CN103208509B - Semiconductor device and manufacturing method thereof - Google Patents
Semiconductor device and manufacturing method thereof Download PDFInfo
- Publication number
- CN103208509B CN103208509B CN201210012279.6A CN201210012279A CN103208509B CN 103208509 B CN103208509 B CN 103208509B CN 201210012279 A CN201210012279 A CN 201210012279A CN 103208509 B CN103208509 B CN 103208509B
- Authority
- CN
- China
- Prior art keywords
- doped region
- groove
- semiconductor device
- epitaxial loayer
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 67
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 41
- 239000000758 substrate Substances 0.000 claims abstract description 29
- 238000000034 method Methods 0.000 claims description 41
- 239000003989 dielectric material Substances 0.000 claims description 17
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 6
- 229920005591 polysilicon Polymers 0.000 claims description 6
- 238000009413 insulation Methods 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims 2
- 239000000463 material Substances 0.000 description 10
- 230000005669 field effect Effects 0.000 description 9
- 238000005229 chemical vapour deposition Methods 0.000 description 8
- 229910044991 metal oxide Inorganic materials 0.000 description 8
- 150000004706 metal oxides Chemical class 0.000 description 8
- 230000012010 growth Effects 0.000 description 7
- 238000005530 etching Methods 0.000 description 5
- 229910052814 silicon oxide Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 210000000746 body region Anatomy 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域 technical field
本发明是有关于一种半导体装置,特别系有关于一种具有超接面(superjunction)结构的半导体装置及其制造方法。The present invention relates to a semiconductor device, in particular to a semiconductor device with a superjunction structure and a manufacturing method thereof.
背景技术 Background technique
图1是绘示出现有的N型垂直式扩散金属氧化物半导体场效应晶体管(vertical double-diffused MOSFET,VDMOSFET)剖面示意图。N型垂直式扩散金属氧化物半导体场效应晶体管10包括:一半导体基底及位于其上的一栅极结构。半导体基底内具有一N型外延(epitaxy)漂移(drift region)区100及位于其上方的P型基体(base)区102而形成P-N接面。再者,N型外延漂移区100下方具有一漏极区106,其连接至一漏极电极114。P型基体区102内具有一源极区104,其连接至一源极电极112。栅极结构由一栅极介电层108及位于其上的栅极电极110所构成。FIG. 1 is a schematic cross-sectional view of a conventional N-type vertical double-diffused MOSFET (VDMOSFET). The N-type VMOS field effect transistor 10 includes: a semiconductor substrate and a gate structure thereon. The semiconductor substrate has an N-type epitaxy drift region 100 and a P-type base region 102 above it to form a P-N junction. Furthermore, there is a drain region 106 under the N-type epitaxial drift region 100 , which is connected to a drain electrode 114 . The P-type body region 102 has a source region 104 connected to a source electrode 112 . The gate structure is composed of a gate dielectric layer 108 and a gate electrode 110 thereon.
为了提升N型垂直式扩散金属氧化物半导体场效应晶体管10中P-N接面的耐压(withstand voltage),必须降低N型外延漂移区100的掺杂浓度及/或提升其厚度。然而,以上述方式来提升P-N接面的耐压时,同时也会增加N型垂直式扩散金属氧化物半导体场效应晶体管10的导通电阻(Ron)。亦即,导通电阻会受到N型外延漂移区的掺杂浓度与厚度的限制。In order to increase the withstand voltage of the P-N junction in the N-type vertical diffused MOSFET 10 , it is necessary to reduce the doping concentration and/or increase the thickness of the N-type epitaxial drift region 100 . However, when the withstand voltage of the P-N junction is increased in the above manner, the on-resistance (Ron) of the N-type vertical diffused MOSFET 10 will also be increased at the same time. That is, the on-resistance is limited by the doping concentration and thickness of the N-type epitaxial drift region.
具有超接面(Super-junction)结构的垂直式扩散金属氧化物半导体场效应晶体管可以提高N型外延漂移区的掺质浓度,进而提升P-N接面的耐压,同时能够避免导通电阻的增加。在一现有技术中,利用多层外延技术(multi-epitechnology)来形成超接面结构,上述多层外延技术需要进行外延成长、P型掺杂工艺及高温扩散工艺,并重复进行上述工艺。因此,上述多层外延技术会有工艺繁复、制造成本高以及元件尺寸难以微缩等缺点。The vertical diffused metal oxide semiconductor field effect transistor with a super-junction structure can increase the dopant concentration of the N-type epitaxial drift region, thereby increasing the withstand voltage of the P-N junction, and at the same time avoiding the increase of the on-resistance . In a prior art, the superjunction structure is formed by using multi-epitaxial technology. The above-mentioned multi-epitaxial technology requires epitaxial growth, P-type doping process and high temperature diffusion process, and the above processes are repeated. Therefore, the above-mentioned multi-layer epitaxial technology has disadvantages such as complicated process, high manufacturing cost, and difficulty in shrinking the device size.
因此,有必要寻求一种具有超接面结构的半导体装置,其能够改善或解决上述问题。Therefore, it is necessary to seek a semiconductor device with a superjunction structure, which can improve or solve the above-mentioned problems.
发明内容 Contents of the invention
本发明一实施例提供一种半导体装置,包括:一基底,具有一第一掺杂区及位于其上的一第二掺杂区,其中第一及第二掺杂区具有一第一导电类型,且其中第二掺杂区内具有至少一第一沟槽及与其相邻的至少一第二沟槽;一第一外延层,设置于第一沟槽内,且具有一第二导电类型;一第二外延层,设置于第二沟槽内,且具有第一导电类型,其中第二外延层具有一掺杂浓度大于第二掺杂区的掺杂浓度,且小于第一掺杂区的掺杂浓度;以及一栅极结构,设置于第二沟槽上方。An embodiment of the present invention provides a semiconductor device, including: a substrate having a first doped region and a second doped region thereon, wherein the first and second doped regions have a first conductivity type , and wherein there is at least one first trench and at least one second trench adjacent thereto in the second doped region; a first epitaxial layer is disposed in the first trench and has a second conductivity type; A second epitaxial layer is disposed in the second trench and has the first conductivity type, wherein the second epitaxial layer has a doping concentration greater than that of the second doping region and less than that of the first doping region doping concentration; and a gate structure disposed above the second trench.
本发明另一实施例提供一种半导体装置的制造方法,包括:提供一基底,具有一第一掺杂区及位于其上的一第二掺杂区,其中第一及第二掺杂区具有一第一导电类型;在第二掺杂区内形成至少一第一沟槽;在第一沟槽内填入一第一外延层,其中第一外延层具有一第二导电类型;在第二掺杂区内形成与第一沟槽相邻的至少一第二沟槽;在第二沟槽内填入一第二外延层,其中第二外延层具有第一导电类型,且第二外延层具有一掺杂浓度大于第二掺杂区的掺杂浓度,且小于第一掺杂区的掺杂浓度;以及在第二沟槽上方形成一栅极结构。Another embodiment of the present invention provides a method for manufacturing a semiconductor device, including: providing a substrate with a first doped region and a second doped region thereon, wherein the first and second doped regions have A first conductivity type; at least one first trench is formed in the second doped region; a first epitaxial layer is filled in the first trench, wherein the first epitaxial layer has a second conductivity type; At least one second trench adjacent to the first trench is formed in the doped region; a second epitaxial layer is filled in the second trench, wherein the second epitaxial layer has the first conductivity type, and the second epitaxial layer having a doping concentration greater than that of the second doping region and less than that of the first doping region; and forming a gate structure above the second trench.
附图说明 Description of drawings
图1是绘示出现有的N型垂直式扩散金属氧化物半导体场效应晶体管剖面示意图。FIG. 1 is a schematic cross-sectional view of a conventional N-type vertical diffused MOSFET.
图2A至图2G是绘示出根据本发明一实施例的半导体装置的制造方法剖面示意图。2A to 2G are schematic cross-sectional views illustrating a manufacturing method of a semiconductor device according to an embodiment of the present invention.
图3A至图3E是绘示出根据本发明另一实施例的半导体装置的制造方法剖面示意图。3A to 3E are schematic cross-sectional views illustrating a manufacturing method of a semiconductor device according to another embodiment of the present invention.
图4A至图4F是绘示出根据本发明又另一实施例的半导体装置的制造方法剖面示意图。4A to 4F are schematic cross-sectional views illustrating a manufacturing method of a semiconductor device according to yet another embodiment of the present invention.
附图标号:Figure number:
现有existing
10~N型垂直式扩散金属氧化物半导体场效应晶体管;10~N type vertical diffused metal oxide semiconductor field effect transistor;
100~N型外延漂移区;100 ~ N-type epitaxial drift region;
102~P型基体区;102~P-type matrix region;
104~源极区;104~source region;
106~漏极区;106~drain region;
108~栅极电极层;108~gate electrode layer;
110~栅极电极;110~gate electrode;
112~源极电极;112~source electrode;
114~漏极电极。114 ~ drain electrode.
实施例 Example
20、20’、20”~半导体装置;20, 20’, 20”~semiconductor device;
200~基底;200~base;
200a~第一掺杂区;200a~the first doped region;
200b~第二掺杂区;200b~the second doped region;
201~界面;201~interface;
202、210、218~硬遮罩;202, 210, 218~hard mask;
202a、210a、218a~开口;202a, 210a, 218a~opening;
204~第一沟槽;204~the first groove;
206、214、222~绝缘衬垫层;206, 214, 222 ~ insulating liner layer;
208、208’~第一外延层;208, 208'~the first epitaxial layer;
209、217、226~介电材料层;209, 217, 226~dielectric material layer;
212~第二沟槽;212~the second groove;
216、216’~第二外延层;216, 216'~the second epitaxial layer;
216a~延伸部;216a~extended part;
220~第三沟槽;220~the third groove;
224~掺杂工艺;224~doping process;
224a~第三掺杂区;224a~the third doped region;
228~栅极介电层;228~gate dielectric layer;
230~栅极电极;230~gate electrode;
232~井区;232~well area;
234~源极区;234~source region;
A~主动区。A ~ active area.
具体实施方式 Detailed ways
以下说明本发明实施例的半导体装置及其制造方法。然而,可轻易了解本发明所提供的实施例仅用于说明以特定方法制作及使用本发明,并非用以局限本发明的范围。The semiconductor device and its manufacturing method according to the embodiment of the present invention will be described below. However, it can be easily understood that the embodiments provided in the present invention are only used to illustrate the making and use of the present invention in a specific way, and are not intended to limit the scope of the present invention.
请参照图2G,其绘示出根据本发明一实施例的半导体装置剖面示意图。本发明实施例的半导体装置20包括具有超接面结构的垂直式扩散金属氧化物半导体场效应晶体管(VDMOSFET)。半导体装置20包括一基底200,其具有一第一掺杂区200a及位于其上的一第二掺杂区200b,其中第一掺杂区200a与第二掺杂区200b之间具有一界面201。如图2G所示,基底200可包括一主动区(active region)A和围绕主动区A的一终端(termination)区(未绘示)。在一实施例中,主动区A是提供半导体元件形成于其上,而终端区做为不同半导体装置之间的绝缘。在一实施例中,第一掺杂区200a可由一掺杂的半导体材料所构成,而第二掺杂区200b则由掺杂的外延层所构成。在另一实施例中,具有不同掺杂浓度的第一掺杂区200a及第二掺杂区200b形成于同一半导体材料所构成的基底200内。在本实施例中,第一掺杂区200a与第二掺杂区200b具有一第一导电类型,且第一掺杂区200a可为一重掺杂区,而第二掺杂区200b可为一轻掺杂区。Please refer to FIG. 2G , which shows a schematic cross-sectional view of a semiconductor device according to an embodiment of the present invention. The semiconductor device 20 of the embodiment of the present invention includes a vertical diffused metal oxide semiconductor field effect transistor (VDMOSFET) having a super junction structure. The semiconductor device 20 includes a substrate 200 having a first doped region 200a and a second doped region 200b thereon, wherein an interface 201 is formed between the first doped region 200a and the second doped region 200b . As shown in FIG. 2G , the substrate 200 may include an active region A and a termination region (not shown) surrounding the active region A. Referring to FIG. In one embodiment, the active region A is provided for semiconductor devices to be formed thereon, and the terminal region serves as insulation between different semiconductor devices. In one embodiment, the first doped region 200a is formed of a doped semiconductor material, and the second doped region 200b is formed of a doped epitaxial layer. In another embodiment, the first doped region 200 a and the second doped region 200 b with different doping concentrations are formed in the substrate 200 made of the same semiconductor material. In this embodiment, the first doped region 200a and the second doped region 200b have a first conductivity type, and the first doped region 200a can be a heavily doped region, and the second doped region 200b can be a lightly doped region.
