CN103606751B - Thin substrate quasi-yagi difference beam plane horn antenna - Google Patents
Thin substrate quasi-yagi difference beam plane horn antenna Download PDFInfo
- Publication number
- CN103606751B CN103606751B CN201310620854.5A CN201310620854A CN103606751B CN 103606751 B CN103606751 B CN 103606751B CN 201310620854 A CN201310620854 A CN 201310620854A CN 103606751 B CN103606751 B CN 103606751B
- Authority
- CN
- China
- Prior art keywords
- antenna
- substrate
- horn
- quasi
- metallized via
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 67
- 239000002184 metal Substances 0.000 claims abstract description 45
- 230000005855 radiation Effects 0.000 claims abstract description 20
- 238000003491 array Methods 0.000 claims abstract description 8
- 238000001465 metallisation Methods 0.000 claims abstract 3
- 238000000034 method Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract 1
- 230000003071 parasitic effect Effects 0.000 abstract 1
- 230000010287 polarization Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Waveguide Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种喇叭天线,尤其是一种薄基片准八木差波束平面喇叭天线。 The invention relates to a horn antenna, in particular to a planar horn antenna with a thin substrate quasi-Yagi-difference beam.
背景技术 Background technique
喇叭天线在卫星通信、地面微波链路及射电望远镜等系统中有着广泛的应用。但是,三维喇叭天线的巨大几何尺寸制约了其在平面电路中的应用和发展。近年来,基片集成波导技术的提出和发展很好的促进了平面喇叭天线的发展。基片集成波导有尺寸小、重量轻、易于集成和加工制作等优点。基于基片集成波导的平面的基片集成波导平面喇叭天线除了具有喇叭天线的特点外,还很好的实现了喇叭天线的小型化、轻型化,而且易于集成在微波毫米波平面电路中。传统的基片集成波导平面喇叭天线的有一个限制,天线喇叭口基板的厚度要大于十分之一工作波长,天线才能有较好的辐射性能,不然由于反射,天线里的能量辐射不出去。这样就要求天线基板的厚度不能太薄,在L波段等较低频段要满足这个要求更是十分困难,很厚的基板不仅体积和重量很大,抵消了集成的优点,而且还增加了成本。另外这些天线辐射场的极化方向一般都是垂直于介质基板,而有些应用需要辐射场的极化平行于介质基板。已有的一些天线在平面喇叭天线前面加载贴片改善薄基片平面喇叭天线的辐射,但加载的贴片尺寸较大,而且工作频带较窄。通常为了实现差波束,需要采用特别的馈电装置,这些馈电装置或者在平面电路中不易实现,或者是窄带的移相电路。 Horn antennas are widely used in systems such as satellite communications, ground microwave links, and radio telescopes. However, the huge geometric size of the three-dimensional horn antenna restricts its application and development in planar circuits. In recent years, the proposal and development of substrate-integrated waveguide technology have greatly promoted the development of planar horn antennas. The substrate-integrated waveguide has the advantages of small size, light weight, easy integration and fabrication. The planar substrate-integrated waveguide horn antenna based on the planar substrate-integrated waveguide not only has the characteristics of the horn antenna, but also realizes the miniaturization and light weight of the horn antenna, and is easy to integrate in the microwave and millimeter-wave planar circuits. The traditional substrate-integrated waveguide planar horn antenna has a limitation. The thickness of the base plate of the antenna horn must be greater than one-tenth of the operating wavelength in order for the antenna to have better radiation performance. Otherwise, due to reflection, the energy in the antenna will not radiate out. This requires that the thickness of the antenna substrate should not be too thin, and it is very difficult to meet this requirement in lower frequency bands such as the L-band. A very thick substrate not only has a large volume and weight, which offsets the advantages of integration, but also increases the cost. In addition, the polarization direction of the radiation field of these antennas is generally perpendicular to the dielectric substrate, and some applications require the polarization of the radiation field to be parallel to the dielectric substrate. In some existing antennas, a patch is loaded in front of the planar horn antenna to improve the radiation of the thin-substrate planar horn antenna, but the size of the loaded patch is large and the working frequency band is narrow. Usually, in order to realize the difference beam, special feeding devices need to be used, and these feeding devices are either difficult to implement in planar circuits, or are narrow-band phase-shifting circuits.
