[go: up one dir, main page]

CN101960306A - 嗅觉灵敏度抑制剂的筛选方法 - Google Patents

嗅觉灵敏度抑制剂的筛选方法 Download PDF

Info

Publication number
CN101960306A
CN101960306A CN200980108210XA CN200980108210A CN101960306A CN 101960306 A CN101960306 A CN 101960306A CN 200980108210X A CN200980108210X A CN 200980108210XA CN 200980108210 A CN200980108210 A CN 200980108210A CN 101960306 A CN101960306 A CN 101960306A
Authority
CN
China
Prior art keywords
potential dependent
cationic channel
potential
olfactory
electrical activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200980108210XA
Other languages
English (en)
Other versions
CN101960306B (zh
Inventor
组桥坚太郎
石田浩彦
仓桥隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Publication of CN101960306A publication Critical patent/CN101960306A/zh
Application granted granted Critical
Publication of CN101960306B publication Critical patent/CN101960306B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/566Immunoassay; Biospecific binding assay; Materials therefor using specific carrier or receptor proteins as ligand binding reagents where possible specific carrier or receptor proteins are classified with their target compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明是一种嗅觉灵敏度抑制剂的筛选方法。本发明提供一种用于对抑制或调节嗅觉的物质进行客观性评价或筛选的方法。该嗅觉灵敏度抑制剂的评价或筛选方法,其特征在于:在具有电位依赖性阳离子通道的基质中添加受试物质,对抑制由该阳离子通道产生的电活动的物质进行评价或选择。嗅觉灵敏度抑制剂的评价或筛选方法,其特征在于:包含以下工序:(1)在具有电位依赖性阳离子通道的基质中添加受试物质的工序;(2)测定由上述电位依赖性阳离子通道产生的电活动的工序;(3)将(2)中测定的电活动与对照组中的电活动进行比较的工序;(4)基于(3)的结果,将抑制电活动的受试物质作为嗅觉灵敏度抑制剂进行评价或选择的工序。

Description

嗅觉灵敏度抑制剂的筛选方法
技术领域
本发明涉及一种利用电位依赖性阳离子通道的嗅觉灵敏度抑制剂的评价或筛选方法。
背景技术
气味的感觉由嗅粘膜上存在的嗅觉神经通过其自身具有的嗅觉感受器来感受空气中存在的气味分子开始。作为G蛋白共轭型感受器的嗅觉感受器与气味分子结合而活化,再通过G蛋白、腺苷酸环化酶产生cAMP。进而,cAMP激活环核苷酸门控离子通道(cyclic nucleotide-gated channel,简称CNG),促使离子从已激活的通道进入,结果使得嗅觉神经产生去极化(depolarization),电位依赖性通道打开,产生动作电位,气味信息传递到嗅觉中枢。
嗅觉的掩蔽是使上述应答暂时瘫痪或减少上述应答的技术手段,并且通过与中枢水平的侧抑制等信息处理的组合来发挥效果。一般推测,通过香料进行的嗅觉掩蔽是作用于气味原因物质与嗅粘膜的亲和性。也推测其中一部分香料物质,具有阻碍嗅觉神经细胞酶活性的麻醉作用(非专利文献1)。但是,关于证实或客观性地评价其效果的方法还没有报道;一直以来,为了得到有效的嗅觉掩蔽剂,不得不依赖于主观的感官评价。
考虑到嗅觉神经中的信息传递类的阻碍会抑制嗅觉,以下文献已公开了:实际上,在有关嗅细胞G蛋白Golf(非专利文献2)、Ⅲ型腺苷酸环化酶(非专利文献3)、嗅觉器官CNG通道的亚单位(非专利文献4)的基因剔除小鼠(knockout mouse)实验中,上述信号分子的缺失会使嗅觉丧失。另外,嗅觉器官CNG通道在嗅觉神经的纤毛膜上露出,虽然活性调节物质调节其活性,但无需使活性调节物质通过细胞膜或通过上皮细胞的障碍,因而嗅觉器官CNG通道是嗅觉调节中的重要对象(专利文献1)。例如,已表明通过钙通道抑制剂进行的CNG通道抑制会使大鼠的嗅觉降低(专利文献2)。还提出了对嗅粘膜中参与嗅觉掩蔽的其它结构、即嗅觉感受器采用阻断剂的理论(非专利文献5),以及采用钙依赖性钾通道的理论(非专利文献6)。也提出了通过嗅纤毛内cAMP分解酶抑制(专利文献3)、细胞内钙浓度控制(专利文献4)、或臭气成分化合物类似物的利用(专利文献5)进行的,嗅觉灵敏度改变法。
存在于嗅细胞上的电位依赖性阳离子通道,通过由CNG通道引起的嗅觉神经去极化产生动作电位,参与到嗅觉传递中。虽然已有报道在分离的嗅觉感受细胞中,某种香料分子抑制电位依赖性阳离子通道(非专利文献7)。但是,在实际的生物体内,这些电位依赖性阳离子通道大多存在于由紧密连接(tight junction)保护的细胞膜上,而并不是像CNG通道那样在嗅觉神经的纤毛膜上露出。在上述各种结构被认为参与的嗅觉掩蔽中,对于电位依赖性阳离子通道是否能有什么贡献,至今还不明确。
现有技术文献
专利文献
专利文献1:日本特表第2005-500836号公报
专利文献2:美国专利第7138107号公报
专利文献3:美国专利第5525329号公报
专利文献4:日本特开第2000-154396号公报
专利文献5:日本特开第2005-53887号公报
非专利文献
非专利文献1:吉义英记,香料杂质(1974)第2卷,第3号12-17
非专利文献2:Belluscio et al.,Neuron(1998),vol.20:69-81
非专利文献3:Wong et al.,Neuron(2000),vol.27:487-497
非专利文献4:Brunet et al.,Neuron(1996),vol.17:681-693
非专利文献5:Araneda et al.,Neurosci.(2000),vol.3:1248-1255
非专利文献6:Delgado et al.,Neurophysiol.(2003),vol.90:2022-2028
非专利文献7:Kawai et al.,J.Gen.Physiol.(1997),vol.109:265-272
发明内容
本发明提供如下:
(Ⅰ)一种嗅觉灵敏度抑制剂的评价或筛选方法,其特征在于:在具有电位依赖性阳离子通道的基质中添加受试物质,对抑制由该阳离子通道产生的电活动的物质进行评价或选择。
(Ⅱ)一种嗅觉灵敏度抑制剂的评价或筛选方法,其特征在于:包含以下(1)~(4)的工序:
(1)在具有电位依赖性阳离子通道的基质中添加受试物质的工序;
(2)测定由上述电位依赖性阳离子通道产生的电活动的工序。
(3)将(2)中测定的电活动与对照组中的电活动进行比较的工序。
(4)基于(3)的结果,将抑制电活动的受试物质作为嗅觉灵敏度抑制剂进行评价或选择的工序。
(Ⅲ)如(Ⅰ)所述的方法,其中电位依赖性阳离子通道是来源于嗅细胞的电位依赖性阳离子通道。
附图说明
图1:试验物质的电位依赖性阳离子通道活性抑制能力的测定实验数据。
图2:电位依赖性阳离子通道抑制能力与嗅觉掩蔽效果之间的关系
具体实施方式
本发明涉及提供一种用于对抑制或调节嗅觉的物质进行客观性评价或筛选的方法。
本发明人关于用于对抑制或调节嗅觉的物质进行客观性评价或筛选的方法进行了研究讨论。其结果发现:化合物的嗅觉神经电位依赖性阳离子通道抑制能力与通过主观性感官评价得到的除臭效果之间的相关关系,从而完成了本发明。
通过本发明的方法,可以对现有技术中具有依赖于主观性感官评价的嗅觉灵敏度抑制能力的物质,进行客观且有效地评价或筛选。
以下,对于本发明的筛选法方法进行说明。
本发明的嗅觉灵敏度抑制剂的评价或筛选方法,使用具有电位依赖性阳离子通道的基质,其中添加作为嗅觉灵敏度抑制剂候补物质的受试物质,对抑制由该阳离子通道产生的电活动的受试物质进行评价或选择。如后述的实施例所示,测定试验物质对于由红腹蝾螈(Cynops pyrrhogaster)的嗅细胞电位依赖性阳离子通道产生的电活动的影响,另一方面,通过感官试验评价上述试验物质的嗅觉掩蔽效果,结果知道:电位依赖性阳离子通道抑制效果越高的物质,可以发挥更高的嗅觉掩蔽效果。该结果表明,可以将抑制由电位依赖性阳离子通道产生的电活动的物质用作嗅觉灵敏度抑制剂,并且可以将电位依赖性阳离子通道的抑制率作为指标,对嗅觉灵敏度抑制剂进行评价或筛选。
这里,作为“具有电位依赖性阳离子通道的基质”可以列举出来源于生物体的具有电位依赖性阳离子通道的物质。作为来源于生物体的具有电位依赖性阳离子通道的物质,可以列举出从生物体中分离的嗅觉感受器或嗅细胞或它们的培养物;担载有电位依赖性阳离子通道的嗅细胞膜;为了发现电位依赖性阳离子通道而进行了基因重组的细胞或其培养物;该重组细胞的膜;以及,具有电位依赖性阳离子通道的人工脂质双层膜。
作为“电位依赖性阳离子通道”,可以列举出来源于生物体细胞或其培养物的通道;来源于为了发现电位依赖性阳离子通道而进行了基因重组的细胞的通道;体外合成的通道。电位依赖性阳离子通道的种类没有特别限定,可以包含电位依赖性Na+通道、电位依赖性K+通道、电位依赖性Ca2+通道(包含L-型、N-型、P-型、Q-型、R-型和T-型)。只要保持电位依赖性阳离子通道、或者作为电位依赖性阳离子通道的性能,也可以是该通道的一部分或重组体。作为电位阳离子通道,优选来源于嗅细胞的通道。
在本发明的方法中测定的“由电位依赖性阳离子通道产生的电活动”是指在该技术领域中通常测定的、由电位依赖性阳离子通道引起的任意电活动;更具体地说,可以是由该通道的开口引起的电流或电压的变化。即,作为电活动,可以列举出膜的去极化电位或动作电位的峰高、峰宽或峰面积,动作电位的防电次数或放电频率;通过通道的内向电流的峰高、峰宽或峰面积;以及上述这些值从投入试验物质后开始变化至回复到投入前水平的时间等。测定的电活动可以是各个通道的活动,也可以是作为集体的活动。
更具体地说,本发明方法例如通过以下工序进行。
(1)在具有电位依赖性阳离子通道的基质中添加受试物质的工序。
(2)测定由上述电位依赖性阳离子通道产生的电活动的工序。
(3)将(2)中测定的电活动与对照组中的电活动进行比较的工序。
(4)基于(3)的结果,将抑制电活动的受试物质作为嗅觉灵敏度抑制剂进行评价或选择的工序。
在上述工序中,在可以维持通道活性、且引起电活动的条件下保持具有电位依赖性阳离子的基质。保持条件根据使用的基质种类和电活动测定方法等不同而不同,本领域技术人员可以按照常规适当选择。
进行工序(1)中受试物质的添加,使受试物质接近电位依赖性阳离子通道至其可以发挥抑制效果的位置、或使其与电位依赖性阳离子通道接触。添加方法根据使用的基质种类和电活动测定方法等不同而不同,但本领域技术人员可以按照常规适当选择。例如,可以在浸泡有基质的液体中进一步加入受试物质来进行添加。或者,可以通过接近基质用移液管等喷出试验物质的溶液来进行添加。
对于工序(2)中电活动的测定,可以按照常规方法,测定如上述由电位依赖性阳离子通道引起的任意电活动。作为测定方法,例如可以列举出外面向外(outside-out)法、内面向外(inside-out)法、穿孔膜片记录法或全细胞记录法等的膜片钳制法。更优选全细胞记录法。这些膜片钳制法中,已确立高通量检测法(high throughput assay method)(例如,IonWorks Quattro),在本试验方法中,可以应用上述高通量检测法。作为电位依赖性阳离子通道的电活动诱发法,可以考虑使电位已固定的细胞膜暂时去极化、或电流钳(current clamp)记录模式下暂时向细胞内负荷电流的方法;或在细胞外添加具有使细胞去极化的性质的溶液/药剂,例如KCl溶液的方法。对于膜片钳制法的操作顺序的详细情况,例如,在《新膜片钳制试验技术法》(岡田泰伸编,吉岡书店,2001)中有记载。
或者,也可以利用电活动的荧光、发光量测量法或图像测量法。作为测定方法,可以使预先负荷了膜电位感受性色素的基质或细胞与受试物质接触,通过与不存在受试物质时的变化进行比较,对受试物质存在下的试验细胞的荧光变化进行监测,从而决定对电位依赖性阳离子通道的抑制程度。本试验方法可以使用荧光平板读取器(FRIPR)和电压成像平板读取器(VIPR)来监测荧光等的变化;作为荧光色素,可以使用钙感受性色素和荧光钠色素。
将本发明方法中测定的电活动与对照组中的电活动进行比较。作为“与对照组的比较”,例如可以列举出与试验物质投入前后或受试物质除去前后的比较、以及与对照物质添加组或物质未添加组之间的比较。
由以上工序得到的结果可知,可以将表明具有电位依赖性阳离子通道抑制效果的受试物质,作为嗅觉灵敏度抑制剂进行评价或选择。如后述实施例中所示,电位依赖性阳离子通道的电活动抑制效果越高的物质,感官试验中可以发挥更高的嗅觉掩蔽效果;电位依赖性阳离子通道的抑制效果越高的试验物质,可以作为更优异的嗅觉灵敏度抑制剂进行评价或选择。
实施例
在以下实施例中,更详细地说明本发明。
(实施例1)
(1.嗅细胞的分离)
按照公知的方法(Kurahashi et al.,J.Physiol.(1989),419:177-192),从红腹蝾螈中分离嗅细胞,浸泡在正常的林格氏液中。简单地说明分离方法,对在冰水中进入冬眠状态的蝾螈实施双片(double-piece),切开头盖骨取出嗅粘膜。将取出的嗅粘膜在0.1%胶原酶溶液中37℃下培养5分钟,洗去胶原酶后,在玻璃移液管中粉碎组织并分离细胞。作为正常的林格氏液,使用110mM NaCl、3.7mM KCl、3mM CaCl2、1mM MgCl2、15mM葡萄糖、1mM丙酮酸钠、2mM HEPES、0.001%(w/v)酚红、pH值7.4(用NaOH调节)。
(2.电活动的测定)
(A.设定)将分离的嗅细胞通过全细胞记录法固定膜电位,进行膜电流的测量计算(Kawai et al.,J.Gen.Physiol.(1997),vol.109:265-272)。使用硼硅玻璃毛细管(直径1.2mm),采用微电极拉制仪(PP-830,成茂科学器械)制作电极(电极电阻10~30MΩ)。在电极内插入电极内溶液和银-氯化银线,银-氯化银线和膜片钳放大器(Axopatch 1D,200B,Axon Instrument)连接,进行膜电位固定、去极化刺激。作为电极内溶液,使用120mM KCl、2mM HEPES、0.001%(w/v)酚红、pH值7.4(用KOH调节)。使用通过膜片钳放大器与A/D变换装置(Digidata 1320,Axon Instrument)连接的计算机,进行膜电流的记录。使用压力控制装置对试验物质细胞施以刺激(吹入)。压力控制装置是由计算机控制,将空气压缩机送入的压缩空气减压至任意压力,在设定的时间内,将该压缩空气送入已填充了试验物质的玻璃移液管尾部的装置(Ito et al,日本生理学杂志,1995,vol.57:127-133)。
(B.操作步骤)为了调查试验物质对电位依赖性阳离子通道活性的影响,将分离的嗅细胞的膜电位固定在-100mV,再以200毫秒的间隔使膜电位20毫秒内去极化至-20mV,测定去极化后立即产生的内向电流的峰电流强度。一边重复进行去极化刺激,一边以每1ml正常林格氏液1μl的量分别混合表1中记载的各试验物质,通过其下端已固定在靠近嗅细胞附近(20μm以内)位置的玻璃移液管(下端口径1μm)吹入(720毫秒,压力50kPa)、添加在嗅细胞中,调查随之产生的内向电流的变化。每个嗅细胞重复进行3次试验物质刺激,算出其平均值。另外,每种试验物质用3个细胞测定,算出平均值。试验中,虽然很少观察到随着试验物质刺激,嗅觉感受器进行应答,由CNG通道产生内向电流的情况,但是将这样的情况排除在外。该情况认为是由试验物质在试验中使用的嗅细胞上作为嗅觉感受器的兴奋剂起作用所产生。CNG通道电流可以从其强度、峰形状、持续时间等,容易地与电位依赖性通道电流相区别。在图1中表示本实验中测定的电流数据的一个例子。
(C.结果)将由试验物质添加所得到的内向电流的变化(图1,b)的平均值与、由试验物质添加前的5次去极化所产生的内向电流的峰电流强度(图1,a)的平均值进行比较,评价试验物质对于电位依赖性阳离子通道的电活动的抑制能力。基于用下式表示的内向电流抑制率进行评价。
内向电流抑制率=(1-b/a)×100(%)
表1中一并表示各试验物质的内向电流抑制率。在一部分试验物质中,随着嗅细胞中的去极化,内向电流的产生被完全抑制。
表1:
Figure BPA00001216280500081
(实施例2)
(A.操作步骤)对20名评价小组成员实施感官评价的嗅觉掩蔽试验。使用1%异戊酸作为恶臭物质,选择表2所示的物质作为掩蔽材料。分别在棉球(直径1cm)中渗入2μl恶臭和4μl试验物质,分别在50ml注射筒内室温下挥发12小时。将注射筒内气化的恶臭和试验物质注入带盖的PP容器(容积500ml)内,混合。评价小组成员将PP容器盖子打开一点点,闻容器内的气味,判定掩蔽强度。将其只与仅仅注入恶臭的PP容器内的臭气强度进行比较,按如下的6个阶段进行掩蔽强度的评价。
0:没有掩蔽
1:确认掩蔽效果非常小
2:确认稍有掩蔽效果
3:确认有充分的掩蔽效果
4:几乎被掩蔽
5:完全被掩蔽
表2:
  香料名称(试验物质)
  二氢月桂烯醇
  4-(4-羟基-4-甲基戊基)-3-环己烯-1-甲醛(Lyral(IFF公司商标))
  2-环己基丙酸乙酯(POIRENATE(花王社商标))
  1-(2-叔丁基环己氧基)-2-丁醇(AMBER CORE(花王公司商标))
  邻叔丁基环己基乙酸酯
  β-突厥酮
  β-苯乙醇
  乙酸异戊酯
  2,4-二甲基-3-环己烯-1-甲醛(Triplal(IFF公司商标))
  柠檬醛
  三环[5.2.1.02,6]癸烷-2-羧酸乙酯(FRUITATE(花王公司商标))
  苯甲醛
  顺式-3-己烯醇
  1,8-桉叶素
  里哪醇
  苯甲酸苄酯
  对叔丁基-α-甲基氢化肉桂醛(Lysmeral(BASF公司商标))
  茴香醛
  乙酸芳樟酯
  香叶醇
(B.结果)表3中表示感官评价的结果。根据物质的不同,掩蔽强度也各不同。在表3中一并表示从实施例1中所示实验计算式得到的上述物质的内向电流抑制率。从结果可知,电位依赖性阳离子通道活动抑制效果强的物质,其掩蔽效果也都强。另外,如图2所示,内向电流抑制率表现出与掩蔽强度高度相关。这些结果表明,电位依赖性阳离子通道活动抑制效果越高的物质,其具有更高的嗅觉掩蔽效果。
表3:
Figure BPA00001216280500111

Claims (3)

1.一种嗅觉灵敏度抑制剂的评价或筛选方法,其特征在于:
在具有电位依赖性阳离子通道的基质中添加受试物质,对抑制由该阳离子通道产生的电活动的物质进行评价或选择。
2.一种嗅觉灵敏度抑制剂的评价或筛选方法,其特征在于:
包含以下(1)~(4)的工序:
(1)在具有电位依赖性阳离子通道的基质中添加受试物质的工序;
(2)测定由所述电位依赖性阳离子通道产生的电活动的工序;
(3)将(2)中测定的电活动与对照组中的电活动进行比较的工序;
(4)基于(3)的结果,将抑制电活动的受试物质作为嗅觉灵敏度抑制剂进行评价或选择的工序。
3.如权利要求1所述的方法,其中,电位依赖性阳离子通道是来源于嗅细胞的电位依赖性阳离子通道。
CN200980108210.XA 2008-04-11 2009-04-10 嗅觉灵敏度抑制剂的筛选方法 Expired - Fee Related CN101960306B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008-103750 2008-04-11
JP2008103750A JP5690467B2 (ja) 2008-04-11 2008-04-11 嗅覚感度抑制剤のスクリーニング法
PCT/JP2009/001677 WO2009125604A1 (ja) 2008-04-11 2009-04-10 嗅覚感度抑制剤のスクリーニング法

Publications (2)

Publication Number Publication Date
CN101960306A true CN101960306A (zh) 2011-01-26
CN101960306B CN101960306B (zh) 2014-07-09

Family

ID=41161740

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980108210.XA Expired - Fee Related CN101960306B (zh) 2008-04-11 2009-04-10 嗅觉灵敏度抑制剂的筛选方法

Country Status (5)

Country Link
US (1) US9012153B2 (zh)
EP (1) EP2270493B1 (zh)
JP (1) JP5690467B2 (zh)
CN (1) CN101960306B (zh)
WO (1) WO2009125604A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5733909B2 (ja) * 2010-05-12 2015-06-10 花王株式会社 電位依存性カチオンチャネル抑制剤
US20130210775A1 (en) 2012-02-09 2013-08-15 Kao Corporation Agent for inhibiting odor of pyrazine derivatives
ES2768338T3 (es) 2013-06-29 2020-06-22 Firmenich & Cie Procedimientos para identificar, aislar y utilizar receptores de odorantes y aromas
JP6831674B2 (ja) * 2015-11-24 2021-02-17 花王株式会社 尿臭抑制剤
WO2017090518A1 (ja) * 2015-11-24 2017-06-01 花王株式会社 尿臭抑制剤
EP3713609A2 (en) 2017-11-22 2020-09-30 Firmenich SA Spiro compounds as malodor counteracting ingredients

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1610830A (zh) * 2001-07-10 2005-04-27 塞诺米克斯公司 特异性t2r味觉受体在鉴定阻断苦味觉的化合物中的应用
CN1882689A (zh) * 2003-11-21 2006-12-20 艾尼纳制药公司 产生嗅觉gpcr的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174674A (ja) * 1990-11-06 1992-06-22 Naizu Saat:Kk 消臭方法及び装置
US5525329A (en) 1992-05-21 1996-06-11 The Johns Hopkins University Inhibition of phosphodiesterase in olfactory mucosa
US6150409A (en) 1998-10-23 2000-11-21 Monell Chemical Senses Center Adjuvants and methods for raising intracellular calcium ion concentration
JP2001128695A (ja) * 1999-08-24 2001-05-15 Takeda Chem Ind Ltd スクリーニング方法
JP2005500836A (ja) 2001-07-06 2005-01-13 セノミックス、インコーポレイテッド 組換え宿主細胞における機能性ヒト嗅覚器環状ヌクレオチドゲート(cng)チャンネルの発現及び嗅覚調節物質を特定するための細胞を用いるアッセイにおけるその使用
US7138107B2 (en) 2003-02-18 2006-11-21 Compellis Pharmaceuticals Inhibition of olfactory neurosensory function to treat eating disorders and obesity
JP2005053887A (ja) 2003-08-07 2005-03-03 Kao Corp 体臭に対する嗅覚の感度を低下させる方法
US7425445B2 (en) 2004-06-18 2008-09-16 Duke University Modulators that promote cell surface expression of odorant receptors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1610830A (zh) * 2001-07-10 2005-04-27 塞诺米克斯公司 特异性t2r味觉受体在鉴定阻断苦味觉的化合物中的应用
CN1882689A (zh) * 2003-11-21 2006-12-20 艾尼纳制药公司 产生嗅觉gpcr的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
COLLEEN C. HEGG ET. AL.: "Dopamine Reduces Odor- and Elevated-K+-Induced Calcium Responses in Mouse Olfactory Receptor Neurons In Situ", 《JOURNAL OF NEUROPHYSIOLOGY》 *
RICARDO DELGADO ET. AL: "Presence of Ca2+-Dependent K+ Channels in Chemosensory Cilia Support a Role in Odor Transduction", 《JOURNAL OF NEUROPHYSIOL》 *

Also Published As

Publication number Publication date
EP2270493B1 (en) 2020-03-18
EP2270493A4 (en) 2011-10-05
CN101960306B (zh) 2014-07-09
WO2009125604A1 (ja) 2009-10-15
EP2270493A1 (en) 2011-01-05
US20110050246A1 (en) 2011-03-03
JP2009257776A (ja) 2009-11-05
US9012153B2 (en) 2015-04-21
JP5690467B2 (ja) 2015-03-25

Similar Documents

Publication Publication Date Title
CN101960306B (zh) 嗅觉灵敏度抑制剂的筛选方法
Francis et al. Small mouse cholangiocytes proliferate in response to H1 histamine receptor stimulation by activation of the IP3/CaMK I/CREB pathway
Scott et al. The electroolfactogram: a review of its history and uses
Grosmaitre et al. Biogenic amines modulate olfactory receptor neurons firing activity in Mamestra brassicae
Suter et al. Whole-cell recordings from preoptic/hypothalamic slices reveal burst firing in gonadotropin-releasing hormone neurons identified with green fluorescent protein in transgenic mice
Nichols et al. Subunit contributions to insect olfactory receptor function: channel block and odorant recognition
Xu et al. Olfactory perception and behavioral effects of sex pheromone gland components in Helicoverpa armigera and Helicoverpa assulta
Pol et al. Comparison of antiproliferative effects of experimental and established antipsoriatic drugs on human kerationocytes, using a simple 96-well-plate assay
Woodard et al. The rdgB gene of Drosophila: a link between vision and olfaction
Rodriguez Pheromone receptors in mammals
Hanser et al. Odorant-odorant metabolic interaction, a novel actor in olfactory perception and behavioral responsiveness
Michel et al. Evidence of a novel transduction pathway mediating detection of polyamines by the zebrafish olfactory system
Liman Pheromone transduction in the vomeronasal organ
US20230129295A1 (en) Cell analysis using chemfet sensor array-based systems
Bruder et al. Phorbol ester activation of the protein kinase C pathway inhibits gonadotropin-releasing hormone gene expression
Zahn et al. Reduced ictogenic potential of 4-aminopyridine in the perirhinal and entorhinal cortex of kainate-treated chronic epileptic rats
Watanabe et al. High expression of the R-type voltage-gated Ca2+ channel and its involvement in Ca2+-dependent gonadotropin-releasing hormone release in GT1–7 cells
Olsen et al. ReN 1869, a novel tricyclic antihistamine, is active against neurogenic pain and inflammation
Preston et al. Tachykinins increase [3H] acetylcholine release in mouse striatum through multiple receptor subtypes
Van Lookeren Campagne et al. Lithium respecifiescyclic‐AMP‐lnduced cell‐type specific gene expression in Dictyostelium
Amano et al. Orphanin FQ-induced outward current in rat hippocampus
WO2011018446A1 (en) Insect-based ex vivo model for testing blood-brain barrier penetration and method for exposing insect brain to chemical compounds
Lee et al. Transplant antennae and host brain interact to shape odor perceptual space in male moths
Baker et al. Can bile acids function as a migratory pheromone in banded kokopu, Galaxias fasciatus (Gray)?
Eliott et al. A pheromonal function for the crural glands of the onychophoran Cephalofovea tomahmontis (Onychophora: Peripatopsidae)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140709