第二掺杂区200b内具有多个第一沟槽204及与第一沟槽204交替排列的多个第二沟槽212,使每一第二沟槽212与至少一第一沟槽204相邻,或者每一第一沟槽204与至少一第二沟槽212相邻。此处,为了简化图式,仅绘示出一第二沟槽212及与其相邻的二个第一沟槽204。在本实施例中,第一沟槽204与第二沟槽212的底部位于第一掺杂区200a与第二掺杂区200b之间的界面201上方。然而,在其他实施例中,第一沟槽204与第二沟槽212也可露出第一掺杂区200a与第二掺杂区200b之间的界面201。There are a plurality of first trenches 204 and a plurality of second trenches 212 arranged alternately with the first trenches 204 in the second doped region 200b, so that each second trench 212 is in phase with at least one first trench 204 or each first trench 204 is adjacent to at least one second trench 212 . Here, to simplify the drawing, only one second trench 212 and two adjacent first trenches 204 are shown. In this embodiment, the bottoms of the first trench 204 and the second trench 212 are located above the interface 201 between the first doped region 200a and the second doped region 200b. However, in other embodiments, the first trench 204 and the second trench 212 may also expose the interface 201 between the first doped region 200a and the second doped region 200b.
一第一外延层208设置于每一第一沟槽204内,且具有一第二导电类型,其中第一外延层208具有一掺杂浓度大于第二掺杂区200b的掺杂浓度,且小于第一掺杂区200a的掺杂浓度。一第二外延层216设置于每一第二沟槽212内,且具有第一导电类型,其中第二外延层216具有一掺杂浓度大于第二掺杂区200b的掺杂浓度,且小于第一掺杂区200a的掺杂浓度。A first epitaxial layer 208 is disposed in each first trench 204 and has a second conductivity type, wherein the first epitaxial layer 208 has a doping concentration greater than that of the second doping region 200b and less than The doping concentration of the first doped region 200a. A second epitaxial layer 216 is disposed in each second trench 212 and has the first conductivity type, wherein the second epitaxial layer 216 has a doping concentration higher than that of the second doping region 200b and lower than that of the first doping region 200b. A doping concentration of the doped region 200a.
在本实施例中,第一导电类型为N型,且第二导电类型为P型。然而,在其他实施例中,第一导电类型也可为P型,且第二导电类型为N型。因此,具有第二导电类型的第一外延层208与具有第一导电类型的第二外延层216系于第二掺杂区200b内形成超接面结构。In this embodiment, the first conductivity type is N type, and the second conductivity type is P type. However, in other embodiments, the first conductivity type can also be P-type, and the second conductivity type is N-type. Therefore, the first epitaxial layer 208 with the second conductivity type and the second epitaxial layer 216 with the first conductivity type form a super junction structure in the second doped region 200b.
一栅极结构设置于每一第二沟槽212上方,其包括一栅极介电层228及位于其上的栅极电极230。再者,具有第二导电类型的一井区232形成于每一第一外延层208的上半部,并延伸于第一外延层208外侧的第二掺杂区200b内。具有第一导电类型的源极区234形成于栅极结构两侧每一井区232内,而与栅权结构及第一掺杂区(作为漏极区)200a构成一垂直式扩散金属氧化物半导体场效应晶体管。A gate structure is disposed above each second trench 212 and includes a gate dielectric layer 228 and a gate electrode 230 thereon. Furthermore, a well region 232 with the second conductivity type is formed on the upper half of each first epitaxial layer 208 and extends in the second doped region 200 b outside the first epitaxial layer 208 . The source region 234 with the first conductivity type is formed in each well region 232 on both sides of the gate structure, and forms a vertical diffused metal oxide with the gate structure and the first doped region (serving as the drain region) 200a Semiconductor Field Effect Transistor.
请参照图3E,其绘示出根据本发明另一实施例的半导体装置剖面示意图,其中相同于图2G的部件使用相同的标号并省略其说明。在本实施例中,半导体装置20’中的第二外延层216更包括一延伸部216a,位于基底200上而覆盖第二掺杂区200b。特别的是第二外延层216的延伸部216a内具有一第三沟槽220对应于每一第一沟槽204而露出第一外延层208。再者,第二外延层216的延伸部216a内具有一第三掺杂区224a邻近于每一第三沟槽220的一侧壁,其中第三掺杂区224a具有第二导电类型。在本实施例中,第三掺杂区224a的掺杂浓度大于第二掺杂区200b的掺杂浓度,且小于第一掺杂区200a的掺杂浓度。因此,具有第二导电类型的第三掺杂区224a与具有第一导电类型的延伸部216a同样也形成了超接面结构。Please refer to FIG. 3E , which shows a schematic cross-sectional view of a semiconductor device according to another embodiment of the present invention, wherein components identical to those in FIG. 2G use the same reference numerals and their descriptions are omitted. In this embodiment, the second epitaxial layer 216 in the semiconductor device 20' further includes an extension portion 216a located on the substrate 200 and covering the second doped region 200b. In particular, a third trench 220 corresponding to each of the first trenches 204 is formed in the extension portion 216 a of the second epitaxial layer 216 to expose the first epitaxial layer 208 . Moreover, a third doped region 224a adjacent to a sidewall of each third trench 220 is disposed in the extension portion 216a of the second epitaxial layer 216, wherein the third doped region 224a has the second conductivity type. In this embodiment, the doping concentration of the third doping region 224 a is greater than that of the second doping region 200 b and smaller than that of the first doping region 200 a. Therefore, the third doped region 224 a of the second conductivity type and the extension portion 216 a of the first conductivity type also form a super junction structure.
一绝缘衬垫层222及一介电材料层226设置于每一第三沟槽220内。在一实施例中,绝缘衬垫层222可包括氧化硅,而介电材料层226可包括氧化硅或未掺杂的多晶硅。An insulating liner layer 222 and a dielectric material layer 226 are disposed in each third trench 220 . In one embodiment, the insulating liner layer 222 may include silicon oxide, and the dielectric material layer 226 may include silicon oxide or undoped polysilicon.
在本实施例中,栅极结构设置于延伸部216a上,且对应于每一第二沟槽212。再者,井区232形成于每一第三掺杂区224a的上半部,并延伸于第三掺杂区224a外侧的延伸部216a内。具有第一导电类型的源极区234形成于栅极结构两侧每一井区232内,而与栅极结构及第一掺杂区(作为漏极区)200a构成一垂直式扩散金属氧化物半导体场效应晶体管。In this embodiment, the gate structure is disposed on the extension portion 216 a and corresponds to each second trench 212 . Moreover, the well region 232 is formed in the upper half of each third doped region 224a, and extends in the extension portion 216a outside the third doped region 224a. The source region 234 with the first conductivity type is formed in each well region 232 on both sides of the gate structure, and forms a vertical diffused metal oxide with the gate structure and the first doped region (serving as the drain region) 200a Semiconductor Field Effect Transistor.
请参照图4F,其绘示出根据本发明又另一实施例的半导体装置剖面示意图,其中相同于图2G的部件使用相同的标号并省略其说明。在本实施例中,半导体装置20”中的第一外延层208’及第二外延层216’分别填入局部的第一沟槽204及第二沟槽内212。举例来说,第一外延层208’顺应性设置于第一沟槽204的侧壁及底部,而第二外延层216’顺应性设置于第二沟槽内212的侧壁及底部。再者,介电材料层209及217分别设置于第一沟槽204及第二沟槽内212内,以填满第一沟槽204及第二沟槽内212。在一实施例中,介电材料层209及217可包括氧化硅或未掺杂的多晶硅。因此,具有第二导电类型的第一外延层208’与具有第一导电类型的第二外延层216’于第二掺杂区200b内形成超接面结构。Please refer to FIG. 4F , which shows a schematic cross-sectional view of a semiconductor device according to yet another embodiment of the present invention, wherein components identical to those in FIG. 2G use the same reference numerals and their descriptions are omitted. In this embodiment, the first epitaxial layer 208' and the second epitaxial layer 216' in the semiconductor device 20" are respectively filled into the local first trench 204 and the second trench 212. For example, the first epitaxial The layer 208' is conformably disposed on the sidewall and bottom of the first trench 204, and the second epitaxial layer 216' is conformably disposed on the sidewall and bottom of the second trench 212. Moreover, the dielectric material layer 209 and 217 are respectively disposed in the first trench 204 and the second trench 212 to fill the first trench 204 and the second trench 212. In one embodiment, the dielectric material layers 209 and 217 may include oxide Silicon or undoped polysilicon. Therefore, the first epitaxial layer 208' of the second conductivity type and the second epitaxial layer 216' of the first conductivity type form a superjunction structure in the second doped region 200b.
在本实施例中,井区232形成于每一第一外延层208’的上半部,并延伸于第一外延层208’外侧的第二掺杂区200b内。具有第一导电类型的源极区234形成于栅极结构两侧每一井区232内,而与栅极结构及第一掺杂区(作为漏极区)200a构成一垂直式扩散金属氧化物半导体场效应晶体管。In this embodiment, the well region 232 is formed in the upper half of each first epitaxial layer 208', and extends in the second doped region 200b outside the first epitaxial layer 208'. The source region 234 with the first conductivity type is formed in each well region 232 on both sides of the gate structure, and forms a vertical diffused metal oxide with the gate structure and the first doped region (serving as the drain region) 200a Semiconductor Field Effect Transistor.
图2A至图2G是绘示出根据本发明一实施例的半导体装置20的制造方法剖面示意图。请参照图2A,提供一基底200,其具有一第一掺杂区200a及位于其上的一第二掺杂区200b,其中第一掺杂区200a与第二掺杂区200b之间具有一界面201。基底200可包括一主动区A和围绕主动区A的一终端区(未绘示)。在一实施例中,第一掺杂区200a可由一掺杂的半导体材料所构成,而第二掺杂区200b则透过外延成长,在掺杂的半导体材料(即,第一掺杂区200a)上形成一掺杂的外延层而构成。在另一实施例中,可对由一半导体材料所构成的基底200进行不同的掺杂工艺,以在其内形成具有不同掺杂浓度的第一掺杂区200a及第二掺杂区200b,其中用于形成第一掺杂区200a的掺杂工艺可于后续形成晶体管结构之后进行。在本实施例中,第一掺杂区200a与第二掺杂区200b具有一第一导电类型,且第一掺杂区200a可为一重掺杂区,而第二掺杂区200b可为一轻掺杂区。2A to 2G are schematic cross-sectional views illustrating a manufacturing method of the semiconductor device 20 according to an embodiment of the present invention. 2A, a substrate 200 is provided, which has a first doped region 200a and a second doped region 200b located thereon, wherein there is a Interface 201. The substrate 200 may include an active area A and a terminal area (not shown) surrounding the active area A. Referring to FIG. In one embodiment, the first doped region 200a may be formed of a doped semiconductor material, and the second doped region 200b is grown by epitaxial growth in the doped semiconductor material (ie, the first doped region 200a ) formed by forming a doped epitaxial layer. In another embodiment, different doping processes may be performed on the substrate 200 made of a semiconductor material, so as to form the first doped region 200a and the second doped region 200b with different doping concentrations therein, The doping process for forming the first doped region 200a can be performed after the transistor structure is subsequently formed. In this embodiment, the first doped region 200a and the second doped region 200b have a first conductivity type, and the first doped region 200a can be a heavily doped region, and the second doped region 200b can be a lightly doped region.
接着,请参照图2A及图2B,其说明第一沟槽204的形成方式。可透过化学气相沉积(chemical vapor deposition,CVD),在基底200上方形成一硬遮罩(hard mask,HM)202,接着进行微影工艺及刻蚀工艺,以在主动区A的硬遮罩202内形成用以定义第一沟槽204的多个开口202a。之后,进行一非等向性刻蚀工艺,以在开口202a下方的第二掺杂区200b内形成多个第一沟槽204。在本实施例中,第一沟槽204的底部位于第一掺杂区200a与第二掺杂区200b之间的界面201上方(例如,接近界面201)。然而,在其他实施例中,第一沟槽204与第二沟槽212也可露出第一掺杂区200a与第二掺杂区200b之间的界面201。Next, please refer to FIG. 2A and FIG. 2B , which illustrate the formation method of the first trench 204 . A hard mask (hard mask, HM) 202 can be formed on the substrate 200 through chemical vapor deposition (chemical vapor deposition, CVD), and then a lithography process and an etching process are performed to form a hard mask in the active region A A plurality of openings 202 a defining the first trench 204 are formed in the opening 202 . Afterwards, an anisotropic etching process is performed to form a plurality of first trenches 204 in the second doped region 200b below the opening 202a. In this embodiment, the bottom of the first trench 204 is located above the interface 201 between the first doped region 200 a and the second doped region 200 b (eg, close to the interface 201 ). However, in other embodiments, the first trench 204 and the second trench 212 may also expose the interface 201 between the first doped region 200a and the second doped region 200b.
在本实施例中,可在移除硬遮罩202之后,透过CVD或热氧化法,在每一第一沟槽204的侧壁和底部顺应性形成一绝缘衬垫层(insulating liner)206。在本发明一实施例中,绝缘衬垫层206可为氧化衬垫层,其可降低第二掺杂区200b内的应力。In this embodiment, after removing the hard mask 202, an insulating liner (insulating liner) 206 can be conformably formed on the sidewall and bottom of each first trench 204 by CVD or thermal oxidation. . In an embodiment of the invention, the insulating liner layer 206 can be an oxide liner layer, which can reduce the stress in the second doped region 200b.
请参照图2C,在移除绝缘衬垫层206之后,可在每一第一沟槽204内填入具有一第二导电类型的一第一外延层208。第一外延层208具有一掺杂浓度大于第二掺杂区200b的掺杂浓度,且小于第一掺杂区200a的掺杂浓度。举例来说,可透过外延成长,在基底200上方及每一第一沟槽204内形成第一外延层208。之后,再透过研磨工艺,例如化学机械研磨(chemical mechanicalpolishing,CMP),移除基底200上方的第一外延层208。在本实施例中,第一导电类型为N型,且第二导电类型为P型。然而,在其他实施例中,第一导电类型也可为P型,且第二导电类型为N型。Referring to FIG. 2C , after removing the insulating liner layer 206 , a first epitaxial layer 208 having a second conductivity type can be filled in each first trench 204 . The first epitaxial layer 208 has a doping concentration higher than that of the second doping region 200b and lower than that of the first doping region 200a. For example, the first epitaxial layer 208 can be formed on the substrate 200 and within each first trench 204 through epitaxial growth. After that, the first epitaxial layer 208 above the substrate 200 is removed through a polishing process, such as chemical mechanical polishing (CMP). In this embodiment, the first conductivity type is N type, and the second conductivity type is P type. However, in other embodiments, the first conductivity type can also be P-type, and the second conductivity type is N-type.
接着,请参照图2D及图2E,其说明第二沟槽212的形成方式。在基底200上方形成一硬遮罩210,其材质及制作可相似或相同于硬遮罩210(绘示于图2A)。接着在主动区A的硬遮罩210内形成用以定义第二沟槽212的多个开口210a。之后,进行一非等向性刻蚀工艺,以在开口210a下方的第二掺杂区200b内形成多个第二沟槽212。第二沟槽212与第一沟槽204交替排列,使每一第二沟槽212与至少一第一沟槽204相邻,或者每一第一沟槽204与至少一第二沟槽212相邻。此处,为了简化图式,仅绘示出与二个第一沟槽204相邻的一第二沟槽212,如图2D所示。Next, please refer to FIG. 2D and FIG. 2E , which illustrate the formation method of the second trench 212 . A hard mask 210 is formed on the substrate 200, and its material and fabrication may be similar or identical to the hard mask 210 (shown in FIG. 2A ). A plurality of openings 210a for defining the second trenches 212 are then formed in the hard mask 210 of the active region A. Referring to FIG. After that, an anisotropic etching process is performed to form a plurality of second trenches 212 in the second doped region 200b under the opening 210a. The second grooves 212 are alternately arranged with the first grooves 204, so that each second groove 212 is adjacent to at least one first groove 204, or each first groove 204 is adjacent to at least one second groove 212 adjacent. Here, to simplify the drawing, only a second trench 212 adjacent to the two first trenches 204 is shown, as shown in FIG. 2D .
在本实施例中,可在移除硬遮罩210之后,在每一第二沟槽212的侧壁和底部顺应性形成一绝缘衬垫层214,以降低第二掺杂区200b内的应力,如图2E所示。绝缘衬垫层214的材质及制作可相似或相同于绝缘衬垫层206(绘示于图2B)。In this embodiment, after removing the hard mask 210, an insulating liner layer 214 is conformably formed on the sidewall and bottom of each second trench 212 to reduce the stress in the second doped region 200b. , as shown in Figure 2E. The material and fabrication of the insulating liner layer 214 may be similar or identical to the insulating liner layer 206 (shown in FIG. 2B ).
请参照图2F,在移除绝缘衬垫层214之后,可在每一第二沟槽212内填入具有第一导电类型的一第二外延层216。第二外延层216具有一掺杂浓度大于第二掺杂区200b的掺杂浓度,且小于第一掺杂区200a的掺杂浓度。第二外延层216的制作可相似或相同于第一外延层208(绘示于图2C)。因此,具有第二导电类型的第一外延层208与具有第一导电类型的第二外延层216系于第二掺杂区200b内形成超接面结构。Referring to FIG. 2F , after the insulating liner layer 214 is removed, a second epitaxial layer 216 of the first conductivity type can be filled in each second trench 212 . The second epitaxial layer 216 has a doping concentration greater than that of the second doping region 200b and less than that of the first doping region 200a. The fabrication of the second epitaxial layer 216 may be similar or identical to that of the first epitaxial layer 208 (shown in FIG. 2C ). Therefore, the first epitaxial layer 208 with the second conductivity type and the second epitaxial layer 216 with the first conductivity type form a super junction structure in the second doped region 200b.
请参照图2G,可透过现有MOS工艺,在每一第二沟槽212上方形成一栅极结构,其包括一栅极介电层228及位于其上的栅极电极230。再者,可在每一第一外延层208的上半部形成具有第二导电类型的一井区232,并延伸于第一外延层208外侧的第二掺杂区200b内。在栅极结构两侧每一井区232内形成具有第一导电类型的源极区234,而完成半导体装置20的制作,其中源极区234、栅极结构及第一掺杂区(作为漏极区)200a构成一垂直式扩散金属氧化物半导体场效应晶体管。Referring to FIG. 2G , a gate structure including a gate dielectric layer 228 and a gate electrode 230 thereon may be formed above each second trench 212 through an existing MOS process. Furthermore, a well region 232 of the second conductivity type can be formed in the upper half of each first epitaxial layer 208 and extend in the second doped region 200 b outside the first epitaxial layer 208 . A source region 234 with the first conductivity type is formed in each well region 232 on both sides of the gate structure to complete the fabrication of the semiconductor device 20, wherein the source region 234, the gate structure and the first doped region (serving as the drain Pole region) 200a constitutes a vertical diffused metal oxide semiconductor field effect transistor.
图3A至图3E是绘示出根据本发明另一实施例的半导体装置的制造方法剖面示意图,其中相同于图2A至图2G的部件使用相同的标号并省略其说明。请参照图3A,提供一基底200,其可包括一主动区A和围绕主动区A的一终端区(未绘示)。再者,基底200具有一第一掺杂区200a及位于其上的一第二掺杂区200b,且第一掺杂区200a与第二掺杂区200b具有第一导电类型。第一掺杂区200a与第二掺杂区200b之间具有一界面201。第二掺杂区200b内具有多个第一沟槽204及与第一沟槽204交替排列的多个第二沟槽212,使每一第二沟槽212与至少一第一沟槽204相邻,或者每一第一沟槽204与至少一第二沟槽212相邻。此处,为了简化图式,仅绘示出一第二沟槽212及与其相邻的二个第一沟槽204。具有第二导电类型的一第一外延层208设置于每一第一沟槽204内。在一实施例中,上述结构可经由进行如图2A至图2E的制造程序而形成。3A to 3E are schematic cross-sectional views illustrating a manufacturing method of a semiconductor device according to another embodiment of the present invention, wherein the same components as those in FIGS. 2A to 2G use the same reference numerals and their descriptions are omitted. Referring to FIG. 3A , a substrate 200 is provided, which may include an active area A and a termination area (not shown) surrounding the active area A. Referring to FIG. Moreover, the substrate 200 has a first doped region 200a and a second doped region 200b thereon, and the first doped region 200a and the second doped region 200b have the first conductivity type. There is an interface 201 between the first doped region 200a and the second doped region 200b. There are a plurality of first trenches 204 and a plurality of second trenches 212 arranged alternately with the first trenches 204 in the second doped region 200b, so that each second trench 212 is in phase with at least one first trench 204 or each first trench 204 is adjacent to at least one second trench 212 . Here, to simplify the drawing, only one second trench 212 and two adjacent first trenches 204 are shown. A first epitaxial layer 208 of the second conductivity type is disposed in each first trench 204 . In an embodiment, the above-mentioned structure can be formed by performing the manufacturing process as shown in FIG. 2A to FIG. 2E .
接着,可透过外延成长,在每一第二沟槽212内填入具有第一导电类型的一第二外延层216,且自第二沟槽212内延伸第二外延层216于基底200上,以形成覆盖第二掺杂区200b的一延伸部216a,如图3A所示。Then, through epitaxial growth, a second epitaxial layer 216 with the first conductivity type is filled in each second trench 212, and the second epitaxial layer 216 is extended from the second trench 212 on the substrate 200. , to form an extension 216a covering the second doped region 200b, as shown in FIG. 3A.
接着,请参照图3A及图3B,其说明第三沟槽220的形成方式。在延伸部216a上方形成一硬遮罩218,其材质及制作可相似或相同于硬遮罩210(绘示于图2A)。接着在主动区A的硬遮罩218内形成用以定义第三沟槽220的多个开口218a。之后,进行一非等向性刻蚀工艺,以在开口218a下方的第二外延层216(即,延伸部216a)内形成多个第三沟槽220。第三沟槽220大体上对准于第一沟槽204且露出第一沟槽204内的第一外延层208,如图3B所示。Next, please refer to FIG. 3A and FIG. 3B , which illustrate the formation method of the third trench 220 . A hard mask 218 is formed above the extension portion 216a, and its material and fabrication may be similar or identical to the hard mask 210 (shown in FIG. 2A ). A plurality of openings 218 a for defining the third trenches 220 are then formed in the hard mask 218 of the active region A. Referring to FIG. Afterwards, an anisotropic etching process is performed to form a plurality of third trenches 220 in the second epitaxial layer 216 (ie, the extension portion 216 a ) under the opening 218 a. The third trench 220 is substantially aligned with the first trench 204 and exposes the first epitaxial layer 208 within the first trench 204 , as shown in FIG. 3B .
请再参照图3B,在本实施例中,可在移除硬遮罩218之后,在每一第三沟槽220的侧壁和底部顺应性形成一绝缘衬垫层222,以降低延伸部216a内的应力,且可做为后续掺杂工艺的屏蔽氧化层(pre-implant oxide),以降低通道效应。绝缘衬垫层222的材质及制作可相似或相同于绝缘衬垫层206(绘示于图2B)。Please refer to FIG. 3B again. In this embodiment, after the hard mask 218 is removed, an insulating liner layer 222 is conformably formed on the sidewall and bottom of each third trench 220 to reduce the extension portion 216a. Internal stress, and can be used as a shielding oxide layer (pre-implant oxide) in the subsequent doping process to reduce the channel effect. The material and fabrication of the insulating liner layer 222 may be similar or identical to the insulating liner layer 206 (shown in FIG. 2B ).
请参照图3C,可进行一掺杂工艺224,例如离子布植,以在第二外延层216的延伸部216a内形成多个第三掺杂区224a,其中每一第三掺杂区224a邻近于每一第三沟槽220的一侧壁,且具有第二导电类型。在本实施例中,第三掺杂区224a的掺杂浓度大于第二掺杂区200b的掺杂浓度,且小于第一掺杂区200a的掺杂浓度。因此,具有第二导电类型的第三掺杂区224a与具有第一导电类型的第二外延层216的延伸部216a形成超接面结构。3C, a doping process 224, such as ion implantation, can be performed to form a plurality of third doped regions 224a in the extension 216a of the second epitaxial layer 216, wherein each third doped region 224a is adjacent to on a sidewall of each third trench 220 and has the second conductivity type. In this embodiment, the doping concentration of the third doping region 224 a is greater than that of the second doping region 200 b and smaller than that of the first doping region 200 a. Therefore, the third doped region 224 a of the second conductivity type and the extension portion 216 a of the second epitaxial layer 216 of the first conductivity type form a super junction structure.
请参照图3D,在每一第三沟槽220内填入一介电材料层226。举例来说,可透过化学气相沉积(CVD)工艺,在第二外延层216的延伸部216a上及每一第三沟槽220内形成一介电材料层226,例如氧化硅或未掺杂的多晶硅。之后,再以化学机械研磨(CMP)工艺移除第二外延层216的延伸部216a上的介电材料层226。Referring to FIG. 3D , a dielectric material layer 226 is filled in each third trench 220 . For example, a dielectric material layer 226, such as silicon oxide or undoped silicon oxide, can be formed on the extension portion 216a of the second epitaxial layer 216 and in each third trench 220 through a chemical vapor deposition (CVD) process. of polysilicon. Afterwards, the dielectric material layer 226 on the extension portion 216 a of the second epitaxial layer 216 is removed by a chemical mechanical polishing (CMP) process.
请参照图3E,可透过现有MOS工艺,在每一第二沟槽212上方第二外延层216的延伸部216a上形成一栅极结构,其包括一栅极介电层228及位于其上的栅极电极230。再者,可在每一第三掺杂区224a的上半部形成具有第二导电类型的一井区232,并延伸于第三掺杂区224a外侧的延伸部216a内。在栅极结构两侧每一井区232内形成具有第一导电类型的源极区234,而完成半导体装置20’的制作,其中源极区234、栅极结构及第一掺杂区(作为漏极区)200a构成一垂直式扩散金属氧化物半导体场效应晶体管。Referring to FIG. 3E, a gate structure can be formed on the extension 216a of the second epitaxial layer 216 above each second trench 212 through the existing MOS process, which includes a gate dielectric layer 228 and a gate dielectric layer 228 located thereon. on the gate electrode 230 . Furthermore, a well region 232 of the second conductivity type may be formed in the upper half of each third doped region 224a, and extend in the extension portion 216a outside the third doped region 224a. A source region 234 having a first conductivity type is formed in each well region 232 on both sides of the gate structure to complete the fabrication of the semiconductor device 20', wherein the source region 234, the gate structure and the first doped region (as The drain region) 200a constitutes a vertical diffused MOSFET.
图4A至图4F是绘示出根据本发明另一实施例的半导体装置的制造方法剖面示意图,其中相同于图2A至图2G的部件系使用相同的标号并省略其说明。请参照图4A,提供一基底200,其可包括一主动区A和围绕主动区A的一终端区(未绘示)。再者,基底200具有一第一掺杂区200a及位于其上的一第二掺杂区200b,且第一掺杂区200a与第二掺杂区200b具有第一导电类型。第一掺杂区200a与第二掺杂区200b之间具有一界面201。第二掺杂区200b内具有多个第一沟槽204。在一实施例中,上述结构可经由进行如图2A至图2B的制造程序而形成。接着,可透过外延成长,在每一第一沟槽204的侧壁及底部顺应性形成具有第二导电类型的一第一外延层208’。4A to 4F are schematic cross-sectional views illustrating a manufacturing method of a semiconductor device according to another embodiment of the present invention, wherein the same components as those in FIG. 2A to FIG. 2G use the same reference numerals and their descriptions are omitted. Referring to FIG. 4A , a substrate 200 is provided, which may include an active area A and a terminal area (not shown) surrounding the active area A. Referring to FIG. Moreover, the substrate 200 has a first doped region 200a and a second doped region 200b thereon, and the first doped region 200a and the second doped region 200b have the first conductivity type. There is an interface 201 between the first doped region 200a and the second doped region 200b. There are a plurality of first trenches 204 in the second doped region 200b. In an embodiment, the above-mentioned structure can be formed by performing the manufacturing process shown in FIG. 2A to FIG. 2B . Then, a first epitaxial layer 208' of the second conductivity type can be formed conformally on the sidewall and bottom of each first trench 204 through epitaxial growth.
请参照图4B,在每一第一沟槽204内填入一介电材料层209。举例来说,可透过化学气相沉积(CVD)工艺,在基底200上及每一第一沟槽204内形成一介电材料层209,例如氧化硅或未掺杂的多晶硅。之后,再以化学机械研磨(CMP)工艺移除基底200上的介电材料层209。Referring to FIG. 4B , a dielectric material layer 209 is filled in each first trench 204 . For example, a dielectric material layer 209 , such as silicon oxide or undoped polysilicon, can be formed on the substrate 200 and within each first trench 204 through a chemical vapor deposition (CVD) process. Afterwards, the dielectric material layer 209 on the substrate 200 is removed by a chemical mechanical polishing (CMP) process.
请参照图4C,进行如图2D所述的制造程序,在硬遮罩210的开口210a下方的第二掺杂区200b内形成多个第二沟槽212。第二沟槽212与第一沟槽204交替排列。此处,为了简化图式,仅绘示出与二个第一沟槽204相邻的一第二沟槽212。Referring to FIG. 4C , the manufacturing process described in FIG. 2D is performed, and a plurality of second trenches 212 are formed in the second doped region 200 b under the opening 210 a of the hard mask 210 . The second grooves 212 are arranged alternately with the first grooves 204 . Here, to simplify the drawing, only a second trench 212 adjacent to the two first trenches 204 is shown.
请参照图4D,进行如图2E所述的制造程序,在每一第二沟槽212的侧壁和底部顺应性形成一绝缘衬垫层214,以降低第二掺杂区200b内的应力。Referring to FIG. 4D , the manufacturing process as shown in FIG. 2E is performed, and an insulating liner layer 214 is conformally formed on the sidewall and bottom of each second trench 212 to reduce the stress in the second doped region 200 b.
请参照图4E,可透过外延成长,在每一第二沟槽212的侧壁及底部顺应性形成具有第一导电类型的一第二外延层216’其制作方式可相似或相同于第一外延层208’。之后,在每一第一沟槽204内填入一介电材料层217,其材质及制作方式可相似或相同于介电材料层209。Referring to FIG. 4E , a second epitaxial layer 216 ′ having the first conductivity type can be formed conformably on the sidewall and bottom of each second trench 212 through epitaxial growth, and its fabrication method can be similar or identical to that of the first trench. Epitaxial layer 208'. Afterwards, a dielectric material layer 217 is filled in each first trench 204 , and its material and manufacturing method may be similar or identical to those of the dielectric material layer 209 .
请参照图4F,可透过现有MOS工艺,在每一第二沟槽212上方形成一栅极结构,其包括一栅极介电层228及位于其上的栅极电极230。再者,可在每一第一外延层208’的上半部外侧的第二掺杂区200b内形成具有第二导电类型的一井区232。在栅极结构两侧每一井区232内形成具有第一导电类型的源极区234,而完成半导体装置20”的制作,其中源极区234、栅极结构及第一掺杂区(作为漏极区)200a构成一垂直式扩散金属氧化物半导体场效应晶体管。Referring to FIG. 4F , a gate structure including a gate dielectric layer 228 and a gate electrode 230 thereon may be formed above each second trench 212 through an existing MOS process. Furthermore, a well region 232 of the second conductivity type can be formed in the second doped region 200b outside the upper half of each first epitaxial layer 208'. A source region 234 having a first conductivity type is formed in each well region 232 on both sides of the gate structure to complete the fabrication of the semiconductor device 20", wherein the source region 234, the gate structure and the first doped region (as The drain region) 200a constitutes a vertical diffused MOSFET.
根据上述实施例,由于可藉由控制第一外延层208或208’与第二外延层216或216’所构成的超接面结构中N型区域和P型区域的掺杂浓度来达到电荷平衡(charge balance),因此上述超接面结构可形成于轻掺杂区(即,第二掺杂区200b)内,进而提升垂直式扩散金属氧化物半导体场效应晶体管中P-N接面的耐压,同时能够避免导通电阻的增加。According to the above-mentioned embodiment, since the charge balance can be achieved by controlling the doping concentration of the N-type region and the P-type region in the superjunction structure formed by the first epitaxial layer 208 or 208' and the second epitaxial layer 216 or 216' (charge balance), so the above-mentioned super junction structure can be formed in the lightly doped region (that is, the second doped region 200b), thereby improving the withstand voltage of the P-N junction in the vertical diffused metal oxide semiconductor field effect transistor, At the same time, an increase in on-resistance can be avoided.
再者,根据上述实施例,仅需进行二次的外延成长,便可在轻掺杂区内的多个沟槽内形成交替排列的P-N柱状的超接面结构,因此可简化工艺、降低制造成本以及缩小元件尺寸。Furthermore, according to the above-mentioned embodiment, only two epitaxial growths are required to form alternately arranged P-N columnar superjunction structures in a plurality of trenches in the lightly doped region, thereby simplifying the process and reducing the manufacturing cost. cost and shrink component size.
另外,根据上述实施例,由于可在多个沟槽上方形成额外的超接面结构,因此无需增加沟槽深度便可进一步提升P-N接面的耐压,而不会因刻蚀深沟槽而增加工艺困难度。In addition, according to the above-mentioned embodiments, since additional superjunction structures can be formed above a plurality of trenches, the withstand voltage of the P-N junction can be further improved without increasing the depth of the trenches, and it will not be damaged by etching deep trenches. Increased crafting difficulty.
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中技术人员,在不脱离本发明的精神和范围内,当可作更动与润饰,因此本发明的保护范围当以权利要求所界定的为准。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person skilled in the art may make changes and modifications without departing from the spirit and scope of the present invention. Therefore, this The protection scope of the invention should be defined by the claims.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210012279.6A CN103208509B (en) | 2012-01-16 | 2012-01-16 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210012279.6A CN103208509B (en) | 2012-01-16 | 2012-01-16 | Semiconductor device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103208509A CN103208509A (en) | 2013-07-17 |
CN103208509B true CN103208509B (en) | 2015-08-12 |
Family
ID=48755679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210012279.6A Active CN103208509B (en) | 2012-01-16 | 2012-01-16 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103208509B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111213241B (en) * | 2018-06-30 | 2023-09-22 | 魏进 | Semiconductor device, semiconductor apparatus, and method of manufacturing the same |
CN119277806A (en) * | 2023-07-03 | 2025-01-07 | 达尔科技股份有限公司 | Semiconductor rectifier device and manufacturing method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101950759A (en) * | 2010-08-27 | 2011-01-19 | 电子科技大学 | Super Junction VDMOS device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003028108A1 (en) * | 2001-09-19 | 2003-04-03 | Kabushiki Kaisha Toshiba | Semiconductor device and method for fabricating the same |
JP4755439B2 (en) * | 2005-04-13 | 2011-08-24 | 新電元工業株式会社 | Semiconductor device and manufacturing method thereof |
JP2008091450A (en) * | 2006-09-29 | 2008-04-17 | Toshiba Corp | Semiconductor element |
-
2012
- 2012-01-16 CN CN201210012279.6A patent/CN103208509B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101950759A (en) * | 2010-08-27 | 2011-01-19 | 电子科技大学 | Super Junction VDMOS device |
Also Published As
Publication number | Publication date |
---|---|
CN103208509A (en) | 2013-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI487110B (en) | Semiconductor device and method of manufacturing same | |
TWI587503B (en) | Semiconductor device and method of manufacturing same | |
CN102148159B (en) | Method for preparing self-aligned charge balanced power double-diffusion metal oxide semiconductor | |
US8399921B2 (en) | Metal oxide semiconductor (MOS) structure and manufacturing method thereof | |
CN102769037B (en) | Structure for reducing surface electric field and LDMOS device | |
JP5551213B2 (en) | Manufacturing method of semiconductor device | |
US8999789B2 (en) | Super-junction trench MOSFETs with short terminations | |
TW201334188A (en) | Nano-oxide semiconductor field effect transistor with trench bottom oxide shielding and three-dimensional P-body contact region and manufacturing method thereof | |
CN111081779A (en) | A shielded gate trench MOSFET and its manufacturing method | |
JP2011187708A (en) | Semiconductor device | |
US20160163789A1 (en) | Super-junction trench mosfets with closed cell layout having shielded gate | |
CN103208509B (en) | Semiconductor device and manufacturing method thereof | |
CN111211171B (en) | laterally diffused metal oxide semiconductor device | |
US20200373385A1 (en) | Semiconductor device including barrier layer between active region and semiconductor layer and method of forming the same | |
CN110212026B (en) | Superjunction MOS device structure and preparation method thereof | |
CN101924104B (en) | Structure of metal oxide semiconductor and manufacturing method thereof | |
US9214531B2 (en) | Trenched power MOSFET with enhanced breakdown voltage and fabrication method thereof | |
TWI435449B (en) | Trenched power semiconductor device and fabrication method thereof | |
CN103165463B (en) | Manufacturing method of semiconductor device | |
CN102867848B (en) | Trench type power semiconductor element and manufacturing method thereof | |
CN103208510B (en) | Semiconductor device and manufacturing method thereof | |
CN102938414B (en) | Trench type power semiconductor element and manufacturing method thereof | |
TWI463666B (en) | Semiconductor device and methods for forming the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |