[go: up one dir, main page]

CN103705947A - 药物、药物引导装置、磁性检测装置和药物设计方法 - Google Patents

药物、药物引导装置、磁性检测装置和药物设计方法 Download PDF

Info

Publication number
CN103705947A
CN103705947A CN201310279332.3A CN201310279332A CN103705947A CN 103705947 A CN103705947 A CN 103705947A CN 201310279332 A CN201310279332 A CN 201310279332A CN 103705947 A CN103705947 A CN 103705947A
Authority
CN
China
Prior art keywords
spin
magnetic
charge density
medicine
drug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310279332.3A
Other languages
English (en)
Inventor
石川义弘
江口晴树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006177971A external-priority patent/JP2007091710A/ja
Application filed by IHI Corp filed Critical IHI Corp
Publication of CN103705947A publication Critical patent/CN103705947A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/282Platinum compounds
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C10/00Computational theoretical chemistry, i.e. ICT specially adapted for theoretical aspects of quantum chemistry, molecular mechanics, molecular dynamics or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/555Heterocyclic compounds containing heavy metals, e.g. hemin, hematin, melarsoprol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/243Platinum; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/10Drugs for genital or sexual disorders; Contraceptives for impotence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/08Bridged systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5601Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution involving use of a contrast agent for contrast manipulation, e.g. a paramagnetic, super-paramagnetic, ferromagnetic or hyperpolarised contrast agent
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/50Molecular design, e.g. of drugs

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Endocrinology (AREA)
  • Reproductive Health (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明可以解决以往的技术问题,实现易于实际应用的药物传递系统。将由有机化合物或者无机化合物构成的、通过侧链的修饰和/或侧链之间的交联而具有磁性的药物,使用磁力引导至靶组织或者患部。

