CN102105993B - 光电转换装置的制造方法及光电转换装置 - Google Patents
光电转换装置的制造方法及光电转换装置 Download PDFInfo
- Publication number
- CN102105993B CN102105993B CN2009801290371A CN200980129037A CN102105993B CN 102105993 B CN102105993 B CN 102105993B CN 2009801290371 A CN2009801290371 A CN 2009801290371A CN 200980129037 A CN200980129037 A CN 200980129037A CN 102105993 B CN102105993 B CN 102105993B
- Authority
- CN
- China
- Prior art keywords
- contact layer
- layer
- photoelectric conversion
- intermediate contact
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F10/00—Individual photovoltaic cells, e.g. solar cells
- H10F10/10—Individual photovoltaic cells, e.g. solar cells having potential barriers
- H10F10/17—Photovoltaic cells having only PIN junction potential barriers
- H10F10/174—Photovoltaic cells having only PIN junction potential barriers comprising monocrystalline or polycrystalline materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/10—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
- H10F71/103—Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
- H10F71/1221—The active layers comprising only Group IV materials comprising polycrystalline silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
- H10F71/1224—The active layers comprising only Group IV materials comprising microcrystalline silicon
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/16—Material structures, e.g. crystalline structures, film structures or crystal plane orientations
- H10F77/169—Thin semiconductor films on metallic or insulating substrates
- H10F77/1692—Thin semiconductor films on metallic or insulating substrates the films including only Group IV materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/545—Microcrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/546—Polycrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/548—Amorphous silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
Abstract
本发明提供一种尽可能防止电流经由中间接触层分离槽从中间接触层泄漏的光电转换装置的制造方法。该方法包括:制膜以非结晶硅为主成分的顶层(91)的工序;在顶层(91)上制膜对该顶层进行电连接及光学连接的中间接触层(93)的工序;照射脉冲激光,除去中间接触层(93),并形成直至顶层(91)的中间接触层分离槽(14)而分离中间接触层(93)的工序;在中间接触层(93)上及中间接触层分离槽(14)内制膜对其进行电连接及光学连接且以微结晶硅为主成分的底层(92)的工序。作为分离中间接触层(93)的脉冲激光器,使用脉冲宽度为10ps以上750ps以下的脉冲激光器。
Description
技术领域
本发明涉及例如薄膜太阳电池的光电转换装置的制造方法及光电转换装置,尤其是涉及具有利用脉冲激光器分离中间接触层的工序的光电转换装置的制造方法。
背景技术
以往,为了提高薄膜太阳电池的光电转换效率,已知有层叠多个光电转换层的结构。例如,已知有层叠了非结晶硅层和微结晶硅层的串联型太阳电池。这种串联型太阳电池通过在光透过性基板上依次层叠透明电极、非结晶硅层、微结晶硅层及背面电极而形成。并且,已知有在非结晶硅层和微结晶硅层之间设置与它们进行电连接及光学连接的中间接触层,使入射光的一部分反射而进一步提高光电转换效率的技术。
在这种串联型太阳电池中,谋求通过串联连接多个光电转换单元而获得所希望电压的高电压化。在串联连接多个光电转换单元时,形成贯通非结晶硅层、中间接触层及微结晶硅层的连接槽,通过将背面电极填充在该连接槽内而将背面电极和透明电极连接。
另一方面,中间接触层具有导电性,因此,与填充了背面电极的连接槽电连接时,非结晶硅层和微结晶硅层产生的电流经由中间接触层向连接槽泄漏。
因此,提出了通过激光加工分离中间接触层,而防止电流从中间接触层向连接槽泄漏的技术(参照专利文献1及2)。
专利文献1:日本特开2002-261308号公报
专利文献2:日本特开2006-313872号公报
然而,即使在利用激光加工而分离中间接触层的情况下,基于以下的理由,依然存在从中间接触层泄漏电流的可能性。
若在分离中间接触层时将激光照射到中间接触层及非结晶硅层,则非 结晶硅层吸收激光的热能,使该非结晶硅层熔融,伴随中间接触层飞散,而形成中间接触层分离槽。当形成该中间接触层分离槽时,在形成中间接触层分离槽的壁部(包含底壁),熔融的非结晶硅层再结晶。考虑到该再结晶化的区域从当初的非结晶硅变质,因此会导致低电阻化。这种低电阻化的再结晶区域成为电流的新的泄漏路径,导致电池性能降低。
本发明者们积极研究判断出,这种原因之一是激光加工时使用具有纳秒级的脉冲宽度的脉冲激光器。其原因在于,纳秒级的脉冲宽度中,时间间隔比较长,因此向形成中间接触层分离槽的壁部进行热扩散,在该壁部形成过多的再结晶化区域。
发明内容
本发明是鉴于上述情况而作成的,其目的在于提供一种尽可能防止电流经由中间接触层分离槽从中间接触层泄漏的光电转换装置的制造方法及光电转换装置。
为了解决上述课题,本发明的光电转换装置的制造方法及光电转换装置采用以下方式。
即,本发明的一方式的光电转换装置的制造方法包括:制膜以硅为主成分的第一光电转换层的第一光电转换层制膜工序;在所述第一光电转换层上制膜对该第一光电转换层进行电连接及光学连接的中间接触层的中间接触层制膜工序;照射激光,除去所述中间接触层,并形成直至所述第一光电转换层的中间接触层分离槽而分离该中间接触层的中间接触层分离工序;制膜第二光电转换层的第二光电转换层制膜工序,该第二光电转换层在所述中间接触层上及所述中间接触层分离槽内对该中间接触层进行电连接及光学连接且以硅为主成分,其中,所述中间接触层分离工序利用脉冲宽度为10ps以上且750ps以下的脉冲激光器进行。
在照射激光而赋予的热能作用下,中间接触层及第一光电转换层熔融、飞散,在激光的照射部分形成槽。由此,形成分离中间接触层的中间接触层分离槽。
在上述方式中,分离中间接触层时使用的脉冲激光器的脉冲宽度为10ps以上且750ps以下,与现有的纳秒级的脉冲宽度相比,被大幅缩短, 从而使赋予第一光电转换层热能的时间间隔极短。由此,与纳秒级的脉冲宽度的激光器相比,第一光电转换层以极短的时间间隔熔融飞散,因此,形成中间接触层分离槽的壁部没有得到过多的热量。从而,能够在形成中间接触层分离槽的壁部尽可能地减小硅再结晶化的区域。如上所述,由于能够减小硅再结晶化而导致低电阻化的区域,因此能够减少经由中间接触层分离槽漏出的电流。
作为第一光电转换层优选使用非结晶硅层,作为第二光电转换层使用微结晶硅层。作为中间接触层优选使用GZO(Ga掺杂ZnO)。
在本发明一方式的光电转换装置的制造方法中,所述中间接触层分离槽在所述第一光电转换层的中途位置成为终端。
中间接触层分离槽在第一光电转换层的中途位置成为终端,并且,没有到达与第一光电转换层连接的电极(或其他中间接触层)。由此,即使在形成分离槽的壁部上形成再结晶化区域,该再结晶化区域也不会与电极(或中间层)进行物理性连接,因此,中间接触层与电极不会电连接。
中间接触层分离槽的终端位置优选位于再结晶化区域与和第一光电转换层连接的电极(或其他中间接触层)不接触的位置。
在本发明一方式的光电转换装置的制造方法中,所述中间接触层分离工序包括使多个分离孔局部重合而形成一连串的所述中间接触层分离槽的工序,相邻的所述分离孔的重合宽度为该分离孔直径的0%以上且5%以下。
由于为10ps以上且750ps以下的脉冲宽度的脉冲激光器,因此,能够以极短的时间间隔对第一光电转换层赋予热能。即,与纳秒的脉冲宽度的现有的脉冲激光器相比,能够将投入的热能被第一光电变换层吸收而扩散的热扩散抑制得较小,因此,能够将充分的热能投入到形成中间接触层分离槽的壁部附近而将热能不浪费地用于槽加工,从而能够形成直至分离孔的周缘附近的所希望深度的分离孔。因此,能够将相邻的分离孔的重合宽度减小至分离孔直径的0%以上且5%以下,进而实现加工速度的增大。
在此,相邻的分离孔的重合宽度为0%是指相邻的分离孔相接。
本发明的一方式的光电转换装置具备:以硅为主成分的第一光电转换层;对该第一光电转换层进行电连接及光学连接的中间接触层;对该中间 接触层进行电连接及光学连接且以硅为主成分的第二光电转换层,所述光电转换装置以分离所述中间接触层的方式形成有中间接触层分离槽,该中间接触层分离槽贯通该中间接触层且到达所述第一光电转换层,其中,所述中间接触层分离槽为使多个分离孔重合而形成的一连串的槽,相邻的所述分离孔的重合宽度为该分离孔的直径的0%以上且5%以下。
相邻的分离孔的重合宽度减小至分离孔直径的0%以上且5%以下,因此,能够实现加工速度的增大。
在此,相邻的分离孔的重合宽度为0%是指相邻的分离孔相接。
发明效果
根据本发明,加工中间接触层分离槽时使用脉冲宽度为10ps以上且750ps以下的脉冲激光器,因此,能够尽可能地限定形成中间接触层分离槽的壁部附近产生的硅的再结晶化区域,能够抑制经由中间接触层分离槽漏出的电流。由此,实现光电转换装置的效率提高。
附图说明
图1是表示本发明的一实施方式的串联型太阳电池的纵向剖视图。
图2是表示在中间接触层分离工序中形成中间接触层分离槽的状态的纵向剖视图。
图3是表示微微秒脉冲激光器的能量密度与加工深度的关系的图形。
图4A是表示本发明一实施方式的使用了微微秒脉冲激光器的情况下的分离孔的重合状态的俯视图。
图4B是本发明的一实施方式的使用了微微秒脉冲激光器的情况下的微微秒脉冲激光器的用于槽加工的能量密度的曲线图。
图5A是表示使用了本发明的比较例的纳秒脉冲激光器的情况下的分离孔的重合状态的俯视图。
图5B是表示使用了本发明的比较例的纳秒脉冲激光器的情况下的纳秒脉冲激光器的用于槽加工的能量密度的曲线图。
图6是对通过本实施方式的制造方法制造的太阳电池模块与作为比较例使用纳秒脉冲激光器制造的太阳电池模块的效率进行比较后的图形。
具体实施方式
以下,参照附图对本发明的实施方式进行说明。
图1表示串联型的硅系薄膜太阳电池(光电转换装置)的纵向剖面。
太阳电池10具备:玻璃基板(透光性基板)1、透明电极层2、顶层(第一光电转换层)91、中间接触层93、底层(第二光电转换层)92和背面电极层4。在本实施方式中,顶层91为主要具有非晶质硅系半导体的光电转换层,底层92为主要具有结晶质硅系半导体的光电转换层。
在此,“硅系”是指包括硅(Si)、碳化硅(SiC)、锗化硅(SiGe)的总称。另外,“结晶质硅系”是指非结晶硅系即非晶质硅系以外的硅系,也包括微结晶硅和多结晶硅系。
上述结构的本实施方式的太阳电池10如下制造。
作为玻璃基板1,使用具有1m2以上面积的浮法碱玻璃。具体而言,使用1.4m×1.1m大小,板厚3.5至4.5mm的玻璃。为了防止热应力和碰撞等引起的破损,优选对玻璃基板1的端面实施倒角加工或圆角加工。
作为透明电极层2,优选使用以氧化锡膜(SnO2)为主成分的透明电极膜。该透明电极膜为约500nm至800nm的膜厚,通过利用热CVD装置以约500℃进行制膜处理而得到。在该制膜处理时,在透明电极膜的表面形成具有适当的凹凸的纹理。作为透明电极层2,可以在透明电极膜和基板1之间夹设碱性阻挡膜(未图示)。碱性阻挡膜为例如从50nm至150nm膜厚的氧化硅膜(SiO2),在热CVD装置以约500℃进行制膜处理而得到。
然后,将玻璃基板1设置在X-Y工作台,从透明电极层2的膜面侧(图中上方侧)照射YAG激光的第一高次谐波(1064nm)。以相对于加工速度成为适当的方式调整激光功率,使透明电极层2朝向与发电单元5的串联连接方向垂直的方向(图中与纸面垂直方向)与玻璃基板1和激光相对移动,从而形成透明电极分离槽12。由此,透明电极层2被激光蚀刻为宽度约6mm至15mm的规定宽度的窄长状。
接下来,利用等离子体CVD装置,在减压气氛为30Pa至1000Pa,基板温度为约200℃的条件下,依次制膜由非结晶硅薄膜构成的p层膜/i层膜/n层膜而形成顶层91(第一光电转换层制膜工序)。顶层91是利用以SiH4气体和H2气体为主原料的工艺气体在透明电极层2上制膜而成的。 从太阳光的入射侧(玻璃基板1侧)开始,p层、i层、n层以此顺序层叠。
在本实施方式中,顶层91由如下部分构成,以掺杂了B的非结晶SiC为主的膜厚为10nm至30nm的非结晶p层、以非结晶Si为主的膜厚为200nm至350nm的非结晶i层、以在非结晶Si中含有微结晶Si的掺杂了p的Si层为主的膜厚为30nm至50nm的非结晶n层。为了提高界面特性,可以在p层膜和i层膜之间设置缓冲层。
接下来,在顶层91上制膜GZO(Ga掺杂ZnO)膜作为中间接触层93(中间接触层制膜工序)。GZO(Ga掺杂ZnO)膜的膜厚为20nm至100nm,利用溅射装置进行制膜。通过中间接触层93能够改善顶层91与底层92之间的接触性并得到电流整合性。中间接触层93为半反射膜,通过使从玻璃基板1入射的光的一部分反射而实现顶层91的光电转换效率的提高。
接下来,将玻璃基板1设置在X-Y工作台上,从透明电极层2的膜面侧(图中上方侧)照射具有从10ps至750ps的脉冲宽度的脉冲激光(以下称为“微微秒脉冲激光”)。利用该微微秒脉冲激光在透明电极分离槽12和连接槽16之间形成中间接触层分离槽14(中间接触层分离工序)。如图2所示,中间接触层分离槽14在顶层91的非结晶i层91i成为终端。后面对该中间接触层分离工序进行详细叙述。
接下来,在中间接触层93上及中间接触层分离槽14内,利用等离子体CVD装置,在减压气氛为3000Pa以下、基板温度为约200℃、等离子体产生频率为40MHz至100MHz的条件下,依次制膜由微结晶硅薄膜构成的微结晶p层膜/微结晶i层膜/微结晶n层膜而形成底层92(第二光电转换层制膜工序)。
在本实施方式中,底层92由如下部分构成,这些部分为:掺杂了B的以微结晶SiC为主的膜厚为10nm至50nm的微结晶p层;以微结晶Si为主的膜厚为1.2μm至3.0μm的微结晶i层;掺杂了p的以微结晶Si为主的膜厚20nm至50nm的微结晶n层。
在通过等离子体CVD法形成微结晶硅薄膜尤其微结晶i层膜的情况下,等离子体放电电极与玻璃基板1的表面的距离d优选为3mm至10mm。当小于3mm时,由于与大型基板对应的制膜室内的各结构设备精度,而难以将距离d确保为恒定,并且,过近也有可能导致放电不稳定。大于 10mm的情况下,难以获得充分的制膜速度(1nm/s以上),并且,等离子体的均匀性降低,由于离子轰击而膜质下降。
接下来,将玻璃基板1设置在X-Y工作台上,如图中箭头所示,从底层92的膜面侧(图中上方侧)照射激光二极管激励YAG激光的第二高次谐波(532nm)。脉冲振荡为10至20kHz,以使加工速度成为合适的方式调整激光功率,在从透明电极分离槽12向侧方离开约50至350μm的位置形成连接槽16。可以从玻璃基板1侧照射激光,在这种情况下,利用被顶层91吸收的能量所产生的高的蒸汽压,能够蚀刻中间接触层93及底层92,因此,能够进行更稳定的激光蚀刻。对于激光蚀刻线的位置,以与前面工序的蚀刻线不交叉的方式考虑定位公差来选定。
接下来,利用溅射装置在减压气氛下、在约150至200℃的条件下依次制膜Ag膜/Ti膜作为背面电极层4。在本实施方式中,背面电极层4将膜厚为约150至500nm的Ag膜、作为对其进行保护的防蚀效果高的膜厚为10至20nm的Ti膜以该顺序层叠。或者,也可以为具有约25nm至100nm膜厚的Ag膜和具有约15nm至500nm膜厚的Al膜的层叠结构。以降低n层与背面电极层4的接触电阻和提高光反射为目的,也可以在底层92和背面电极层4之间利用溅射装置制膜膜厚50至100nm的GZO(Ga掺杂ZnO)膜。
接下来,将玻璃基板1设置在X-Y工作台上,从玻璃基板1侧(图中下方侧)照射激光二极管激励YAG激光的第二高次谐波(532nm)。激光被顶层91及底层92吸收,利用此时产生的高的气体蒸汽压使背面电极层4爆裂而将其除去。激光的脉冲振荡频率为1至10kHz,以使加工速度合适的方式调整激光功率,进行激光蚀刻以在从透明电极分离槽12向侧方离开约250至400μm的位置形成单元分割槽18。
上述工序之后,以覆盖背面电极4的方式,通过经由EVA(乙烯-醋酸乙烯共聚物)等胶粘填充片材粘贴防水效果高的背部片材的工序等,而制造太阳电池。
以下对上述的中间接触层分离工序进行详细叙述。
用于该工序的激光是具有从10ps至750ps的脉冲宽度的微微秒脉冲激光。具体而言,优选使用脉冲宽度为13ps、振荡频率为10kHz、电子束光 点直径为124μm的微微秒脉冲激光。作为微微秒脉冲激光的代表,可例举Nd:YVO4激光、钛·蓝宝石激光、光纤维激光等。
点直径为124μm的微微秒脉冲激光。作为微微秒脉冲激光的代表,可例举Nd:YVO4激光、钛·蓝宝石激光、光纤维激光等。
如图2所示,中间接触层分离槽14的终端位置(底部)位于顶层91的i层91i内。即,中间接触层分离槽14的终端位置没有位于顶层91的n层91n及p层91p内。由此,即使在形成中间接触层分离槽14的壁部(包括底部)上形成非结晶硅的再结晶化区域,也能防止n层91n和p层91p的掺杂剂向该再结晶化区域扩散,从而能够避免掺杂剂引起的再结晶化区域的低电阻化。再结晶化区域可以利用透过型电子显微镜来确认。
本发明者们认真研究的结果为,发现在微微秒脉冲激光器中,对于本实施方式使用的硅系材料(更具体而言是非结晶硅),束流能量密度和加工深度具有规定的关系。该关系如图3所示。当加工深度为y(nm)、束流能量密度为x(J/cm2)时,具有如下二次式所表示的关系。
y=-1563.7x2+1377.7x+15.586 …(1)
考虑中间接触层93为70nm厚、顶层91为250nm厚的情况下,作为贯通中间接触层93而不贯通顶层91的范围,优选100至300nm左右的范围。该范围的加工深度由上式(1)高精度地近似。
如图4A所示,中间接触层分离槽14通过使具有电子束光点直径(例如124μm)左右的直径D1的分离孔14a局部地重合而形成为一连串。在该图中,左右方向为中间接触层分离槽14的延伸方向。
相邻的分离孔14a的重合宽度B1为分离孔14a的直径D1的0%以上且5%以下。通过一次的激光照射能够加工的宽度与L1(D1-2×B1)成比例,因此,重合宽度B1越小越提高加工速度。相对于此,本发明者们进行了讨论,在现有的纳秒级的脉冲宽度的激光(以下称为“纳秒脉冲激光”)中,重合宽度B2(参照图5A)为分离孔14a的直径的10至20%。
使用微微秒激光器时重合宽度B1变小的理由如下。
对表示本实施方式的微微秒脉冲激光器的情况的图4B和表示纳秒脉冲激光器的情况的图5B进行比较说明。在各图中,横轴表示以激光器的光轴为中心的位置,纵轴表示用于槽加工的能量密度。
图4B及图5B由于在脉冲激光器中都具有以激光器光轴为中心的高斯分布形状的能量密度,因此,从激光器投入而用于槽加工的能量密度也成 为高斯分布形状。其中,如图5B所示,在纳秒脉冲激光器中,脉冲宽度比微微秒脉冲激光器长,因此,投入的能量被顶层91的非结晶硅吸收而进行扩散的热扩散量变多。从而,用于槽加工的能量密度随着从激光器光轴中心离开而大幅减少。由此,满足为了槽加工所希望深度dp而需要的能量密度的区域止于L2(=D2-2×B2)。
与此相比,微微秒脉冲激光器的脉冲宽度比较短,因此,从激光器投入能量的时间以短时间进行,因此,能量以短时间集中投入使得非结晶硅立即熔融飞散。由此,能够将被壁部的非结晶硅吸收而扩散的热扩散的量抑制得较小。由此,即使用于槽加工的能量密度从激光器光轴中心远离也几乎不减少。以上,满足为了槽加工所希望深度dp而需要的能量密度的区域为L1(=D1-2×B1>L2),能够实现比使用了纳秒脉冲激光器的加工宽度L2大的加工宽度L1。
根据上述本实施方式,发挥以下的作用效果。
分离中间接触层93时使用的脉冲激光器的脉冲宽度为10ps以上且750ps以下,与以往的纳秒级的脉冲宽度相比大幅缩短,从而使赋予顶层91的热能的时间间隔极大地缩短。由此,与纳秒级的脉冲宽度的激光器相比,顶层91的非结晶硅以极短的时间间隔熔融飞散,因此,形成中间接触层分离槽14的壁部不会得到过多的热量。从而,在形成中间接触层分离槽14的壁部能够尽可能减小硅再结晶化的区域。如此,能够减小硅被再结晶化而导致低电阻化的区域,因此,能够减小经由中间接触层分离槽而漏出的电流。
使中间接触层分离槽14在顶层91的中途位置成为终端,不到达与顶层91连接的透明电极层2。由此,即使在形成中间接触层分离槽14的壁部上形成再结晶化区域,该再结晶化区域也不会与透明电极层2进行物理性连接,因此,不会使中间接触层93与透明电极层2电连接。
由于为具有10ps以上且750ps以下的脉冲宽度的脉冲激光器,因此,能够以极短的时间间隔对顶层91赋予热能。即,与现有的纳秒级的脉冲宽度的脉冲激光器相比,能够将投入的热能被顶层91的非结晶硅吸收而扩散的热扩散抑制为较小,因此,能够将充分的热能投入至分离孔14a(参照图4A)周缘附近,从而能够形成直至分离孔14a的周缘附近的所希望 深度的分离孔14a。由此,能够将相邻的分离孔14a的重合宽度减小至分离孔直径的0%以上且5%以下,进而,能够实现加工速度的增大。
图6表示通过使用了脉冲宽度13ps的微微秒脉冲激光器的本实施方式的制造方法制造的太阳电池模块的效率;以及作为比较例,代替微微秒脉冲激光器,使用脉冲宽度15ns的纳秒脉冲激光器制造太阳电池模块的效率。由该图可知,对于输出130至135W的太阳电池模块,将使用纳秒脉冲激光器的比较例的效率标准化为1.0时,在使用了微微秒脉冲激光器的本实施方式中,效率提高至1.02倍(提高2%)。
在本实施方式中,图1所示的太阳电池为由第一单元层91及第二单元层92构成的发电层进行了双层层叠的串联结构,但是,本发明并不限于串联结构,也能够广泛用于对中间接触层分离槽进行激光加工时硅系材料再结晶化的情况,例如,也可以用于发电层为三层层叠且在各发电层之间设有中间接触层的三层结构。
符号说明:
1玻璃基板
2透明电极层
4背面电极层
5发电单元
10太阳电池(光电转换装置)
14中间接触层分离槽
14a分离孔
91顶层(第一光电转换层)
92底层(第二光电转换层)
93中间接触层
Claims (3)
1.一种光电转换装置的制造方法,包括:
制膜以硅为主成分的第一光电转换层的第一光电转换层制膜工序;
在所述第一光电转换层上制膜对该第一光电转换层进行电连接及光学连接的中间接触层的中间接触层制膜工序;
照射激光,除去所述中间接触层,并形成直至所述第一光电转换层的中间接触层分离槽而分离该中间接触层的中间接触层分离工序;
制膜第二光电转换层的第二光电转换层制膜工序,该第二光电转换层在所述中间接触层上及所述中间接触层分离槽内对该中间接触层进行电连接及光学连接且以硅为主成分,
其中,
所述中间接触层分离工序利用脉冲宽度为10ps以上且750ps以下的脉冲激光器进行,所述中间接触层分离槽在所述第一光电转换层的i层内成为终端。
2.根据权利要求1所述的光电转换装置的制造方法,其中,
所述中间接触层分离工序包括使多个分离孔局部重合而形成一连串的所述中间接触层分离槽的工序,
相邻的所述分离孔的重合宽度为该分离孔直径的0%以上且5%以下。
3.一种光电转换装置,具备:
以硅为主成分的第一光电转换层;
对该第一光电转换层进行电连接及光学连接的中间接触层;
对该中间接触层进行电连接及光学连接且以硅为主成分的第二光电转换层,
所述光电转换装置以分离所述中间接触层的方式形成有中间接触层分离槽,该中间接触层分离槽贯通该中间接触层且到达所述第一光电转换层,
其中,
所述中间接触层分离槽的终端位置位于所述第一光电转换层的i层内,
所述中间接触层分离槽是使多个分离孔重合而形成的一连串的槽,
相邻的所述分离孔的重合宽度为该分离孔的直径的0%以上且5%以下。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-284208 | 2008-11-05 | ||
JP2008284208A JP2010114190A (ja) | 2008-11-05 | 2008-11-05 | 光電変換装置の製造方法および光電変換装置 |
PCT/JP2009/067250 WO2010052982A1 (ja) | 2008-11-05 | 2009-10-02 | 光電変換装置の製造方法および光電変換装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102105993A CN102105993A (zh) | 2011-06-22 |
CN102105993B true CN102105993B (zh) | 2013-03-27 |
Family
ID=42152792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009801290371A Expired - Fee Related CN102105993B (zh) | 2008-11-05 | 2009-10-02 | 光电转换装置的制造方法及光电转换装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US8835253B2 (zh) |
EP (1) | EP2346088A1 (zh) |
JP (1) | JP2010114190A (zh) |
KR (1) | KR20110031335A (zh) |
CN (1) | CN102105993B (zh) |
