CN103606750B - The accurate Yagi spark gap planar horn antenna of thin substrate phasing - Google Patents
The accurate Yagi spark gap planar horn antenna of thin substrate phasing Download PDFInfo
- Publication number
- CN103606750B CN103606750B CN201310619406.3A CN201310619406A CN103606750B CN 103606750 B CN103606750 B CN 103606750B CN 201310619406 A CN201310619406 A CN 201310619406A CN 103606750 B CN103606750 B CN 103606750B
- Authority
- CN
- China
- Prior art keywords
- substrate
- antenna
- horn antenna
- yagi
- vias
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Waveguide Aerials (AREA)
Abstract
薄基片相位校正准八木平面喇叭天线涉及一种喇叭天线。该天线包括在介质基板(1)上的微带馈线(2)、喇叭天线(3)和多个准八木天线(4),喇叭天线(3)由第一金属平面(7)、第二金属平面(8)和两排金属化过孔喇叭侧壁(9)组成,喇叭天线(3)中有金属化过孔阵列(11)和介质填充波导(14),在喇叭天线(3)的口径面(10)上,每个介质填充波导(14)都接有一个由有源振子(17)和无源振子(18)组成的准八木天线(4)。电磁波可同相到达准八木天线再辐射,辐射场的极化方向与基板平行。该天线可使用薄基板制造且增益高、成本低和结构紧凑。
The thin-substrate phase-corrected quasi-Yagi planar horn antenna relates to a horn antenna. The antenna includes a microstrip feeder (2), a horn antenna (3) and multiple quasi Yagi antennas (4) on a dielectric substrate (1). The horn antenna (3) consists of a first metal plane (7), a second metal Composed of a plane (8) and two rows of metallized via-hole horn sidewalls (9), the horn antenna (3) has a metallized via-hole array (11) and a dielectric-filled waveguide (14), and the aperture of the horn antenna (3) On the surface (10), each dielectric-filled waveguide (14) is connected with a quasi-Yagi antenna (4) composed of an active vibrator (17) and a passive vibrator (18). Electromagnetic waves can reach the quasi-Yagi antenna in the same phase and then radiate, and the polarization direction of the radiation field is parallel to the substrate. The antenna can be fabricated using a thin substrate and has high gain, low cost and compact structure.
Description
技术领域 technical field
本发明涉及一种喇叭天线,尤其是一种薄基片相位校正准八木平面喇叭天线。 The invention relates to a horn antenna, in particular to a thin substrate phase-corrected quasi-Yagi planar horn antenna.
背景技术 Background technique
喇叭天线在卫星通信、地面微波链路及射电望远镜等系统中有着广泛的应用。但是,三维喇叭天线的巨大几何尺寸制约了其在平面电路中的应用和发展。近年来,基片集成波导技术的提出和发展很好的促进了平面喇叭天线的发展。基片集成波导有尺寸小、重量轻、易于集成和加工制作等优点。基于基片集成波导的平面的基片集成波导平面喇叭天线除了具有喇叭天线的特点外,还很好的实现了喇叭天线的小型化、轻型化,而且易于集成在微波毫米波平面电路中。传统的基片集成波导平面喇叭天线的有一个限制,天线喇叭口基板的厚度要大于十分之一工作波长,天线才能有较好的辐射性能,不然由于反射,天线里的能量辐射不出去。这样就要求天线基板的厚度不能太薄,在L波段等较低频段要满足这个要求更是十分困难,很厚的基板不仅体积和重量很大,抵消了集成的优点,而且还增加了成本。另外这些天线辐射场的极化方向一般都是垂直于介质基板,而有些应用需要辐射场的极化平行于介质基板。已有的一些天线在平面喇叭天线前面加载贴片改善薄基片平面喇叭天线的辐射,但加载的贴片尺寸较大,而且工作频带较窄。另外传统的基片集成波导平面喇叭天线的增益相对比较低,其原因在于由于喇叭口不断的张开,导致电磁波传播到喇叭口径面时出现相位不同步,辐射方向性和增益降低。目前已有采用介质加载、介质棱镜等方法,矫正喇叭口径场,但是这些相位校准结构增加了天线的整体结构尺寸。 Horn antennas are widely used in systems such as satellite communications, ground microwave links, and radio telescopes. However, the huge geometric size of the three-dimensional horn antenna restricts its application and development in planar circuits. In recent years, the proposal and development of substrate-integrated waveguide technology have greatly promoted the development of planar horn antennas. The substrate-integrated waveguide has the advantages of small size, light weight, easy integration and fabrication. The planar substrate-integrated waveguide horn antenna based on the planar substrate-integrated waveguide not only has the characteristics of the horn antenna, but also realizes the miniaturization and light weight of the horn antenna, and is easy to integrate in the microwave and millimeter-wave planar circuits. The traditional substrate-integrated waveguide planar horn antenna has a limitation. The thickness of the base plate of the antenna horn must be greater than one-tenth of the operating wavelength in order for the antenna to have better radiation performance. Otherwise, due to reflection, the energy in the antenna will not radiate out. This requires that the thickness of the antenna substrate should not be too thin, and it is very difficult to meet this requirement in lower frequency bands such as the L-band. A very thick substrate not only has a large volume and weight, which offsets the advantages of integration, but also increases the cost. In addition, the polarization direction of the radiation field of these antennas is generally perpendicular to the dielectric substrate, and some applications require the polarization of the radiation field to be parallel to the dielectric substrate. In some existing antennas, a patch is loaded in front of the planar horn antenna to improve the radiation of the thin-substrate planar horn antenna, but the size of the loaded patch is large and the working frequency band is narrow. In addition, the gain of the traditional substrate-integrated waveguide planar horn antenna is relatively low. The reason is that due to the continuous opening of the horn mouth, the phase is out of sync when the electromagnetic wave propagates to the horn aperture surface, and the radiation directivity and gain are reduced. At present, methods such as dielectric loading and dielectric prisms have been used to correct the horn aperture field, but these phase alignment structures increase the overall structural size of the antenna.
发明内容 Contents of the invention
技术问题:本发明的目的是提出一种薄基片相位校正准八木平面喇叭天线,该天线辐射场的极化方向与介质基板平行,可以使用非常薄的介质基板制造,在基板的电厚度很薄的情况下,依然具有优良的辐射性能,而且该平面喇叭天线可以矫正天线口径面上电磁波的相位不一致。 Technical problem: The purpose of this invention is to propose a thin substrate phase correction quasi-Yagi planar horn antenna. The polarization direction of the antenna radiation field is parallel to the dielectric substrate, which can be manufactured using a very thin dielectric substrate. The electrical thickness of the substrate is very small. In the thin case, it still has excellent radiation performance, and the planar horn antenna can correct the phase inconsistency of electromagnetic waves on the antenna aperture plane.
技术方案:本发明的薄基片相位校正准八木平面喇叭天线,其特征在于该天线包括设置在介质基板上的微带馈线、基片集成喇叭天线和多个准八木天线;所述微带馈线的第一端口是该天线的输入输出端口,微带馈线的第二端口与基片集成喇叭天线相接;基片集成喇叭天线由位于介质基板一面的第一金属平面、位于介质基板另一面的第二金属平面和穿过介质基板连接第一金属平面和第二金属平面的两排金属化过孔喇叭侧壁组成,基片集成喇叭天线的两排金属化过孔喇叭侧壁之间的宽度逐渐变大,形成一个喇叭形张口,张口的末端是基片集成喇叭天线的口径面;基片集成喇叭天线中有金属化过孔阵列连接第一金属平面和第二金属平面,金属化过孔阵列的头端在基片集成喇叭天线内部,金属化过孔阵列的尾端在基片集成喇叭天线的口径面上;相邻的两个金属化过孔阵列、或者是一个金属化过孔阵列与其相邻的一排金属化过孔喇叭侧壁,与第一金属平面和第二金属平面构成介质填充波导,在口径面外每个介质填充波导接有一个准八木天线。 Technical solution: The thin substrate phase correction quasi-Yagi planar horn antenna of the present invention is characterized in that the antenna includes a microstrip feeder arranged on a dielectric substrate, a substrate integrated horn antenna and a plurality of quasi-Yagi antennas; the microstrip feeder The first port of the antenna is the input and output port of the antenna, and the second port of the microstrip feeder is connected to the substrate-integrated horn antenna; the substrate-integrated horn antenna consists of a first metal plane located on one side of the dielectric substrate and a The second metal plane is composed of two rows of metallized via horn sidewalls passing through the dielectric substrate to connect the first metal plane and the second metal plane, and the width between the two rows of metallized via horn sidewalls of the substrate integrated horn antenna Gradually become larger, forming a horn-shaped opening, the end of the opening is the aperture surface of the substrate-integrated horn antenna; the substrate-integrated horn antenna has an array of metallized vias connecting the first metal plane and the second metal plane, and the metallized vias The head end of the array is inside the substrate integrated horn antenna, and the tail end of the metallized via hole array is on the aperture surface of the substrate integrated horn antenna; two adjacent metallized via hole arrays, or a metallized via hole array A row of metallized through-hole horn side walls adjacent to it form a dielectric-filled waveguide with the first metal plane and the second metal plane, and a quasi-Yagi antenna is connected to each dielectric-filled waveguide outside the aperture plane.