Description

药物、药物引导装置、磁性检测装置和药物设计方法
本申请是申请日为2007年6月28日、申请号为200780032275.1(国际申请号为PCT/JP2007/063011)、发明名称为“药物、药物引导装置、磁性检测装置和药物设计方法”的发明专利申请的分案申请。
技术领域
本发明涉及药物、药物引导装置、磁性检测装置和药物设计方法。
背景技术
通常,药物给药至生物体后到达患部,通过在该患部的局部位置上发挥药理作用而产生治疗效果,但如果药物到达患部以外的组织(即,正常组织),则不会成为一种治疗。因此,如何有效地引导药物到达患部在治疗策略上很重要。这种引导药物到达患部的技术被称为药物传递,近年来其研究开发积极进行。这种药物传递具有至少两个优点。一个优点是在患部组织中得到充分高的药物浓度。这是由于如果患部中的药物浓度没有达到一定值以上则未发现药理效果,浓度低时不能得到预期的治疗效果。第二个优点是仅仅引导药物至患部组织,而不将药物引导至不必要的正常组织。由此,可以抑制副作用。
所述药物传递在使用抗癌剂进行的癌症治疗中发挥最佳效果。由于大多数抗癌剂抑制分裂活跃的癌细胞的细胞增殖,因此在正常组织中也抑制细胞分裂活跃的组织、例如骨髓或发根、消化道粘膜等的细胞增殖。因此,在接受抗癌剂给药的癌症患者中出现贫血、脱发、呕吐等副作用。由于这些副作用对于患者而言成为沉重的负担,因此必须限制给药量,从而存在不能充分获得抗癌剂的药理效果的问题。此外,最坏的情况,可能由于副作用而导致患者死亡。因此,期待通过药物传递引导抗癌剂到达癌细胞,并集中于癌细胞,使其发挥药理效果,由此抑制副作用的同时能够有效地进行癌症治疗。
除了抗癌剂之外,还可以考虑在例如男性勃起功能障碍治疗药中的应用。男性勃起功能障碍治疗药与硝基制剂并用时,存在引起重度的全身性低血压而导致死亡的实例,尤其对于患有心脏病的中老年男性来说存在问题。这是由于勃起功能障碍治疗药并不一定集中在患部,而是作用于全身血管,提高硝基制剂具有的血管扩张作用。因此,可以认为,通过药物传递引导男性勃起功能障碍治疗药到达患部,并集中于患部,使其发挥药理效果,由此抑制由于与硝基制剂并用而引起的副作用产生。
作为药物传递的具体方法,例如,正在研究使用负载体(载体)向患部的引导,该方法是将药物负载在容易集中于患部的载体上,使载体将药物运送至患部。正在研究使用各种抗体、微球或者磁性体作为载体。其中,磁性体被认为是特别有潜力的载体,正在研究将作为磁性体的载体附着在药物上并通过磁场聚集于患部的方法(例如,参照下述专利文献1)。该引导方法简便易行,使得靶向患部的治疗成为可能,因此认为对于具有高细胞毒性的抗癌剂而言是特别有效的方法。
专利文献1:日本特开2001-10978号公报
发明内容
但是,如上所述在使用磁性体的负载体作为载体时,已经指出:口服给药困难、通常载体分子的尺寸大、或者与药物分子的结合强度和亲合性方面存在技术问题,从而实际应用存在困难。
本发明是鉴于上述问题而进行的,其目的在于能够解决现有的技术问题并实现易于实际应用的药物传递系统。
为了实现上述目的,本发明中,作为涉及药物的第1种解决手段,其特征在于,由有机化合物或者无机化合物构成,通过侧链的修饰和/或侧链之间的交联而具有磁性。
此外,本发明中,作为涉及药物的第2种解决手段,其特征在于,所述有机化合物为弗司扣林(forskolin)。
此外,本发明中,作为涉及药物的第3种解决手段,其特征在于,在上述第1种解决手段中,所述有机化合物是男性勃起功能障碍治疗中有效的组合物。
此外,本发明中,作为涉及药物的第4种解决手段,其特征在于,在上述第1种解决手段中,所述无机化合物为金属络合物。
此外,本发明中,作为涉及药物的第5种解决手段,其特征在于,在上述第4种解决手段中,所述金属络合物是具有抗癌性能的顺式几何异构体。
此外,本发明中,作为涉及药物的第6种解决手段,其特征在于,在上述第5种解决手段中,所述顺式几何异构体为顺铂。
此外,本发明中,作为涉及药物引导装置的第1种解决手段,其特征在于,将给药至体内的具有上述第1~6中任一种解决手段的药物,利用该药物的磁性引导至规定的患部。
此外,本发明中,作为涉及磁性检测装置的第1种解决手段,其特征在于,通过检测给药至体内的具有上述第1~6中任一种解决手段的药物的磁性,来检测该药物的体内动力学过程。
此外,本发明中,作为涉及药物设计方法的第1种解决手段,其特征在于,对于作为药物使用的有机化合物或者无机化合物设定进行了侧链的修饰和/或侧链之间的交联的分子模型,由通过对该分子模型进行数值计算而求得的自旋-电荷密度分布来判定所述分子模型是否具有磁性,基于判定为具有磁性的分子模型来设计药物。
此外,本发明中,作为涉及药物设计方法的第2种解决手段,其特征在于,在上述第1种解决手段中,基于所述自旋-电荷密度分布来判定所述分子模型是铁磁性还是亚铁磁性。
此外,本发明中,作为涉及药物设计方法的第3种解决手段,其特征在于,在上述第1或2种解决手段中,基于所述自旋-电荷密度分布来判定所述分子模型的磁性强度。
根据本发明,由于药物自身具有磁性,因此可以不使用现有的由磁性体构成的载体,而利用药物自身具有的磁性将药物引导至体内的患部。其结果可以解决口服给药困难、载体分子通常较大、或者在与药物分子的结合强度、亲合性方面存在的技术问题等,可以实现易于实际应用的药物传递系统。
附图说明
图1是本发明的一个实施方式中弗司扣林的基本分子结构模型图。
图2是本发明的一个实施方式中具有亚铁磁性的弗司扣林衍生物A的分子结构模型图。
图3是表示本发明的一个实施方式中弗司扣林衍生物A的三维分子结构模型及自旋-电荷密度分布的图。
图4是本发明的一个实施方式中具有铁磁性的弗司扣林衍生物B的分子结构模型图。
图5是表示本发明的一个实施方式中弗司扣林衍生物B的三维分子结构模型及自旋-电荷密度分布的图。
图6是本发明一个实施方式中的药物设计方法的流程图。
图7是本发明的一个实施方式中标准组成的PDE5抑制剂的基本分子结构模型图,以及三维分子结构模型和自旋-电荷密度分布。
图8是本发明的一个实施方式中PDE5抑制剂衍生物的基本分子结构模型图,以及三维分子结构模型和自旋-电荷密度分布。
图9是本发明的一个实施方式中顺铂的基本分子结构模型图。
图10是本发明的一个实施方式中顺铂衍生物(顺式-Pt-a3)的基本分子结构模型图,以及三维分子结构模型和自旋-电荷密度分布。
图11是本发明的一个实施方式中顺铂衍生物、和将顺铂衍生物的铂置换为其他金属元素而得到的衍生物的自旋-电荷密度的解析结果。
图12是表示本发明的一个实施方式中顺铂衍生物NK121的基本分子结构模型图,以及三维分子结构模型和自旋-电荷密度分布。
图13是表示本发明的一个实施方式中顺铂在体内的水解过程的图。
图14是本发明的一个实施方式中顺铂水解产物[Pt(OH2)2(dien)]2+的三维分子结构模型和自旋-电荷密度分布。
图15是在通过计算机模拟程序运算对象化合物的自旋-电荷密度的过程中显示的计算机的输出画面的第1例。
图16是在通过计算机模拟程序运算对象化合物的自旋-电荷密度的过程中显示的计算机的输出画面的第2例。
图17是MRI的原理图。
