CN103208510B - Semiconductor device and manufacturing method thereof - Google Patents
Semiconductor device and manufacturing method thereof Download PDFInfo
- Publication number
- CN103208510B CN103208510B CN201210013845.5A CN201210013845A CN103208510B CN 103208510 B CN103208510 B CN 103208510B CN 201210013845 A CN201210013845 A CN 201210013845A CN 103208510 B CN103208510 B CN 103208510B
- Authority
- CN
- China
- Prior art keywords
- doped region
- epitaxial layer
- semiconductor device
- conductivity type
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 76
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 41
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 239000003989 dielectric material Substances 0.000 claims description 26
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 12
- 229920005591 polysilicon Polymers 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 7
- 238000005468 ion implantation Methods 0.000 claims description 6
- 239000012808 vapor phase Substances 0.000 claims description 3
- 238000009792 diffusion process Methods 0.000 claims description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 13
- 150000004706 metal oxides Chemical class 0.000 description 13
- 230000005669 field effect Effects 0.000 description 12
- 238000005229 chemical vapour deposition Methods 0.000 description 9
- 230000012010 growth Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000000407 epitaxy Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 210000000746 body region Anatomy 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/64—Double-diffused metal-oxide semiconductor [DMOS] FETs
- H10D30/66—Vertical DMOS [VDMOS] FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
- H10D62/105—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]
- H10D62/109—Reduced surface field [RESURF] PN junction structures
- H10D62/111—Multiple RESURF structures, e.g. double RESURF or 3D-RESURF structures
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
Description
技术领域 technical field
本发明涉及一种半导体装置,特别是有关于一种具有超接面(superjunction)结构的半导体装置及其制造方法。The present invention relates to a semiconductor device, in particular to a semiconductor device with a superjunction structure and a manufacturing method thereof.
背景技术 Background technique
图1绘示出现有的N型垂直式扩散金属氧化物半场效晶体管(verticaldouble-diffused MOSFET,VDMOSFET)剖面示意图。N型垂直式扩散金属氧化物半场效晶体管10包括:一半导体基底及位于其上的一栅极结构。半导体基底内具有一N型外延(epitaxy)漂移(drift region)区100及位于其上方的P型基体(base)区102而形成P-N接面。再者,N型外延漂移区100下方具有一漏极区106,其连接至一漏极电极114。P型基体区102内具有一源极区104,其连接至一源极电极112。栅极结构由一栅极介电层108及位于其上的栅极电极110所构成。FIG. 1 shows a schematic cross-sectional view of a conventional N-type vertical double-diffused MOSFET (VDMOSFET). The N-type vertical diffused metal oxide semiconductor field effect transistor 10 includes: a semiconductor substrate and a gate structure located thereon. The semiconductor substrate has an N-type epitaxy drift region 100 and a P-type base region 102 above it to form a P-N junction. Furthermore, there is a drain region 106 under the N-type epitaxial drift region 100 , which is connected to a drain electrode 114 . The P-type body region 102 has a source region 104 connected to a source electrode 112 . The gate structure is composed of a gate dielectric layer 108 and a gate electrode 110 thereon.
为了提升N型垂直式扩散金属氧化物半场效晶体管10中P-N接面的耐压(withstand voltage),必须降低N型外延漂移区100的掺杂浓度及/或提升其厚度。然而,以上述方式来提升P-N接面的耐压时,同时也会增加N型垂直式扩散金属氧化物半场效晶体管10的导通电阻(Ron)。亦即,导通电阻会受到N型外延漂移区的掺杂浓度与厚度的限制。In order to increase the withstand voltage of the P-N junction in the N-type VMOSFET 10 , it is necessary to reduce the doping concentration and/or increase the thickness of the N-type epitaxial drift region 100 . However, when the withstand voltage of the P-N junction is increased in the above manner, the on-resistance (Ron) of the N-type VMOSFET 10 will also be increased at the same time. That is, the on-resistance is limited by the doping concentration and thickness of the N-type epitaxial drift region.
具有超接面(Super-junction)结构的垂直式扩散金属氧化物半场效晶体管可以提高N型外延漂移区的掺质浓度,进而提升P-N接面的耐压,同时能够避免导通电阻的增加。然而,由于现行的超接面结构需进行多次外延成长,且外延成长的次数取决于P-N接面的耐压大小,因此,上述超接面结构的制做会有工艺繁复以及制造成本高等缺点。The vertical diffused metal oxide semi-field effect transistor with super-junction structure can increase the dopant concentration in the N-type epitaxial drift region, thereby increasing the withstand voltage of the P-N junction, and at the same time avoiding the increase of the on-resistance . However, since the current superjunction structure requires multiple epitaxial growths, and the number of epitaxial growths depends on the withstand voltage of the P-N junction, the fabrication of the above superjunction structure has disadvantages such as complicated process and high manufacturing cost. .
因此,有必要寻求一种具有超接面结构的半导体装置,其能够改善或解决上述问题。Therefore, it is necessary to seek a semiconductor device with a superjunction structure, which can improve or solve the above-mentioned problems.
发明内容 Contents of the invention
本发明一实施例提供一种半导体装置,包括:多个第一外延层,叠置于一基底上,且第一外延层及基底具有一第一导电类型,其中每一第一外延层内具有至少一第一掺杂区及与其相邻的至少一第二掺杂区,第一掺杂区具有一第二导电类型,且第二掺杂区具有第一导电类型;一第二外延层,设置于第一外延层上,且具有第一导电类型,其中第二外延层内具有一沟槽,露出下方的第一掺杂区;一第三掺杂区,邻近于沟槽的一侧壁,且具有第二导电类型,其中第二外延层与第一、第二、及第三掺杂区的掺杂浓度大于第一外延层的掺杂浓度;以及一栅极结构,设置于第二掺杂区上方的第二外延层上。An embodiment of the present invention provides a semiconductor device, including: a plurality of first epitaxial layers stacked on a substrate, and the first epitaxial layers and the substrate have a first conductivity type, wherein each first epitaxial layer has a at least one first doped region and at least one second doped region adjacent thereto, the first doped region has a second conductivity type, and the second doped region has a first conductivity type; a second epitaxial layer, It is arranged on the first epitaxial layer and has the first conductivity type, wherein there is a trench in the second epitaxial layer, exposing the first doped region below; a third doped region, adjacent to the side wall of the trench , and has a second conductivity type, wherein the doping concentration of the second epitaxial layer and the first, second, and third doped regions is greater than that of the first epitaxial layer; and a gate structure is arranged on the second on the second epitaxial layer above the doped region.