微带馈线的导带与第一金属平面相接,微带馈线的接地面与第二金属平面相接。 The conduction band of the microstrip feeder is connected to the first metal plane, and the ground plane of the microstrip feeder is connected to the second metal plane.
介质填充波导的宽度要使得电磁波可以在其中传播而不被截止。 The width of the dielectric-filled waveguide is such that electromagnetic waves can propagate through it without being blocked.
所述的金属化过孔阵列中,调整相邻两列金属化过孔阵列之间的距离、或者调整一列金属化过孔阵列与基片集成波导喇叭天线侧壁金属化过孔之间的距离,能够改变介质填充波导的宽度,进而调整在该介质填充波导(14)中电磁波传播的相速,使得到达口径面上电磁波的相位分布更均匀。 In the metallized via hole array, adjust the distance between two adjacent metallized via hole arrays, or adjust the distance between a row of metallized via hole arrays and the metallized via hole on the side wall of the substrate integrated waveguide horn antenna , the width of the medium-filled waveguide can be changed, and then the phase velocity of the electromagnetic wave propagating in the medium-filled waveguide (14) can be adjusted, so that the phase distribution of the electromagnetic wave reaching the aperture surface is more uniform.
所述的金属化过孔阵列中,改变一列或者多列金属化过孔阵列的长度能够改变相应介质填充波导的长度,使得到达口径面上电磁波的相位分布更均匀。 In the metallized via array, changing the length of one or more rows of the metallized via array can change the length of the corresponding medium-filled waveguide, so that the phase distribution of the electromagnetic wave reaching the aperture surface is more uniform.
每个准八木天线由一个有源振子、一个或数个无源振子组成;有源振子在介质基板的两面分别有第一辐射臂和第二辐射臂,准八木天线有源振子的第一辐射臂与基片集成喇叭天线的第一金属平面相连,准八木天线有源振子的第二辐射臂与基片集成喇叭天线的第二金属平面相连,每个准八木天线有源振子的第一辐射臂和第二辐射臂向相反的方向伸展;无源振子位于介质基板的任意一面或者两面都可以。 Each quasi-Yagi antenna consists of an active oscillator and one or several passive oscillators; the active oscillator has a first radiating arm and a second radiating arm on both sides of the dielectric substrate, and the first radiating arm of the quasi-Yagi antenna active oscillator The arm is connected to the first metal plane of the substrate-integrated horn antenna, the second radiating arm of the quasi-Yagi antenna active oscillator is connected to the second metal plane of the substrate-integrated horn antenna, and the first radiating arm of each quasi-Yagi antenna active oscillator The arm and the second radiating arm extend in opposite directions; the passive oscillator can be located on any side or both sides of the dielectric substrate.
金属化过孔喇叭侧壁和金属化过孔阵列中,相邻的两个金属化过孔的间距要小于或等于工作波长的十分之一,使得构成的金属化过孔喇叭侧壁和金属化过孔阵列能够等效为电壁。 In the side wall of the metallized via hole horn and the metallized via hole array, the distance between two adjacent metallized via holes should be less than or equal to one-tenth of the working wavelength, so that the formed metallized via hole horn side wall and metal The via array can be equivalent to an electric wall.
在介质填充波导中,电磁波主模(TE10模)的传播相速与介质填充波导的宽度有关,介质填充波导的宽度越宽,主模传播的相速越低;反之,介质填充波导的宽度越窄,主模传播的相速越高。电磁波从微带馈线的一端输入,经过微带馈线的另一端进入基片集成波导喇叭天线,传播一段距离后,遇到金属化过孔阵列,就分别进入各个介质填充波导传输。 In the dielectric-filled waveguide, the propagation phase velocity of the main mode (TE10 mode) of the electromagnetic wave is related to the width of the dielectric-filled waveguide. The wider the dielectric-filled waveguide, the lower the phase velocity of the main mode propagation; conversely, the wider the dielectric-filled waveguide Narrower, the higher the phase velocity of the main mode propagation. The electromagnetic wave is input from one end of the microstrip feeder, and enters the substrate-integrated waveguide horn antenna through the other end of the microstrip feeder. After propagating for a certain distance, it encounters a metallized via hole array, and then enters each medium-filled waveguide for transmission.
在天线口径面上电磁波的相位分布主要由各个介质填充波导的长度和宽度决定,调整相邻金属化过孔阵列之间的距离,就可以调节介质填充波导的宽度,进而就可以调节电磁波在各个介质波导传输的相对相速;调整金属化过孔阵列的长度就相当于调节介质填充波导的长度,这样就可以使得通过各个介质填充波导的电磁波同相到达天线的口径面,这样在天线口径面上每个介质填充波导端口的相位都一样。 The phase distribution of electromagnetic waves on the antenna aperture plane is mainly determined by the length and width of each dielectric-filled waveguide. Adjusting the distance between adjacent metallized via hole arrays can adjust the width of the dielectric-filled waveguide, and then the electromagnetic wave can be adjusted in each The relative phase velocity of the dielectric waveguide transmission; adjusting the length of the metallized via hole array is equivalent to adjusting the length of the dielectric-filled waveguide, so that the electromagnetic waves passing through each dielectric-filled waveguide reach the aperture surface of the antenna in the same phase, so that on the antenna aperture surface The phase of each dielectric-filled waveguide port is the same.
以上述方式就可以控制在天线口径面上电磁波的相位分布,如果使得通过每个介质填充波导传输电磁波同相到达天线口径面,进而同相的进入每个准八木天线辐射,辐射场的极化方向也变成与基板接近平行的水平方向,这样不仅可以使得在电薄基片的情况下,整个天线具有优良的辐射性能,也达到提高天线的口径效率和增益的目的。而且准八木天线在主辐射方向,相当于一个线阵,具有较高的增益,因此相对于普通平面喇叭天线,本天线具有很高的增益。 The phase distribution of electromagnetic waves on the antenna aperture surface can be controlled in the above-mentioned manner. If the electromagnetic waves transmitted through each medium-filled waveguide reach the antenna aperture surface in the same phase, and then enter each quasi-Yagi antenna radiation in the same phase, the polarization direction of the radiation field will also be The horizontal direction is close to parallel to the substrate, which not only enables the entire antenna to have excellent radiation performance in the case of an electrically thin substrate, but also achieves the purpose of improving the aperture efficiency and gain of the antenna. Moreover, the quasi-Yagi antenna is equivalent to a linear array in the main radiation direction and has high gain. Therefore, compared with ordinary planar horn antennas, this antenna has high gain.
由于有多个金属化过孔阵列把天线的口径面分成很多个小的口径面,每个小口径面上接的准八木天线的尺寸可以做的很小,这样天线的结构紧凑、尺寸也只增加很少。 Since there are multiple metallized via hole arrays to divide the aperture surface of the antenna into many small aperture surfaces, the size of the quasi-Yagi antenna connected to each small aperture surface can be made very small, so that the antenna has a compact structure and a small size. The increase is very small.
天线从馈电微带线到准八木天线之间,都是封闭的基片集成波导结构,因此馈电损耗较小。 From the feed microstrip line to the quasi-Yagi antenna, the antenna is a closed substrate integrated waveguide structure, so the feed loss is small.
同理也可以按照需要在天线的口径面上实现特定的相位分布。 Similarly, a specific phase distribution can also be realized on the aperture plane of the antenna as required.
有益效果:本发明薄基片相位校正准八木平面喇叭天线的有益效果是,该天线辐射场的极化方向与介质基板平行;该天线可以使用低于百分之二的波长的厚度的介质基板制造,远低于通常平面喇叭天线所要求的十分之一波长的基板厚度,在基板的电厚度很薄的情况下,依然具有优良的辐射性能,例如在6GHz频率,采用环氧树脂材料基板的厚度可以2.5mm减小到0.5mm,从而大大减小尺寸、重量和成本;而且该平面喇叭天线内部嵌有金属化过孔阵列可以矫正天线口径面上电磁波的相位不一致,天线的增益高、结构紧凑、馈电损耗小。 Beneficial effect: the beneficial effect of the thin substrate phase correction quasi-Yagi planar horn antenna of the present invention is that the polarization direction of the antenna radiation field is parallel to the dielectric substrate; the antenna can use a dielectric substrate with a thickness lower than 2 percent of the wavelength Manufactured, the thickness of the substrate is far lower than one-tenth of the wavelength required by the usual planar horn antenna, and it still has excellent radiation performance when the electrical thickness of the substrate is very thin. For example, at 6GHz frequency, epoxy resin material substrate is used The thickness of the horn antenna can be reduced from 2.5mm to 0.5mm, thereby greatly reducing the size, weight and cost; and the planar horn antenna is embedded with a metallized via array to correct the phase inconsistency of the electromagnetic wave on the antenna aperture surface, and the gain of the antenna is high. Compact structure, small feed loss.
附图说明 Description of drawings
下面结合附图对本发明进一步说明。 The present invention will be further described below in conjunction with the accompanying drawings.
图1为本发明薄基片相位校正准八木平面喇叭天线的结构示意图。 Fig. 1 is a structural schematic diagram of a thin-substrate phase-corrected quasi-Yagi planar horn antenna of the present invention.
图中有:介质基板1、微带馈线2、基片集成喇叭天线3、准八木天线阵列4;微带馈线2的第一端口5、微带馈线2的第二端口6、介质基板1的第一金属平面7、介质基板1的第二金属平面8、金属化过孔喇叭侧壁9、天线3的口径面10、金属化过孔阵列11、金属化过孔阵列11的头端12、金属化过孔阵列11的尾端13、介质填充波导14、微带馈线2的导带15、微带馈线2的接地面16、有源振子17、无源振子18、第一辐射臂19和第二辐射臂20。 In the figure, there are: dielectric substrate 1, microstrip feeder 2, substrate integrated horn antenna 3, quasi-Yagi antenna array 4; first port 5 of microstrip feeder 2, second port 6 of microstrip feeder 2, and dielectric substrate 1 The first metal plane 7, the second metal plane 8 of the dielectric substrate 1, the metallized via hole horn side wall 9, the aperture surface 10 of the antenna 3, the metallized via hole array 11, the head end 12 of the metallized via hole array 11, The tail end 13 of the metallized via hole array 11, the dielectric filled waveguide 14, the conduction band 15 of the microstrip feeder 2, the ground plane 16 of the microstrip feeder 2, the active oscillator 17, the passive oscillator 18, the first radiation arm 19 and The second radiating arm 20 .
具体实施方式 detailed description
本发明所采用的实施方案是:薄基片相位校正准八木平面喇叭天线包括设置在介质基板1上的微带馈线2、基片集成喇叭天线3和多个准八木天线4;所述微带馈线2的第一端口5是该天线的输入输出端口,微带馈线2的第二端口6与基片集成喇叭天线3相接;基片集成喇叭天线3由位于介质基板1一面的第一金属平面7、位于介质基板1另一面的第二金属平面8和穿过介质基板1连接第一金属平面7和第二金属平面8的两排金属化过孔喇叭侧壁9组成,基片集成喇叭天线3的两排金属化过孔喇叭侧壁9之间的宽度逐渐变大,形成一个喇叭形张口,张口的末端是基片集成喇叭天线3的口径面10;基片集成喇叭天线3中有金属化过孔阵列11连接第一金属平面7和第二金属平面8,金属化过孔阵列11的头端12在基片集成喇叭天线3内部,金属化过孔阵列11的尾端13在基片集成喇叭天线3的口径面10上;相邻的两个金属化过孔阵列11、或者是一个金属化过孔阵列11与其相邻的一排金属化过孔喇叭侧壁9,与第一金属平面7和第二金属平面8构成介质填充波导14,在口径面10外每个介质填充波导14接有一个准八木天线4。 The embodiment that the present invention adopts is: the thin substrate phase correction quasi-Yagi planar horn antenna includes the microstrip feeder 2 that is arranged on the dielectric substrate 1, the substrate integrated horn antenna 3 and a plurality of quasi-Yagi antennas 4; The first port 5 of the feeder 2 is the input and output port of the antenna, and the second port 6 of the microstrip feeder 2 is connected to the substrate-integrated horn antenna 3; The plane 7, the second metal plane 8 located on the other side of the dielectric substrate 1, and two rows of metallized via-hole horn sidewalls 9 passing through the dielectric substrate 1 to connect the first metal plane 7 and the second metal plane 8, the substrate integrates the horn The width between the horn side walls 9 of the two rows of metallized via holes of the antenna 3 gradually increases to form a horn-shaped opening, and the end of the opening is the aperture surface 10 of the substrate-integrated horn antenna 3; the substrate-integrated horn antenna 3 has The metallized via array 11 connects the first metal plane 7 and the second metal plane 8, the head end 12 of the metallized via array 11 is inside the substrate integrated horn antenna 3, and the tail end 13 of the metallized via array 11 is inside the substrate. On the aperture surface 10 of the chip integrated horn antenna 3; two adjacent metallized via hole arrays 11, or a row of metallized via hole horn sidewalls 9 adjacent to a metallized via hole array 11, and the first The metal plane 7 and the second metal plane 8 form a dielectric-filled waveguide 14, and each dielectric-filled waveguide 14 is connected with a quasi-Yagi antenna 4 outside the aperture plane 10.
微带馈线2的导带15与第一金属平面7相接,微带馈线2的接地面16与第二金属平面8相接。 The conduction strip 15 of the microstrip feeder 2 is in contact with the first metal plane 7 , and the ground plane 16 of the microstrip feeder 2 is in contact with the second metal plane 8 .
介质填充波导14的宽度要使得电磁波可以在其中传播而不被截止。 The width of the dielectric-filled waveguide 14 is such that electromagnetic waves can propagate therein without being blocked.
所述的金属化过孔阵列11中,调整相邻两列金属化过孔阵列11之间的距离、或者调整一列金属化过孔阵列11与基片集成波导喇叭天线3侧壁金属化过孔9之间的距离,能够改变介质填充波导14的宽度,进而调整在该介质填充波导14中电磁波传播的相速,使得到达口径面10上电磁波的相位分布更均匀。 In the metallized via hole array 11, adjust the distance between two adjacent metallized via hole arrays 11, or adjust the metallized via hole between one row of metallized via hole arrays 11 and the side wall of the substrate integrated waveguide horn antenna 3 The distance between 9 can change the width of the medium-filled waveguide 14, and then adjust the phase velocity of the electromagnetic wave propagating in the medium-filled waveguide 14, so that the phase distribution of the electromagnetic wave reaching the aperture surface 10 is more uniform.
所述的金属化过孔阵列11中,改变一列或者多列金属化过孔阵列11的长度能够改变相应介质填充波导14的长度,使得到达口径面10上电磁波的相位分布更均匀。 In the metallized via array 11 , changing the length of one or more columns of the metallized via array 11 can change the length of the corresponding dielectric-filled waveguide 14 , so that the phase distribution of the electromagnetic waves arriving at the aperture surface 10 is more uniform.
每个准八木天线4由一个有源振子17、一个或数个无源振子18组成;有源振子17在介质基板1的两面分别有第一辐射臂19和第二辐射臂20,准八木天线4有源振子17的第一辐射臂19与基片集成喇叭天线3的第一金属平面7相连,准八木天线4有源振子17的第二辐射臂20与基片集成喇叭天线3的第二金属平面8相连,每个准八木天线4有源振子17的第一辐射臂19和第二辐射臂20向相反的方向伸展;无源振子18位于介质基板1的任意一面或者两面都可以。 Each quasi-Yagi antenna 4 is composed of an active oscillator 17 and one or several passive oscillators 18; the active oscillator 17 has a first radiating arm 19 and a second radiating arm 20 on both sides of the dielectric substrate 1, and the quasi-Yagi antenna 4 The first radiating arm 19 of the active vibrator 17 is connected to the first metal plane 7 of the substrate-integrated horn antenna 3, and the quasi-Yagi antenna 4 The second radiating arm 20 of the active vibrator 17 is connected to the second metal plane 7 of the substrate-integrated horn antenna 3. The metal planes 8 are connected, and the first radiating arm 19 and the second radiating arm 20 of the active oscillator 17 of each quasi-Yagi antenna 4 extend in opposite directions; the passive oscillator 18 can be located on any side or both sides of the dielectric substrate 1 .