图18是MRI装置整体的透视图。
图19是在将磁性药物向大鼠给药的例子中的MRI输出影像。
图20是表示在MRI影像中具有对象药物的浓度依赖性的MRI输出影像。
图21是表示验证磁场中药物所在位置的实验系统的概要的简图。
图22是表示基于磁场中药物浓度的变动测定细胞数的结果的特性图。
图23是表示本发明中的引导装置的其他实施方式的透视图。
图24是表示对于小鼠的肾脏的MRI测定结果。
符号说明
A、B…弗司扣林衍生物
具体实施方式
下面参照附图对本发明的一个实施方式进行说明。
[第1实施方式]
首先,作为第1实施方式,使用有机化合物,更具体而言使用作为药物候选剂的弗司扣林进行说明。
图1是弗司扣林的基本分子结构模型图。在该图中,R6、R7和R13表示用于修饰弗司扣林的侧链的原子或者分子键合的位置,根据在这些位置上键合的原子或者分子的类型,弗司扣林的物理性能发生变化。在该图中,在R6处键合H、在R7处键合CH3、在R13处键合CH=CH2的化合物是自然界中存在的弗司扣林,将通过人为地改变侧链的结构、即改变修饰R6、R7和R13的原子或者分子而生成的弗司扣林称为弗司扣林衍生物。另外,在图1中,C1~C13表示碳原子(C)。
图2是具有磁性(亚铁磁性)的弗司扣林衍生物A的基本分子结构模型图。如该图所示,弗司扣林衍生物A是将上述自然界中存在的弗司扣林的R6变为COCH2CH2NCH3、R7变为CH2,同时将键合在C9上的氧原子(O)与键合在C13上的碳原子交联而成。
图3表示通过基于第一原理分子动力学法的计算机模拟而求得的上述弗司扣林衍生物A的三维分子结构及自旋-电荷密度分布。第一原理分子动力学法在Delley,B.J.Chem.Phys.,1990,92,508-517、Delley,B.J.Chem.Phys.,2000,113,7756-7764、Haselgrove,C.B.Math Comp.,1961,15,323-337、Ellis,D.E.Int.J.Quantum Chem.,1968,2S,35-42、Ellis,D.E.;Painter,G.S.Phys.Rev.B,1970,2,2887-2898中公开。
在图3中,区域1表示向下的自旋-电荷密度,区域2~5表示向上的自旋-电荷密度。选择该区域是由于计算自旋-电荷密度的等高线,自旋-电荷密度高。化合物具有的磁性的性质是由向上的自旋与向下的自旋的平衡来决定。弗司扣林衍生物A由于混合存在如图2所示的向下的自旋状态1’和向上的自旋状态2’~5’,因此可知其为亚铁磁性体。
另一方面,图4是具有磁性(铁磁性)的弗司扣林衍生物B的基本分子结构模型图。如该图所示,弗司扣林衍生物B是将上述自然界中存在的弗司扣林的R6变为COCH2CH2NCH3、R7变为CH2、R13变为CH-CH3,同时将键合在C9上的氧原子与键合在C13上的碳原子交联而成。
与上述同样,图5表示通过基于第一原理分子动力学法的计算机模拟而求得的弗司扣林衍生物B的三维分子结构及自旋-电荷密度分布。在图5中,区域10~12表示向上的自旋-电荷密度。由此,弗司扣林衍生物B仅存在如图4所示的向上的自旋状态10’~12’,因此可知其是铁磁性体。
由此,通过用规定的原子或者分子修饰弗司扣林的侧链以及将在规定位置上存在的侧链之间进行交联,可以生成具有磁性的弗司扣林衍生物即药物。在图2中,在由虚线表示的部分进行交联。这样,通过用规定的原子或者分子修饰药物的侧链和/或将在规定位置上存在的侧链之间进行交联,可以控制药物的磁性大小。引入何种官能团或者以何种方式进行交联,可以通过计算机模拟,使用者来适宜选择。
实现该计算机模拟的系统是作为计算机的具备公知的硬件资源的系统,即具备:存储器、CPU等具有运算电路的运算装置、输出运算结果的显示装置。存储器具备规定已知的有机化合物和无机化合物的三维结构的数据库、和实现计算机模拟的软件程序。该软件可以追加/变更/削除各化合物的侧链,在规定的侧链之间进行交联,计算所述的自旋-电荷密度高的区域,从而确定作为结构整体的自旋-电荷密度。作为该程序,可以利用例如市售品(Dmol3,アクセルリス公司)。
使用者对于化合部输入追加侧链的位置,或者变更侧链,或者选择削除的侧链,另外,利用存储器的支援程序指定应该形成交联的位置到运算装置。运算装置接受该输入值,运算自旋-电荷密度,并将其结果输出到显示屏幕上。另外,使用者通过在计算机系统中追加已有化合物的结构数据,可以获知已有化合物的自旋-电荷密度。
下面,对所述具有磁性的药物设计方法进行说明。图6是表示本药物设计方法的处理顺序的流程图。下面所说明的处理在基于第一原理分子动力学法的计算机模拟程序中进行。
首先,由于作为药物使用的弗司扣林衍生物存在200种以上,因此从中选定作为评价对象的弗司扣林衍生物,并将其化学式输入到计算机模拟程序中(步骤S1)。在此,假设选定上述弗司扣林生物A作为弗司扣林衍生物的情况进行以下说明。利用事先制作的化合物库来识别各化合物的衍生物的种类。使用者将各化合物的各个原子的原子序数和其位置输入至运算装置中。
图15是在步骤1的操作时显示在输出装置中的画面。如图15(1)所示,输入1个原子的元素序数和原子坐标。如图(2)所示,用鼠标单击原子之间的键合状态、例如单键、双键、三键等进行规定。
接受该输入的运算装置,根据上述程序,基于弗司扣林衍生物A的化学式,设定向上的自旋(自旋向上)波函数Φ↑(r)、向下的自旋(自旋向下)波函数Φ↓(r)、自旋向上有效电势V↑(r)、自旋向下有效电势V↓(r)、自旋向上电荷密度ρ↑(r)和自旋向下电荷密度ρ↓(r)的初始值(步骤S2)。另外,r是表示在三维空间中的坐标的变量。
在构成弗司扣林衍生物A的各原子在三维空间中作为孤立原子存在的情况下,对于每个相应原子,求得其自旋向上波函数Φ↑(r),自旋向上波函数Φ↑(r)的初始值是由此求得的所有自旋向上波函数Φ↑(r)的总和。
同样地,在各原子在三维空间中作为孤立原子存在的情况下,对于每个相应原子,求得其自旋向下波函数Φ↓(r),自旋向下波函数Φ↓(r)的初始值是它们的总和。此外,基于在构成弗司扣林衍生物A的各原子在三维空间中作为孤立原子存在的情况下的自旋向上波函数Φ↑(r),对于每个相应原子,求得其自旋向上有效电势V↑(r),自旋向上有效电势V↑(r)的初始值是对于各个相应原子已经求得的所有自旋向上有效电势V↑(r)的总和。同样地,基于在各原子在三维空间中作为孤立原子存在的情况下的自旋向下波函数Φ↓(r),对于每个相应原子,求得自旋向下有效电势V↓(r),有效电势V↓(r)的初始值是对于每个相应原子所求得的自旋向下有效电势V↓(r)的总和。
此外,通过将如上所述对于每个相应原子求得的自旋向上波函数Φ↑(r)代入下述运算式(1),求得自旋向上电荷密度ρ↑(r)的初始值。此外,通过将如上所述对于每个相应原子求得的自旋向下波函数Φ↓(r)代入下述运算式(2),求得自旋向下电荷密度ρ↓(r)的初始值。另外,在下述运算式(1)中,Φ↑*(r)是自旋向上波函数Φ↑(r)的共轭复数。在下述运算式(2)中,Φ↓*(r)是自旋向下波函数Φ↓(r)的共轭复数。
ρ(r)=ΣΦ *(r)Φ(r)···(1)
