggtt tcatattggt tctagagaga tggctctaaa ggtacacagt 60

tagttcatgc tgatacacca tttgtccgtg tatagtgtat gctgtaaagt acaggtcttt    120tagttcatgc tgatacacca tttgtccgtg tatagtgtat gctgtaaagt acaggtcttt 120

gcagtttctg tctctcttaa acaagtgcgt tggattcaac tcactgttct tatatctaat    180gcagtttctg tctctcttaa acaagtgcgt tggattcaac tcactgttct tatatctaat 180

gagattactg gtgatttatg tttttatggc actaccaggt gttcaattgg ctgaatcgga    240gagattactg gtgattatg tttttatggc actaccaggt gttcaattgg ctgaatcgga 240

agaagcattc taatgtcgag tattgcacca tcaatgagaa caagggtaag gataccagga    300agaagcattc taatgtcgag tattgcacca tcaatgagaa caagggtaag gataccagga 300

tatctctctt ttatgtacca catgttttgt tgttctcatg ttgtcaactc ttgtttcttc    360tatctctctt ttatgtacca catgttttgt tgttctcatg ttgtcaactc ttgtttcttc 360

tcttctattt tttttcctga tggagtagcc atggaagaga aggaagactc tctgcgtgca    420tcttctattt tttttcctga tggagtagcc atggaagaga aggaagactc tctgcgtgca 420

agtgtgactg agcaagacac tgaggccctg ctgctccgtg atgtgcttat taatggtata    480agtgtgactg agcaagacac tgaggccctg ctgctccgtg atgtgcttat taatggtata 480

cttgcaattg gcacgctggg ccacaatgta aactcactct gtcctgagtc ctgtattgaa    540cttgcaattg gcacgctggg ccacaatgta aactcactct gtcctgagtc ctgtattgaa 540

caagatgagc ccatcatcat gtgtgatgag aaagtggaac aagagaagtg cgaagaagaa    600caagatgagc ccatcatcat gtgtgatgag aaagtggaac aagagaagtg cgaagaagaa 600

aaggctgagg ctaaacagga cacaccagtt acagcaccaa gtgaaccggc atctgctctt    660aaggctgagg ctaaacagga cacaccagtt acagcaccaa gtgaaccggc atctgctctt 660

gagcctgcca agatgcactc atcatcgatg aaagaagaca acttcatgtg ctttgtgaag    720gagcctgcca agatgcactc atcatcgatg aaagaagaca acttcatgtg ctttgtgaag 720

gaggaaatcc taatgcatgg catggaagtg gaagatgttc ctaacatcca ggaacgacca    780gaggaaatcc taatgcatgg catggaagtg gaagatgttc ctaacatcca ggaacgacca 780

cttctgatgt tagagaaggt ggagaaagtg agaactacac ttgccgatct atttgctgca    840cttctgatgt tagagaaggt ggagaaagtg agaactacac ttgccgatct atttgctgca 840

gaagcattct catcaagtga tgcagaggat aagtgttacc cgaaaatcgt cattgttgct    900gaagcattct catcaagtga tgcagaggat aagtgttacc cgaaaatcgt cattgttgct 900

ggggcatcca cttcaaagcc tacgtcgtgc atggagaaga tgcatcacaa gaagccaaca    960ggggcatcca cttcaaagcc tacgtcgtgc atggagaaga tgcatcacaa gaagccaaca 960

aaaccaacgt caaagccgct gaaggctaca agaaaattaa gtcgagtatg gttttcttcg    1020aaaccaacgt caaagccgct gaaggctaca agaaaattaa gtcgagtatg gttttcttcg 1020

tctctgcttt atttgttaag ccttgttaca ttatatttta ctagtctgga atttattaca    1080tctctgcttt atttgttaag ccttgttaca ttatatttta ctagtctgga atttattaca 1080

ctttgttcca tggtcagtgc gccacatctt acacatatgt tttaccatat agctacaact    1140ctttgttcca tggtcagtgc gccacatctt acacatatgt tttaccatat agctacaact 1140

ggagtaagca ttatgcatct agccagtctt tagtggtaaa tgatcactga cctggaatgc    1200ggagtaagca ttatgcatct agccagtctt tagtggtaaa tgatcactga cctggaatgc 1200