所述的金属化过孔喇叭侧壁9和金属化过孔阵列11中,相邻的两个金属化过孔的间距要小于或等于工作波长的十分之一,使得构成的金属化过孔喇叭侧壁9和金属化过孔阵列11能够等效为电壁。 In the metallized via hole horn side wall 9 and the metallized via hole array 11, the distance between two adjacent metallized via holes should be less than or equal to one-tenth of the working wavelength, so that the formed metallized via hole The horn side wall 9 and the metallized via hole array 11 can be equivalent to electrical walls.
在设计时,调节电磁波到达天线口径面10的相位主要通过调节在介质填充波导14电磁波的相速和介质填充波导14的长度,因此就要改变介质填充波导14的宽度,所以就需要调节金属化过孔阵列11的位置和长度。 During design, adjusting the phase of the electromagnetic wave arriving at the antenna aperture surface 10 is mainly by adjusting the phase velocity of the electromagnetic wave in the dielectric-filled waveguide 14 and the length of the dielectric-filled waveguide 14, so it is necessary to change the width of the dielectric-filled waveguide 14, so it is necessary to adjust the metallization The position and length of the via array 11.
在工艺上,薄基片相位校正准八木平面喇叭天线既可以采用普通的印刷电路板(PCB)工艺,也可以采用低温共烧陶瓷(LTCC)工艺或者CMOS、Si基片等集成电路工艺实现。其中金属化过孔可以是空心金属通孔也可以是实心金属孔,也可以是连续的金属化壁,金属通孔的形状可以是圆形,也可以是方形或者其他形状的。 In terms of technology, the thin-substrate phase-corrected quasi-Yagi planar horn antenna can be realized by either ordinary printed circuit board (PCB) technology, low-temperature co-fired ceramic (LTCC) technology or integrated circuit technology such as CMOS and Si substrates. The metallized via hole can be a hollow metal via hole or a solid metal hole, or a continuous metallized wall, and the shape of the metal via hole can be circular, square or other shapes.
在结构上,依据同样的原理,可以增加或者减少金属化过孔阵列11的数量,进而改变准八木天线4的数量和尺寸,只要保证介质填充波导14能够传输主模。由于越靠近天线的金属化过孔侧壁9,电磁波到达天线口径面10的路程越远,因此相对于离金属化过孔侧壁9较远的介质填充波导14,离金属化过孔侧壁9较近的介质填充波导14的宽度相对较窄以得到较高的电磁波传输相速。金属化过孔阵列11阵列的形状可以是直线、折线或其它曲线。 In terms of structure, according to the same principle, the number of metallized via hole arrays 11 can be increased or decreased, and then the number and size of quasi-Yagi antennas 4 can be changed, as long as the dielectric-filled waveguide 14 can transmit the main mode. Since the closer to the metallized via sidewall 9 of the antenna, the farther the electromagnetic wave travels to the antenna aperture surface 10, the distance from the metallized via sidewall 9 The width of the closer dielectric-filled waveguide 14 is relatively narrow to obtain a higher phase velocity of electromagnetic wave transmission. The shape of the metallized via hole array 11 may be a straight line, a zigzag line or other curves.
根据以上所述,便可实现本发明。 According to the above, the present invention can be realized.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310619406.3A CN103606750B (en) | 2013-11-29 | 2013-11-29 | The accurate Yagi spark gap planar horn antenna of thin substrate phasing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310619406.3A CN103606750B (en) | 2013-11-29 | 2013-11-29 | The accurate Yagi spark gap planar horn antenna of thin substrate phasing |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103606750A CN103606750A (en) | 2014-02-26 |
CN103606750B true CN103606750B (en) | 2016-03-23 |
Family
ID=50124962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310619406.3A Expired - Fee Related CN103606750B (en) | 2013-11-29 | 2013-11-29 | The accurate Yagi spark gap planar horn antenna of thin substrate phasing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103606750B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10530060B2 (en) * | 2016-10-28 | 2020-01-07 | Huawei Technologies Canada Co., Ltd | Single-layered end-fire circularly polarized substrate integrated waveguide horn antenna |
CN112034406B (en) * | 2020-08-26 | 2023-04-14 | 中国航空工业集团公司济南特种结构研究所 | Phase calibration method for portable electrical thickness tester |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101075702A (en) * | 2007-06-19 | 2007-11-21 | 东南大学 | Printing antenna with baseplate integrated waveguide feeder |
CN102324627A (en) * | 2011-09-06 | 2012-01-18 | 电子科技大学 | Miniaturized Substrate Integrated Multi-beam Antenna |
CN103022715A (en) * | 2012-12-21 | 2013-04-03 | 东南大学 | Planar horn antenna for phase calibration |
-
2013
- 2013-11-29 CN CN201310619406.3A patent/CN103606750B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101075702A (en) * | 2007-06-19 | 2007-11-21 | 东南大学 | Printing antenna with baseplate integrated waveguide feeder |
CN102324627A (en) * | 2011-09-06 | 2012-01-18 | 电子科技大学 | Miniaturized Substrate Integrated Multi-beam Antenna |
CN103022715A (en) * | 2012-12-21 | 2013-04-03 | 东南大学 | Planar horn antenna for phase calibration |
Non-Patent Citations (1)
Title |
---|
Broadband Millimeter-Wave Quasi-Yagi Antenna Using Substrate Integrated Waveguide Technique;Zhenyu Zhang,Ke Wu;《Radio and Wireless Symposium, 2008 IEEE》;20080124;第671-674页 * |
Also Published As
Publication number | Publication date |
---|---|
CN103606750A (en) | 2014-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103022715B (en) | Planar horn antenna for phase calibration | |
CN103594807B (en) | Thin substrate amplitude correction broadband difference-beam planar horn antenna | |
CN103594816B (en) | Thin substrate phasing slot-line planar horn antenna | |
CN103594812B (en) | Thin substrate broadband difference-beam planar horn antenna | |
CN103606750B (en) | The accurate Yagi spark gap planar horn antenna of thin substrate phasing | |
CN103594806B (en) | Thin substrate amplitude correction slot-line planar horn antenna | |
CN103594804B (en) | Thin substrate slot-line planar horn antenna | |
CN103606752B (en) | Thin substrate phasing broadband difference-beam planar horn antenna | |
CN103618145B (en) | The accurate Yagi spark gap planar horn antenna of thin substrate | |
CN103606754B (en) | Thin substrate phase amplitude corrects accurate Yagi spark gap difference beam planar horn antenna | |
CN103618146B (en) | Thin substrate phasing broadband planar horn antenna | |
CN103594814B (en) | Thin substrate phasing surface of oscillator horn antenna | |
CN103594813B (en) | thin substrate amplitude correction quasi-Yagi planar horn antenna | |
CN103606746B (en) | Thin substrate broadband planar horn antenna | |
CN103594810B (en) | Thin substrate amplitude correction surface of oscillator horn antenna | |
CN103618143B (en) | Thin substrate oscillator difference beam plane horn antenna | |
CN103594809B (en) | Thin substrate amplitude correction broadband planar horn antenna | |
CN103606753B (en) | Thin substrate phase amplitude corrects oscillator difference-beam planar horn antenna | |
CN103606749B (en) | The accurate Yagi spark gap difference beam planar horn antenna of thin substrate phasing | |
CN103594819B (en) | Thin substrate phase amplitude corrects broadband planar horn antenna | |
CN103618144B (en) | Thin substrate phasing oscillator difference-beam planar horn antenna | |
CN103618147B (en) | Thin substrate phase amplitude correction slot-line planar horn antenna | |
CN103594822B (en) | Thin substrate phase amplitude corrects accurate Yagi spark gap planar horn antenna | |
CN103594818B (en) | Thin substrate phasing slot-line difference-beam planar horn antenna | |
CN103594815B (en) | Thin substrate surface of oscillator horn antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160323 Termination date: 20181129 |