ρ(r)=ΣΦ *(r)Φ(r)···(2)
下面,基于上述自旋向上有效电势V↑(r)和自旋向下有效电势V↓(r)的初始值、以及自旋向上电荷密度ρ↑(r)和自旋向下电荷密度ρ↓(r)的初始值,求解下述Kohn Sham方程(3)和(4),由此计算弗司扣林衍生物A的自旋向上波函数Φ↑(r)、自旋向下波函数Φ↓(r)、自旋向上能量本征值ε↑和自旋向下能量本征值ε↓(步骤S3)。
[ - 1 2 ▿ 2 + V ↑ { r , ρ ↑ ( r ) } ] Φ ↑ ( r ) = ϵ ↑ Φ ↑ ( r ) · · · ( 3 )
[ - 1 2 ▿ 2 + V ↓ { r , ρ ↓ ( r ) } ] Φ ↓ ( r ) = ϵ ↓ Φ ↓ ( r ) · · · ( 4 )
然后,基于在步骤S3中求得的弗司扣林衍生物A的自旋向上波函数Φ↑(r)和自旋向下波函数Φ↓,计算弗司扣林衍生物A的自旋向上电荷密度ρ↑(r)、自旋向下电荷密度ρ↓(r)、自旋向上有效电势V↑(r)和自旋向下有效电势V↓(r)(步骤S4),判断该自旋向上电荷密度ρ↑(r)和自旋向下电荷密度ρ↓(r)是否与该自旋向上电荷密度ρ↑(r)和自旋向下电荷密度ρ↓(r)的先前值、即初始值相等(步骤S5)。在该步骤S5中,在确定为“否”、即自旋向上电荷密度ρ↑(r)和自旋向下电荷密度ρ↓(r)的先前值(初始值)与步骤S4中求得的当前值不相同的情况下,将在步骤S4中求得的自旋向上有效电势V↑(r)、自旋向下有效电势V↓(r)、自旋向上电荷密度ρ↑(r)和自旋向下电荷密度ρ↓(r)设定为新的初始值(S6),进行步骤S3,通过再次对Kohn Sham方程(3)和(4)进行求解,计算新的自旋向上波函数Φ↑(r)、自旋向下波函数Φ↓、自旋向上能量本征值ε↑和自旋向下能量本征值ε↓。即,在步骤S5中,重复步骤S3至S6的处理,直至自旋向上电荷密度ρ↑(r)和自旋向下电荷密度ρ↓(r)的先前值与当前值相等,由此求得满足Kohn Sham方程(3)和(4)的自旋向上波函数Φ↑(r)、自旋向下波函数Φ↓(r)、自旋向上能量本征值ε↑和自旋向下能量本征值ε↓。
另一方面,在步骤S5中,在确定为“是”、即自旋向上电荷密度ρ↑(r)和自旋向下电荷密度ρ↓(r)的先前值与当前值相等的情况下,如上所述,基于满足Kohn Sham方程(3)和(4)的自旋向上波函数Φ↑(r)、自旋向下波函数Φ↓(r)、自旋向上能量本征值ε↑和自旋向下能量本征值ε↓,计算出作用于各原子的原子间力,同时对弗司扣林衍生物A的结构进行最优化(步骤S7)。即,通过重复步骤S3~S6而求得的自旋向上波函数Φ↑(r)和自旋向下波函数Φ↓(r)等,在如图2所示的二维平面内的模型中为最佳值,在实践中需要考虑在三维空间中弗司扣林衍生物A的结构。
具体地,在步骤S7中,使构成弗司扣林衍生物A的各原子在三维空间中在由自旋向上波函数Φ↑(r)和自旋向下波函数Φ↓(r)推测的最优方向上仅移动规定的距离,计算此时作用于各原子的原子间力。在此时的原子间力为0、各原子没有移动的情况下,可以判断弗司扣林衍生物A的结构得到最优化。由此,计算出作用于移动后的各原子的原子间力,判断该原子间力是否为0(步骤S8)。在该步骤S8中,在“否”、即原子间力不是0、结构未得到最优化的情况下,求得各原子移动之后的结构中自旋向上波函数Φ↑(r)和自旋向下波函数Φ↓(r),同时将由该自旋向上波函数Φ↑(r)和自旋向下波函数Φ↓(r)求得的自旋向上有效电势V↑(r)、自旋向下有效电势V↓(r)、自旋向上电荷密度ρ↑(r)和自旋向下电荷密度ρ↓(r)设定为新的初始值(步骤S9),重复进行步骤S3至步骤S8的处理。在此,返回至步骤S3的原因是,根据各原子移动之后的结构变化,自旋向上波函数Φ↑(r)和自旋向下波函数Φ↓(r)发生变化。此外,存储各原子移动之后的结构,当再次进行步骤S7时,使各原子从先前结构再仅移动规定的距离。
在对所述弗司扣林衍生物A的结构进行最优化时,如图2所示,使三维结构强制变化,以使得键合在C9上的氧原子和键合在C13上的碳原子进行交联。另外,可以任意地变更用于进行所述交联而选择的原子。
另一方面,在该步骤S8中,在“是”、即作用于各原子的原子间力为0、通过Jahn-Teller效应等弗司扣林衍生物A的结构得到最优化的情况下,基于该最优化结构中的自旋向上波函数Φ↑(r)和自旋向下波函数Φ↓(r),求得如图3所示的自旋-电荷密度分布(步骤S10)。
在此,根据选定作为评价对象的弗司扣林衍生物,不会产生图3中所示的区域1~5的自旋-电荷密度分布,或者产生自旋-电荷密度分布,但存在该自旋-电荷密度的大小(即磁性强度)非常小的区域。所述弗司扣林衍生物不能判定为具有磁性。因此,基于自旋-电荷密度分布,首先判断作为评价对象而选定的弗司扣林衍生物是否具有磁性(步骤S11)。
在步骤S11中,在“否”、即作为评价对象而选定的弗司扣林衍生物不具有磁性的情况下,进行步骤S1,重新选定其他的弗司扣林衍生物再次进行磁性评价。另一方面,在步骤S11中,在“是”、即作为评价对象而选定的弗司扣林衍生物具有磁性的情况下,基于自旋-电荷密度分布判断是铁磁性还是亚铁磁性(步骤S12)。
如上所述,自旋-电荷密度分布表示自旋向上电荷密度和自旋向下电荷密度的分布,因此当这些自旋向上电荷密度和自旋向下电荷密度混合存在时,可以判断具有亚铁磁性,在仅存在自旋向上电荷密度和自旋向下电荷密度中的任一种时,可以判断具有铁磁性。
弗司扣林衍生物A,如图3所示自旋向上电荷密度(区域2~5)和自旋向下电荷密度(区域1)混合存在,因此判定为亚铁磁性的弗司扣林衍生物(步骤S13)。另一方面,例如,如果选定的弗司扣林衍生物是弗司扣林衍生物B,则如图5所示仅存在自旋向上电荷密度(区域10~12),因此判定为铁磁性的弗司扣林衍生物(步骤S14)。也可以基于自旋-电荷密度分布求得磁性强度。另外,在已述例子中,化合物的侧链在图1中是R6、R7、R13的部分,主链是从图1的结构式中除去这些侧链的部分。
如上所述,根据本药物设计方法/设计系统,可以判定用各种原子或者分子修饰侧链、并在侧链之间任意交联而成的弗司扣林衍生物的磁性,以判定具有磁性的分子模型为基础生成弗司扣林衍生物,由此可以制造具有磁性的药物。可以不使用现有的由磁性体构成的负载体(载体),而利用药物自身具有的磁性将药物引导至体内的患部。其结果可以解决目前口服给药困难、载体分子通常较大、或者在与药物分子的结合强度、亲合性方面存在的技术问题等,可以实现易于实际应用的药物传递系统。
在上述第1实施方式中,在弗司扣林衍生物A和B中,使三维结构强制变化,以使得键合在C9上的氧原子和键合在C13上的碳原子进行交联,但并不限于此,可以选择其他原子进行交联。此外,不进行交联而仅仅通过改变修饰侧链的原子或者分子,也可以判定是否具有磁性。
此外,在上述第1实施方式中,使用弗司扣林作为有机化合物进行说明。然而,并不限于此,也可以使用其它的有机化合物。以下作为其它的有机化合物,对有效用于男性勃起功能障碍治疗的组合物、更具体而言对抑制PDE5(磷酸二酯酶5)的活性的组合物(以下称为PDE5抑制剂)进行说明。另外,以该PDE5抑制剂作为有效成分的药物被用作伟哥等男性勃起功能障碍的治疗剂。