acctttttgg tttttgtcat ctgtaaaata agtaggtcat gaggaagatg ttggggaaga    1260acctttttgg tttttgtcat ctgtaaaata agtaggtcat gaggaagatg ttggggaaga 1260

agatccaccc agagcagctc aatggacgta gcaatgcaga gggccctgtc actgcataat    1320agatccaccc agagcagctc aatggacgta gcaatgcaga gggccctgtc actgcataat 1320

gctaggtttg tggacaaaag tttcctttct ctatctggca atttattacc tagagttttt    1380gctaggtttg tggacaaaag tttcctttct ctatctggca atttattacc tagagttttt 1380

ttaaagctgt ctgttgaact atacagggct caaggccctt gtgttttgca tacgattttg    1440ttaaagctgt ctgttgaact atacagggct caaggccctt gtgttttgca tacgattttg 1440

tacctttcca aattttcttg atttttactt ggattccatt gtttgtaata aaattaggtt    1500tacctttcca aattttcttg attttactt ggattccatt gtttgtaata aaattaggtt 1500

aatatctgag gtagtatttg catagaatgg ataccttcta ccaaagttat atttgtttgt    1560aatatctgag gtagtatttg catagaatgg ataccttcta ccaaagttat atttgtttgt 1560

gggtcctaga gctagcatga cccacgaatc acattcaaga atatagtaat tcgtttaggc    1620gggtcctaga gctagcatga cccacgaatc attcaaga atatagtaat tcgtttaggc 1620

tacatttcac taggaataga acatatgaat attctcaggt ttaataaggc agatgcaaaa    1680tacatttcac taggaataga acatatgaat attctcaggt ttaataaggc agatgcaaaa 1680

aagaactgaa tagcacagga aagtaatttt tccatttcaa gcttctcaca gtcaaaaaca    1740aagaactgaa tagcacagga aagtaatttt tccatttcaa gcttctcaca gtcaaaaaca 1740

agtaatggtt caaaaattga atattctatc acctgttgcc tccatttatg tggaactcac    1800agtaatggtt caaaaattga atattctatc acctgttgcc tccattattg tggaactcac 1800

aagagggtct aagtgctgct tgacactctg acctgtattt aaataaaatg ttatcaccta    1860aagagggtct aagtgctgct tgacactctg acctgtattt aaataaaatg ttatcaccta 1860

ttgcctctgc ttattattgg gatctcaaaa cacaatctat tactgtgtat gccttggcat    1920ttgcctctgc ttaattattgg gatctcaaaa cacaatctat tactgtgtat gccttggcat 1920

tttttaaaat ctgagctgcc cccttattct tcacattttc tcagaaaacc atataaactt    1980tttttaaaat ctgagctgcc cccttattct tcacattttc tcagaaaacc atataaactt 1980

ttagataaat gaagctttta ttgatctcag acaattacat caagttgata gaaccaaact    2040ttagataaat gaagctttta ttgatctcag acaattacat caagttgata gaaccaaact 2040

aagaacactt ctggcctctg ataatggaac tgctgtttgt ttaagtagaa agaatggtgt    2100aagaacactt ctggcctctg ataatggaac tgctgtttgt ttaagtagaa agaatggtgt 2100

gtgtatttta acggttggtg attgggaatt gggatgcagt gaccatggag actgtgttct    2160gtgtatttta acggttggtg attgggaatt gggatgcagt gaccatggag actgtgttct 2160

tcagaatatt tttaagaaat agtgttttcg gtggatccta tcatggaact gcctatggtg    2220tcagaatatt tttaagaaat agtgttttcg gtggatccta tcatggaact gcctatggtg 2220

gaaagagcaa tacgagttga aacatatagg gattaggaag catgggttcg gactaaaatg    2280gaaagagcaa tacgagttga aacatatagg gattaggaag catgggttcg gactaaaatg 2280

cattcgttcc tgccatgatg caaagcttca ttcgaagcaa aatgagcaca tgccatggta    2340cattcgttcc tgccatgatg caaagcttca ttcgaagcaa aatgagcaca tgccatggta 2340

cagtggcgtg caacgagcac tgcaattgca cacgacgtgc atgttctgaa aaaggccagt    2400cagtggcgtg caacgagcac tgcaattgca cacgacgtgc atgttctgaa aaaggccagt 2400

ggacactaga catgcagcta atcctctttt gatgaattct atcatgaaac caatggattc    2460ggacactaga catgcagcta atcctctttt gatgaattct atcatgaaac caatggattc 2460

gttgaaaatc tgaacaaatt gatggatttg gtcccagctg tagaaaggtt ggcaaactct    2520gttgaaaatc tgaacaaatt gatggatttg gtcccagctg tagaaaggtt ggcaaactct 2520

tctcgctcct gtattattgt aggctggagc tatgatggac caaatcatca gaagcaaatt    2580tctcgctcct gtattattgt aggctggagc tatgatggac caaatcatca gaagcaaatt 2580

tcaccatata taagcatcta cttttatctt tttctctatt ttaaaatgtg atcatagtga    2640tcaccatata taagcatcta cttttatctt tttctctatt ttaaaatgtg atcatagtga 2640

agttatatac attctatctg cttaacgctc cacattatcc aaaaaaatgc atcacactcc    2700agttatatac attctatctg cttaacgctc cacattatcc aaaaaaatgc atcacactcc 2700

atattgggaa cacgttggtg gttctgaacc aaagtcgatc tcttgatgcc aatttttttt    2760atattgggaa cacgttggtg gttctgaacc aaagtcgatc tcttgatgcc aatttttttt 2760

ttgagctggt tgagtagtcg aactgggaac aattactgct tgaggctaca aaatttctgg    2820ttgagctggt tgagtagtcg aactgggaac aattactgct tgaggctaca aaatttctgg 2820

ccgacaatac gtcttgatca ggaactgact aaagaaattc cctttcacct tttgcgggat    2880ccgacaatac gtcttgatca ggaactgact aaagaaattc cctttcacct tttgcgggat 2880

ttgttggatc catcctcacg cttcggattc cttgctcaag agaaacatcc atgcatatcg    2940ttgttggatc catcctcacg cttcggattc cttgctcaag agaaacatcc atgcatatcg 2940

tcgacagcgt tcgttcagtc ctcttccttt tgttgttggt gctgttgtta ttattgttat    3000tcgacagcgt tcgttcagtc ctcttccttt tgttgttggt gctgttgtta ttatgttat 3000

tgttattgct gcctattcgc tcgccagtga tgaagaatag tcctgcctat atttgcctgt    3060tgttattgct gcctattcgc tcgccagtga tgaagaatag tcctgcctat atttgcctgt 3060

agtacattgt aaagctacag ttgacgtgtc ttgtaagacc cttattatta ttgtccatac    3120agtacattgt aaagctacag ttgacgtgtc ttgtaagacc cttattatta ttgtccatac 3120

cacgacgtct catcatcggg ttctaa                                         3146cacgacgtct catcatcggg ttctaa 3146

Claims (9)

1, the cDNA sequence of adjusting and controlling rice tillering angle gene is one of following nucleotide sequence:
1) SEQ ID № in the sequence table: 2 or SEQ ID №: 4 dna sequence dna;
2) SEQ ID № in the code sequence tabulation: 1 dna sequence dna;
3) under the rigorous condition of height can with SEQ ID № in the sequence table: the nucleotide sequence of 2 or SEQ ID №: the 4 dna sequence dnas hybridization that limit.
2, gene according to claim 1 is characterized in that: its cDNA has SEQ ID № in the sequence table: 2 dna sequence dna.
3, the genome sequence of adjusting and controlling rice tillering angle gene is one of following nucleotide sequence:
1) SEQ ID № in the sequence table: 3 dna sequence dna;
2) under the rigorous condition of height can with SEQ ID № in the sequence table: the nucleotide sequence of the 3 dna sequence dnas hybridization that limit.
4, the albumen of the described genes encoding of claim 1 has one of following amino acid residue sequences:
1) the SEQ ID № in the sequence table: 1;
2) with SEQ ID № in the sequence table: 1 amino acid residue sequence is through replacement, disappearance or the interpolation of one to ten amino-acid residue and the protein with adjusting and controlling rice tillering angle function.
5, albumen according to claim 4 is characterized in that: described albumen has SEQ ID № in the sequence table: 1 amino acid residue sequence.
6, contain claim 1 or 2 or 3 described expression carrier, transgenic cell line and host bacterium.
7, a kind of method of adjusting and controlling rice tillering angle is that rice tillering angle obtains regulation and control with the gene importing rice tissue or the cell of the described adjusting and controlling rice tillering angle of claim 1.
8, method according to claim 7 is characterized in that: the gene of described adjusting and controlling rice tillering angle imports explant by the plant expression vector that contains described gene; The carrier that sets out that is used to make up described plant expression vector is pCAMBIA1301-UbiN, pBI121, pBin19, pCAMBIA2301 or pCAMBIA1300.
9, method according to claim 8 is characterized in that: described plant expression vector is pCambia1301-UbiN-COM1.
CNB2006100789501A 2006-04-28 2006-04-28 The gene of adjusting and controlling rice tillering angle and proteins encoded thereof and application Expired - Fee Related CN100572538C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100789501A CN100572538C (en) 2006-04-28 2006-04-28 The gene of adjusting and controlling rice tillering angle and proteins encoded thereof and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100789501A CN100572538C (en) 2006-04-28 2006-04-28 The gene of adjusting and controlling rice tillering angle and proteins encoded thereof and application

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2007101876060A Division CN101182524B (en) 2006-04-28 2006-04-28 A gene regulating rice tiller angle and its encoded protein and application

Publications (2)

Publication Number Publication Date
CN1844396A true CN1844396A (en) 2006-10-11
CN100572538C CN100572538C (en) 2009-12-23

Family

ID=37063366

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100789501A Expired - Fee Related CN100572538C (en) 2006-04-28 2006-04-28 The gene of adjusting and controlling rice tillering angle and proteins encoded thereof and application

Country Status (1)

Country Link
CN (1) CN100572538C (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101565461B (en) * 2008-04-23 2011-07-20 中国农业大学 Zinc finger protein related to plant type and spike grain number of rice, encoding gene and application thereof
CN101585869B (en) * 2009-05-11 2012-05-23 中国科学院遗传与发育生物学研究所 A kind of rice tiller-related protein and its coding gene and application
CN102676521A (en) * 2012-05-08 2012-09-19 中国科学院植物研究所 MicroRNA444a or application of coding gene to regulating rice tillering
CN102725411A (en) * 2010-01-22 2012-10-10 庆尚大学校产学协力团 OsMPT gene modifying plant architecture (plant shape) and increasing yield, and use thereof
CN103305527A (en) * 2012-03-16 2013-09-18 河北农业大学 Application of Rice Gene PMRP in Improving Rice Agronomic Traits
CN107299102A (en) * 2017-07-20 2017-10-27 中国科学院东北地理与农业生态研究所 rice BR signal positive regulatory factor OsWRKY53 gene and encoding protein thereof
CN107937409A (en) * 2016-10-10 2018-04-20 华中农业大学 The clone of rice tillering angle gene TAC3 and application
CN107988229A (en) * 2018-01-05 2018-05-04 中国农业科学院作物科学研究所 A kind of method for obtaining the rice that tiller changes using CRISPR-Cas modification OsTAC1 genes
CN109913468A (en) * 2019-03-20 2019-06-21 河南农业大学 Wheat tillering trait-related gene TaTAC1, its expression product, its expression vector and application
CN112195187A (en) * 2020-10-16 2021-01-08 湖南省水稻研究所 Rice tillering angle regulation gene and protein coded by same and application of gene

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101565461B (en) * 2008-04-23 2011-07-20 中国农业大学 Zinc finger protein related to plant type and spike grain number of rice, encoding gene and application thereof
CN101585869B (en) * 2009-05-11 2012-05-23 中国科学院遗传与发育生物学研究所 A kind of rice tiller-related protein and its coding gene and application
CN102725411A (en) * 2010-01-22 2012-10-10 庆尚大学校产学协力团 OsMPT gene modifying plant architecture (plant shape) and increasing yield, and use thereof
CN103305527A (en) * 2012-03-16 2013-09-18 河北农业大学 Application of Rice Gene PMRP in Improving Rice Agronomic Traits
CN102676521A (en) * 2012-05-08 2012-09-19 中国科学院植物研究所 MicroRNA444a or application of coding gene to regulating rice tillering
CN102676521B (en) * 2012-05-08 2013-10-16 中国科学院植物研究所 Application of MicroRNA444a or its coding gene to regulating rice tillering
CN107937409B (en) * 2016-10-10 2020-11-24 华中农业大学 Cloning and application of rice tiller angle gene TAC3
CN107937409A (en) * 2016-10-10 2018-04-20 华中农业大学 The clone of rice tillering angle gene TAC3 and application
CN107299102A (en) * 2017-07-20 2017-10-27 中国科学院东北地理与农业生态研究所 rice BR signal positive regulatory factor OsWRKY53 gene and encoding protein thereof
CN107299102B (en) * 2017-07-20 2019-11-08 中国科学院东北地理与农业生态研究所 OsWRKY53 Gene and Its Encoded Protein, a Positive Regulator of BR Signaling in Rice
CN107988229A (en) * 2018-01-05 2018-05-04 中国农业科学院作物科学研究所 A kind of method for obtaining the rice that tiller changes using CRISPR-Cas modification OsTAC1 genes
CN109913468A (en) * 2019-03-20 2019-06-21 河南农业大学 Wheat tillering trait-related gene TaTAC1, its expression product, its expression vector and application
CN109913468B (en) * 2019-03-20 2022-04-15 河南农业大学 Wheat tillering character related gene TaTAC1, expression product thereof, expression vector thereof and application
CN112195187A (en) * 2020-10-16 2021-01-08 湖南省水稻研究所 Rice tillering angle regulation gene and protein coded by same and application of gene
CN112195187B (en) * 2020-10-16 2022-05-06 湖南省水稻研究所 Rice tillering angle regulation gene and protein coded by same and application of gene

Also Published As

Publication number Publication date
CN100572538C (en) 2009-12-23

Similar Documents

Publication Publication Date Title
CN1844396A (en) Genes regulating rice tiller angle and their encoded proteins and their applications
CN1151183A (en) RPS 2 gene and uses thereof
CN1487997A (en) HD3A gene for inducing plant flowering and its application
CN1807453A (en) Bacterial leaf spot resistance related protein and its coding gene and uses
CN1831127A (en) A key gene regulating chlorophyll metabolism and its method for establishing plant greening traits
CN1842592A (en) Gene and application thereof for endowing plant with redifferentiation ability
CN101062944A (en) Vegetable disease-resistant protein and its coding gene and application
CN101037695A (en) Control gene of paddy pollen fertility and application
CN1751065A (en) Resistance gene of cotton aphid (Aphis gossypii)
CN101037696A (en) Paddy cool injury gene and application
CN1493692A (en) Rice bacterial blight resistance gene Xa26(t)
CN101048507A (en) A method for increasing seed size
CN1854154A (en) Rice blast resistant related protein, its coding gene and use
CN1297661C (en) A rice blast resistance gene, its encoded protein and use thereof
CN1257977C (en) Improving drought-resistant property of plant by rice drought inducing gene promoter LEAP
CN1293095C (en) Drought resistant correlative protein and coded gene of plant and application
CN1817900A (en) Transcription factor for regulating plant fallen, its coding gene and use
CN1498893A (en) Rice bacterial blight resistance gene Xa4
CN101050232A (en) Pi15 resistance gene of rice blast, and application
CN1840542A (en) Rice tiller-related protein and its coding gene and application
CN1869231A (en) Plant broad spectrum antidisease gene and its application
CN1869232A (en) Paddy rice hybrid fertility gene and its application
CN1807611A (en) Alfalfa cysteine prolease and its coding gene and uses
CN1191354C (en) Method for producing transgenic rice with increased number of spikelets
CN1295334C (en) Wheat antidisense related gene TaEDR1 and its application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091223

Termination date: 20150428

EXPY Termination of patent right or utility model