WO (1) | WO2010052982A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010251428A (ja) * | 2009-04-13 | 2010-11-04 | Mitsubishi Heavy Ind Ltd | 光電変換装置の製造方法、光電変換装置の製造装置、及び光電変換装置 |
WO2011114761A1 (ja) * | 2010-03-18 | 2011-09-22 | 富士電機システムズ株式会社 | 薄膜太陽電池及びその製造方法 |
DE102011017807A1 (de) * | 2011-04-29 | 2012-10-31 | Trumpf Laser- Und Systemtechnik Gmbh | Verfahren zum laserinduzierten Entfernen von Bereichen von Schichten eines Schichtenstapels |
US20130167916A1 (en) * | 2011-12-28 | 2013-07-04 | Taiwan Semiconductor Manufacturing Co., Ltd. | Thin film photovoltaic cells and methods of forming the same |
DE102012205378A1 (de) * | 2012-04-02 | 2013-10-02 | Robert Bosch Gmbh | Verfahren zur Herstellung von Dünnschichtsolarmodulen sowie nach diesem Verfahren erhältliche Dünnschichtsolarmodule |
CN103746027B (zh) * | 2013-12-11 | 2015-12-09 | 西安交通大学 | 一种在ito导电薄膜表面刻蚀极细电隔离槽的方法 |
US9330955B2 (en) | 2013-12-31 | 2016-05-03 | Applied Materials, Inc. | Support ring with masked edge |
EP4415057A1 (fr) * | 2023-02-13 | 2024-08-14 | Nivarox-FAR S.A. | Cellule solaire transparente pour appareil electronique et procede de fabrication de ladite cellule solaire |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4713518A (en) * | 1984-06-08 | 1987-12-15 | Semiconductor Energy Laboratory Co., Ltd. | Electronic device manufacturing methods |
US4650524A (en) * | 1984-06-20 | 1987-03-17 | Sanyo Electric Co., Ltd | Method for dividing semiconductor film formed on a substrate into plural regions by backside energy beam irradiation |
JPS616828A (ja) * | 1984-06-20 | 1986-01-13 | Sanyo Electric Co Ltd | 集積型光起電力装置の製造方法 |
JPS6240986A (ja) * | 1985-08-20 | 1987-02-21 | Fuji Electric Corp Res & Dev Ltd | レ−ザ−加工方法 |
JPS63121813A (ja) | 1986-11-11 | 1988-05-25 | Minolta Camera Co Ltd | レ−ザ−切断用光学系 |
US5072091A (en) * | 1989-04-03 | 1991-12-10 | The Local Government Of Osaka Prefecture | Method and apparatus for metal surface process by laser beam |
JPH0582816A (ja) | 1991-09-24 | 1993-04-02 | Sanyo Electric Co Ltd | 光起電力装置とその製造方法 |
EP0536431B1 (de) * | 1991-10-07 | 1994-11-30 | Siemens Aktiengesellschaft | Laserbearbeitungsverfahren für einen Dünnschichtaufbau |
JPH0727994A (ja) | 1993-07-12 | 1995-01-31 | Toshiba Corp | ビーム分布均一化装置 |
JPH07308788A (ja) * | 1994-05-16 | 1995-11-28 | Sanyo Electric Co Ltd | 光加工法及び光起電力装置の製造方法 |
JP2938367B2 (ja) * | 1995-05-30 | 1999-08-23 | 三洋電機株式会社 | 光起電力モジュールの製造方法 |
US5880430A (en) * | 1995-08-11 | 1999-03-09 | Wein; Joseph H. | Method and apparatus for laser engraving |
US5864430A (en) * | 1996-09-10 | 1999-01-26 | Sandia Corporation | Gaussian beam profile shaping apparatus, method therefor and evaluation thereof |
JPH10258385A (ja) | 1997-03-14 | 1998-09-29 | Komatsu Ltd | レーザ加工機、レーザ加工機の加工方法、及びレーザ加工機用マスク |
JP4441048B2 (ja) * | 2000-03-23 | 2010-03-31 | 株式会社カネカ | 集積型薄膜太陽電池の製造方法 |
JP2002261308A (ja) | 2001-03-01 | 2002-09-13 | Kanegafuchi Chem Ind Co Ltd | 薄膜光電変換モジュール |
US6632993B2 (en) * | 2000-10-05 | 2003-10-14 | Kaneka Corporation | Photovoltaic module |
JP2003273383A (ja) | 2002-03-15 | 2003-09-26 | Sharp Corp | 太陽電池素子およびその製造方法 |
JP2003298089A (ja) | 2002-04-02 | 2003-10-17 | Kanegafuchi Chem Ind Co Ltd | タンデム型薄膜光電変換装置とその製造方法 |
US20050155956A1 (en) * | 2002-08-30 | 2005-07-21 | Sumitomo Heavy Industries, Ltd. | Laser processing method and processing device |
GB2402230B (en) * | 2003-05-30 | 2006-05-03 | Xsil Technology Ltd | Focusing an optical beam to two foci |
JP4365636B2 (ja) | 2003-07-15 | 2009-11-18 | 京セラ株式会社 | 集積型光電変換装置 |
JP4215607B2 (ja) * | 2003-09-26 | 2009-01-28 | 三洋電機株式会社 | 光起電力装置の製造方法 |
JP2005101413A (ja) * | 2003-09-26 | 2005-04-14 | Disco Abrasive Syst Ltd | 薄板状被加工物の分割方法及び装置 |
EP1732139B1 (en) * | 2004-03-25 | 2018-12-12 | Kaneka Corporation | Method for producing a substrate for thin-film solar cell |
JP2006080205A (ja) | 2004-09-08 | 2006-03-23 | Sumitomo Heavy Ind Ltd | レーザ加工装置及びレーザ加工方法 |
JP2006110587A (ja) | 2004-10-14 | 2006-04-27 | Canon Inc | レーザー干渉加工方法および装置 |
JP2005099858A (ja) | 2004-12-06 | 2005-04-14 | Dainippon Printing Co Ltd | 回折格子を用いた絵柄体の製造方法 |
US7235736B1 (en) * | 2006-03-18 | 2007-06-26 | Solyndra, Inc. | Monolithic integration of cylindrical solar cells |
US8624157B2 (en) * | 2006-05-25 | 2014-01-07 | Electro Scientific Industries, Inc. | Ultrashort laser pulse wafer scribing |
US7982127B2 (en) * | 2006-12-29 | 2011-07-19 | Industrial Technology Research Institute | Thin film solar cell module of see-through type |
WO2009022414A1 (ja) * | 2007-08-14 | 2009-02-19 | Mitsubishi Heavy Industries, Ltd. | 光電変換装置およびその製造方法 |
TWI378565B (en) * | 2008-04-30 | 2012-12-01 | Nexpower Technology Corp | Stacked-layered thin film solar cell and manufacturing method thereof |
US7999175B2 (en) * | 2008-09-09 | 2011-08-16 | Palo Alto Research Center Incorporated | Interdigitated back contact silicon solar cells with laser ablated grooves |
-
2008
- 2008-11-05 JP JP2008284208A patent/JP2010114190A/ja active Pending
-
2009
- 2009-10-02 KR KR1020117001267A patent/KR20110031335A/ko not_active Application Discontinuation
- 2009-10-02 US US13/054,858 patent/US8835253B2/en not_active Expired - Fee Related
- 2009-10-02 WO PCT/JP2009/067250 patent/WO2010052982A1/ja active Application Filing
- 2009-10-02 EP EP09824682A patent/EP2346088A1/en not_active Withdrawn
- 2009-10-02 CN CN2009801290371A patent/CN102105993B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
WO2010052982A1 (ja) | 2010-05-14 |
KR20110031335A (ko) | 2011-03-25 |
US20110126894A1 (en) | 2011-06-02 |
EP2346088A1 (en) | 2011-07-20 |
US8835253B2 (en) | 2014-09-16 |
JP2010114190A (ja) | 2010-05-20 |
CN102105993A (zh) | 2011-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102105993B (zh) | 光电转换装置的制造方法及光电转换装置 | |
CN102227817A (zh) | 光电转换装置的制造方法、光电转换装置的制造装置及光电转换装置 | |
US6168968B1 (en) | Method of fabricating integrated thin film solar cells | |
CN102105991B (zh) | 光电转换装置的制造方法及光电转换装置 | |
US20110000532A1 (en) | Solar Cell Device and Method of Manufacturing Solar Cell Device | |
US20050272175A1 (en) | Laser structuring for manufacture of thin film silicon solar cells | |
US20130109132A1 (en) | Back contact through-holes formation process for solar cell fabrication | |
CN102047440A (zh) | 太阳能电池单元的制造方法以及太阳能电池单元 | |
JP2011056514A (ja) | 光電変換素子の製造方法 | |
EP2819181A1 (en) | Laser annealing applications in high-efficiency solar cells | |
JP4648105B2 (ja) | 太陽電池モジュール及び太陽電池モジュールの製造方法 | |
CN102084493A (zh) | 光电转换装置的制造方法和光电转换装置 | |
JP7349509B2 (ja) | 太陽電池の製造方法 | |
JP2012038902A (ja) | 集積型光電変換装置の製造方法 | |
JP4786010B2 (ja) | 集積型ハイブリッド薄膜太陽電池の製造方法 | |
JP2009094272A (ja) | 光電変換モジュールおよび光電変換モジュールの製造方法 | |
JP4061317B2 (ja) | 太陽電池及び太陽電池の製造方法 | |
CN112687754A (zh) | 一种边缘掺杂的晶体硅太阳电池结构及制备方法 | |
CN101765922A (zh) | 光电转换装置的制造方法及光电转换装置 | |
US20140213015A1 (en) | Laser patterning process for back contact through-holes formation process for solar cell fabrication | |
JP4436311B6 (ja) | 多接合薄膜太陽電池 | |
Bogue | The role of lasers in solar cell manufacture | |
KR20120019866A (ko) | 태양 전지 및 그 제조 방법 | |
JP2001135844A (ja) | 集積型薄膜太陽電池の製造方法 | |
JP2006313872A (ja) | 多接合薄膜太陽電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130327 Termination date: 20151002 |
|
EXPY | Termination of patent right or utility model |