图7(a)是标准组成的PDE5抑制剂的基本分子结构模型图,而图7(b)表示通过上述药物设计方法中的计算机模拟而求得的标准组成的PDE5抑制剂的三维分子结构和自旋-电荷密度分布。另一方面,图8(a)是对标准组成的PDE5抑制剂进行侧链修饰而得到的PDE5抑制剂衍生物的基本分子结构模型图。图8(b)表示示通过上述计算机模拟而求得的PDE5抑制剂衍生物的三维分子结构和自旋-电荷密度分布。在图8(b)中,区域20~23表示向上的自旋-电荷密度,区域24~26表示向下的自旋-电荷密度。由此,PDE5抑制剂衍生物是如图8(a)所示的向上的自旋状态20’~23’和向下的自旋状态24’~26’混合存在的亚铁磁性体。
即,如这些图7和8所示,标准组成的PDE5抑制剂不具有磁性,但是通过侧链修饰而生成的PDE5抑制剂衍生物被确认具有磁性。由此,使用以具有所述磁性的PDE5抑制剂衍生物作为有效成分的男性勃起功能障碍治疗剂,结果可知,药物集中于患部而使其发挥药理作用,并且可以抑制由于与硝基制剂并用而产生的副作用。
[第2实施方式]
下面,作为第2实施方式,利用无机化合物,更具体而言,利用作为抗癌剂的顺铂来进行说明。顺铂为金属络合物(铂络合物),在抗癌剂中也被归类为铂制剂。
图9是标准组成的顺铂的基本分子结构模型图。利用在第1实施方式中说明的药物设计方法中的计算机模拟,确认该标准组成的顺铂不具有磁性。另一方面,图10(a)是对标准组成的顺铂进行侧链修饰而得到的顺铂衍生物(顺式-Pt-a3)的基本分子结构模型图,图10(b)表示通过上述计算机模拟而求得的顺铂衍生物(顺式-Pt-a3)的三维分子结构以及自旋-电荷密度分布。
在图10(b)中,区域30~32表示向上的自旋-电荷密度。由此可知,顺铂衍生物(顺式-Pt-a3)是存在如图10(a)所示的向上的自旋状态30’~32’的铁磁性体。即,通过在本药物设计方法中的计算机模拟,确认顺铂衍生物(顺式-Pt-a3)具有磁性。因此,通过使用以具有这样的磁性的顺铂衍生物(顺式-Pt-a3)作为有效成分的抗癌剂,可以使其集中于癌组织发挥药理作用,并可以抑制副作用的发生。
药物的磁性越强,可以更有效地将药物引导至患部,可以期待更强的药理作用以及对副作用的抑制。因此,本发明人通过本药物设计方法中的计算机模拟,对各种顺铂衍生物进行了磁性强度的解析。以下,对该解析结果进行说明。由于磁性强度与自旋-电荷密度存在比例关系,因此在本实施方式中进行各种顺铂衍生物中的自旋-电荷密度的解析。
首先,作为参比,将从磁铁矿(Fe3O4)的晶体上切割的总原子数为101个、一边为约的微粒设定为分子模型,通过上述计算机模拟,对电子状态和结构进行最优化之后,进行自旋-电荷密度解析。然后,以上述磁铁矿的自旋-电荷密度为标准,对于各种顺铂衍生物进行相同的自旋-电荷密度解析。图16是相当于上述的计算机模拟的步骤12的处理时的操作界面,(1)为进行比较的磁铁矿微粒的自旋-电荷密度。●表示自旋-电荷密度为正,○表示自旋电荷密度为负。(2)为计算出的自旋-电荷密度。磁性种类为亚铁磁性(自旋-电荷密度为正),相对于磁铁矿磁性强度为10%。
另外,除了顺铂衍生物之外,对于将铂(Pt)置换为钯(Pd)、铑(Rh)、铱(Ir)、金(Au)、镍(Ni)、银(Ag)、铜(Cu)、钴(Co)而得到的各种衍生物也同样进行自旋-电荷密度的解析。由此可知,将顺铂衍生物的铂置换为上述金属元素而生成的衍生物,与顺铂或顺铂衍生物同样,具有阻碍与癌细胞增殖有关的DNA的效果。
图11表示在将磁铁矿的自旋-电荷密度标准化成“1”的情况下,将各种顺铂衍生物以及将顺铂衍生物的铂置换为钯(Pd)、铑(Rh)、铱(Ir)、金(Au)、镍(Ni)、银(Ag)、铜(Cu)、钴(Co)而得到的各种衍生物的自旋-电荷密度的解析结果。
如图11所示可知,在顺铂衍生物之中,与磁铁矿相比NK121具有约60%的自旋-电荷密度,与其它的顺铂衍生物相比作为磁性药物是有效的。该顺铂衍生物NK121曾经通过安全性试验进入临床开发,但由于其抗癌作用与顺铂相当,因此认为其没有优于顺铂的优点而中止了开发。因此,如果服用该顺铂衍生物NK121依靠磁场将药物引导至患部,则药效增大,也可以显著地抑制副作用。另外,图12表示顺铂衍生物NK121的基本分子结构模型图。如该图所示,顺铂衍生物NK121是存在向上的自旋状态40’~42’的铁磁性体。
另外,将顺铂衍生物的铂(Pt)置换为钯(Pd)而得到的衍生物也具有一定程度的自旋-电荷密度,确认其为磁性体。另外,在将顺铂衍生物的铂(Pt)置换为铑(Rh)而得到的衍生物之中,发现与磁铁矿相比顺式-Rh-a3具有约50%的自旋-电荷密度,其作为磁性药物有效。另外,将顺铂衍生物的铂(Pt)置换为铱(Ir)而得到的衍生物,自旋-电荷密度非常小,认为其作为磁性药物没有大的效果。另外,将顺铂衍生物的铂(Pt)置换为金(Au)而得到的衍生物也具有一定程度的自旋-电荷密度,认为其是磁性体。
另外,发现将顺铂衍生物的铂(Pt)置换为镍(Ni)而得到的衍生物,与磁铁矿相比普遍具有约50%的自旋-电荷密度,其作为磁性药物有效。另外,将顺铂衍生物的铂(Pt)置换为银(Ag)而得到的衍生物也具有一定程度的自旋-电荷密度,确认其为磁性体。另外,将顺铂衍生物的铂(Pt)置换为铜(Cu)而得到的衍生物也具有一定程度的自旋-电荷密度,确认其为磁性体。另外,发现将顺铂衍生物的铂(Pt)置换为钴(Co)而得到的衍生物与磁铁矿相比,普遍具有非常高的约95%的自旋-电荷密度,其作为磁性药物非常有效。
如上所述,根据本实施方式中的药物设计方法,不仅对于由有机化合物构成的药物、而且对于由无机化合物构成的药物,可以由其分子模型解析是否具有磁性,通过事先对具有高磁性强度(即药效好)的药物进行研究,可以非常高效地设计有效药物。
另外,上述顺铂衍生物和将顺铂衍生物的铂置换为其他金属元素而得到的衍生物是顺式几何异构体。这样的顺式几何异构体对与癌细胞增殖有关的DNA的抑制作用比反式几何异构体强,所以将其用作抗癌剂。但是,根据本实施方式中的药物设计方法,作为对象的药物并不限于抗癌剂等顺式几何异构体,即使是由反式几何异构体构成的金属络合物或者是其他无机化合物,也可以对其是否具有磁性进行解析。因此,也可以设计由反式几何异构体构成的金属络合物或者其他无机化合物构成的、具有磁性的药物。
接着,对于将上述具有磁性的药物引导至患部的引导装置进行说明。该引导装置只要产生磁场即可,可以是各种形态的装置。例如,作为一个实例,可以考虑核磁共振成像装置(MRI:Magnetic ResonanceImaging)的应用,只要其结构是能向人体放射磁场、并控制该磁场引导药物至患部即可。另外,例如,也可以在患部的皮肤表面贴附磁铁等产生磁力的物质。从而,到达患部附近的药物在被引导至患部的同时,由于集中停留在患部,因此不会对其他正常细胞产生副作用。如果利用上述引导装置,则可以选择性地且集中地将具有磁性的药物引导至患部。
另外,利用给药至体内的药物的磁性,还可以检测该药物的体内动力学过程,例如,检测其对于癌组织等的疾病组织的聚集量。更具体而言,将具有磁性的药物作为示踪剂,通过磁性检测装置追踪药物产生的磁性来检测药物的体内动力学。通过这样的磁性检测装置,就可以检测药物从体内给药开始至其到达患部的时间等体内动力学过程,不仅能够有助于药物的研究、开发,还可以决定抗癌剂合适的给药剂量。如下所述,由于使用MRI的磁性药物的蓄积量(浓度)与MRI影像之间具有相关关系,所以通过分析MRI影像,可以明确治疗药物在疾病组织的蓄积状态,决定合适的给药剂量。
另外,利用给药至体内的药物的磁性及其药理作用,可以进行功能影像学诊断。更具体而言,对于在恶性程度高的癌组织中大量出现的蛋白质(例如被称为“P糖蛋白”的蛋白质),存在对其亲和性高的药物(例如弗司扣林)。通过使弗司扣林具有磁性,给予癌症患者弗司扣林,可以检测其向癌组织的聚集量。向癌组织的聚集量越多,可以诊断该癌的恶性程度越高,如果聚集量少,则该患者的癌可能为良性、以及·BR>F断。即,癌的恶性程度诊断可以不通过一直以来采用的活检或手术而只通过MRI影像来进行。
疾病组织不是癌,对于脑内的乙酰胆碱、5-羟色胺、多巴胺等神经递质的受体有关的疾病也同样。例如,可以通过头部的MRI影像检查与受体蛋白特异性结合的磁性药物的动向来判断阿尔茨海默型痴呆症的严重程度。
但是,已知图9所示的标准组成的顺铂,如果被给药至体内,则通过到图13所示的反应1~3的水解过程而进行水解,最终生成顺铂的水解产物[Pt(OH2)2(dien)]2+。如上所述,图9所示的标准组成的顺铂不具有磁性,但本发明人发现,按照本药物设计方法,该顺铂的水解产物[Pt(OH2)2(dien)]2+是磁性体。图14表示顺铂的水解产物[Pt(OH2)2(dien)]2+的三维分子结构和自旋-电荷密度分布。如该图所示,顺铂的水解产物[Pt(OH2)2(dien)]2+具有向上的自旋-电荷密度的区域50和51,因此发现其是铁磁性体。
由此,即使是标准组成的顺铂,由于在给药至体内之后具有磁性,因此可以通过上述引导装置将其引导至患部,另外,通过磁性检测装置来检测体内动力学过程,可以明确其向癌组织的聚集量。
图17为表示MRI原理的框图。将所述的具有磁性的药物制剂通过口服、注射、输液等方法给药后的人体暴露在磁场中。从发送线圈170向人体发射特定频率的电波。被给药的药物分子的原子核共振,自发产生电波。通过接收线圈接收该电波来合成MR影像。其结果可以从视觉上检测出在人体内药物的所在位置和动向。
由于在吸收药物的组织中构成组织的原子核与药物的原子核的状态不同,所以MRI控制单元174能够通过适当地选择发射电波的频率、分析特定原子核发出的MR信号,来区分药物的信号和组织的信号,检测出药物存在于哪个组织。
图18为MRI整体的透视图。180为检查台,将受试者置于此处,使其移入形成茶筒状的磁门(magnet gantry)182内。磁门具有磁场产生装置和检测MR信号的线圈。磁门的磁场强度预先设定为0.2、0.5、1.0或1.5Tesla(单位)。通过使受试者在磁场内移动,使给予的药物配合该磁场的移动,可以控制药物的体内动向。
由此通过使用MRI,可以检测磁性化合物的体内动向,同时也可以将磁性化合物引导至体内的靶部位。也可以将磁性化合物作为MRI造影剂使用。
除了利用MRI之外,也可以采用其他方式。对乳癌进行具体地说明。乳癌存在于乳房。如果三维地确定横向、纵向以及深度,则可以确定乳癌中的癌组织部位。事先采用MR或CT等来确定乳癌的部位。
在有癌一侧的内衣(胸罩)中装入永久磁铁。在抗癌剂给药后,穿上有磁铁的内衣。向癌组织直接注入抗癌剂。例如,向乳房的动脉注射,或注入癌组织内。随后,为了使抗癌剂不会从癌组织扩散到全身,穿上装有磁铁的胸罩。
另外,也可以采用如下的方式。静脉给予抗癌剂。静脉给药的抗癌剂,进入心脏,经过肺循环,由大动脉经过胸内动脉再注入乳房支,由此注入乳房内。在各个分支部位施加磁场来引导。即,在由大动脉胸内动脉分支的部位,向着胸内动脉的根部施加磁场来引导抗癌剂由大动脉流入胸内动脉。已知作为磁场强度,由细胞培养实验的结果可知,如果距离短则采用1Tesla(由MR使用的强度)便可以引导。对于象乳癌这样距离皮肤近的脏器,只要2Tesla就足够。MR的磁场强度通常为约1.5Tesla。作为测定灵敏度,动物实验的结果是,在T1增强影像的条件下可以得到足够的测定灵敏度。
接着,对于将药物向个体给药而由MRI得到影像的实施例进行说明。图19是采用9周龄的雌性大鼠(日本SIC公司制ddy)、将溶解于吡啶的具有磁性的铁络合物(Fe-salen,二水杨醛缩乙二胺铁)(浓度0.137mol/L)对其进行皮下注射给药后、使用MR而得到的MRI影像。将铁络合物吡啶溶液进行给药时,与给药前相比,沿着脏器与脏器的缝隙和腹腔膜可以看见造影效果。箭头部分是积留在小肠与小肠的缝隙部分的铁络合物。此时,在大鼠的腹腔中贴附着小型磁铁。在MRI分析中磁场强度设为1.5Tesla。
另外,图20显示MRI影像中具有药物的浓度依赖性。左侧是用水(2次蒸馏水(DDW))稀释吡啶原液的系列,右侧是用吡啶稀释吡啶的铁络合物饱和溶液的系列。吡啶中的铁络合物的浓度与上述相比变化至1/2…1/16,由此可以在MRI中通过影像检测出其浓度的变化。随后,在大鼠L6细胞30%融合的状态时,将可以目测观察到吸引铁络合物粉末到磁铁上的量铺在培养基上,48小时后对培养基的状态进行照相。
图21表示使具有大鼠L6细胞的培养基的矩形瓶上连接有磁棒的状态。随后,在48小时后从矩形瓶底的一端向另一端照相,计算出细胞数的结果如图22所示。在图22中距磁铁近的位置表示在矩形瓶底面的磁铁端面的投影面积内,距磁铁远的位置表示在矩形瓶底面上与磁铁端面相反侧的区域。如图22所示可知,在距磁铁近的位置铁络合物被吸引,铁络合物浓度增加,由于铁络合物的DNA抑制作用使细胞数与远位相比非常低。其结果,根据本发明,依靠具有磁性的药物和具备磁性产生装置的系统,可以将药物集中存在于作为个体目标的患部或组织。
接下来对本发明的引导装置的其他实例进行说明。该引导装置如图23所示在重力方向上相对的一对磁铁230、232通过台架234和夹钳235来支撑,在磁铁之间放置金属板236。通过在一对磁铁之间放置金属板、特别是铁板,可以产生局部上一样强的磁场。
用电磁铁代替磁铁,该引导装置可以产生可变的磁力。另外,为了能够在XYZ方向上移动一对磁力发生装置,可以将磁力产生装置移动至桌子上的固体目标。
通过将固体组织放置在该磁场区域内,可以使药物集中至该组织。向体重约30克的小鼠静脉注射上述的金属络合物(药物浓度为5mg/ml(15mM)),开腹,将小鼠放置于铁板上,使右侧肾脏置于上述的一对磁铁之间。
使用的磁铁是信越化学工业株式会社制造的产品号:N50(钕系永久磁铁),剩磁密度:1.39-1.44T。此时施于右侧肾脏的磁场约为0.3(T),施于左侧肾脏的磁场约为其1/10。与左侧肾脏以及不施加磁场的肾脏(对照)一起,在向小鼠右肾施加磁场10分钟后,用MRI在T1模式以及T2模式下测定SNR。其结果,如图24所示,确认施加磁场的右肾(RT)与左肾(LT)以及对照相比较,可以将药物停留在组织内。

Claims (3)

1.一种造影剂,含有基于自旋-电荷密度分布判断为有磁性的金属络合物,使施用于个体的金属络合物与向个体照射的电磁波共振,得到MRI影像。
2.如权利要求1所述的造影剂,金属络合物为Fe-salen。
3.如权利要求1所述的造影剂,以MRI影像来检测金属络合物的浓度变化,分析个体内的金属络合物的蓄积状态。
CN201310279332.3A 2006-06-28 2007-06-28 药物、药物引导装置、磁性检测装置和药物设计方法 Pending CN103705947A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006177971A JP2007091710A (ja) 2005-08-31 2006-06-28 薬、薬の誘導装置、磁気検出装置及び薬の設計方法
JP2006-177971 2006-06-28
JP2007056624 2007-03-07
JP2007-056624 2007-03-07

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN200780032275.1A Division CN101578098B (zh) 2006-06-28 2007-06-28 药物、药物引导装置、磁性检测装置和药物设计方法

Publications (1)

Publication Number Publication Date
CN103705947A true CN103705947A (zh) 2014-04-09

Family

ID=38845615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310279332.3A Pending CN103705947A (zh) 2006-06-28 2007-06-28 药物、药物引导装置、磁性检测装置和药物设计方法

Country Status (5)

Country Link
US (3) US8246975B2 (zh)
EP (4) EP2741226B1 (zh)
JP (2) JP5378792B2 (zh)
CN (1) CN103705947A (zh)
WO (1) WO2008001851A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116519116A (zh) * 2023-03-30 2023-08-01 苏州大学 一种掺杂型锌铜压电声敏剂及其制备方法与应用

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2741226B1 (en) * 2006-06-28 2019-02-06 IHI Corporation Magnetically guidable compound
US20090169484A1 (en) 2007-12-28 2009-07-02 Ihi Corporation Iron-salen complex
WO2010058280A1 (ja) 2008-11-20 2010-05-27 株式会社Ihi 自己磁性金属サレン錯体化合物
CA2777841C (en) 2009-11-02 2017-01-17 Francis M. Creighton Magnetomotive stator system and methods for wireless control of magnetic rotors
WO2011151978A1 (ja) 2010-06-01 2011-12-08 株式会社Ihi 蛍光色素材料及びその使用方法
US9669200B2 (en) 2010-08-06 2017-06-06 Boston Scientific Scimed, Inc. Systems and methods for the treatment of pelvic disorders including magnetic particulates
WO2012086683A1 (ja) 2010-12-21 2012-06-28 株式会社Ihi 金属サレン錯体化合物及びその製造方法
JP2012176905A (ja) * 2011-02-25 2012-09-13 Ihi Corp 金属サレン錯体化合物
JP2012167067A (ja) 2011-02-15 2012-09-06 Ihi Corp 自己磁性金属サレン錯体化合物
JP5873656B2 (ja) 2011-06-13 2016-03-01 株式会社Ihi 金属サレン錯体化合物、局所麻酔薬剤及び抗悪性腫瘍薬剤
JP6017766B2 (ja) 2011-07-26 2016-11-02 株式会社Ihi 新規な金属サレン錯体化合物の抗がん剤
JP6155190B2 (ja) 2011-10-04 2017-06-28 株式会社Ihi 金属サレン錯体化合物応答性薬剤及び金属サレン錯体化合物の体内挙動制御システム
US20150028250A1 (en) * 2011-10-06 2015-01-29 Ihi Corporation Magnetic composition and its production method
US9883878B2 (en) 2012-05-15 2018-02-06 Pulse Therapeutics, Inc. Magnetic-based systems and methods for manipulation of magnetic particles
SG11201504706VA (en) 2012-12-14 2015-07-30 Ihi Corp Magnetic substance and magnetic substance manufacturing method
WO2014104116A1 (ja) * 2012-12-27 2014-07-03 株式会社Ihi 磁性薬の適正投与形態提供システム
JP6280305B2 (ja) 2013-02-05 2018-02-14 株式会社Ihi 磁性医薬
WO2015061602A1 (en) * 2013-10-23 2015-04-30 Dow Global Technologies Llc Methods, systems, and devices for designing molecules
US11918315B2 (en) 2018-05-03 2024-03-05 Pulse Therapeutics, Inc. Determination of structure and traversal of occlusions using magnetic particles
US12171443B1 (en) 2021-03-09 2024-12-24 Pulse Therapeutics, Inc. Magnetically controlled flow generation
US11977085B1 (en) 2023-09-05 2024-05-07 Elan Ehrlich Date rape drug detection device and method of using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101253502A (zh) * 2005-08-31 2008-08-27 株式会社Ihi 药物、药物引导系统、磁性检测系统和药物设计方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7304882A (zh) * 1972-04-10 1973-10-12
GB1432563A (en) 1972-04-10 1976-04-22 Rustenburg Platinum Mines Ltd Platinum- co-ordination compounds
CA1300608C (en) * 1985-05-10 1992-05-12 Edward A. Deutsch 99 mtc (iii) myocardial imaging agents which are non-reducable in vivo
JPS6345290A (ja) * 1985-08-27 1988-02-26 Nippon Kayaku Co Ltd 新規白金錯体
US4727068A (en) * 1985-10-23 1988-02-23 Johnson Matthey, Inc. Radiosensitization by cobalt and Fe(III) complexes
US4871716A (en) 1986-02-04 1989-10-03 University Of Florida Magnetically responsive, hydrophilic microspheres for incorporation of therapeutic substances and methods of preparation thereof
JPS62192383A (ja) 1986-02-20 1987-08-22 Hidetoshi Tsuchida ポリテトラアザポルフイン鉄錯体および有機磁性材料
JP3000369B2 (ja) 1989-05-16 2000-01-17 日本酸素株式会社 酸素吸収錯体の再生方法及び酸素吸収錯体溶液を用いた酸素の分離方法
JPH0523276A (ja) * 1991-07-15 1993-02-02 Tokyo Electric Co Ltd 電気掃除機
JP2930263B2 (ja) 1991-08-12 1999-08-03 日本化薬株式会社 電子写真用トナー
JPH05216967A (ja) * 1992-02-03 1993-08-27 Hitachi Ltd 分子設計支援装置
US5403834A (en) * 1992-12-07 1995-04-04 Eukarion, Inc. Synthetic catalytic free radical scavengers useful as antioxidants for prevention and therapy of disease
US5696109A (en) 1992-12-07 1997-12-09 Eukarion, Inc. Synthetic catalytic free radical scavengers useful as antioxidants for prevention and therapy of disease
DE4301871A1 (de) 1993-01-13 1994-07-14 Diagnostikforschung Inst Neue Mittel zur Diagnose von Gefäßerkrankungen
DK0683665T3 (da) 1993-01-29 2002-04-02 Ferx Inc Magnetisk reagerende sammensætning som bærer for biologisk aktive stoffer samt fremgangsmåder til dens fremstilling og anvendelse
JPH07267857A (ja) 1994-03-31 1995-10-17 Nippon Kayaku Co Ltd 新規な炎症細胞の活性化抑制剤
JPH07296045A (ja) * 1994-04-27 1995-11-10 Hitachi Ltd 分子設計支援方法
ATE214602T1 (de) 1994-12-29 2002-04-15 Chugai Pharmaceutical Co Ltd Verstärker eines anti-tumoragens beinhaltend einen il-6 antagonisten
JP3662347B2 (ja) 1996-06-10 2005-06-22 日鉄鉱業株式会社 医療用粉体
JP3825501B2 (ja) 1996-06-10 2006-09-27 吉郎 岡見 微小物質保持担体、その懸濁系、微小物質操作装置及び微小物質位置制御方法
JPH10310796A (ja) 1997-05-14 1998-11-24 Lion Corp カビ取り剤組成物
JP3030849B2 (ja) 1997-06-18 2000-04-10 科学技術振興事業団 有機高分子化合物の強磁性を予測する方法
JPH11217385A (ja) * 1998-01-30 1999-08-10 Nihon Schering Kk 含フッ素ポルフィリン錯体およびそれを含有する造影剤
US6087368A (en) 1998-06-08 2000-07-11 Bristol-Myers Squibb Company Quinazolinone inhibitors of cGMP phosphodiesterase
JP2000269013A (ja) 1999-03-12 2000-09-29 Kanagawa Acad Of Sci & Technol 分子性磁性体
TWI224966B (en) * 1999-11-02 2004-12-11 Pfizer Pharmaceutical composition (I) useful for treating or preventing pulmonary hypertension in a patient
JP4433118B2 (ja) 2000-09-12 2010-03-17 日産化学工業株式会社 分子磁性体およびその製造方法
US6589948B1 (en) 2000-11-28 2003-07-08 Eukarion, Inc. Cyclic salen-metal compounds: reactive oxygen species scavengers useful as antioxidants in the treatment and prevention of diseases
WO2003086563A2 (en) 2002-04-11 2003-10-23 Carbomer, Inc. Diabetes imaging probes
JP4357847B2 (ja) * 2003-02-04 2009-11-04 三菱電機株式会社 物質の磁気特性を予測する方法
DE10328864A1 (de) 2003-06-26 2005-01-27 Iropa Ag Detektor für den Fadenspulenwechsel in einem fadenverarbeitenden System
GB0316912D0 (en) * 2003-07-18 2003-08-20 Oxford Instr Superconductivity Therapeutic treatment
JP2005154402A (ja) 2003-10-29 2005-06-16 Nagoya Industrial Science Research Inst 金属錯体タンパク質複合体及び酸化触媒
US20070149496A1 (en) * 2003-10-31 2007-06-28 Jack Tuszynski Water-soluble compound
RU2255734C1 (ru) * 2003-11-03 2005-07-10 Государственное образовательное учреждение высшего профессионального образования Алтайский государственный медицинский университет Минздрава России Способ лечения больных с местно-распространенными формами рака с локализацией в области слизистой оболочки ротового отдела глотки
JP2007091710A (ja) * 2005-08-31 2007-04-12 Ishikawajima Harima Heavy Ind Co Ltd 薬、薬の誘導装置、磁気検出装置及び薬の設計方法
EP2741226B1 (en) * 2006-06-28 2019-02-06 IHI Corporation Magnetically guidable compound
JP4774536B2 (ja) 2006-11-06 2011-09-14 株式会社Ihi 磁性材料、磁性材料の誘導装置及び磁性材料の設計方法
JP5167481B2 (ja) 2006-11-07 2013-03-21 株式会社Ihi 抗がん薬
US20090169484A1 (en) 2007-12-28 2009-07-02 Ihi Corporation Iron-salen complex

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101253502A (zh) * 2005-08-31 2008-08-27 株式会社Ihi 药物、药物引导系统、磁性检测系统和药物设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SYLVAIN ROUTIER 等: "DNA cleavage by hydroxyl-salicylidene-ethylendiamine-iron complexes,Sylvain Routier et al", 《NUCLEIC ACIDS RESEARCH》 *
梁宗辉等: "口服胃肠道对比剂在MRI中的应用", 《中国医学计算机成像杂志》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116519116A (zh) * 2023-03-30 2023-08-01 苏州大学 一种掺杂型锌铜压电声敏剂及其制备方法与应用

Also Published As

Publication number Publication date
JP5764632B2 (ja) 2015-08-19
JPWO2008001851A1 (ja) 2009-11-26
US20090311163A1 (en) 2009-12-17
EP2345974A1 (en) 2011-07-20
EP2741226A1 (en) 2014-06-11
EP2444912A2 (en) 2012-04-25
WO2008001851A1 (en) 2008-01-03
EP2036550A1 (en) 2009-03-18
EP2741226B1 (en) 2019-02-06
US20140214380A1 (en) 2014-07-31
US8691261B2 (en) 2014-04-08
US8246975B2 (en) 2012-08-21
US20120283505A1 (en) 2012-11-08
EP2036550A4 (en) 2009-07-15
JP2013253116A (ja) 2013-12-19
EP2444912A3 (en) 2012-07-25
EP2345974B1 (en) 2014-08-06
JP5378792B2 (ja) 2013-12-25

Similar Documents

Publication Publication Date Title
CN103705947A (zh) 药物、药物引导装置、磁性检测装置和药物设计方法
Aryal et al. Enhancement in blood-tumor barrier permeability and delivery of liposomal doxorubicin using focused ultrasound and microbubbles: evaluation during tumor progression in a rat glioma model
Wolf et al. Tumor trapping of 5-fluorouracil: in vivo 19F NMR spectroscopic pharmacokinetics in tumor-bearing humans and rabbits.
EP1920370B1 (en) Magnetic drug, magnetic drug guidance system and magnetic drug design method
Zhang et al. Biophysical mechanisms underlying the effects of static magnetic fields on biological systems
CN101578098B (zh) 药物、药物引导装置、磁性检测装置和药物设计方法
CN103495186A (zh) 一种对脑胶质瘤特异靶向的氧化锰纳米粒造影剂
JP5167481B2 (ja) 抗がん薬
Biau et al. NANO-GBM trial of AGuIX nanoparticles with radiotherapy and temozolomide in the treatment of newly diagnosed Glioblastoma: Phase 1b outcomes and MRI-based biodistribution
CA2439298A1 (en) Methods and reagents to acquire mri signals and images
EP3266465A1 (en) Immune complexes
CN1785119A (zh) 用于磁共振成像的盆部射频线圈装置
JP4279330B2 (ja) 演算装置及び局所治療薬
WO2014136905A1 (ja) 多核多重磁気共鳴画像化方法および画像化装置
Rahman Magnetic resonance imaging in personalized medicine
CN101253502A (zh) 药物、药物引导系统、磁性检测系统和药物设计方法
Vassiliou Biopsy-implantable chemical sensor
JP5533960B2 (ja) 薬、薬の誘導装置、体内動態検知器及び薬の設計方法
Subramanian et al. Improved Temporal and Spatial Resolution In Vivo Oxymetry Using Time-Domain EPR Imaging
Center Cancer Imaging with Succinate Hyperpolarization
Rivenzon-Segal et al. Glucose Metabolism in MCF7 Breast Cancer; In Vivo 13C MRS Studies
Zimmer et al. Patentability of diagnostic methods under the EPC: A new referral to the Enlarged Board of Appeal by the President of the EPO
Mallard Department of Bio-Medical Physics and Bio-Engineering University of Aberdeen and Grampian Health Board

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140409