本发明另一实施例提供一种半导体装置的制造方法,包括:在一基底上形成叠置的多个第一外延层,且在每一第一外延层内形成至少一第一掺杂区及与其相邻的至少一第二掺杂区,其中第一外延层、基底及第二掺杂区具有一第一导电类型,且第一掺杂区具有一第二导电类型;在第一外延层上形成一第二外延层,其具有第一导电类型;在第二外延层内形成一沟槽,以露出下方的第一掺杂区;在沟槽的一侧壁上形成一第三掺杂区,其具有第二导电类型,其中第二外延层与第一、第二、及第三掺杂区的掺杂浓度大于每一第一外延层的掺杂浓度;以及在第二掺杂区上方的第二外延层上形成一栅极结构。Another embodiment of the present invention provides a method for manufacturing a semiconductor device, including: forming a plurality of stacked first epitaxial layers on a substrate, and forming at least one first doped region and At least one second doped region adjacent to it, wherein the first epitaxial layer, the substrate and the second doped region have a first conductivity type, and the first doped region has a second conductivity type; in the first epitaxial layer Form a second epitaxial layer with the first conductivity type; form a trench in the second epitaxial layer to expose the first doped region below; form a third doped region on the side wall of the trench a region having a second conductivity type, wherein the doping concentration of the second epitaxial layer and the first, second, and third doped regions is greater than the doping concentration of each of the first epitaxial layer; and in the second doped region A gate structure is formed on the upper second epitaxial layer.
根据本发明实施例的半导体装置及制造方法,能够避免导通电阻的增加,并可简化工艺及降低制造成本。According to the semiconductor device and the manufacturing method of the embodiments of the present invention, the increase of the on-resistance can be avoided, and the process can be simplified and the manufacturing cost can be reduced.
附图说明 Description of drawings
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的限定。在附图中:The drawings described here are used to provide further understanding of the present invention, constitute a part of the application, and do not limit the present invention. In the attached picture:
图1绘示出现有的N型垂直式扩散金属氧化物半场效晶体管剖面示意图。FIG. 1 shows a schematic cross-sectional view of a conventional N-type vertical diffused metal oxide half field effect transistor.
图2A至图2G绘示出根据本发明一实施例的半导体装置的制造方法剖面示意图。2A to 2G are schematic cross-sectional views illustrating a manufacturing method of a semiconductor device according to an embodiment of the present invention.
图3A至图3C绘示出根据本发明另一实施例的半导体装置的制造方法剖面示意图。3A to 3C are schematic cross-sectional views illustrating a method of manufacturing a semiconductor device according to another embodiment of the present invention.
图4A至图4C绘示出根据本发明另一实施例的半导体装置的制造方法剖面示意图。4A to 4C are schematic cross-sectional views illustrating a method of manufacturing a semiconductor device according to another embodiment of the present invention.
图5A至图5C绘示出根据本发明另一实施例的半导体装置的制造方法剖面示意图。5A to 5C are schematic cross-sectional views illustrating a manufacturing method of a semiconductor device according to another embodiment of the present invention.
附图标号:Figure number:
现有技术:current technology:
10~N型垂直式扩散金属氧化物半场效晶体管;10~N type vertical diffused metal oxide half field effect transistor;
100~N型外延漂移区;100 ~ N-type epitaxial drift region;
102~P型基体区;102~P-type matrix region;
104~源极区;104~source region;
106~漏极区;106~drain region;
108~栅极电极层;108~gate electrode layer;
110~栅极电极;110~gate electrode;
112~源极电极;112~source electrode;
114~漏极电极。114 ~ drain electrode.
实施例:Example:
20、20’、20”、20”’~半导体装置;20, 20’, 20”, 20”’~semiconductor device;
200~基底;200~base;
200a~第四掺杂区;200a to the fourth doped region;
200b~第五掺杂区;200b to the fifth doped region;
201、203、408~掺杂工艺;201, 203, 408~doping process;
201a~第六掺杂区;201a~sixth doped region;
203a~第七掺杂区;203a~the seventh doped region;
204~第一外延层;204~the first epitaxial layer;
204a~第一掺杂区;204a~the first doped region;
204b~第二掺杂区;204b~the second doped region;
206~第二外延层;206~the second epitaxial layer;
206a~沟槽;206a~groove;
208~硬掩膜;208~hard mask;
208a~开口;208a~opening;
210~绝缘衬垫层;210~insulation liner layer;
212、212’、212”、212”’~第三掺杂区;212, 212', 212", 212"'~the third doped region;
308~掺杂层;308~doped layer;
310~介电材料层;310~dielectric material layer;
228~栅极介电层;228~gate dielectric layer;
230~栅极电极;230~gate electrode;
232~井区;232~well area;
234~源极区;234~source region;
A~主动区;A~Active area;
B~界面。B ~ interface.
具体实施方式 Detailed ways
以下说明本发明实施例的半导体装置及其制造方法。然而,可轻易了解本发明所提供的实施例仅用于说明以特定方法制作及使用本发明,并非用以局限本发明的范围。The semiconductor device and its manufacturing method according to the embodiment of the present invention will be described below. However, it can be easily understood that the embodiments provided in the present invention are only used to illustrate the making and use of the present invention in a specific way, and are not intended to limit the scope of the present invention.
请参照图2G,其绘示出根据本发明一实施例的半导体装置剖面示意图。本发明实施例的半导体装置20包括具有超接面结构的垂直式扩散金属氧化物半场效晶体管(VDMOSFET)。在本实施例中,半导体装置20包括:多个第一外延层204、一第二外延层206及至少一栅极结构。第一外延层204叠置于一基底200上,且每一第一外延层204及基底200具有一第一导电类型。如图2G所示,基底200可包括一主动区(active region)A和围绕主动区A的一终端(termination)区(未绘示)。在一实施例中,主动区A提供半导体元件形成于其上,而终端区做为不同半导体装置之间的绝缘。Please refer to FIG. 2G , which shows a schematic cross-sectional view of a semiconductor device according to an embodiment of the present invention. The semiconductor device 20 of the embodiment of the present invention includes a vertical diffused metal oxide half field effect transistor (VDMOSFET) having a super junction structure. In this embodiment, the semiconductor device 20 includes: a plurality of first epitaxial layers 204 , a second epitaxial layer 206 and at least one gate structure. The first epitaxial layer 204 is stacked on a substrate 200 , and each of the first epitaxial layer 204 and the substrate 200 has a first conductivity type. As shown in FIG. 2G , the substrate 200 may include an active region A and a termination region (not shown) surrounding the active region A. Referring to FIG. In one embodiment, the active region A provides semiconductor devices to be formed thereon, and the terminal region serves as insulation between different semiconductor devices.
