CN102157246B - 一种涂层导体多层结构超导膜及其制备方法 - Google Patents
一种涂层导体多层结构超导膜及其制备方法 Download PDFInfo
- Publication number
- CN102157246B CN102157246B CN2010105832608A CN201010583260A CN102157246B CN 102157246 B CN102157246 B CN 102157246B CN 2010105832608 A CN2010105832608 A CN 2010105832608A CN 201010583260 A CN201010583260 A CN 201010583260A CN 102157246 B CN102157246 B CN 102157246B
- Authority
- CN
- China
- Prior art keywords
- acetate
- layer
- colloid
- multilayer structure
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000004020 conductor Substances 0.000 title claims abstract description 34
- 238000000576 coating method Methods 0.000 title claims abstract description 23
- 239000011248 coating agent Substances 0.000 title claims abstract description 22
- 238000002360 preparation method Methods 0.000 title claims abstract description 9
- 239000002243 precursor Substances 0.000 claims abstract description 40
- 238000000197 pyrolysis Methods 0.000 claims abstract description 12
- 229910052689 Holmium Inorganic materials 0.000 claims abstract description 3
- 229910052772 Samarium Inorganic materials 0.000 claims abstract description 3
- 239000000084 colloidal system Substances 0.000 claims description 45
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 36
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 30
- 239000001301 oxygen Substances 0.000 claims description 30
- 229910052760 oxygen Inorganic materials 0.000 claims description 30
- 239000010949 copper Substances 0.000 claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 25
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 claims description 22
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 19
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 15
- ITHZDDVSAWDQPZ-UHFFFAOYSA-L barium acetate Chemical compound [Ba+2].CC([O-])=O.CC([O-])=O ITHZDDVSAWDQPZ-UHFFFAOYSA-L 0.000 claims description 15
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 claims description 15
- 239000008367 deionised water Substances 0.000 claims description 15
- 229910021641 deionized water Inorganic materials 0.000 claims description 15
- NFSAPTWLWWYADB-UHFFFAOYSA-N n,n-dimethyl-1-phenylethane-1,2-diamine Chemical compound CN(C)C(CN)C1=CC=CC=C1 NFSAPTWLWWYADB-UHFFFAOYSA-N 0.000 claims description 15
- -1 rare earth acetate Chemical class 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 12
- 238000002425 crystallisation Methods 0.000 claims description 11
- 230000008025 crystallization Effects 0.000 claims description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 10
- 238000003756 stirring Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 238000003618 dip coating Methods 0.000 claims description 9
- BONORRGKLJBGRV-UHFFFAOYSA-N methapyrilene hydrochloride Chemical group Cl.C=1C=CC=NC=1N(CCN(C)C)CC1=CC=CS1 BONORRGKLJBGRV-UHFFFAOYSA-N 0.000 claims description 9
- 239000003153 chemical reaction reagent Substances 0.000 claims description 8
- JPDBEEUPLFWHAJ-UHFFFAOYSA-K samarium(3+);triacetate Chemical compound [Sm+3].CC([O-])=O.CC([O-])=O.CC([O-])=O JPDBEEUPLFWHAJ-UHFFFAOYSA-K 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 238000009423 ventilation Methods 0.000 claims description 7
- 229910052788 barium Inorganic materials 0.000 claims description 6
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 150000002910 rare earth metals Chemical class 0.000 claims description 5
- 238000010992 reflux Methods 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 24
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 abstract description 3
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 abstract description 3
- 239000007788 liquid Substances 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 70
- 239000010408 film Substances 0.000 description 49
- 229910021521 yttrium barium copper oxide Inorganic materials 0.000 description 12
- 150000002500 ions Chemical class 0.000 description 9
- 239000000463 material Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- MOWMLACGTDMJRV-UHFFFAOYSA-N nickel tungsten Chemical compound [Ni].[W] MOWMLACGTDMJRV-UHFFFAOYSA-N 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical class [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductors And Manufacturing Methods Therefor (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开了一种涂层导体多层结构超导膜及其制备方法,该涂层导体多层结构超导膜为YBa2Cu3Oy/Y0.9RE0.1Ba2Cu3Oy/Y0.7RE0.3Ba2Cu3Oy,其中RE为Sm或Ho。其制备方法包括制备前驱液,将前驱液逐层涂覆于NiW/La2Zr2O7/CeO2缓冲层上,每涂覆一层进行一次热解,最后进行高温晶化得到厚度为0.9μm~1.8μm的多层结构超导膜。本发明实现了超导层中的缺陷结构在样品横截面上的定向可控分布,同时有效的增加了界面钉扎能力与超导层厚度,提高了超导层性能。
Description
技术领域
本发明属于高温超导材料技术领域,具体涉及一种涂层导体多层结构超导膜及其制备方法。
背景技术
涂层导体是由金属基带/阻隔层/超导层/保护层构成的多层结构型实用高温超导材料,已经成为目前国际超导材料领域的研究热点。由于高温超导体的相干长度很小,而且呈现强的各向异性特征,人工引入缺陷结构作为有效钉扎中心是提高涂层导体超导性能的重要途径。对于三氟乙酸金属有机沉积(TFA-MOD)工艺,人工引入离子缺陷可以通过改变前驱溶液的组成来进行,同时改变厚度以及相关热处理工艺来控制缺陷结构的形成与分布。
在人工引入离子缺陷方面,日本超导研究中心(SRL-ISTEC)采用贫钡化前驱液提高样品性能。将Ba/Y比例控制为1.5,获得YBa1.5Cu3Oy涂层导体,通过析出的第二相Y2O3作为钉扎中心,但是第二相尺寸较大,起到钉扎作用的并不是第二相本身,而是在第二相周围形成的缺陷结构。美国超导公司(AMSC)在前驱溶液中掺入Dy,促使纳米点缺陷密度的增加,有利于超导层的强钉扎。他们研发出YDy0.5BCO/YBCO两层复合带材,提高涂层导体在H//c方向上的钉扎能力。然而他们没有渐进改变离子缺陷含量,不利于实现界面钉扎。本发明提出对钇为离子进行部分替代形成缺陷结构,这种缺陷结构小于第二相。同时将涂层增加到3层,有效的提高界面钉扎作用,将更有利于提高样品性能。
发明内容
本发明所要解决的技术问题在于针对上述现有技术的不足,提供一种Jc大于1MA/cm2的涂层导体多层结构超导膜。
为解决上述技术问题,本发明采用的技术方案是:一种涂层导体多层结构超导膜,其特征在于,该涂层导体多层结构超导膜为YBa2Cu3Oy/Y0.9RE0.1Ba2Cu3Oy/Y0.7RE0.3Ba2Cu3Oy;所述RE为Sm或Ho。
所述多层结构超导膜的层数为3层。
本发明还提供了一种涂层导体多层结构超导膜的制备方法,其特征在于,该方法包括以下步骤:
(1)将乙酸钇、乙酸钡和乙酸铜按原子比Y∶Ba∶Cu=1∶2∶3溶解于去离子水中得到初始溶液A;
(2)将乙酸钇、乙酸钡、乙酸铜和稀土乙酸盐按原子比Y∶Ba∶Cu∶RE=0.9∶2∶3∶0.1溶解于去离子水中得到初始溶液B;所述稀土乙酸盐为乙酸钬或乙酸钐;
(3)将乙酸钇、乙酸钡、乙酸铜和稀土乙酸盐按原子比Y∶Ba∶Cu∶RE=0.7∶2∶3∶0.3溶解于去离子水中得到初始溶液C;所述稀土乙酸盐为乙酸钬或乙酸钐;
(4)分别向步骤(1)中所述初始溶液A、步骤(2)中所述初始溶液B和步骤(3)中所述初始溶液C中加入三氟乙酸,80℃回流4h,同时在80℃,搅拌速率为50转/分钟~100转/分钟条件下搅拌得到溶胶A、溶胶B和溶胶C;将溶胶A、溶胶B和溶胶C分别减压蒸馏得到蓝色透明胶体A、胶体B和胶体C,采用甲醇对胶体A、胶体B和胶体C分别提纯3~5次,将提纯后的胶体A、胶体B和胶体C分别溶解于甲醇中配制成1.5mol/L~2mol/L的前驱液A、前驱液B和前驱液C;所述三氟乙酸的加入量为初始溶液中钡元素摩尔量的15倍;
(5)采用浸涂法将步骤(4)中所述前驱液A、前驱液B和前驱液C逐层涂覆于NiW/La2Zr2O7/CeO2缓冲层上,每涂覆完一层后将涂覆前驱液的缓冲层在温度为120℃~150℃条件下干燥,然后置于管式炉中进行热解,形成厚度为1μm~2μm的热解膜,反应结束后,停止通气随炉降温,再进行下一层的涂覆;涂覆三层后形成总厚度为3μm~6μm的YBa2Cu3Oy/Y0.9Sm0.1BCO/Y0.7Sm0.3BCO或YBa2Cu3Oy/Y0.9Ho0.1BCO/Y0.7Ho0.3BCO三层热解膜;所述浸涂过程中的提拉速度为2mm/s~10mm/s;
(6)将步骤(5)中所述三层热解膜置于高温晶化炉中,以10℃/min~25℃/min的速率升温至730℃~830℃,在氧分压为10ppm~500ppm,水汽分压为3.1%的条件下恒温1h~3h,然后在干燥的氩氧混合气氛中降温,待温度降至525℃时将气氛更换为干燥的氧气氛,最后在450℃恒温1h~3h进行渗氧处理,得到涂层导体多层结构超导膜;所述氩氧混合气氛中氧气的体积含量为10ppm~500ppm,氩气为余量;所述涂层导体多层结构超导膜的厚度为0.9μm~1.8μm。
上述步骤(4)中所述甲醇为分析纯试剂。
上述步骤(5)中所述热解的制度为:以5℃/min的速率升温至150~200℃,然后以0.1℃/min~0.5℃/min的速率继续升温至250℃,再以1℃/min~5℃/min的速率升温至320℃~400℃,气氛控制为流动的氧气氛,在温度高于120℃时通入湿氧气,水汽分压控制为0.6%~3.1%,当温度升至320℃~400℃时反应结束,停止通气随炉降温。
本发明与现有技术相比具有以下优点:
1、本发明在NiW/LZO/CeO2缓冲层上制备多层结构超导膜,结合稀土离子在析出相中的固溶度,通过改变阳离子化学计量比,逐步提高缺陷结构在涂层导体中的分布,通过控制热处理工艺,控制缺陷结构的尺寸。
2、本发明通过渐进改变离子缺陷含量弥合层界面差异,实现了超导层中的缺陷结构在样品横截面上的定向可控分布,使不同掺杂含量的多层膜在同一晶化条件下生长更趋于一致性,同时有效的提高了界面钉扎能力,提高了超导层的性能。与传统制备的纯YBCO膜相比,本发明的多层结构超导膜不仅引入了缺陷钉扎,同时提高超导层厚度,3次涂覆的膜厚度达到0.9μm~1.8μm,Jc大于1MA/cm2,相比于不掺杂样品在高场下具有高的Jc。
下面通过附图和实施例,对本发明的技术方案做进一步的详细说明。
附图说明
图1为本发明实施例1的NiW/La2Zr2O7/CeO2/YBCO/Y0.9Ho0.1BCO/Y0.7Ho0.3BCO薄膜的x衍射θ-2θ扫描图。
图2为本发明实施例1的NiW/La2Zr2O7/CeO2/YBCO/Y0.9Ho0.1BCO/Y0.7Ho0.3BCO薄膜的表面形貌的扫描电镜(SEM)图。
图3为本发明实施例1的NiW/La2Zr2O7/CeO2/YBCO/Y0.9Ho0.1BCO/Y0.7Ho0.3BCO薄膜的临界电流密度与磁场的曲线(Jc-B)图。
具体实施方式
实施例1
(1)将乙酸钇、乙酸钡和乙酸铜按原子比Y∶Ba∶Cu=1∶2∶3溶解于去离子水中得到初始溶液A;
(2)将乙酸钇、乙酸钡、乙酸铜和稀土乙酸盐按原子比Y∶Ba∶Cu∶RE=0.9∶2∶3∶0.1溶解于去离子水中得到初始溶液B;所述稀土乙酸盐为乙酸钬;
(3)将乙酸钇、乙酸钡、乙酸铜和稀土乙酸盐按原子比Y∶Ba∶Cu∶RE=0.7∶2∶3∶0.3溶解于去离子水中得到初始溶液C;所述稀土乙酸盐为乙酸钬;
(4)分别向步骤(1)中所述初始溶液A、步骤(2)中所述初始溶液B和步骤(3)中所述初始溶液C中加入三氟乙酸,80℃回流4h,同时在80℃,搅拌速率为50转/分钟条件下搅拌得到溶胶A、溶胶B和溶胶C;将溶胶A、溶胶B和溶胶C分别减压蒸馏得到蓝色透明胶体A、胶体B和胶体C,采用甲醇(分析纯试剂)对胶体A、胶体B和胶体C分别提纯3次,将提纯后的胶体A、胶体B和胶体C分别溶解于甲醇(分析纯试剂)中配制成1.5mol/L的前驱液A、前驱液B和前驱液C;所述三氟乙酸的加入量为初始溶液中钡元素摩尔量的15倍;
(5)采用浸涂法将步骤(4)中所述前驱液A、前驱液B和前驱液C逐层涂覆于NiW/La2Zr2O7/CeO2缓冲层上,每涂覆完一层后将涂覆前驱液的缓冲层在温度为120℃条件下干燥,然后置于管式炉中进行热解,形成厚度为1μm的热解膜,反应结束后,停止通气随炉降温,再进行下一层的涂覆;涂覆三层后形成总厚度为3μm的YBCO/Y0.9Ho0.1BCO/Y0.7Ho0.3BCO三层热解膜;所述浸涂过程中的提拉速度为2mm/s;所述热解的制度为:以5℃/min的速率升温至150℃,然后以0.1℃/min的速率继续升温至250℃,再以1℃/min的速率升温至320℃,气氛控制为流动的氧气氛,在温度高于120℃时通入湿氧气,水汽分压控制为0.6%,当温度升至320℃时反应结束,停止通气随炉降温;
(6)将步骤(5)中所述三层热解膜置于高温晶化炉中,以10℃/min的速率升温至730℃,在氧分压为10ppm,水汽分压为3.1%的条件下恒温3h,然后在干燥的氩氧混合气氛中降温,待温度降至525℃时将气氛更换为干燥的氧气氛,最后在450℃恒温1h进行渗氧处理,得到厚度为0.9μm的涂层导体多层结构超导膜(NiW/La2Zr2O7/CeO2/YBCO/Y0.9Ho0.1BCO/Y0.7Ho0.3BCO);所述氩氧混合气氛中氧气的体积含量为10ppm,氩气为余量。
图1是本实施例制备的涂层导体多层结构超导膜(NiW/La2Zr2O7/CeO2/YBCO/Y0.9Ho0.1BCO/Y0.7Ho0.3BCO)的x衍射图(图中纵坐标为衍射强度,任意单位;横坐标为2Theta衍射角,单位为度),从图中可看出多层结构超导膜具有良好的外延织构,其中,YHoBCO为钇钬钡铜氧多层超导膜,NiW为镍钨的缩写,LZO为La2Zr2O7的缩写。
图2是本实施例制备的涂层导体多层结构超导膜的扫描电镜图,放大倍数为20000倍,表面致密且无a轴晶。
图3是本实施例制备的涂层导体多层结构超导膜的临界电流密度与磁场的曲线(纵坐标为临界电流密度,单位安培每平方厘米;横坐标为磁场,单位为特斯拉),结果显示涂层导体多层结构超导膜77K零场下Jc达到2.3MA/cm2,磁场下Jc明显高于未掺杂超导层薄膜性能。
实施例2
本实施例与实施例1的制备方法相同,其特征在于:所述稀土乙酸盐为乙酸钐,得到YBCO/Y0.9Sm0.1BCO/Y0.7Sm0.3BCO三层热解膜。
本实施例通过渐进改变离子缺陷含量弥合层界面差异,实现了超导层中的缺陷结构在样品横截面上的定向可控分布,使不同掺杂含量的多层膜在同一晶化条件下生长更趋于一致性,同时有效的提高了界面钉扎能力,提高了超导层的性能,制备的涂层导体多层结构超导膜Jc大于1MA/cm2,相比于不掺杂样品在高场下具有高的Jc。
实施例3
(1)将乙酸钇、乙酸钡和乙酸铜按原子比Y∶Ba∶Cu=1∶2∶3溶解于去离子水中得到初始溶液A;
(2)将乙酸钇、乙酸钡、乙酸铜和稀土乙酸盐按原子比Y∶Ba∶Cu∶RE=0.9∶2∶3∶0.1溶解于去离子水中得到初始溶液B;所述稀土乙酸盐为乙酸钐;
(3)将乙酸钇、乙酸钡、乙酸铜和稀土乙酸盐按原子比Y∶Ba∶Cu∶RE=0.7∶2∶3∶0.3溶解于去离子水中得到初始溶液C;所述稀土乙酸盐为乙酸钐;
(4)分别向步骤(1)中所述初始溶液A、步骤(2)中所述初始溶液B和步骤(3)中所述初始溶液C中加入三氟乙酸,80℃回流4h,同时在80℃,搅拌速率为100转/分钟条件下搅拌得到溶胶A、溶胶B和溶胶C;将溶胶A、溶胶B和溶胶C分别减压蒸馏得到蓝色透明胶体A、胶体B和胶体C,采用甲醇(分析纯试剂)对胶体A、胶体B和胶体C分别提纯5次,将提纯后的胶体A、胶体B和胶体C分别溶解于甲醇(分析纯试剂)中配制成2mol/L的前驱液A、前驱液B和前驱液C;所述三氟乙酸的加入量为初始溶液中钡元素摩尔量的15倍;
(5)采用浸涂法将步骤(4)中所述前驱液A、前驱液B和前驱液C逐层涂覆于NiW/La2Zr2O7/CeO2缓冲层上,每涂覆完一层后将涂覆前驱液的缓冲层在温度为150℃条件下干燥,然后置于管式炉中进行热解,形成厚度为2μm的热解膜,反应结束后,停止通气随炉降温,再进行下一层的涂覆;涂覆三层后形成总厚度为6μm的YBCO/Y0.9Sm0.1BCO/Y0.7Sm0.3BCO三层热解膜;所述浸涂过程中的提拉速度为10mm/s;所述热解的制度为:以5℃/min的速率升温至200℃,然后以0.5℃/min的速率继续升温至250℃,再以5℃/min的速率升温至400℃,气氛控制为流动的氧气氛,在温度高于120℃时通入湿氧气,水汽分压控制为3.1%,当温度升至320℃时反应结束,停止通气随炉降温;
(6)将步骤(5)中所述三层热解膜置于高温晶化炉中,以25℃/min的速率升温至830℃,在氧分压为500ppm,水汽分压为3.1%的条件下恒温1h,然后在干燥的氩氧混合气氛中降温,待温度降至525℃时将气氛更换为干燥的氧气氛,最后在450℃恒温3h进行渗氧处理,得到厚度为1.8μm的涂层导体多层结构超导膜;所述氩氧混合气氛中氧气的体积含量为10ppm,氩气为余量。
本实施例通过渐进改变离子缺陷含量弥合层界面差异,实现了超导层中的缺陷结构在样品横截面上的定向可控分布,使不同掺杂含量的多层膜在同一晶化条件下生长更趋于一致性,同时有效的提高了界面钉扎能力,提高了超导层的性能,制备的涂层导体多层结构超导膜Jc大于1MA/cm2,相比于不掺杂样品在高场下具有高的Jc。
实施例4
本实施例与实施例3的制备方法相同,其特征在于:所述稀土乙酸盐为乙酸钬,得到YBCO/Y0.9Ho0.1BCO/Y0.7Ho0.3BCO三层热解膜。
本实施例通过渐进改变离子缺陷含量弥合层界面差异,实现了超导层中的缺陷结构在样品横截面上的定向可控分布,使不同掺杂含量的多层膜在同一晶化条件下生长更趋于一致性,同时有效的提高了界面钉扎能力,提高了超导层的性能,制备的涂层导体多层结构超导膜Jc大于1MA/cm2,相比于不掺杂样品在高场下具有高的Jc。
实施例5
(1)将乙酸钇、乙酸钡和乙酸铜按原子比Y∶Ba∶Cu=1∶2∶3溶解于去离子水中得到初始溶液A;
(2)将乙酸钇、乙酸钡、乙酸铜和稀土乙酸盐按原子比Y∶Ba∶Cu∶RE=0.9∶2∶3∶0.1溶解于去离子水中得到初始溶液B;所述稀土乙酸盐为乙酸钬;
(3)将乙酸钇、乙酸钡、乙酸铜和稀土乙酸盐按原子比Y∶Ba∶Cu∶RE=0.7∶2∶3∶0.3溶解于去离子水中得到初始溶液C;所述稀土乙酸盐为乙酸钬;
(4)分别向步骤(1)中所述初始溶液A、步骤(2)中所述初始溶液B和步骤(3)中所述初始溶液C中加入三氟乙酸,80℃回流4h,同时在80℃,搅拌速率为75转/分钟条件下搅拌得到溶胶A、溶胶B和溶胶C;将溶胶A、溶胶B和溶胶C分别减压蒸馏得到蓝色透明胶体A、胶体B和胶体C,采用甲醇(分析纯试剂)对胶体A、胶体B和胶体C分别提纯4次,将提纯后的胶体A、胶体B和胶体C分别溶解于甲醇(分析纯试剂)中配制成1.8mol/L的前驱液A、前驱液B和前驱液C;所述三氟乙酸的加入量为初始溶液中钡元素摩尔量的15倍;
(5)采用浸涂法将步骤(4)中所述前驱液A、前驱液B和前驱液C逐层涂覆于NiW/La2Zr2O7/CeO2缓冲层上,每涂覆完一层后将涂覆前驱液的缓冲层在温度为135℃条件下干燥,然后置于管式炉中进行热解,形成厚度为1.5μm的热解膜,反应结束后,停止通气随炉降温,再进行下一层的涂覆,涂覆三层后形成总厚度为4.5μm的YBCO/Y0.9Ho0.1BCO/Y0.7Ho0.3BCO三层热解膜;所述浸涂过程中的提拉速度为6mm/s;所述热解的制度为:以5℃/min的速率升温至175℃,然后以0.3℃/min的速率继续升温至250℃,再以3℃/min的速率升温至360℃,气氛控制为流动的氧气氛,在温度高于120℃时通入湿氧气,水汽分压控制为1.9%,当温度升至360℃时反应结束,停止通气随炉降温;
(6)将步骤(5)中所述三层热解膜置于高温晶化炉中,以17℃/min的速率升温至780℃,在氧分压为250ppm,水汽分压为3.1%的条件下恒温2h,然后在干燥的氩氧混合气氛中降温,待温度降至525℃时将气氛更换为干燥的氧气氛,最后在450℃恒温2h进行渗氧处理,得到厚度为1.3μm的涂层导体多层结构超导膜;所述氩氧混合气氛中氧气的体积含量为250ppm,氩气为余量。
本实施例通过渐进改变离子缺陷含量弥合层界面差异,实现了超导层中的缺陷结构在样品横截面上的定向可控分布,使不同掺杂含量的多层膜在同一晶化条件下生长更趋于一致性,同时有效的提高了界面钉扎能力,提高了超导层的性能,制备的涂层导体多层结构超导膜Jc大于1MA/cm2,相比于不掺杂样品在高场下具有高的Jc。
实施例6
本实施例与实施例5的制备方法相同,其特征在于:所述稀土乙酸盐为乙酸钐,得到YBCO/Y0.9Sm0.1BCO/Y0.7Sm0.3BCO三层热解膜。
本实施例通过渐进改变离子缺陷含量弥合层界面差异,实现了超导层中的缺陷结构在样品横截面上的定向可控分布,使不同掺杂含量的多层膜在同一晶化条件下生长更趋于一致性,同时有效的提高了界面钉扎能力,提高了超导层的性能,制备的涂层导体多层结构超导膜Jc大于1MA/cm2,相比于不掺杂样品在高场下具有高的Jc。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效变化,均仍属于本发明技术方案的保护范围内。
Claims (5)
1.一种涂层导体多层结构超导膜,其特征在于,该涂层导体多层结构超导膜为YBa2Cu3Oy/Y0.9RE0.1Ba2Cu3Oy/Y0.7RE0.3Ba2Cu3Oy;所述RE为Sm或Ho。
2.根据权利要求1所述的一种涂层导体多层结构超导膜,其特征在于,所述多层结构超导膜的层数为3层。
3.一种制备如权利要求1所述的涂层导体多层结构超导膜的方法,其特征在于,该方法包括以下步骤:
(1)将乙酸钇、乙酸钡和乙酸铜按原子比Y∶Ba∶Cu=1∶2∶3溶解于去离子水中得到初始溶液A;
(2)将乙酸钇、乙酸钡、乙酸铜和稀土乙酸盐按原子比Y∶Ba∶Cu∶RE=0.9∶2∶3∶0.1溶解于去离子水中得到初始溶液B;所述稀土乙酸盐为乙酸钬或乙酸钐;
(3)将乙酸钇、乙酸钡、乙酸铜和稀土乙酸盐按原子比Y∶Ba∶Cu∶RE=0.7∶2∶3∶0.3溶解于去离子水中得到初始溶液C;所述稀土乙酸盐为乙酸钬或乙酸钐;
(4)分别向步骤(1)中所述初始溶液A、步骤(2)中所述初始溶液B和步骤(3)中所述初始溶液C中加入三氟乙酸,80℃回流4h,同时在80℃,搅拌速率为50转/分钟~100转/分钟条件下搅拌得到溶胶A、溶胶B和溶胶C;将溶胶A、溶胶B和溶胶C分别减压蒸馏得到蓝色透明胶体A、胶体B和胶体C,采用甲醇对胶体A、胶体B和胶体C分别提纯3~5次,将提纯后的胶体A、胶体B和胶体C分别溶解于甲醇中配制成1.5mol/L~2mol/L的前驱液A、前驱液B和前驱液C;所述三氟乙酸的加入量为初始溶液中钡元素摩尔量的15倍;
(5)采用浸涂法将步骤(4)中所述前驱液A、前驱液B和前驱液C逐层涂覆于NiW/La2Zr2O7/CeO2缓冲层上,每涂覆完一层后将涂覆前驱液的缓冲层在温度为120℃~150℃条件下干燥,然后置于管式炉中进行热解,形成厚度为1μm~2μm的热解膜,反应结束后,停止通气随炉降温,再进行下一层的涂覆;涂覆三层后形成总厚度为3μm~6μm的YBa2Cu3Oy/Y0.9Sm0.1BCO/Y0.7Sm0.3BCO或YBa2Cu3Oy/Y0.9Ho0.1BCO/Y0.7Ho0.3BCO三层热解膜;所述浸涂过程中的提拉速度为2mm/s~10mm/s;
(6)将步骤(5)中所述三层热解膜置于高温晶化炉中,以10℃/min~25℃/min的速率升温至730℃~830℃,在氧分压为10ppm~500ppm,水汽分压为3.1%的条件下恒温1h~3h,然后在干燥的氩氧混合气氛中降温,待温度降至525℃时将气氛更换为干燥的氧气氛,最后在450℃恒温1h~3h进行渗氧处理,得到涂层导体多层结构超导膜;所述氩氧混合气氛中氧气的体积含量为10ppm~500ppm,氩气为余量;所述涂层导体多层结构超导膜的厚度为0.9μm~1.8μm。
4.根据权利要求3所述的一种涂层导体多层结构超导膜的制备方法,其特征在于,步骤(4)中所述甲醇为分析纯试剂。
5.根据权利要求3所述的一种涂层导体多层结构超导膜的制备方法,其特征在于,步骤(5)中所述热解的制度为:以5℃/min的速率升温至150~200℃,然后以0.1℃/min~0.5℃/min的速率继续升温至250℃,再以1℃/min~5℃/min的速率升温至320℃~400℃,气氛控制为流动的氧气氛,在温度高于120℃时通入湿氧气,水汽分压控制为0.6%~3.1%,当温度升至320℃~400℃时反应结束,停止通气随炉降温。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010105832608A CN102157246B (zh) | 2010-12-12 | 2010-12-12 | 一种涂层导体多层结构超导膜及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010105832608A CN102157246B (zh) | 2010-12-12 | 2010-12-12 | 一种涂层导体多层结构超导膜及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102157246A CN102157246A (zh) | 2011-08-17 |
CN102157246B true CN102157246B (zh) | 2012-08-15 |
Family
ID=44438674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010105832608A Expired - Fee Related CN102157246B (zh) | 2010-12-12 | 2010-12-12 | 一种涂层导体多层结构超导膜及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102157246B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102491740A (zh) * | 2011-11-28 | 2012-06-13 | 西北有色金属研究院 | 一种钐掺杂的钇钡铜氧超导薄膜及其制备方法 |
CN103073280A (zh) * | 2013-01-30 | 2013-05-01 | 江苏天诚线缆集团有限公司 | 一种图案化钇钡铜氧高温超导薄膜的制备方法 |
CN103367626B (zh) * | 2013-07-02 | 2015-08-12 | 西北有色金属研究院 | 一种涂层导体超导膜及其制备方法 |
WO2017145401A1 (ja) * | 2016-02-26 | 2017-08-31 | 株式会社 東芝 | 酸化物超電導体及びその製造方法 |
CN108007895A (zh) * | 2017-12-08 | 2018-05-08 | 北京鼎臣世纪超导科技有限公司 | 一种检验rebco超导膜前驱液质量的方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1098548A (zh) * | 1993-12-24 | 1995-02-08 | 中国科学院物理研究所 | 一种掺钬的高临界电流密度高磁通针扎力的高温超导体 |
US6602588B1 (en) * | 1998-09-14 | 2003-08-05 | The Regents Of The University Of California | Superconducting structure including mixed rare earth barium-copper compositions |
US7286032B2 (en) * | 2003-07-10 | 2007-10-23 | Superpower, Inc. | Rare-earth-Ba-Cu-O superconductors and methods of making same |
-
2010
- 2010-12-12 CN CN2010105832608A patent/CN102157246B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1098548A (zh) * | 1993-12-24 | 1995-02-08 | 中国科学院物理研究所 | 一种掺钬的高临界电流密度高磁通针扎力的高温超导体 |
US6602588B1 (en) * | 1998-09-14 | 2003-08-05 | The Regents Of The University Of California | Superconducting structure including mixed rare earth barium-copper compositions |
US7286032B2 (en) * | 2003-07-10 | 2007-10-23 | Superpower, Inc. | Rare-earth-Ba-Cu-O superconductors and methods of making same |
Non-Patent Citations (2)
Title |
---|
A.Kaneko et al.Fabrication of Y1-xRExBa2Cu3O7-y film by advanced TFA-MOD process.《PHYSICA C》.2005,第949-953页. * |
Feng Yong et al.superconducting properties and microstructure of the powder melting processed Y-Ho-Ba-Cu-O and Y-Gd-Ba-Cu-O superconductors.《Physics C》.1992,第202卷第298-302页. * |
Also Published As
Publication number | Publication date |
---|---|
CN102157246A (zh) | 2011-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102157246B (zh) | 一种涂层导体多层结构超导膜及其制备方法 | |
CN102142300B (zh) | 一种第二相纳米粒子掺杂ybco薄膜的制备方法 | |
CN100395847C (zh) | 一种高温超导覆膜导体及其制备方法 | |
CN101271956A (zh) | 一种高分子辅助沉积高温超导涂层导体超导层的方法 | |
JP4208806B2 (ja) | 酸化物超電導体の製造方法 | |
CN101916619A (zh) | 一种纳米颗粒掺杂的rebco薄膜及其制备方法 | |
CN101320604A (zh) | 一种SrZrO3掺杂的YBCO薄膜及其制备方法 | |
CN101587763A (zh) | 一种高温超导涂层导体缓冲层的制备方法 | |
CN101178954A (zh) | 一种导电型阻隔层LaNiO3的制备方法 | |
CN103367626B (zh) | 一种涂层导体超导膜及其制备方法 | |
CN106242553A (zh) | 一种高温超导rebco薄膜的制备方法 | |
CN105296967B (zh) | 一种烧绿石型Gd2Ti2O7缓冲层薄膜的制备方法 | |
JP4050730B2 (ja) | 酸化物超電導体およびその製造方法 | |
CN103864461B (zh) | 一种制备rebco超导薄膜的方法 | |
CN104928660B (zh) | 超导涂层用YxCe1‑xO2/La2Zr2O7复合过渡层薄膜的制备方法 | |
CN101723659B (zh) | 一种低氟金属有机沉积制备涂层导体超导层的方法 | |
JP5415696B2 (ja) | 機能が向上された厚膜超伝導フィルム | |
CN104446435B (zh) | 银掺杂稀土类钡铜氧高温超导涂层导体材料的制备方法 | |
CN106229404A (zh) | 多层结构高温超导厚膜及其制备方法 | |
JP2008514545A5 (zh) | ||
JP5172456B2 (ja) | 酸化物超電導体の製造方法 | |
CN102134712B (zh) | 一种化学溶液沉积快速制备GdBCO薄膜的方法 | |
CN101219896A (zh) | 一种Zr掺杂CeO2过渡层薄膜及其制备方法 | |
CN102241526B (zh) | 一种高温超导涂层导体缓冲层的制备方法 | |
CN103436865B (zh) | 高分子辅助含氟溶液制备高温超导薄膜的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120815 |