发明内容 Contents of the invention
技术问题:本发明的目的是提出一种薄基片准八木差波束平面喇叭天线,该天线辐射场的极化方向与介质基板平行,可以使用非常薄的介质基板制造,在基板的电厚度很薄的情况下,依然具有优良的辐射性能,增加天线差波束的零深及提高天线差波束的斜率。 Technical problem: The purpose of this invention is to propose a thin-substrate quasi-Yagisha beam planar horn antenna. The polarization direction of the antenna radiation field is parallel to the dielectric substrate, which can be manufactured using a very thin dielectric substrate. The electrical thickness of the substrate is very small. In the thin case, it still has excellent radiation performance, increasing the zero depth of the antenna difference beam and increasing the slope of the antenna difference beam.
技术方案:本发明的薄基片准八木差波束平面喇叭天线,其特征在于该天线包括设置在介质基板上的微带馈线、基片集成喇叭天线和多个准八木天线;所述微带馈线的第一端口是该天线的输入输出端口,微带馈线的第二端口与基片集成喇叭天线相接;基片集成喇叭天线由位于介质基板一面的第一金属平面、位于介质基板另一面的第二金属平面和穿过介质基板连接第一金属平面和第二金属平面的两排金属化过孔喇叭侧壁组成,基片集成喇叭天线的两排金属化过孔喇叭侧壁之间的宽度逐渐变大,形成一个喇叭形张口,张口的末端是基片集成喇叭天线的口径面;基片集成喇叭天线中有奇数个金属化过孔阵列连接第一金属平面和第二金属平面,各个金属化过孔阵列的长度一样,金属化过孔阵列的头端在基片集成喇叭天线内部,金属化过孔阵列的尾端在基片集成喇叭天线的口径面上;在金属化过孔阵列中有一个中间金属化过孔阵列把整个天线分成对称的左半天线和右半天线两部分;相邻的两个金属化过孔阵列、或者是一个金属化过孔阵列与其相邻的一排金属化过孔喇叭侧壁,与第一金属平面和第二金属平面构成介质填充波导,在口径面外每个介质填充波导接有一个准八木天线。 Technical solution: the thin substrate quasi-Yagi difference beam planar horn antenna of the present invention is characterized in that the antenna includes a microstrip feeder arranged on a dielectric substrate, a substrate integrated horn antenna and a plurality of quasi-Yagi antennas; the microstrip feeder The first port of the antenna is the input and output port of the antenna, and the second port of the microstrip feeder is connected to the substrate-integrated horn antenna; the substrate-integrated horn antenna consists of a first metal plane located on one side of the dielectric substrate and a The second metal plane is composed of two rows of metallized via horn sidewalls passing through the dielectric substrate to connect the first metal plane and the second metal plane, and the width between the two rows of metallized via horn sidewalls of the substrate integrated horn antenna It gradually becomes larger, forming a horn-shaped opening, and the end of the opening is the aperture surface of the substrate-integrated horn antenna; in the substrate-integrated horn antenna, there are an odd number of metallized via arrays connecting the first metal plane and the second metal plane, each metal The length of the metallized via array is the same, the head end of the metallized via array is inside the substrate integrated horn antenna, and the tail end of the metallized via array is on the aperture surface of the substrate integrated horn antenna; in the metallized via array There is a middle metallized via array that divides the entire antenna into two symmetrical parts: the left half antenna and the right half antenna; two adjacent metallized via arrays, or a metallized via array and its adjacent row of metal The side wall of the horn is simplified, and the first metal plane and the second metal plane form a dielectric-filled waveguide, and each dielectric-filled waveguide is connected with a quasi-Yagi antenna outside the aperture plane.
微带馈线的导带与第一金属平面相接,微带馈线的接地面与第二金属平面相接。 The conduction band of the microstrip feeder is connected to the first metal plane, and the ground plane of the microstrip feeder is connected to the second metal plane.
介质填充波导的宽度要使得电磁波可以在其中传播而不被截止,介质填充波导的长度有半个波导波长以上。 The width of the dielectric-filled waveguide is such that electromagnetic waves can propagate therein without being cut off, and the length of the dielectric-filled waveguide is more than half the wavelength of the waveguide.
每个准八木天线由一个有源振子、一个或数个无源振子组成;有源振子在介质基板的两面分别有第一辐射臂和第二辐射臂,有源振子的第一辐射臂与基片集成喇叭天线的第一金属平面相连,有源振子的第二辐射臂与基片集成喇叭天线的第二金属平面相连,每个有源振子的第一辐射臂和第二辐射臂向相反的方向伸展;无源振子位于介质基板的任意一面或者两面都可以。 Each quasi-Yagi antenna consists of an active oscillator and one or several passive oscillators; the active oscillator has a first radiating arm and a second radiating arm on both sides of the dielectric substrate, and the first radiating arm of the active oscillator and the base The first metal plane of the chip integrated horn antenna is connected, the second radiating arm of the active oscillator is connected with the second metal plane of the chip integrated horn antenna, and the first radiating arm and the second radiating arm of each active oscillator are opposite to each other. Direction stretching; the passive vibrator can be located on either side or both sides of the dielectric substrate.
左半天线所接的所有有源振子的第一辐射臂的伸展方向都相同,左半天线所接的所有有源振子的第二辐射臂的伸展方向都相同;右半天线所接的所有有源振子的第一辐射臂的伸展方向都相同,右半天线所接的所有有源振子的第二辐射臂的伸展方向都相同;左半天线所接的有源振子的第一辐射臂的伸展方向与右半天线所接的有源振子的第二辐射臂的伸展方向相同,左半天线所接的有源振子的第二辐射臂的伸展方向与右半天线所接的有源振子的第一辐射臂的伸展方向相同。 The extension directions of the first radiating arms of all the active oscillators connected to the left half antenna are the same, and the extension directions of the second radiating arms of all the active oscillators connected to the left half antenna are the same; all the active oscillators connected to the right half antenna The extension direction of the first radiating arm of the source oscillator is the same, and the extension direction of the second radiating arm of all active oscillators connected to the right half antenna is the same; the extension direction of the first radiating arm of the active oscillator connected to the left half antenna The direction is the same as the extending direction of the second radiating arm of the active vibrator connected to the right half antenna, and the extending direction of the second radiating arm of the active vibrator connected to the left half antenna is the same as the extending direction of the second radiating arm of the active vibrator connected to the right half antenna. The stretching directions of one radial arm are the same.
金属化过孔喇叭侧壁和金属化过孔阵列中,相邻的两个金属化过孔的间距要小于或等于工作波长的十分之一,使得构成的金属化过孔喇叭侧壁和金属化过孔阵列能够等效为电壁。 In the side wall of the metallized via hole horn and the metallized via hole array, the distance between two adjacent metallized via holes should be less than or equal to one-tenth of the working wavelength, so that the formed metallized via hole horn side wall and metal The via array can be equivalent to an electric wall.
电磁波从微带馈线的一端输入,经过微带馈线的另一端进入基片集成波导喇叭天线,传播一段距离后,遇到金属化过孔阵列,就分别进入各个介质填充波导传输,进入各个介质波导的电磁波通过天线口径面进入准八木天线辐射,辐射场的极化方向也变成与基板接近平行的水平方向,由于左半天线准八木天线的辐射臂与右半天线准八木天线的辐射臂是对称的,因此左半天线准八木天线辐射场的极化方向与右半天线准八木天线辐射场的极化方向相反,这样就在平行介质基板的方向形成了差波束。准八木天线在主辐射方向,相当于一个线阵,具有较高的增益,因此相对于普通平面喇叭天线,本天线具有很高的增益,也就是增加了差波束的零深和斜率。 The electromagnetic wave is input from one end of the microstrip feeder, and enters the substrate integrated waveguide horn antenna through the other end of the microstrip feeder. After a certain distance, when it encounters a metallized via hole array, it enters each dielectric filled waveguide for transmission, and then enters each dielectric waveguide. The electromagnetic wave enters the quasi-Yagi antenna through the antenna aperture surface, and the polarization direction of the radiation field becomes a horizontal direction close to parallel with the substrate. Since the radiation arm of the left half-antenna quasi-Yagi antenna is the same as the radiation arm of the right half-antenna quasi-Yagi antenna Symmetrical, so the polarization direction of the quasi-Yagi antenna radiation field of the left half antenna is opposite to that of the right half antenna quasi-Yagi antenna radiation field, thus forming a difference beam in the direction parallel to the dielectric substrate. The quasi-Yagi antenna is equivalent to a linear array in the main radiation direction and has a high gain. Therefore, compared with the ordinary planar horn antenna, this antenna has a high gain, that is, the zero depth and slope of the difference beam are increased.
由于有多个金属化过孔阵列把天线的口径面分成很多个小的口径面,每个小口径面上接的准八木天线的尺寸可以做的很小,这样天线的结构紧凑、尺寸也只增加很少。 Since there are multiple metallized via hole arrays to divide the aperture surface of the antenna into many small aperture surfaces, the size of the quasi-Yagi antenna connected to each small aperture surface can be made very small, so that the antenna has a compact structure and a small size. The increase is very small.
天线从馈电微带线到准八木天线之间,都是封闭的基片集成波导结构,因此馈电损耗较小。 From the feed microstrip line to the quasi-Yagi antenna, the antenna is a closed substrate integrated waveguide structure, so the feed loss is small.
有益效果:本发明薄基片准八木差波束平面喇叭天线的有益效果是,该天线辐射场的极化方向与介质基板平行;该天线可以使用低于百分之二的波长的厚度的介质基板制造,远低于通常平面喇叭天线所要求的十分之一波长的基板厚度,在基板的电厚度很薄的情况下,依然具有优良的辐射性能,例如在6GHz频率,采用环氧树脂材料基板的厚度可以2.5mm减小到0.5mm,从而大大减小尺寸、重量和成本;天线可增加差波束的零深及提高天线差波束的斜率,天线的结构紧凑、馈电损耗小。 Beneficial effect: the beneficial effect of the thin-substrate quasi-Yagisha beam planar horn antenna of the present invention is that the polarization direction of the antenna radiation field is parallel to the dielectric substrate; the antenna can use a dielectric substrate with a thickness lower than 2 percent of the wavelength Manufactured, the thickness of the substrate is far lower than one-tenth of the wavelength required by the usual planar horn antenna, and it still has excellent radiation performance when the electrical thickness of the substrate is very thin. For example, at 6GHz frequency, epoxy resin material substrate is used The thickness of the antenna can be reduced from 2.5mm to 0.5mm, thereby greatly reducing size, weight and cost; the antenna can increase the zero depth of the difference beam and increase the slope of the antenna difference beam, and the antenna has a compact structure and low feed loss.
附图说明 Description of drawings
下面结合附图对本发明进一步说明。 The present invention will be further described below in conjunction with the accompanying drawings.
图1为本发明薄基片准八木差波束平面喇叭天线的结构示意图。 FIG. 1 is a structural schematic diagram of a thin-substrate quasi-Yagiji beam planar horn antenna of the present invention.
图中有:介质基板1、微带馈线2、基片集成喇叭天线3、准八木天线阵列4;微带馈线2的第一端口5、微带馈线2的第二端口6、介质基板1的第一金属平面7、介质基板1的第二金属平面8、金属化过孔喇叭侧壁9、天线3的口径面10、金属化过孔阵列11、金属化过孔阵列11的头端12、金属化过孔阵列11的尾端13、中间金属化过孔阵列14、左半天线15、右半天线16、介质填充波导17、微带馈线2的导带18、微带馈线2的接地面19、有源振子20、无源振子21、第一辐射臂22和第二辐射臂23。 In the figure, there are: dielectric substrate 1, microstrip feeder 2, substrate integrated horn antenna 3, quasi-Yagi antenna array 4; first port 5 of microstrip feeder 2, second port 6 of microstrip feeder 2, and dielectric substrate 1 The first metal plane 7, the second metal plane 8 of the dielectric substrate 1, the metallized via hole horn side wall 9, the aperture surface 10 of the antenna 3, the metallized via hole array 11, the head end 12 of the metallized via hole array 11, The tail end 13 of the metallized via array 11, the middle metallized via array 14, the left half antenna 15, the right half antenna 16, the dielectric filled waveguide 17, the conduction band 18 of the microstrip feeder 2, and the ground plane of the microstrip feeder 2 19. Active oscillator 20 , passive oscillator 21 , first radiating arm 22 and second radiating arm 23 .
具体实施方式 Detailed ways
本发明所采用的实施方案是:薄基片准八木差波束平面喇叭天线包括设置在介质基板1上的微带馈线2、基片集成喇叭天线3和多个准八木天线4;所述微带馈线2的第一端口5是该天线的输入输出端口,微带馈线2的第二端口6与基片集成喇叭天线3相接;基片集成喇叭天线3由位于介质基板1一面的第一金属平面7、位于介质基板1另一面的第二金属平面8和穿过介质基板1连接第一金属平面7和第二金属平面8的两排金属化过孔喇叭侧壁9组成,基片集成喇叭天线3的两排金属化过孔喇叭侧壁9之间的宽度逐渐变大,形成一个喇叭形张口,张口的末端是基片集成喇叭天线3的口径面10;基片集成喇叭天线3中有奇数个金属化过孔阵列11连接第一金属平面7和第二金属平面8,各个金属化过孔阵列11的长度一样,金属化过孔阵列11的头端12在基片集成喇叭天线3内部,金属化过孔阵列11的尾端13在基片集成喇叭天线3的口径面10上;在金属化过孔阵列11中有一个中间金属化过孔阵列14把整个天线分成对称的左半天线15和右半天线16两部分;相邻的两个金属化过孔阵列11、或者是一个金属化过孔阵列11与其相邻的一排金属化过孔喇叭侧壁9,与第一金属平面7和第二金属平面8构成介质填充波导17,在口径面10外每个介质填充波导17接有一个准八木天线4。 The embodiment that the present invention adopts is: the thin substrate quasi Yagi difference beam planar horn antenna includes the microstrip feeder 2 that is arranged on the dielectric substrate 1, the substrate integrated horn antenna 3 and a plurality of quasi Yagi antennas 4; The first port 5 of the feeder 2 is the input and output port of the antenna, and the second port 6 of the microstrip feeder 2 is connected to the substrate-integrated horn antenna 3; The plane 7, the second metal plane 8 located on the other side of the dielectric substrate 1, and two rows of metallized via-hole horn sidewalls 9 passing through the dielectric substrate 1 to connect the first metal plane 7 and the second metal plane 8, the substrate integrates the horn The width between the horn side walls 9 of the two rows of metallized via holes of the antenna 3 gradually increases to form a horn-shaped opening, and the end of the opening is the aperture surface 10 of the substrate-integrated horn antenna 3; the substrate-integrated horn antenna 3 has An odd number of metallized via arrays 11 connects the first metal plane 7 and the second metal plane 8, each metallized via array 11 has the same length, and the head end 12 of the metallized via array 11 is inside the substrate integrated horn antenna 3 , the tail end 13 of the metallized via hole array 11 is on the aperture surface 10 of the substrate integrated horn antenna 3; in the metallized via hole array 11, there is a middle metallized via hole array 14 to divide the whole antenna into a symmetrical left half antenna 15 and the right half antenna 16 two parts; two adjacent metallized via hole arrays 11, or a row of metallized via hole horn sidewalls 9 adjacent to a metallized via hole array 11, and the first metal plane 7 and the second metal plane 8 form a dielectric-filled waveguide 17, and each dielectric-filled waveguide 17 is connected with a quasi-Yagi antenna 4 outside the aperture plane 10.
微带馈线2的导带18与第一金属平面7相接,微带馈线2的接地面19与第二金属平面8相接。 The conduction strip 18 of the microstrip feeder 2 is in contact with the first metal plane 7 , and the ground plane 19 of the microstrip feeder 2 is in contact with the second metal plane 8 .
介质填充波导17的宽度要使得电磁波可以在其中传播而不被截止,介质填充波导17的长度有半个波导波长以上。 The width of the dielectric-filled waveguide 17 is such that electromagnetic waves can propagate therein without being cut off, and the length of the dielectric-filled waveguide 17 is more than half the wavelength of the waveguide.
每个准八木天线4由一个有源振子20、一个或数个无源振子21组成;有源振子20在介质基板1的两面分别有第一辐射臂22和第二辐射臂23,有源振子20的第一辐射臂22与基片集成喇叭天线3的第一金属平面7相连,有源振子20的第二辐射臂23与基片集成喇叭天线3的第二金属平面8相连,每个有源振子20的第一辐射臂22和第二辐射臂23向相反的方向伸展;无源振子22位于介质基板1的任意一面或者两面都可以。 Each quasi-Yagi antenna 4 is composed of an active oscillator 20 and one or several passive oscillators 21; the active oscillator 20 has a first radiating arm 22 and a second radiating arm 23 on both sides of the dielectric substrate 1, and the active oscillator The first radiating arm 22 of 20 is connected to the first metal plane 7 of the substrate-integrated horn antenna 3, the second radiating arm 23 of the active oscillator 20 is connected to the second metal plane 8 of the substrate-integrated horn antenna 3, and each has The first radiating arm 22 and the second radiating arm 23 of the source oscillator 20 extend in opposite directions; the passive oscillator 22 can be located on any side or both sides of the dielectric substrate 1 .
左半天线15所接的所有有源振子20的第一辐射臂22的伸展方向都相同,左半天线15所接的所有有源振子20的第二辐射臂23的伸展方向都相同;右半天线16所接的所有有源振子20的第一辐射臂22的伸展方向都相同,右半天线16所接的所有有源振子20的第二辐射臂23的伸展方向都相同;左半天线15所接的有源振子20的第一辐射臂22的伸展方向与右半天线16所接的有源振子20的第二辐射臂23的伸展方向相同,左半天线15所接的有源振子20的第二辐射臂23的伸展方向与右半天线16所接的有源振子20的第一辐射臂22的伸展方向相同。 The extension directions of the first radiating arms 22 of all active oscillators 20 connected to the left half antenna 15 are the same, and the extension directions of the second radiating arms 23 of all active oscillators 20 connected to the left half antenna 15 are all the same; The extension directions of the first radiating arms 22 of all the active oscillators 20 connected to the line 16 are the same, and the extension directions of the second radiating arms 23 of all the active oscillators 20 connected to the right half antenna 16 are all the same; the left half antenna 15 The extending direction of the first radiating arm 22 of the connected active dipole 20 is the same as the extending direction of the second radiating arm 23 of the active dipole 20 connected to the right half antenna 16, and the extending direction of the active dipole 20 connected to the left half antenna 15 The extending direction of the second radiating arm 23 is the same as the extending direction of the first radiating arm 22 of the active dipole 20 connected to the right half antenna 16 .
金属化过孔喇叭侧壁9和金属化过孔阵列11中,相邻的两个金属化过孔的间距要小于或等于工作波长的十分之一,使得构成的金属化过孔喇叭侧壁9和金属化过孔阵列11能够等效为电壁。 In the metallized via horn sidewall 9 and the metallized via hole array 11, the distance between two adjacent metallized via holes should be less than or equal to one tenth of the operating wavelength, so that the formed metallized via horn sidewall 9 and the metallized via hole array 11 can be equivalent to electrical walls.
在设计时,金属化过孔阵列11的长度一般要使得介质填充波导17的长度有半个波导波长以上才能使天线有较大的增益。 During design, the length of the metallized via hole array 11 generally needs to make the length of the dielectric-filled waveguide 17 more than half the wavelength of the waveguide so that the antenna can have greater gain.
在工艺上,薄基片准八木差波束平面喇叭天线既可以采用普通的印刷电路板(PCB)工艺,也可以采用低温共烧陶瓷(LTCC)工艺或者CMOS、Si基片等集成电路工艺实现。其中金属化过孔可以是空心金属通孔也可以是实心金属孔,也可以是连续的金属化壁,金属通孔的形状可以是圆形,也可以是方形或者其他形状的。 In terms of technology, the thin-substrate quasi-Yagisha beam planar horn antenna can be realized by either ordinary printed circuit board (PCB) technology, low-temperature co-fired ceramic (LTCC) technology or integrated circuit technology such as CMOS and Si substrates. The metallized via hole can be a hollow metal via hole or a solid metal hole, or a continuous metallized wall, and the shape of the metal via hole can be circular, square or other shapes.
在结构上,依据同样的原理,可以增加或者减少金属化过孔阵列11的数量,进而改变准八木天线4的数量和尺寸,只要保证介质填充波导17能够传输主模。 In terms of structure, according to the same principle, the number of metallized via hole arrays 11 can be increased or decreased, and then the number and size of quasi-Yagi antennas 4 can be changed, as long as the dielectric-filled waveguide 17 can transmit the main mode.
根据以上所述,便可实现本发明。 According to the above, the present invention can be realized.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310620854.5A CN103606751B (en) | 2013-11-29 | 2013-11-29 | Thin substrate quasi-yagi difference beam plane horn antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310620854.5A CN103606751B (en) | 2013-11-29 | 2013-11-29 | Thin substrate quasi-yagi difference beam plane horn antenna |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103606751A CN103606751A (en) | 2014-02-26 |
CN103606751B true CN103606751B (en) | 2015-11-18 |
Family
ID=50124963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310620854.5A Expired - Fee Related CN103606751B (en) | 2013-11-29 | 2013-11-29 | Thin substrate quasi-yagi difference beam plane horn antenna |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103606751B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1937316A (en) * | 2006-10-20 | 2007-03-28 | 东南大学 | Single-pulse chip integrated waveguide slot array antenna |
CN101075702A (en) * | 2007-06-19 | 2007-11-21 | 东南大学 | Printing antenna with baseplate integrated waveguide feeder |
CN102324627A (en) * | 2011-09-06 | 2012-01-18 | 电子科技大学 | Miniaturized Substrate Integrated Multi-beam Antenna |
CN103022715A (en) * | 2012-12-21 | 2013-04-03 | 东南大学 | Planar horn antenna for phase calibration |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2258022A4 (en) * | 2008-03-18 | 2012-10-31 | Shi Cheng | Substrate integrated waveguide |
-
2013
- 2013-11-29 CN CN201310620854.5A patent/CN103606751B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1937316A (en) * | 2006-10-20 | 2007-03-28 | 东南大学 | Single-pulse chip integrated waveguide slot array antenna |
CN101075702A (en) * | 2007-06-19 | 2007-11-21 | 东南大学 | Printing antenna with baseplate integrated waveguide feeder |
CN102324627A (en) * | 2011-09-06 | 2012-01-18 | 电子科技大学 | Miniaturized Substrate Integrated Multi-beam Antenna |
CN103022715A (en) * | 2012-12-21 | 2013-04-03 | 东南大学 | Planar horn antenna for phase calibration |
Non-Patent Citations (1)
Title |
---|
Broadband Millimeter-Wave Quasi-Yagi Antenna Using Substrate Integrated Waveguide Technique;Zhenyu Zhang,Ke Wu;《Radio and Wireless Symposium, 2008 IEEE》;20080124;第671-674页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103606751A (en) | 2014-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103594807B (en) | Thin substrate amplitude correction broadband difference-beam planar horn antenna | |
CN103594812B (en) | Thin substrate broadband difference-beam planar horn antenna | |
CN103594804B (en) | Thin substrate slot-line planar horn antenna | |
CN103594816B (en) | Thin substrate phasing slot-line planar horn antenna | |
CN103618145B (en) | The accurate Yagi spark gap planar horn antenna of thin substrate | |
CN103594806B (en) | Thin substrate amplitude correction slot-line planar horn antenna | |
CN103606752B (en) | Thin substrate phasing broadband difference-beam planar horn antenna | |
CN103606750B (en) | The accurate Yagi spark gap planar horn antenna of thin substrate phasing | |
CN103618143B (en) | Thin substrate oscillator difference beam plane horn antenna | |
CN103606754B (en) | Thin substrate phase amplitude corrects accurate Yagi spark gap difference beam planar horn antenna | |
CN103606746B (en) | Thin substrate broadband planar horn antenna | |
CN103606751B (en) | Thin substrate quasi-yagi difference beam plane horn antenna | |
CN103594819B (en) | Thin substrate phase amplitude corrects broadband planar horn antenna | |
CN103594813B (en) | thin substrate amplitude correction quasi-Yagi planar horn antenna | |
CN103594814B (en) | Thin substrate phasing surface of oscillator horn antenna | |
CN103618146B (en) | Thin substrate phasing broadband planar horn antenna | |
CN103594809B (en) | Thin substrate amplitude correction broadband planar horn antenna | |
CN103594810B (en) | Thin substrate amplitude correction surface of oscillator horn antenna | |
CN103594815B (en) | Thin substrate surface of oscillator horn antenna | |
CN103606753B (en) | Thin substrate phase amplitude corrects oscillator difference-beam planar horn antenna | |
CN103594805B (en) | Thin substrate amplitude correction slot-line difference-beam planar horn antenna | |
CN103594808B (en) | Thin substrate slot-line difference-beam planar horn antenna | |
CN103606749B (en) | The accurate Yagi spark gap difference beam planar horn antenna of thin substrate phasing | |
CN103594811B (en) | Thin substrate amplitude correction oscillator difference-beam planar horn antenna | |
CN103618142B (en) | thin substrate amplitude correction quasi-Yagi difference beam planar horn antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151118 Termination date: 20181129 |
|
CF01 | Termination of patent right due to non-payment of annual fee |