每一第一外延层204内具有多个第一掺杂区204a及与第一掺杂区204a交替排列的多个第二掺杂区204b,使每一第二掺杂区204b与至少一第一掺杂区204a相邻,或者每一第一掺杂区204a与至少一第二掺杂区204b相邻。此处,为了简化图式,仅绘示出一第二掺杂区204b及与其相邻的二个第一掺杂区204a。再者,第一掺杂区204a具有不同于第一导电类型的一第二导电类型,而第二掺杂区204b具有第一导电类型。Each first epitaxial layer 204 has a plurality of first doped regions 204a and a plurality of second doped regions 204b alternately arranged with the first doped regions 204a, so that each second doped region 204b and at least one first doped region One doped region 204a is adjacent, or each first doped region 204a is adjacent to at least one second doped region 204b. Here, to simplify the drawing, only one second doped region 204b and two adjacent first doped regions 204a are shown. Moreover, the first doped region 204a has a second conductivity type different from the first conductivity type, and the second doped region 204b has the first conductivity type.
第二外延层206设置于叠置的第一外延层204上,且具有第一导电类型。第二外延层206内具有多个沟槽206a,且每一沟槽206a对应于下方的每一第一掺杂区204a,且每一沟槽206a的底部露出对应的第一掺杂区204a。再者,多个第三掺杂区212对应于沟槽206a,且每一第三掺杂区212邻近于对应的沟槽206a的一侧壁。在本实施例中,第三掺杂区212位于对应的沟槽206a内,且包括一外延层或一多晶硅层。再者,第二外延层206与第一掺杂区204a、第二掺杂区204b及第三掺杂区212的掺杂浓度大于每一第一外延层204的掺杂浓度。The second epitaxial layer 206 is disposed on the stacked first epitaxial layer 204 and has the first conductivity type. The second epitaxial layer 206 has a plurality of trenches 206a, and each trench 206a corresponds to each first doped region 204a below, and the bottom of each trench 206a exposes the corresponding first doped region 204a. Furthermore, the plurality of third doped regions 212 correspond to the trench 206a, and each third doped region 212 is adjacent to a sidewall of the corresponding trench 206a. In this embodiment, the third doped region 212 is located in the corresponding trench 206 a and includes an epitaxial layer or a polysilicon layer. Moreover, the doping concentration of the second epitaxial layer 206 and the first doped region 204 a , the second doped region 204 b and the third doped region 212 is greater than that of each first epitaxial layer 204 .
在本实施例中,基底200具有一第四掺杂区200a及位于其上的一第五掺杂区200b,其中第四杂区200a与第五掺杂区200b之间具有一界面B。在一实施例中,第四掺杂区200a可由一半导体材料所构成,而第五掺杂区200b则由外延层所构成。在另一实施例中,具有不同掺杂浓度的第四掺杂区200a及第五掺杂区200b形成于同一半导体材料所构成的基底200内。In this embodiment, the substrate 200 has a fourth doped region 200a and a fifth doped region 200b thereon, wherein an interface B exists between the fourth doped region 200a and the fifth doped region 200b. In one embodiment, the fourth doped region 200a is formed of a semiconductor material, and the fifth doped region 200b is formed of an epitaxial layer. In another embodiment, the fourth doped region 200 a and the fifth doped region 200 b with different doping concentrations are formed in the substrate 200 made of the same semiconductor material.
在本实施例中,第四掺杂区200a与第五掺杂区200b具有第一导电类型,且第四掺杂区200a可为一重掺杂区,而第五掺杂区200b可为一轻掺杂区。再者,第五掺杂区200b内具有多个第六掺杂区201a及与第六掺杂区201a交替排列的多个第七掺杂区203a,使每一第七掺杂区203a与至少一第六掺杂区201a相邻,或者每一第六掺杂区201a与至少一第七掺杂区203a相邻。此处,为了简化图式,仅绘示出一第七掺杂区203a及与其相邻的二个第六掺杂区201a。In this embodiment, the fourth doped region 200a and the fifth doped region 200b have the first conductivity type, and the fourth doped region 200a may be a heavily doped region, and the fifth doped region 200b may be a lightly doped region. doped region. Furthermore, the fifth doped region 200b has a plurality of sixth doped regions 201a and a plurality of seventh doped regions 203a arranged alternately with the sixth doped regions 201a, so that each seventh doped region 203a is compatible with at least A sixth doped region 201a is adjacent, or each sixth doped region 201a is adjacent to at least one seventh doped region 203a. Here, to simplify the drawing, only a seventh doped region 203a and two adjacent sixth doped regions 201a are shown.
在本实施例中,第六掺杂区201a对应于第一掺杂区204a且第七掺杂区203a对应于第二掺杂区204b。再者,第一外延层204的掺杂浓度可大体相同于第五掺杂区200b,而第二外延层206与第一掺杂区204a、第二掺杂区204b、第三掺杂区212、第六掺杂区201a及第七掺杂区203a的掺杂浓度大于第五掺杂区200b的掺杂浓度,且小于第四掺杂区200a的掺杂浓度。In this embodiment, the sixth doped region 201a corresponds to the first doped region 204a and the seventh doped region 203a corresponds to the second doped region 204b. Furthermore, the doping concentration of the first epitaxial layer 204 can be substantially the same as that of the fifth doped region 200b, and the second epitaxial layer 206 is the same as that of the first doped region 204a, the second doped region 204b, and the third doped region 212. , the doping concentration of the sixth doping region 201a and the seventh doping region 203a is greater than the doping concentration of the fifth doping region 200b, and smaller than the doping concentration of the fourth doping region 200a.
在本实施例中,第一导电类型为N型,且第二导电类型为P型。然而,在其他实施例中,第一导电类型也可为P型,且第二导电类型为N型。因此,具有第一导电类型的第二掺杂区204b及第七掺杂区203a与具有第二导电类型的第一掺杂区204a及第六掺杂区201a在第五掺杂区200b内及第一外延层204内形成超接面结构。同样地,具有第一导电类型的第二外延层206与具有第二导电类型的第三掺杂区212亦形成超接面结构。In this embodiment, the first conductivity type is N type, and the second conductivity type is P type. However, in other embodiments, the first conductivity type can also be P-type, and the second conductivity type is N-type. Therefore, the second doped region 204b and the seventh doped region 203a having the first conductivity type and the first doped region 204a and the sixth doped region 201a having the second conductivity type are in the fifth doped region 200b and A super junction structure is formed in the first epitaxial layer 204 . Similarly, the second epitaxial layer 206 with the first conductivity type and the third doped region 212 with the second conductivity type also form a super junction structure.
一栅极结构设置于第二外延层206上且对应于每一第一外延层204内的第二掺杂区204b,包括一栅极介电层228及位于其上的栅极电极230。再者,具有第二导电类型的一井区232形成于每一第三掺杂区212的上半部,并延伸于沟槽206a外侧的第二外延层206内。具有第一导电类型的源极区234形成于栅极结构两侧每一井区232内,而与栅极结构及第四掺杂区(作为漏极区)200a构成一垂直式扩散金属氧化物半场效晶体管。A gate structure is disposed on the second epitaxial layer 206 and corresponding to the second doped region 204 b in each first epitaxial layer 204 , including a gate dielectric layer 228 and a gate electrode 230 thereon. Furthermore, a well region 232 of the second conductivity type is formed in the upper half of each third doped region 212 and extends in the second epitaxial layer 206 outside the trench 206 a. The source region 234 with the first conductivity type is formed in each well region 232 on both sides of the gate structure, and forms a vertical diffused metal oxide with the gate structure and the fourth doped region (serving as the drain region) 200a Half Field Effect Transistor.
请参照图3C,其绘示出根据本发明另一实施例的半导体装置剖面示意图,其中相同于图2G的部件使用相同的标号并省略其说明。在本实施例中,半导体装置20’相似于图2G中所示的半导体装置20,不同之处在于每一第三掺杂区212’,例如外延层,顺应性设置于对应的沟槽206a的的侧壁及底部。再者,一介电材料层310设置于沟槽206a内,以填满沟槽206a。在本实施例中,介电材料层310可包括氧化硅或未掺杂的多晶硅。再者,在本实施例中,井区232形成于每一第三掺杂区212’的上半部外侧的第二外延层206内。具有第一导电类型的源极区234形成于栅极结构两侧每一井区232内,而与栅极结构及第一掺杂区(作为漏极区)200a构成一垂直式扩散金属氧化物半场效晶体管。第三掺杂区212‘可通过外延成长工艺而形成。Please refer to FIG. 3C , which shows a schematic cross-sectional view of a semiconductor device according to another embodiment of the present invention, wherein components identical to those in FIG. 2G use the same reference numerals and their descriptions are omitted. In this embodiment, the semiconductor device 20' is similar to the semiconductor device 20 shown in FIG. 2G, except that each third doped region 212', such as an epitaxial layer, is conformably disposed in the corresponding trench 206a. side walls and bottom. Furthermore, a dielectric material layer 310 is disposed in the trench 206a to fill up the trench 206a. In this embodiment, the dielectric material layer 310 may include silicon oxide or undoped polysilicon. Furthermore, in this embodiment, the well region 232 is formed in the second epitaxial layer 206 outside the upper half of each third doped region 212'. The source region 234 with the first conductivity type is formed in each well region 232 on both sides of the gate structure, and forms a vertical diffused metal oxide with the gate structure and the first doped region (serving as the drain region) 200a Half Field Effect Transistor. The third doped region 212' can be formed by an epitaxial growth process.
请参照图4C,其绘示出根据本发明另一实施例的半导体装置剖面示意图,其中相同于图2G的部件使用相同的标号并省略其说明。在本实施例中,半导体装置20”相似于图2G中所示的半导体装置20,不同之处在于每一第三掺杂区212”位于邻近每一沟槽206a的侧壁的第二外延层206内。再者,每一沟槽206a内包括一介电材料层310及位于介电材料层310与第二外延层206之间的一掺杂层308。在本实施例中,介电材料层310可包括氧化硅或未掺杂的多晶硅。再者,第三掺杂区212”可通过对掺杂层308进行趋入扩散(drive in)工艺而形成。Please refer to FIG. 4C , which shows a schematic cross-sectional view of a semiconductor device according to another embodiment of the present invention, wherein components identical to those in FIG. 2G use the same reference numerals and their descriptions are omitted. In this embodiment, the semiconductor device 20" is similar to the semiconductor device 20 shown in FIG. 2G, except that each third doped region 212" is located in the second epitaxial layer adjacent to the sidewall of each trench 206a Within 206. Moreover, each trench 206 a includes a dielectric material layer 310 and a doped layer 308 between the dielectric material layer 310 and the second epitaxial layer 206 . In this embodiment, the dielectric material layer 310 may include silicon oxide or undoped polysilicon. Furthermore, the third doped region 212 ″ can be formed by performing a drive-in process on the doped layer 308 .
在本实施例中,井区232形成于每一第三掺杂区212”的上半部,并延伸于沟槽206a外侧的第二外延层206内。具有第一导电类型的源极区234形成于栅极结构两侧每一井区232内,而与栅极结构及第一掺杂区(作为漏极区)200a构成一垂直式扩散金属氧化物半场效晶体管。In this embodiment, the well region 232 is formed in the upper half of each third doped region 212″, and extends in the second epitaxial layer 206 outside the trench 206a. The source region 234 having the first conductivity type It is formed in each well region 232 on both sides of the gate structure, and together with the gate structure and the first doped region (serving as the drain region) 200a constitutes a vertical diffused metal oxide half field effect transistor.
请参照图5C,其绘示出根据本发明又另一实施例的半导体装置剖面示意图,其中相同于图4C的部件使用相同的标号并省略其说明。在本实施例中,半导体装置20”’相似于图4C中所示的半导体装置20”,不同之处在于每一第三掺杂区212”’可通过对沟槽进行汽相掺杂(vapor phase doping)或离子注入(ion implantation)工艺而形成。Please refer to FIG. 5C , which shows a schematic cross-sectional view of a semiconductor device according to yet another embodiment of the present invention, wherein components that are the same as those in FIG. 4C use the same reference numerals and their descriptions are omitted. In this embodiment, the semiconductor device 20"' is similar to the semiconductor device 20" shown in FIG. 4C, except that each third doped region 212"' can be doped by vapor phase doping) or ion implantation (ion implantation) process.
图2A至图2G绘示出根据本发明一实施例的半导体装置20的制造方法剖面示意图。请参照图2A,提供一基底200,其具有一第四掺杂区200a及位于其上的一第五掺杂区200b,其中第四掺杂区200a与第五掺杂区200b之间具有一界面B,且第四掺杂区200a与第五掺杂区200b具有第一导电类型。基底200可包括一主动区A和围绕主动区A的一终端区(未绘示)。在一实施例中,第四掺杂区200a可由一掺杂的半导体材料所构成,而第五掺杂区200b则通过外延成长,在掺杂的半导体材料(即,第四掺杂区200a)上形成一掺杂的外延层而构成。在另一实施例中,可对由一半导体材料所构成的基底200进行不同的掺杂工艺,以在其内形成具有不同掺杂浓度的第四掺杂区200a及第五掺杂区200b,其中用于形成第四掺杂区200a的掺杂工艺可于后续形成晶体管结构之后进行。在本实施例中,第四掺杂区200a与第五掺杂区200b具有一第一导电类型,且第四掺杂区200a可为一重掺杂区,而第五掺杂区200b可为一轻掺杂区。2A to 2G are schematic cross-sectional views illustrating a method of manufacturing a semiconductor device 20 according to an embodiment of the present invention. 2A, a substrate 200 is provided, which has a fourth doped region 200a and a fifth doped region 200b thereon, wherein there is a gap between the fourth doped region 200a and the fifth doped region 200b. Interface B, and the fourth doped region 200a and the fifth doped region 200b have the first conductivity type. The substrate 200 may include an active area A and a terminal area (not shown) surrounding the active area A. Referring to FIG. In one embodiment, the fourth doped region 200a can be made of a doped semiconductor material, and the fifth doped region 200b is grown by epitaxy, and the doped semiconductor material (ie, the fourth doped region 200a) A doped epitaxial layer is formed on it. In another embodiment, different doping processes may be performed on the substrate 200 made of a semiconductor material, so as to form the fourth doped region 200a and the fifth doped region 200b with different doping concentrations therein, The doping process for forming the fourth doped region 200a can be performed after the transistor structure is subsequently formed. In this embodiment, the fourth doped region 200a and the fifth doped region 200b have a first conductivity type, and the fourth doped region 200a can be a heavily doped region, and the fifth doped region 200b can be a lightly doped region.
接着,进行一掺杂工艺201,例如离子注入工艺,以在主动区A的第五掺杂区200b内形成具有第二导电类型的多个第六掺杂区201a,其中第六掺杂区201a的掺杂浓度大于第五掺杂区200b的掺杂浓度,且小于第四掺杂区200a的掺杂浓度。Next, perform a doping process 201, such as an ion implantation process, to form a plurality of sixth doped regions 201a having a second conductivity type in the fifth doped region 200b of the active region A, wherein the sixth doped regions 201a The doping concentration of is greater than the doping concentration of the fifth doping region 200b, and smaller than the doping concentration of the fourth doping region 200a.
请参照图2B,进行一掺杂工艺203,例如离子注入工艺,以在主动区A的第五掺杂区200b内形成具有第一导电类型的多个第七掺杂区203a,其中第七掺杂区203a与第六掺杂区201a交替排列。此处,为了简化图式,仅绘示出一第七掺杂区203a及与其相邻的二个第六掺杂区201a。第七掺杂区203a的掺杂浓度大于第五掺杂区200b的掺杂浓度,且小于第四掺杂区200a的掺杂浓度。然而,需注意的是在其他实施例中,可在进行掺杂工艺201之前,进行掺杂工艺203。Referring to FIG. 2B, a doping process 203, such as an ion implantation process, is performed to form a plurality of seventh doped regions 203a with the first conductivity type in the fifth doped region 200b of the active region A, wherein the seventh doped regions The impurity regions 203a are alternately arranged with the sixth doped regions 201a. Here, to simplify the drawing, only a seventh doped region 203a and two adjacent sixth doped regions 201a are shown. The doping concentration of the seventh doping region 203a is greater than that of the fifth doping region 200b and smaller than that of the fourth doping region 200a. However, it should be noted that in other embodiments, the doping process 203 may be performed before the doping process 201 is performed.
请参照图2C,在基底200上形成叠置的多个第一外延层204,且在每一第一外延层204内形成多个第一掺杂区204a及多个第二掺杂区204b。在本实施例中,第一外延层204具有第一导电类型且具有一掺杂浓度大体上相同于第五掺杂区200b。再者,第一掺杂区204a与第二掺杂区204b交替排列,且分别对应于下方的第六掺杂区201a及第七掺杂区203a。此处,为了简化图式,仅绘示出与二个第一掺杂区204a相邻的一第二掺杂区204b。第一掺杂区204a具有第二导电类型,而第二掺杂区204b具有第一导电类型。再者,第一掺杂区204a及第二掺杂区204b的制做可相似或相同于第六掺杂区201a及第七掺杂区203a的制作,使第一掺杂区204a及第二掺杂区204b的掺杂浓度大于第五掺杂区200b的掺杂浓度,且小于第四掺杂区200a的掺杂浓度。需注意的是可依据设计需求来调整第一外延层204的数量,而不局限于二层(如图2C所示)。Referring to FIG. 2C , a plurality of stacked first epitaxial layers 204 are formed on the substrate 200 , and a plurality of first doped regions 204 a and a plurality of second doped regions 204 b are formed in each first epitaxial layer 204 . In this embodiment, the first epitaxial layer 204 has the first conductivity type and has a doping concentration substantially the same as that of the fifth doped region 200b. Furthermore, the first doped regions 204a and the second doped regions 204b are alternately arranged, and respectively correspond to the sixth doped regions 201a and the seventh doped regions 203a below. Here, to simplify the drawing, only a second doped region 204b adjacent to the two first doped regions 204a is shown. The first doped region 204a has the second conductivity type, and the second doped region 204b has the first conductivity type. Furthermore, the fabrication of the first doped region 204a and the second doped region 204b can be similar or identical to the fabrication of the sixth doped region 201a and the seventh doped region 203a, so that the first doped region 204a and the second doped region The doping concentration of the doping region 204b is greater than that of the fifth doping region 200b and smaller than that of the fourth doping region 200a. It should be noted that the number of the first epitaxial layer 204 can be adjusted according to design requirements, not limited to the second layer (as shown in FIG. 2C ).
请参照图2D,可通过外延成长,在最上层的第一外延层204上形成具有第一导电类型的一第二外延层206,其具有一掺杂浓度大于第五掺杂区200b的掺杂浓度,且小于第四掺杂区200a的掺杂浓度。可通过化学气相沉积(chemical vapor deposition,CVD),在主动区A的第二外延层206上方形成一硬掩膜(hard mask,HM)208,接着进行光刻工艺及刻蚀工艺,以在硬掩膜202内形成对应第一掺杂区204a的多个开口208a。Referring to FIG. 2D, a second epitaxial layer 206 with a first conductivity type can be formed on the uppermost first epitaxial layer 204 by epitaxial growth, and has a doping concentration greater than that of the fifth doped region 200b. Concentration, and less than the doping concentration of the fourth doping region 200a. A hard mask (hard mask, HM) 208 can be formed on the second epitaxial layer 206 of the active region A by chemical vapor deposition (chemical vapor deposition, CVD), and then a photolithography process and an etching process are performed to form a hard mask on the hard layer 206. A plurality of openings 208a corresponding to the first doped regions 204a are formed in the mask 202 .
请参照图2E,进行一非等向性刻蚀工艺,以在开口208a下方的第二外延层206内形成多个沟槽206a。在本实施例中,沟槽206a露出下方的第一掺杂区204a。接着,可在移除硬掩膜208之后,通过CVD或热氧化法,在每一沟槽206a的侧壁和底部顺应性形成一绝缘衬垫层(insulating liner)210,例如氧化衬垫层,其可降低第二外延层206内的应力,且可做为后续掺杂工艺的屏蔽氧化层(pre-implant oxide),以降低通道效应。Referring to FIG. 2E, an anisotropic etching process is performed to form a plurality of trenches 206a in the second epitaxial layer 206 below the opening 208a. In this embodiment, the trench 206a exposes the underlying first doped region 204a. Next, after removing the hard mask 208, an insulating liner (insulating liner) 210, such as an oxide liner, is conformally formed on the sidewall and bottom of each trench 206a by CVD or thermal oxidation, It can reduce the stress in the second epitaxial layer 206, and can be used as a shielding oxide layer (pre-implant oxide) in the subsequent doping process to reduce the channel effect.
请参照图2F,在移除绝缘衬垫层210之后,可在每一沟槽206a的侧壁上形成具有第二导电类型的第三掺杂区212。在一实施例中,可通过外延成长,在第二外延层206上方及每一沟槽206a内形成具有一第二导电类型的外延层。之后,再通过研磨工艺,例如化学机械研磨(chemical mechanical polishing,CMP),移除第二外延层206上方的外延层。在另一实施例中,可通过现有沉积工艺,例如CVD,在第二外延层206上方及每一沟槽206a内形成具有一第二导电类型的多晶硅层。之后,再通过研磨工艺,例如CMP,移除第二外延层206上方的多晶硅层。Referring to FIG. 2F , after the insulating liner layer 210 is removed, a third doped region 212 of the second conductivity type may be formed on the sidewall of each trench 206 a. In one embodiment, an epitaxial layer with a second conductivity type can be formed on the second epitaxial layer 206 and in each trench 206a by epitaxial growth. Afterwards, the epitaxial layer above the second epitaxial layer 206 is removed through a polishing process, such as chemical mechanical polishing (CMP). In another embodiment, a polysilicon layer with a second conductivity type can be formed on the second epitaxial layer 206 and in each trench 206 a through an existing deposition process, such as CVD. Afterwards, the polysilicon layer above the second epitaxial layer 206 is removed by a polishing process, such as CMP.
在本实施例中,第二外延层206与第一掺杂区204a、第二掺杂区204b及第三掺杂区212的掺杂浓度大于每一第一外延层204的掺杂浓度。再者,第二外延层206与第一掺杂区204a、第二掺杂区204b、第三掺杂区212、第六掺杂区201a及第七掺杂区203a的掺杂浓度大于第五掺杂区的掺杂浓度200b,且小于第四掺杂区200a的掺杂浓度。In this embodiment, the doping concentration of the second epitaxial layer 206 , the first doped region 204 a , the second doped region 204 b and the third doped region 212 is greater than the doping concentration of each first epitaxial layer 204 . Furthermore, the doping concentration of the second epitaxial layer 206 and the first doped region 204a, the second doped region 204b, the third doped region 212, the sixth doped region 201a and the seventh doped region 203a is greater than that of the fifth The doping concentration 200b of the doping region is smaller than the doping concentration of the fourth doping region 200a.
在本实施例中,第一导电类型为N型,且第二导电类型为P型。然而,在其他实施例中,第一导电类型也可为P型,且第二导电类型为N型。因此,具有第二导电类型的第二掺杂区204b及第七掺杂区203a与具有第一导电类型的第一掺杂区204a及第六掺杂区201a在第五掺杂区200b内及第一外延层204内形成超接面结构。同样地,具有第二导电类型的第二外延层206与具有第一导电类型的第三掺杂区212亦形成超接面结构。In this embodiment, the first conductivity type is N type, and the second conductivity type is P type. However, in other embodiments, the first conductivity type can also be P-type, and the second conductivity type is N-type. Therefore, the second doped region 204b and the seventh doped region 203a having the second conductivity type and the first doped region 204a and the sixth doped region 201a having the first conductivity type are in the fifth doped region 200b and A super junction structure is formed in the first epitaxial layer 204 . Similarly, the second epitaxial layer 206 with the second conductivity type and the third doped region 212 with the first conductivity type also form a super junction structure.
请参照图2G,可通过现有MOS工艺,在第二外延层206上形成多个栅极结构,且每一栅极结构位于第一外延层204内的第二掺杂区204b上方。每一栅极结构包括一栅极介电层228及位于其上的栅极电极230。再者,可在第三掺杂区212的上半部形成具有第二导电类型的一井区232,并延伸于第三掺杂区212外侧的第二外延层206内。在栅极结构两侧每一井区232内形成具有第一导电类型的源极区234,而完成半导体装置20的制做,其中源极区234、栅极结构及第一掺杂区(作为漏极区)200a构成一垂直式扩散金属氧化物半场效晶体管。Referring to FIG. 2G , a plurality of gate structures can be formed on the second epitaxial layer 206 through an existing MOS process, and each gate structure is located above the second doped region 204b in the first epitaxial layer 204 . Each gate structure includes a gate dielectric layer 228 and a gate electrode 230 thereon. Furthermore, a well region 232 with the second conductivity type can be formed in the upper half of the third doped region 212 and extend in the second epitaxial layer 206 outside the third doped region 212 . A source region 234 with the first conductivity type is formed in each well region 232 on both sides of the gate structure to complete the manufacture of the semiconductor device 20, wherein the source region 234, the gate structure and the first doped region (as The drain region) 200a constitutes a vertical diffused metal oxide semiconductor field effect transistor.
图3A至图3C绘示出根据本发明另一实施例的半导体装置的制造方法剖面示意图,其中相同于图2A至图2G的部件使用相同的标号并省略其说明。请参照图3A,进行如图2A至图2E的工艺步骤,以形成如图2E所示的结构。接着,在去除绝缘衬垫层210之后,可通过外延成长,在每一沟槽206a的侧壁及底部顺应性形成一第三掺杂区212’,例如一外延层,其具有第二导电类型。3A to 3C are cross-sectional schematic diagrams illustrating a manufacturing method of a semiconductor device according to another embodiment of the present invention, wherein components that are the same as those in FIGS. 2A to 2G use the same reference numerals and their descriptions are omitted. Referring to FIG. 3A , the process steps shown in FIG. 2A to FIG. 2E are performed to form the structure shown in FIG. 2E . Next, after removing the insulating liner layer 210, a third doped region 212', such as an epitaxial layer, having the second conductivity type can be formed conformally on the sidewall and bottom of each trench 206a by epitaxial growth. .
请参照图3B,在每一沟槽206a内填入一介电材料层310。举例来说,可通过化学气相沉积(CVD)工艺,在第二外延层206上及每一沟槽206a内形成一介电材料层310,例如氧化硅或未掺杂的多晶硅,使沟槽206a内的第三掺杂区212’位于介电材料层310与第二外延层206之间。之后,以化学机械研磨(CMP)工艺移除第二外延层206上的介电材料层310,使沟槽206a内的第三掺杂区212’位于介电材料层310与第二外延层206之间。Referring to FIG. 3B , a dielectric material layer 310 is filled in each trench 206 a. For example, a dielectric material layer 310, such as silicon oxide or undoped polysilicon, can be formed on the second epitaxial layer 206 and in each trench 206a by a chemical vapor deposition (CVD) process, so that the trench 206a The inner third doped region 212 ′ is located between the dielectric material layer 310 and the second epitaxial layer 206 . After that, the dielectric material layer 310 on the second epitaxial layer 206 is removed by a chemical mechanical polishing (CMP) process, so that the third doped region 212' in the trench 206a is located between the dielectric material layer 310 and the second epitaxial layer 206 between.
请参照图3C,可通过现有MOS工艺,在第一外延层204的第二掺杂区204b上方的第二外延层206上形成一栅极结构,其包括一栅极介电层228及位于其上的栅极电极230。再者,可在每一第三掺杂区212’的上半部外侧的第二外延层206内形成具有第二导电类型的一井区232。在栅极结构两侧每一井区232内形成具有第一导电类型的源极区234,而完成半导体装置20’的制做,其中源极区234、栅极结构及第五掺杂区(作为漏极区)200a构成一垂直式扩散金属氧化物半场效晶体管。3C, a gate structure can be formed on the second epitaxial layer 206 above the second doped region 204b of the first epitaxial layer 204 through the existing MOS process, which includes a gate dielectric layer 228 and The gate electrode 230 thereon. Furthermore, a well region 232 of the second conductivity type can be formed in the second epitaxial layer 206 outside the upper half of each third doped region 212'. A source region 234 with the first conductivity type is formed in each well region 232 on both sides of the gate structure to complete the manufacture of the semiconductor device 20', wherein the source region 234, the gate structure and the fifth doped region ( As the drain region) 200a constitutes a vertical diffused metal oxide half field effect transistor.
图4A至图4C绘示出根据本发明另一实施例的半导体装置的制造方法剖面示意图,其中相同于图2A至图2G的部件使用相同的标号并省略其说明。请参照图4A,进行如图2A至图2E的工艺步骤,以形成如图2E所示的结构。接着,在去除绝缘衬垫层210之后,在每一沟槽206a的侧壁上形成一掺杂层308,例如掺杂的硅玻璃,其具有第二导电类型。之后,对掺杂层308进行驱入扩散,以在沟槽206a外侧的第二外延层206内形成第三掺杂区212”。4A to 4C are cross-sectional schematic diagrams illustrating a manufacturing method of a semiconductor device according to another embodiment of the present invention, wherein the components that are the same as those in FIGS. 2A to 2G use the same reference numerals and their descriptions are omitted. Referring to FIG. 4A , the process steps shown in FIG. 2A to FIG. 2E are performed to form the structure shown in FIG. 2E . Next, after removing the insulating liner layer 210, a doped layer 308, such as doped silicon glass, having the second conductivity type is formed on the sidewall of each trench 206a. Afterwards, the doped layer 308 is driven in and diffused to form a third doped region 212 ″ in the second epitaxial layer 206 outside the trench 206 a.
请参照图4B,在每一沟槽206a内填入一介电材料层310。举例来说,可通过化学气相沉积(CVD)工艺,在第二外延层206上及每一沟槽206a内形成一介电材料层310,例如氧化硅或未掺杂的多晶硅,使沟槽206a内的掺杂层308位于介电材料层310与第二外延层206之间。之后,以化学机械研磨(CMP)工艺移除第二外延层206上的介电材料层310。Referring to FIG. 4B, a dielectric material layer 310 is filled in each trench 206a. For example, a dielectric material layer 310, such as silicon oxide or undoped polysilicon, can be formed on the second epitaxial layer 206 and in each trench 206a by a chemical vapor deposition (CVD) process, so that the trench 206a The inner doped layer 308 is located between the dielectric material layer 310 and the second epitaxial layer 206 . Afterwards, the dielectric material layer 310 on the second epitaxial layer 206 is removed by a chemical mechanical polishing (CMP) process.
请参照图4C,可通过现有MOS工艺,在第一外延层204的第二掺杂区204b上方的第二外延层206上形成一栅极结构,其包括一栅极介电层228及位于其上的栅极电极230。再者,可在每一第三掺杂区212”的上半部形成具有第二导电类型的一井区232,并延伸于第三掺杂区212”外侧的第二外延层206内。在栅极结构两侧每一井区232内形成具有第一导电类型的源极区234,而完成半导体装置20”的制做,其中源极区234、栅极结构及第五掺杂区(作为漏极区)200a构成一垂直式扩散金属氧化物半场效晶体管。Referring to FIG. 4C, a gate structure can be formed on the second epitaxial layer 206 above the second doped region 204b of the first epitaxial layer 204 through the existing MOS process, which includes a gate dielectric layer 228 and The gate electrode 230 thereon. Furthermore, a well region 232 of the second conductivity type can be formed in the upper half of each third doped region 212 ″, and extends in the second epitaxial layer 206 outside the third doped region 212 ″. Form a source region 234 with the first conductivity type in each well region 232 on both sides of the gate structure, and complete the manufacture of the semiconductor device 20", wherein the source region 234, the gate structure and the fifth doped region ( As the drain region) 200a constitutes a vertical diffused metal oxide half field effect transistor.
图5A至图5C绘示出根据本发明另一实施例的半导体装置的制造方法剖面示意图,其中相同于图2A至图2G及图4A至图4C的部件使用相同的标号并省略其说明。请参照图5A,进行如图2A至图2E的工艺步骤,以形成如图2E所示的结构。接着,在去除绝缘衬垫层210之后,对每一沟槽206a的侧壁进行一掺杂工艺408,例如汽相掺杂或离子注入,以在邻近沟槽206a的侧壁的第二外延层206内形成第三掺杂区212”’。5A to 5C are cross-sectional schematic diagrams illustrating a manufacturing method of a semiconductor device according to another embodiment of the present invention, wherein components identical to those in FIGS. 2A to 2G and FIGS. 4A to 4C use the same reference numerals and their descriptions are omitted. Referring to FIG. 5A , the process steps shown in FIG. 2A to FIG. 2E are performed to form the structure shown in FIG. 2E . Next, after removing the insulating liner layer 210, a doping process 408, such as vapor phase doping or ion implantation, is performed on the sidewall of each trench 206a, so that the second epitaxial layer adjacent to the sidewall of the trench 206a 206 to form a third doped region 212"'.
之后,进行如图4B至图4C所述的工艺步骤,以在每一沟槽206a内填入一介电材料层310(如图5B所示),且在第一外延层204的第二掺杂区204b上方的第二外延层206上形成一栅极结构(其包括一栅极介电层228及位于其上的栅极电极230)。再者,在每一第三掺杂区212”’的上半部形成具有第二导电类型的一井区232,并延伸于第三掺杂区21’2”外侧的第二外延层206内。在栅极结构两侧每一井区232内形成具有第一导电类型的源极区234,而完成半导体装置20”’的制做,如图5C所示。源极区234、栅极结构及第五掺杂区(作为漏极区)200a构成一垂直式扩散金属氧化物半场效晶体管。Afterwards, the process steps described in FIG. 4B to FIG. 4C are performed to fill a dielectric material layer 310 (as shown in FIG. 5B ) in each trench 206a, and the second doped A gate structure (including a gate dielectric layer 228 and a gate electrode 230 thereon) is formed on the second epitaxial layer 206 above the impurity region 204b. Furthermore, a well region 232 with the second conductivity type is formed in the upper half of each third doped region 212"', and extends in the second epitaxial layer 206 outside the third doped region 21'2". . A source region 234 having a first conductivity type is formed in each well region 232 on both sides of the gate structure to complete the fabrication of the semiconductor device 20"', as shown in FIG. 5C. The source region 234, the gate structure and The fifth doped region (serving as the drain region) 200a constitutes a vertical diffused metal oxide semiconductor field effect transistor.
根据上述实施例,由于可通过控制第一掺杂区204a、第二掺杂区204b、第六掺杂区201a及第七掺杂区203a所构成的超接面结构中N型区域和P型区域的掺杂浓度来达到电荷平衡(charge balance),因此上述超接面结构可形成于轻掺杂区(即,第一外延层204及第五掺杂区200b)内,进而提升垂直式扩散金属氧化物半场效晶体管中P-N接面的耐压,同时能够避免导通电阻的增加。According to the above-mentioned embodiment, since the N-type region and the P-type region in the super junction structure formed by the first doped region 204a, the second doped region 204b, the sixth doped region 201a and the seventh doped region 203a can be controlled The doping concentration of the region is used to achieve charge balance, so the above-mentioned superjunction structure can be formed in the lightly doped region (ie, the first epitaxial layer 204 and the fifth doped region 200b), thereby improving the vertical diffusion The withstand voltage of the P-N junction in the metal oxide half field effect transistor can avoid the increase of the on-resistance at the same time.
再者,根据上述实施例,由于可在第一外延层204上的第二外延层206内形成额外的超接面结构,因此可减少第一外延层204的层数,因此可简化工艺及降低制造成本。Moreover, according to the above-mentioned embodiment, since an additional superjunction structure can be formed in the second epitaxial layer 206 on the first epitaxial layer 204, the number of layers of the first epitaxial layer 204 can be reduced, so the process can be simplified and the reduction can be reduced. manufacturing cost.
另外,根据上述实施例,由于第一外延层204内具有超接面结构,因此无需增加第二外延层206内的沟槽深度便可进一步提升P-N接面的耐压,而不会因刻蚀深沟槽而增加工艺困难度。In addition, according to the above-mentioned embodiment, since the first epitaxial layer 204 has a superjunction structure, the withstand voltage of the P-N junction can be further improved without increasing the depth of the trench in the second epitaxial layer 206, and the corrosion resistance of the P-N junction will not be affected. Deep trenches increase the process difficulty.
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何本领域技术人员,在不脱离本发明的精神和范围内,当可作更动与润饰,因此本发明的保护范围当视权利要求范围所界定者为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art may make changes and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be subject to what is defined by the claims.
Claims (28)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210013845.5A CN103208510B (en) | 2012-01-17 | 2012-01-17 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210013845.5A CN103208510B (en) | 2012-01-17 | 2012-01-17 | Semiconductor device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103208510A CN103208510A (en) | 2013-07-17 |
CN103208510B true CN103208510B (en) | 2015-08-12 |
Family
ID=48755680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210013845.5A Active CN103208510B (en) | 2012-01-17 | 2012-01-17 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103208510B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101308875A (en) * | 2007-05-14 | 2008-11-19 | 株式会社电装 | Semiconductor device with super junction structure and manufacturing method thereof |
CN101471264A (en) * | 2007-12-28 | 2009-07-01 | 万国半导体股份有限公司 | High voltage structures and methods for vertical power devices with improved manufacturability |
CN102117830A (en) * | 2009-12-30 | 2011-07-06 | 中国科学院微电子研究所 | Semi-insulating column super-junction MOSFET structure |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8022472B2 (en) * | 2007-12-04 | 2011-09-20 | Rohm Co., Ltd. | Semiconductor device and method of manufacturing semiconductor device |
US8497551B2 (en) * | 2010-06-02 | 2013-07-30 | Taiwan Semiconductor Manufacturing Company, Ltd. | Self-aligned contact for trench MOSFET |
-
2012
- 2012-01-17 CN CN201210013845.5A patent/CN103208510B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101308875A (en) * | 2007-05-14 | 2008-11-19 | 株式会社电装 | Semiconductor device with super junction structure and manufacturing method thereof |
CN101471264A (en) * | 2007-12-28 | 2009-07-01 | 万国半导体股份有限公司 | High voltage structures and methods for vertical power devices with improved manufacturability |
CN102117830A (en) * | 2009-12-30 | 2011-07-06 | 中国科学院微电子研究所 | Semi-insulating column super-junction MOSFET structure |
Also Published As
Publication number | Publication date |
---|---|
CN103208510A (en) | 2013-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI587503B (en) | Semiconductor device and method of manufacturing same | |
TWI487110B (en) | Semiconductor device and method of manufacturing same | |
US8399921B2 (en) | Metal oxide semiconductor (MOS) structure and manufacturing method thereof | |
CN102148159B (en) | Method for preparing self-aligned charge balanced power double-diffusion metal oxide semiconductor | |
US8294235B2 (en) | Edge termination with improved breakdown voltage | |
JP5551213B2 (en) | Manufacturing method of semiconductor device | |
US9000516B2 (en) | Super-junction device and method of forming the same | |
CN111081779A (en) | A shielded gate trench MOSFET and its manufacturing method | |
US9666485B2 (en) | Method for forming semiconductor device having super-junction structures | |
CN101989602A (en) | A Trench MOSFET | |
CN104900697B (en) | Semiconductor device and method for fabricating the same | |
US11322583B2 (en) | Semiconductor device including barrier layer between active region and semiconductor layer and method of forming the same | |
CN210006740U (en) | Power device and electronic apparatus | |
CN110212026B (en) | Superjunction MOS device structure and preparation method thereof | |
US20170104095A1 (en) | Vdmos and method for making the same | |
CN103208509B (en) | Semiconductor device and manufacturing method thereof | |
CN101989577B (en) | A kind of manufacturing method of trench MOSFET | |
CN103208510B (en) | Semiconductor device and manufacturing method thereof | |
US9496357B2 (en) | Semiconductor device | |
CN111863750A (en) | Preparation method of semiconductor device | |
TWI463666B (en) | Semiconductor device and methods for forming the same | |
CN104810398A (en) | Semiconductor device and manufacturing method thereof | |
CN103258845A (en) | Semiconductor structure and forming method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |