CN1882689A - 产生嗅觉gpcr的方法 - Google Patents
产生嗅觉gpcr的方法 Download PDFInfo
- Publication number
- CN1882689A CN1882689A CNA2004800341570A CN200480034157A CN1882689A CN 1882689 A CN1882689 A CN 1882689A CN A2004800341570 A CNA2004800341570 A CN A2004800341570A CN 200480034157 A CN200480034157 A CN 200480034157A CN 1882689 A CN1882689 A CN 1882689A
- Authority
- CN
- China
- Prior art keywords
- olfactory gpcrs
- cell
- olfactory
- gpcrs
- medicament
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/72—Receptors; Cell surface antigens; Cell surface determinants for hormones
- C07K14/723—G protein coupled receptor, e.g. TSHR-thyrotropin-receptor, LH/hCG receptor, FSH receptor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/16—Otologicals
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Cell Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Zoology (AREA)
- Toxicology (AREA)
- Endocrinology (AREA)
- Immunology (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明提供一种在细胞中产生嗅觉GPCR的方法。总的来说,所述方法包括:将表达盒引入例如许旺氏(Schwann)或寡突细胞的大胶质细胞中,所述表达盒含有可经由操作连接到编码嗅觉PCR的核酸的启动子;并在适于产生所述嗅觉GPCR的条件下维持所述细胞。本发明也提供一种含有编码嗅觉GPCR的重组核酸的大胶质细胞、筛选嗅觉GPCR活性的调节剂的方法和用于在大胶质细胞中产生嗅觉GPCR的试剂盒。本发明主要用于调味剂和芳香剂的研究中,并且因此具有多种研究及工业应用。
Description
本申请案主张如下于指定日期由美国专利商标局经美国快递提交的临时申请案的优先权:于2003年11月21日提交的美国临时申请案60/523,940。前述申请案的揭示内容以全文引用的方式并入本文中。
技术领域
本发明涉及在细胞中产生GPCR蛋白、尤其是嗅觉GPCR蛋白的方法。
背景技术
所有的动物都具有“鼻子”,一种允许识别和辨别环境中的化学感应信息的嗅觉感觉器官。例如,人类相比其他动物具有较弱的感觉,但其仍可感知(意即闻到)超过10,000种通常为小于400Da的小有机分子的挥发性化学物质(“气味剂”)。这些化学物质在结构上显著不同,且包括多种不同的脂族酸、醇、醛、酮和酯;具有芳环、脂环、多环和杂环结构的化学物质;和无数经取代的每一所述类型的化学物质;以及其组合。值得注意的是,所述分子不仅由嗅觉系统检测,而且其也由嗅觉系统辨别。
由于某些气味合乎需要而其他气味令人厌恶,故极其需要产生新气味、模拟气味和操纵气味感知的能力。出于此目的,近年来已加强对于气味感知的研究。在人类及其他动物物种中,已于嗅毛(一种专门类型的嗅觉感觉神经元树突)上识别出大量的气味剂受体。所述气味剂受体显示出G蛋白偶合受体总科的七个跨膜结构域拓扑学特征,并且因此将其称为“嗅觉GPCR”。每一嗅觉感觉神经元仅表达一类嗅觉GPCR,并且据估计人类基因组编码大约500种活性嗅觉GPCR。
因此,可通过相对较少的受体检测并辨别相当大量的化学物质。此使用组合式受体编码流程来达成,其中每一嗅觉GPCR识别一种以上的气味剂,每一气味剂由一种以上的嗅觉GPCR识别。因此,可根据经活化GPCR的“指纹”表征气味剂。测定后,此“指纹”提供气味剂的特性以及识别显示出类似“指纹”且由此有气味的其他分子的依据。
虽然当使用腺病毒载体外源引入时可由嗅觉感觉神经元在体内高水平地有效表达重组嗅觉GPCR(例如Touhara等人,Proc.Natl.Acad.Sci.96:4040-4045,1999),但嗅觉GPCR非常例外,因为其无法以提供其在细胞中功能的方式在异源培养的细胞系统中容易地表达(例如McClintock,Mol.Brain Res.48:270-278,1997)。尽管此问题之确切原因尚不明了,但一种理论为当在非内源性细胞中表达时,嗅觉GPCR并未输出到细胞的原生质膜,并在内质网中变得螯合。另一理论提出功能性表达可归因于适当膜定位所需的嗅觉特异性因子或与非嗅觉细胞中转导机构的无效偶合(Krieger等人,Eur.J.Biochem219:829-835,1994)。无论导致非内源性培养细胞中重组嗅觉GPCR的无效和/或基本上非功能性表达的机制如何,对所述问题的解决方案先前尚未可知。
截至本发明为止,嗅觉GPCR特别难以在体外哺乳动物细胞中表达,且即使这些方法极其合乎需要,也不存在用于产生并分析所述GPCR的稳固、可靠及有效的方法。气味剂感知和辨别的了解方面的发展也已由于不能产生嗅觉GPCR而受到严重牵制(Firestein Nature 413:211-218,2001)。
由前述内容可知存在对用于在哺乳动物细胞中产生嗅觉GPCR的稳固、可靠及有效的方法的强烈需求。本发明以不可预见的高成功水平满足此需求及其他需求。
文献
所关注的文献包括下列参考文献:Zozulya等人,(Genome Biology2:0018.1-0018.12,2001;Mombairts(Anna Rev.Neurosci 22:487-509,1999);Raming等人,(Nature 361:353-356,1993);Belluscio等人,(Neuron 20:69-81,1988);Ronnet等人,(Annu.Rev.Physiol.64:189-222,2002);Lu等人,(Traffic 4:416-533,2003);Buck(Cell 100:611-618,2000);Malnic等人,(Cell 96:713-723,1999);Firestein(Nature 413:211-218,2001);Zhao等人,(Science 279:237-242,1998);Touhara等人,(Proc.Natl.Acad.Sci.96:4040-4045,1999);Sklar等人,(J.Biol.Chem 261:15538-15543,1986);Dryer等人,(TiPS 20:413-417,1999);Ivic等人,(J Neurobiol.50:56-68,2002);和Fuchs等人,(Hum.Genet 108:1-13,2001);已公开的美国专利申请案20030143679和20030105285;和美国专利6,610,511、6,492,143和6,410,249。
发明内容
本发明提供一种在细胞中产生嗅觉GPCR的方法。总的来说,所述方法包括将表达盒引入例如许旺氏或寡突细胞的大胶质细胞中,所述表达盒含有可经由操作连接到编码嗅觉GPCR的核酸的启动子,并在适于产生嗅觉GPCR的条件下维持所述细胞。本发明也提供一种含有编码嗅觉GPCR的重组核酸的大胶质细胞、筛选嗅觉GPCR活性的调节剂的方法和用于在大胶质细胞中产生嗅觉GPCR的试剂盒。本发明主要用于调味剂及芳香剂的研究中,且因此具有多种研究及工业应用。
定义
在进一步描述本发明之前,应了解本发明不受所述特定实施例限制,故其当然可有所变化。也应了解本文所使用的术语仅出于描述特定实施例的目的,且不意欲构成限制。除非另作定义,否则本文所使用的所有技术及科学术语都具有与本发明所属领域的技术人员通常所了解的含义相同的含义。
当提供值的范围时,应了解介于所述范围的上限与下限之间的每一居中值(除非上下文另外明确指示,否则精确到上限单位的十分之一)和所述范围内的任何其他所述值或居中值涵盖于本发明内。这些较小范围的上限和下限可独立地包括于所述较小范围中,且也涵盖于本发明中,其从属于所述范围中的任何特定排除的界限。当所述范围包括两个界限的一或两者时,排除那些所包括界限的一或两者的范围也包括于本发明中。
本申请案通篇已引用多个公开案、专利和已公开的专利申请案。本申请案中所参考的所述公开案、专利和已公开的专利申请案的揭示内容以全文引用的方式并入本揭示案中。公开案、专利或公开专利申请案的申请者在本文中的引用并不由所述公开案、专利或公开专利申请案的申请者认可为先前技术。
必须注意,除非上下文另作明确指示,否则如本文和随附权利要求书中所使用的单数形式“一”、“和”和“所述”包括多个指示物。因此,例如对“一药剂”的提及包括多个所述药剂,并且对“所述GPCR”的提及包括对一个或一个以上GPCR和所属领域技术人员已知的等效物的提及,等等。应进一步注意可制定所述权利要求书以排除任何可选择的要素。由此,本声明意欲充当使用与权利要求书要素的引用相关的诸如“单独”、“仅”等等的排他性术语或使用“负性”限制的先行基础。
“G蛋白偶合受体”或“GPCR”为共有共同结构基序的多肽,其具有形成七个α螺旋的七个介于22到24个疏水氨基酸的区域,每一螺旋都跨越膜[每一跨越都由序号识别,意即,跨膜-1(TM1)、跨膜-2(TM2)等]。跨膜螺旋由细胞膜的外部或“细胞外”侧上介于跨膜-2与跨膜-3之间、跨膜-4与跨膜-5之间和跨膜-6与跨膜-7之间的氨基酸区域连接[所述区域分别称为“细胞外”区域1、2和3(EC1、EC2和EC3)]。跨膜螺旋也由细胞膜内部或“细胞内”侧上介于跨膜-1与跨膜-2之间、跨膜-3与跨膜-4之间和跨膜-5与跨膜-6之间的氨基酸区域连接[所述区域分别称为“细胞内”区域1、2和3(IC1、IC2和IC3)]。受体的“羧基”(“C”)末端位于细胞内的胞内空间中,而受体的“氨基”(“N”)末端位于细胞外的胞外空间中。此项技术中一般熟知GPCR的结构和分类,并且关于GPCR的进一步讨论可发现于Probst,DNA Cell Biol.1992 11:1-20;Marchese等人,Genomics 23:609-618,1994;和下列书中:Jürgen Wess(编辑)Structure-FunctionAnalysis of G Protein-Coupled Receptors,Wiley-Liss出版(第一版;1999年10月5日);Kevin R.Lynch(编辑)Identification and Expression of G Protein-Coupled Receptors,JohnWiley & Sons出版(1998年3月)和Tatsuya Haga(编辑),G Protein-Coupled Receptors,CRCPress出版(1999年9月24日);和Steve Watson(编辑)G-Protein Linked Receptor Factsbook,Academic Press出版(第一版,1994)。
“原生GPCR”是由动物(例如人类或小鼠的哺乳动物)所产生的GPCR。关于原生GPCR的详细描述可发现于在美国生物技术信息中心(NCBI)的国际互联网站上所建立的在线孟德尔人类遗传数据库(On-line Mendelian Inheritance in Man database)中。关于原生GPCR的额外描述可发现于国际互联网站primalinc.com中并且表1中描述本方法所使用的例示性GPCR的列表。
术语“配位体”意谓特异性结合到GPCR的分子。配位体例如可为多肽、脂质、小分子或抗体等。“原生配位体”是作为原生GPCR的内源性天然配位体的配位体。配位体可为GPCR“拮抗剂”、“促效剂”、“部分促效剂”或“反向促效剂”等等。
“调节剂”为当与在细胞中表达的GPCR接触(例如结合)时,增加或减少GPCR胞内反应的配位体。
术语“第二信使”应意谓作为受体活化作用的结果产生的胞内反应。第二信使例如可包括1,4,5-三磷酸肌醇(IP3)、二酰基甘油(DAG)、环AMP(cAMP)、环GMP(cGMP)和Ca2+。可测量第二信使反应以测定受体活化作用。此外,可测量第二信使反应以识别例如作为促效剂、部分促效剂、反向促效剂和拮抗剂的候选药剂。
“促效剂”为当结合到GPCR时活化GPCR胞内反应的配位体。
“部分促效剂”为当结合到GPCR时在低于促效剂的程度上活化GPCR胞内反应的配位体。
“拮抗剂”为竞争性地结合到GPCR上与促效剂相同的位点但并不活化由GPCR的活性形式所产生的胞内反应的配位体。拮抗剂通常抑制由促效剂或部分促效剂引起的胞内反应。在不存在促效剂或部分促效剂的情况下,拮抗剂通常并不减小基线胞内反应。
“反向促效剂”为结合到GPCR且在不存在促效剂或部分促效剂的情况下抑制观察到的GPCR基线(基础)胞内反应的配位体。在大多数实施例中,与不存在反向促效剂的基线反应相比,在反向促效剂的存在下基线胞内反应被抑制至少约30%、至少约50%或至少75%。
术语“气味剂”涵盖具有已知或未知结构、天然存在或化学合成的活化嗅觉GPCR的任何化合物。如上文的背景技术中所讨论,气味剂通常为小于400Da的挥发性小有机分子。风味、香气、香味、气味、芳香为气味剂的类型。“气味”是与特定气味剂关联的感觉。
如本文所使用的术语“与嗅觉GPCR活性关联的现象”是指与嗅觉GPCR活性关联的结构、分子或功能特征,尤其是在人类或动物模型中易于评估的特征。所述特征包括(但不限于)由GPCR活化作用所引起的下游分子事件,和由GPCR活化作用所引起的诸如嗅觉、味觉的感觉表型或其他行为事件或生理学事件。
“缺失”是定义为氨基酸或核苷酸序列的改变,其中与亲本GPCR多肽或核酸的氨基酸序列或核苷酸序列相比,分别缺少一个或一个以上的氨基酸或核苷酸残基。在关于GPCR或其片段的上下文中,缺失可包括约2、约5、约10、多达约20、多达约30或多达约50个或50个以上氨基酸的缺失。GPCR或其片段可含有一个以上的缺失。
“插入”或“加入”是氨基酸或核苷酸序列的改变,与亲本GPCR的氨基酸序列或核苷酸序列相比,其已分别引起一个或一个以上氨基酸或核苷酸残基的加入。“插入”通常是指多肽的氨基酸序列内加入一个或一个以上的氨基酸残基,而“加入”可为插入或指在N末端或C末端或两个末端处所加入的氨基酸残基。在关于GPCR或其片段的上下文中,插入或加入通常为约1、约3、约5、约10、多达约20、多达约30或多达约50个或50个以上氨基酸。GPCR或其片段可含有一个以上的插入。
“取代”是当与亲本GPCR或其片段的氨基酸序列或核苷酸序列相比时,由不同的氨基酸或核苷酸分别置换一个或一个以上的氨基酸或核苷酸所引起。应了解GPCR或其片段可具有对GPCR活性大体上无影响的保守氨基酸取代。保守取代意欲为诸如gly、ala;val、ile、leu asp、glu;asn、gin;ser、tht;lys、arg;和phe、tyr的组合。
术语“生物活性”GPCR是指具有天然存在的GPCR的结构功能和生物化学功能的GPCR。
如本文所使用的术语“测定”、“测量”、“评定”和“分析”可互换使用,且其包括定量及定性测定。除非另外特定指明,否则在所述上下文中对GPCR的“量”的提及并不意欲必需定量评定,且可为定性或定量的。
本文可互换使用的术语“多肽”和“蛋白”是指任何长度的聚合形式的氨基酸,其可包括已编码及未经编码的氨基酸、经化学或生物化学修饰或衍生的氨基酸和具有经修饰的肽骨架的多肽。所述术语包括融合蛋白,其包括(但不限于)具有异源氨基酸序列的融合蛋白,即具有有或没有N末端甲硫氨酸残基的异源和同源前导序列的融合体;经免疫标记的蛋白;具有可检测的融合搭配物的融合蛋白,例如包括荧光蛋白、β-半乳糖苷酶、荧光素酶等作为融合搭配物的融合蛋白;等等。
术语“核酸分子”和“聚核苷酸”可互换使用,且其是指任何长度的聚合形式的核苷酸(脱氧核糖核苷酸或核糖核苷酸)或其类似物。聚核苷酸可具有任何三维结构,并可执行已知或未知的任何功能。聚核苷酸的非限制性实例包括基因、基因片段、外显子、内含子、信使RNA(mRNA)、转运RNA、核糖体RNA、核糖酶、cDNA、重组聚核苷酸、分枝聚核苷酸、质粒、载体、任何序列的经分离DNA、控制区域、任何序列的经分离RNA、核酸探针和引物。所述核酸分子可为线形或圆形。
如本文所使用的术语“经分离”当用于关于经分离化合物的上下文中时,是指处于与化合物天然存在的环境不同的环境中的所关注化合物。“分离”意谓包括在大体上富含所关注化合物和/或其中所关注化合物经部分或大体上纯化的样本内的化合物。
如本文所使用的术语“大体上纯”是指自其天然环境中移除的且不含至少60%、优选为75%且最优选为90%的其天然关联的其他组份的化合物。
“编码序列”或“编码”所选多肽的序列为当放置于适当调节序列(或“控制元件”)的控制下时,例如在宿主细胞中可转录(在DNA的情况下)并转译(在mRNA的情况下)成多肽的核酸分子。编码序列的边界通常通过5’(氨基)末端的起始密码子和3’(羧基)末端的转译终止密码子测定。编码序列可包括(但不限于)病毒cDNA、原核或真核mRNA、来自病毒或原核DNA的基因组DNA序列和合成DNA序列。转录终止序列可位于编码序列的3’处。其他“控制元件”也可与编码序列关联。可通过使用所选细胞的优选密码子使编码多肽的DNA序列在所选细胞中的表达作用最优化以表现所需多肽编码序列的DNA拷贝。
“由…编码”是指编码多肽序列的核酸序列,其中所述多肽序列或其部分含有来自由核酸序列编码的多肽的至少3到5个氨基酸、更优选为至少8到10个氨基酸且甚至更优选为至少15到20个氨基酸的氨基酸序列。也涵盖可由序列所编码的多肽免疫识别的多肽序列。
“可经由操作连接”是指元件的排列,其中所述组份经配置以执行其常用功能。可经由操作连接到编码序列的启动子将影响编码序列的表达。启动子或其他控制元件无需与编码序列相邻,只要其起到指导其表达的作用即可。举例而言,未转译但已转录的序列的插入可存在于启动子序列与编码序列之间,且仍可认为启动子序列“可经由操作连接”到编码序列。
“核酸构筑体”意谓已经构筑以包含一个或一个以上自然界未发现在一起的功能单元的核酸序列。实例包括圆形、线形、双股、染色体外DNA分子(质粒)、粘质粒(cosmid)(含有来自λ噬菌体的COS序列的质粒)、包含非原生核酸序列的病毒基因组等等。
“载体”能够将基因序列转运到宿主细胞。“载体构筑体”、“表达载体”和“基因转运载体”通常意谓能够指导所关注基因的表达并可将基因序列转运到宿主细胞的任何核酸构筑体,其可通过全部或部分载体的基因组整合或作为染色体外元件的载体的暂时性或可遗传性维持来实现。因此,所述术语包括克隆运载体和表达运载体以及整合载体。
“表达盒”包含能够指导所关注基因/编码序列的表达的任何核酸构筑体,其可经由操作连接到所述表达盒的启动子。所述表达盒可构筑入“载体”、“载体构筑体”、“表达载体”或“基因转运载体”中以便将表达盒转运到宿主细胞中。因此,所述术语包括克隆运载体和表达运载体以及病毒载体。
如果第一聚核苷酸与第二聚核苷酸、其cDNA、其互补序列具有相同或大体上相同的核苷酸序列,或者如果其显示如上文所述的序列一致性,那么其是“来源于”所述第二聚核苷酸或与所述第二聚核苷酸“相对应”。
如果第一多肽(i)是由来源于第二聚核苷酸的第一聚核苷酸编码,或(ii)显示如上文所述的与第二多肽的序列一致性,那么其是“来源于”所述第二多肽或与所述第二多肽“相对应”。
术语“投与”等等是指加入GPCR调节剂以获得所需的药理学和/或生理作用。在许多实施例中,本GPCR调节剂为挥发性的,且由此其通过加入到食物中或大气中而直接或间接地经口或经鼻内投与。所述作用可完全或部分地阻止气味的感知、可增加对气味剂的感知或可产生新的气味。
术语“非天然存在”或“重组”意谓人工的或另外在自然界未经发现。重组细胞通常含有通常在所述细胞中未发现的核酸,重组核酸通常含有两个或两个以上在自然界未发现的核酸的融合体,且重组多肽通常是由重组核酸产生。
“受检者”、“个体”、“宿主”和“患者”在本文中可互换使用以指具有嗅觉GPCR的任何动物,例如人类或非人类哺乳动物。受检者一般为哺乳动物受检者。例示性受检者包括(但非必需地限于)人类、非人类的灵长类动物、小鼠、大鼠、牛、绵羊、山羊、猪、狗、猫和马,以人类尤其受到关注。
附图说明
图1是四幅展示在原代大鼠许旺氏细胞表面上重组人类嗅觉GPCR的表达的照片画面。画面OR1为具有基因库(Genbank)入藏登记号P47893的嗅觉GPCR。画面OR2为具有基因库入藏登记号NP_036505的嗅觉GPCR。画面OR3为具有基因库入藏登记号XP_166868的嗅觉GPCR。载体为空白表达载体阴性对照。由基于CMV启动子的表达载体将嗅觉GPCR表达为包含视紫质信号肽和血球凝集素(HA)附加表位的N末端融合蛋白。
具体实施方式
本发明提供一种在细胞中产生嗅觉GPCR的方法。总的来说,所述方法包括将表达盒引入例如许旺氏或寡突细胞的大胶质细胞中,所述表达盒含有可经由操作连接到编码嗅觉GPCR的核酸的启动子,并在适于产生所述嗅觉GPCR的条件下维持所述细胞。本发明也提供一种含有编码嗅觉GPCR的重组核酸的大胶质细胞、筛选嗅觉GPCR活性的调节剂的方法和用于在大胶质细胞中产生嗅觉GPCR的试剂盒。本发明主要用于例如分析及辨别调味剂和芳香剂,且因此具有多种研究及工业应用。
在比发明内容中所提供者更详细地且如同上文所提供的背景技术和定义中所告知一样进行进一步描述时,首先描述产生嗅觉GPCR的方法,随后为对用于执行本方法的组合物和试剂盒的描述。最后,讨论筛选嗅觉GPCR活性的调节剂的方法和筛选气味剂模拟物的方法。
产生嗅觉GPCR的方法
一方面,本发明提供在细胞中产生嗅觉GPCR的方法。在描述所述方法时,将首先描述在所述方法中使用的组合物。
嗅觉G蛋白偶合受体
术语“嗅觉G蛋白偶合受体”(或其缩写词,例如“嗅觉GPCR”)是指在化学感应中涉及的GPCR总科的种系发生上不同、技术认可的亚家族的任何成员。嗅觉GPCR一般及特定地揭示于多个公开案和公用数据库中,其包括Zozulya等人,(Genome Biol.2:0018,2001);Glusman等人,(Genome Res.11:685-702,2001)和Crasto等人,(NucleicAcids Res.30:354-60,2002),其特定地以全文引用的方式并入本文中。详言之,在国际互联网站Senselab.med.yale.edu中所发现的嗅觉GPCR序列数据库中所述的嗅觉GPCR受到关注。适用于本方法的例示性嗅觉GPCR的非限制性列表提供于在权利要求书之前插入的表1中。表1为来自Swiss-Prot数据库的蛋白序列记录的入藏登记号列表,所述数据库是发现于欧洲生物信息协会(European Bioinformatics Institute)的国际互联网站上。表1中所列的这些数据库记录、详言之为这些记录中所述的氨基酸序列都特定地以全文引用的方式并入本文中。
特别预期嗅觉GPCR可为人类来源或非人类动物来源。在某些实施例中,非人类动物可为具有敏锐及有辨别力的嗅觉的小鼠、大鼠、狗或任何其他非人类动物。在某些实施例中,嗅觉GPCR可为昆虫来源(例如,蚊子、蚂蚁、蚜虫、甲虫、苍蝇、黄蜂、蜜蜂、蜘蛛或将疾病传播给人类或非人类动物或对农作物或观赏植物造成损害的任何昆虫)。在特定实施例中,嗅觉GPCR为人类的。
公认原生嗅觉GPCR和经改变的原生嗅觉GPCR都可用于本方法中。因此,术语“嗅觉G蛋白偶合受体”也意欲涵盖经改变的原生嗅觉GPCR(例如通过诸如报导子、取代、缺失和插入等的加入的加入所改变的原生嗅觉GPCR)从而使得其结合与对应的原生GPCR相同的配位体。
术语“嗅觉G蛋白偶合受体”因此包括表1中所述的GPCR多肽的变异体。换言之,任何嗅觉GPCR的变异体都可用于本方法中。因此,在某些实施例中,嗅觉GPCR可具有与原生序列相比经改变的序列(例如存放于NCBI’s Genbank数据库等等中的序列)。例如,嗅觉GPCR可为在多肽的任何位置处(例如C或N末端,或内部位置)具有任何数目的氨基酸取代、氨基酸缺失或氨基酸加入的原生多肽。
在特定实施例中,嗅觉GPCR为融合蛋白,且其可含有例如亲和标记结构域或报导子结构域。合适的亲和标记包括可特定结合到另一部分(通常为另一多肽、最通常为抗体)的任何氨基酸序列。合适的亲和标记包括如此项技术中已知的附加表位,例如V5标记、FLAG标记、HA标记(来自血球凝集素流感病毒)、myc标记等等。合适的亲和标记也包括如此项技术中已知的其结合基质为已知(例如HIS、GST和MBP标记)的结构域,和来自可获得其特异性结合搭配物(例如抗体,尤其是单克隆抗体)的其他蛋白的结构域。合适的亲和标记也包括任何蛋白-蛋白相互作用结构域,诸如IgG Fc区,其可特异地结合并使用合适的结合搭配物(例如IgG Fc受体)检测。特别预期所述融合蛋白可含有与其N末端甲硫氨酸残基缺失或经替代氨基酸取代的GPCR在框内融合的异源N末端结构域(例如附加表位)。在某些实施例中,嗅觉GPCR融合蛋白可在其N末端处仅包含视紫质信号肽或包含视紫质信号肽与血球凝集素附加表位的组合。在特定实施例中,嗅觉GPCR融合蛋白可包含具有氨基酸序列MNGTEGPNFYVPFSNKTGVVYPYDVPDYAKL的N末端,其中MNGTEGPNFYVPFSNKTGVV为视紫质信号肽且YPYDVPDYAKL为血球凝集素附加表位。所属领域技术人员应了解构筑允许表达作为融合蛋白的嗅觉GPCR的表达盒(例如参看Krautwurst等人,Cell 95:917-926,1998)。应了解所关注多肽可首先由原生多肽产生并随后可经由操作连接到如上所述的合适报导子/标记。在其他实施例中,嗅觉GPCR可为GPCR片段,其中所述GPCR片段具有生物活性。
合适的报导子结构域包括可报导多肽存在的任何结构域。尽管公认亲和标记可使用例如特异地结合到标记的经标记抗体来报导多肽的存在,但是更通常使用发光的报导子结构域。合适的发光报导子结构域包括荧光素酶(例如来自萤火虫、Vargula、海肾(Renillareniformis)或穆拉雷海肾(Renilla muelleri)及其发光变异体。其他合适的报导子结构域包括荧光蛋白(例如来自水母、珊瑚虫和诸如来自水母(Aequoria)、海肾(Renilla)、ptilosarcus、Stylatula种的其他腔肠动物),或其发光变异体。所述报导蛋白的发光变异体为此项技术中所熟知,且其与原生报导蛋白相比可较亮、较暗或具有不同的激发和/或发射光谱。例如,如此项技术中已知,某些变异体经改变从而使得其不再呈现绿色,且其可呈现蓝色、青色、黄色、增强的黄红色(分别称为BFP、CFP、YFP e YFP和RFP)或具有其他的发射光谱。其他合适的报导子结构域包括可通过生化或颜色改变来报导多肽存在的结构域,诸如β-半乳糖苷酶、β-葡萄糖醛酸苷酶、氯霉素(chloramphenicol)乙酰转移酶和所分泌的胚胎碱性磷酸酶。在某些优选实施例中,报导子结构域为海肾(Renilla)荧光素酶(例如pRLCMV;Promega,目录号E2661)。
如此项技术中已知,亲和标记或报导子结构域也可存在于嗅觉GPCR中的任何位置。然而,在大多数实施例中,其存在于嗅觉GPCR的C或N末端处。
在许多实施例中,嗅觉GPCR为嗅觉GPCR库的成员。库通常含有多个成员,其中多个可为2个或2个以上、5个或5个以上、约10个或10个以上、约20个或20个以上、约50个或50个以上、约100个或100个以上、约200个或200个以上、约300个或300个以上、约500个或500个以上、约1000个或1000个以上或甚至多达约10,000个或10,000个以上。所述库因此可含有约5个、约10个、约20个、约30个或30个以上、约50个或50个以上、约100个或100个以上、约200个或200个以上、通常多达500个或500个以上、通常多达约1000个或1000个以上嗅觉GPCR多肽。所述库的成员可具有已知特性或未知特性或其混合。所述库的成员可完全来源于一个物种或可来源于多个物种。
编码嗅觉G蛋白偶合受体的核酸
由于已知用于操纵核酸的遗传密码和重组技术,且上文已描述嗅觉GPCR多肽的氨基酸序列,所以编码嗅觉GPCR多肽的核酸的设计和产生完全处于所属领域技术人员的能力范围内。在某些实施例中,使用标准重组DNA技术(Ausubel,等人,Short Protocolsin Molecular Biology,第三版,Wiley & Sons,1995;Sambrook,等人,Molecular Cloning:ALaboratory Manual,第二版,(1989)Cold Spring Harbor,N.Y.)方法。例如,嗅觉GPCR编码序列可使用无需在本文中进行任何详细描述的多种重组方法的任一或其组合自嗅觉GPCR编码序列库中分离。随后的编码蛋白的核酸序列中的核苷酸取代、缺失和/或加入也可使用标准重组DNA技术进行。
举例而言,定点突变诱发和亚克隆可用以引入/缺失/取代编码所关注多肽的聚核苷酸中的核酸残基。在其他实施例中,可使用PCR。编码所关注多肽的核酸也可通过化学合成而完全自寡核苷酸产生(例如Cello等人,Science(2002)297:1016-8)。
在某些实施例中,对于特定物种、尤其是哺乳动物(例如人类或小鼠种)细胞中的表达而言,优化编码所关注多肽的核酸的密码子。
本发明进一步提供包含本发明核酸的载体(也称为“构筑体”)。在本发明的许多实施例中,本发明核酸序列将于所述序列已可经由操作连接到包括例如启动子的表达控制序列之后在宿主中表达以形成表达盒。本发明表达盒通常放置于可作为附加体或作为宿主染色体DNA的组成部分而在宿主细胞中复制的表达载体中。表达载体通常将含有例如四环素或新霉素的选择标记物以允许检测经所需DNA序列转化的那些细胞(例如参看美国专利第4,704,362号,其以引用的方式并入本文)。包括单和双表达盒载体的载体已为此项技术中所熟知(Ausubel,等人,Short Protocols in Molecular Biology,第三版,Wiley & Sons,1995;Sambrook,等人,Molecular Cloning:A Laboratory Manual,第二版,(1989)Cold Spring Harbor,N.Y.)。合适的载体包括病毒载体、质粒、粘质粒、人工染色体(人类人工染色体、细菌人工染色体、酵母人工染色体等)、微型染色体等等。也可使用逆转录病毒、腺病毒和腺相关病毒载体。
多种表达载体可用于此项技术中那些为了在细胞中产生所关注多肽的技术中。一种合适的载体为某些实施例中所使用的pCMV。出于专利程序的目的,此载体依据微生物存放的国际公认的布达佩斯条约(Budapest Treaty)的规定于1998年10月13日存放于美国典型菌种保藏中心(ATCC)(10801 University Blvd.,Manassas,VA 20110-2209USA)。DNA是由ATCC测试且经确定为可行的。ATCC已将下列存放号指派给pCMV:ATCC#203351。
本发明表达盒通常包含编码嗅觉GPCR的单一开放式阅读框,然而,在某些实施例中,由于用于表达嗅觉GPCR的宿主细胞可为真核细胞(例如哺乳动物细胞,诸如人类细胞),所以开放式阅读框可由内含子中断。本发明表达盒通常为除含有可引导RNA稳定性、转译效率等的本发明核酸3’和5’未转译区(UTR)之外还可含有其他部分的转录单元的一部分。表达盒也可为除本发明核酸外还含有转录终止子的核酸的一部分。
本发明表达盒可包含允许表达作为融合蛋白的嗅觉GPCR的核酸序列。在某些实施例中,嗅觉GPCR融合蛋白可在其N末端包含视紫质信号肽和/或血球凝集素附加表位。在特定实施例中,嗅觉GPCR融合蛋白可包含具有氨基酸序列MNGTEGPNFYVPFSNKTGVVYPYDVPDYAKL的N末端,其中MNGTEGPNFYVPFSNKTGVV为视紫质信号肽且YPYDVPDYAKL为血球凝集素附加表位。构筑允许表达作为融合蛋白的嗅觉GPCR的表达盒完全处于所属领域技术人员的能力范围内(例如参看Krautwurst等人,Cell 95:917-926,1998)。
真核启动子(意即在真核细胞中起作用的启动子)可为在大胶质细胞中起作用的任何启动子,包括病毒启动子和来源于真核基因的启动子。例示性真核启动子包括(但不限于)下列各物:小鼠金属硫蛋白I基因序列的启动子(Hamer等人,J.Mol.Appl.Gen.1:273-288,1982);疱疹病毒的TK启动子(McKnight,Cell 31:355-365,1982);SV40早期启动子(Benoist等人,Nature(London)290:304-310,1981);酵母gall基因序列启动子(Johnston等人,Proc.Natl.Acad.Sci.(USA)79:6971-6975,1982;Silver等人,Proc.Natl.Acad.Sci.(USA)81:5951-59SS,1984);CMV启动子;EF-1启动子;蜕皮激素反应性启动子(Ecdysone-responsive promoter);四环素反应性启动子等等。由于病毒启动子一般为特别强的启动子,所以其可尤其受到关注。在某些实施例中,使用为病毒启动子的启动子。选择用于本发明中的启动子从而使得其在其引入其中的大胶质细胞(和/或动物)中起作用。在某些实施例中,启动子为CMV启动子。
在某些实施例中,本发明载体也可提供可选择标记物的表达。合适的载体和可选择标记物已为此项技术中所熟知,且讨论于Ausubel等人(Short Protocols in MolecularBiology,第三版,Wiley & Sons,1995)和Sambrook等人(Molecular Cloning:ALaboratoryManual,第三版,(2001)Cold Spring Harbor,N.Y.)中。已将多种不同的基因用作可选择标记物,且主要为方便起见,选择在本发明载体中用作可选择标记物的特定基因。已知的可选择标记物基因包括:胸苷激酶基因、二氢叶酸还原酶基因、黄嘌呤-鸟嘌呤磷酸核糖基转移酶基因、CAD、腺苷脱氨酶基因、天冬酰胺合成酶基因、抗生素抗性基因(例如tetr、ampr、Cmr或cat、kanr或neor(氨基糖苷磷酸转移酶基因))、潮霉素B磷酸转移酶基因等等。
如上文所述,嗅觉GPCR可为含有亲和结构域和/或报导子结构域的融合蛋白。使得在报导子或标记与GPCR之间、例如在GPCR的C或N末端处融合的方法完全处于所属领域技术人员的能力范围内(例如McLean等人,Mol.Pharma.Mol Pharmacol.199956:1182-91;Ramsay等人,Br.J.Pharmacology,2001,315-323),并且将不再作任何进一步的描述。特别预期所述融合蛋白可含有与其N末端甲硫氨酸残基缺失或经替代氨基酸取代的GPCR在框内融合的异源N末端结构域(例如附加表位)。应了解所关注多肽首先可由原生多肽产生,且随后可经由操作连接到如上所述的合适报导子/标记。
本发明核酸也可含有限制性位点、多克隆位点、引物结合位点、可接合端、重组位点等,通常用以有利于构筑编码嗅觉GPCR的核酸。
由于嗅觉GPCR可为所关注多肽库的成员,所以编码所述所关注多肽的核酸也可为类似大小的编码嗅觉GPCR的核酸库。
宿主细胞
本文所述的方法一般包括在经培养的大胶质细胞(意即体外培养的原代或永生大胶质细胞)中产生嗅觉GPCR。“大胶质细胞”意谓多个神经元相关细胞类型的任何细胞,其包括:许旺氏细胞、寡突细胞和星形细胞及其衍生物。在许多实施例中,合适的宿主细胞可为产生髓磷脂(形成神经轴突鞘的材料)的“髓磷脂产生”细胞。产生髓磷脂的大胶质细胞包括许旺氏细胞、寡突细胞以及产生髓磷脂的某些类型的星形细胞(例如嗅鞘细胞)。髓磷脂产生细胞通常可通过为髓磷脂组份的半乳糖脑苷脂gal C的合成来识别。
术语“大胶质细胞”也涵盖大胶质细胞的经修饰型式,包括癌性大胶质细胞,例如许旺氏瘤(Schwanoma)、纤维神经瘤、星形细胞瘤细胞和寡突细胞瘤细胞;永生大胶质细胞,例如经由引入例如HPV E6-E7、T抗原等等的合适致癌基因而永生化的细胞;由细胞融合所产生的杂交细胞,其中大胶质细胞与不同(非大胶质)或类似(大胶质)类型的细胞融合;和重组大胶质细胞,例如含有外源核酸或在内源基因(例如髓磷脂合成所需的或抑制髓磷脂合成的基因)中含有“基因剔除”的细胞。大胶质细胞通常是来自哺乳动物物种,诸如啮齿动物(例如小鼠)或人类。例示性且非限制性细胞系包括RN2和EJ(Coulter-Mackie,Virus Research 1:477-487,1984)、RN22(Kreider,Brain Research397:238-244,1986)和HOG与MO3.13(Buntinx,Journal of Neurocytology 32:25-38,2003)。特别预期嗅觉GPCR的大胶质细胞重组体涵盖于术语“大胶质细胞”中。
因此,由于培养大胶质细胞的方法已为此项技术中所熟知(例如参看Mosahebi Glia,34:8-17,2001;Shen,Microsurgeryl9:356-63,1999;Acta Neuropathol(Berl),78:317-24,1989;Barnett,Developmental Biology,155:337-350,1993;和Hung等人,International Journal ofOncology 20:475-482,2002),所以多种合适的宿主细胞可用于产生嗅觉GPCR,包括永生化HEIl93细胞等等。
详言之,许旺氏细胞可使用下述方法培养:Hung(Int J.Oncol.20:475-82,2002);Hung(Int.J.Oncol.199914:409-15);Wood(Brain Res.115:361-75,1976);Wood(Ann.N.Y.Acad.Sci.605:1-14,1990);和Brockes(J.Exp.Biol.Dec;95:215-30,1981)。
额外的细胞系对于所属领域技术人员将变得显而易见,且可自美国典型菌种保藏中心(american type culture collection),10801 University Boulevard,Manassas,Va.20110-2209获得。
方法
总的来说,根据本方法在体外将嗅觉GPCR表达盒引入大胶质细胞中,细胞经受适于表达嗅觉GPCR的条件,在细胞中表达GPCR并将其输出到细胞表面。
因此,在大多数实施例中,可使用多种方法将表达盒引入宿主细胞中,包括病毒感染法、转染法、接合法(conjugation)、原生质体融合法、电穿孔法、磷酸钙沉淀法、直接显微注射法等等。方法的选择一般视待转化的细胞类型和转化发生的环境(例如体外等)而定。对于这些方法的一般讨论可发现于Ausubel,等人,Short Protocols in MolecularBiology,第三版,Wiley & Sons,1995中。
将嗅觉GPCR的表达盒引入细胞中之后,细胞通常经培养以提供多肽表达。为实现此目的,可将细胞于合适培养基中培养12-24小时、24-48小时或48-96小时或更长时间。多肽的短暂表达可以此方式进行。然而,特别预期多肽的表达可另外稳定。在稳定转染中,表达盒含有可选择的标记基因,且表达多肽的稳定细胞系的建立包括对可选择的标记基因的选择。如果将两个表达盒引入细胞中,那么所述两个表达盒通常含有两个不同的可选择的标记基因(例如新霉素抗性基因和潮霉素抗性基因)。短暂转染和稳定转染的方法已为所属领域技术人员所熟知。
在大胶质细胞中产生嗅觉GPCR且通常将其输出到细胞表面从而使得GPCR存在于原生质膜中。
组合物
另一方面,本发明提供一种产生生物活性的嗅觉GPCR的大胶质细胞。所述细胞通常含有编码嗅觉GPCR的重组核酸,且其可产生通常不在那种细胞中(意即无重组核酸存在的大胶质细胞)产生的嗅觉GPCR。
如上所述,本发明提供一种含有嗅觉GPCR的大胶质细胞,所述嗅觉GPCR存在(意即可检测地存在)于大胶质细胞的表面,通常以GPCR特有的方式跨越细胞的原生质膜。因此,本发明细胞含有“活性”嗅觉GPCR,因为“活性”嗅觉GPCR能够结合配位体并经由合适的G蛋白(如果存在)传输信号。本发明细胞因此用于例如筛选分析的活性分析中,所述筛选分析将在下文中详细描述。
本发明细胞通常以显著高于其中已产生相同表达盒的诸如非大胶质细胞(例如NIH-3T3细胞、COS细胞或类似细胞)的控制细胞的水平产生嗅觉GPCR。在大多数实施例中,本发明细胞以摩尔计产生高于控制细胞至少5×(“5倍”)、至少10×、至少50×、至少100×、通常高达至少1000×的嗅觉GPCR。在特定实施例中,本发明细胞以摩尔计在细胞表面产生高于控制细胞至少5×(“5倍”)、至少10×、至少50×、至少100×、通常高达至少1000×的嗅觉GPCR(例如,如通过免疫细胞化学或流式细胞测量术测定)。当使本发明细胞在液体培养物中生长时,其通常产生显著量的嗅觉GPCR,例如高于10μg/l、高于100μg/l、高于1mg/l、高于10mg/l或高于约50mg/l或更高。详言之,当使本发明细胞在液体培养物中生长时,其通常产生显著量的细胞表面嗅觉GPCR,例如高于10μg/l、高于100μg/l、高于1mg/l、高于10mg/l或高于约50mg/l或更高。
由于存在大量不同的嗅觉GPCR,所以本发明也提供含有相应多种编码不同嗅觉GPCR的重组核酸的多种大胶质细胞(意即大胶质细胞库)。在这些实施例中,所述多种中的每一大胶质细胞通常都含有用于单一嗅觉GPCR的重组核酸,且每一细胞都含有不同的核酸。因此,本发明提供大胶质细胞库,所述细胞含有编码2个或2个以上、5个或5个以上、约10个或10个以上、约20个或20个以上、约50个或50个以上、约100个或100个以上、约200个或200个以上、约300个或300个以上、约500个或500个以上、约1000个或1000个以上不同嗅觉GPCR的重组核酸。嗅觉GPCR可具有已知的特性或未知的特性或其混合。嗅觉GPCR可来源于单一物种或者来源于2种、高达约5种、高达约10种、高达约50种、高达约100种或高达约1000种动物。在某些实施例中,嗅觉GPCR为人类的。
试剂盒
本发明也提供用于实施如上所述的本发明方法的试剂盒。本发明试剂盒至少包括以下物质中的一种或一种以上:大胶质细胞、编码嗅觉GPCR的核酸和含有嗅觉GPCR的大胶质细胞。试剂盒的核酸也可具有限制性位点、多克隆位点、引物位点等以有利于其接合到其他质粒中。试剂盒的其他可选组份包括:培养基、用于测试GPCR活性的组份和编码G蛋白的核酸等以执行本发明分析。试剂盒的多种组份可存在于独立容器中,或某些可相容的组份可视需要预组合于单一的容器中。
除上述的组份之外,本发明试剂盒通常进一步包括使用试剂盒的组份以实施本发明方法(例如产生嗅觉GPCR的方法等)的说明。实施本发明方法的说明一般记录于合适的记录媒体上。例如,说明可印刷于诸如纸张或塑料等的基质上。同样,说明可作为包装插页存在于试剂盒中、存在于试剂盒或其组份的容器的标签(意即与包装或分装关联)等中。在其他实施例中,说明是作为存在于合适的计算机可读储存媒体(例如CD-ROM、磁盘等)上的电子储存数据文档存在。在其他实施例中,实际的说明并非存在于试剂盒中,而是提供例如经由互联网自远程来源获得说明的方式。此实施例的实例为包括其中可观看说明和/或可自其下载说明的网址的试剂盒。如同说明的情况一样,将此获得说明的方式记录于合适基质上。
识别嗅觉GPCR活性的调节剂的方法
本发明提供筛选嗅觉GPCR调节剂(意即增加或降低所关注嗅觉GPCR的活性的化合物)的方法。在某些实施例中,嗅觉GPCR调节剂是选自由促效剂、部分促效剂、反向促效剂和拮抗剂组成的群组。总的来说,所述方法包括根据上文所述的方法在大胶质细胞中产生嗅觉GPCR以提供产生生物活性嗅觉GPCR的大胶质细胞(本文中称为“本发明大胶质细胞”),使所述细胞与候选药剂相接触,并评定所述候选药剂对嗅觉GPCR活性的作用。
在其他实施例中,可使嗅觉GPCR的调节剂(例如所述GPCR的天然或合成的配位体)与产生所述GPCR的大胶质细胞接触,并可评定所述调节剂对嗅觉GPCR活性的作用。也预期使用两种嗅觉GPCR调节剂(例如嗅觉GPCR的活化剂(例如所述GPCR的配位体)和阻断所述活化剂的调节活性的药剂)进行分析。
如此项技术中已知,可使用多种方法执行本发明分析,诸如使用35S GTPγS的膜结合分析、腺苷酰环化酶分析(例如使用来自New England Nuclear的FLASH PLATETM腺苷酰环化酶试剂盒;目录号SMP004A)、基于细胞的cAMP分析、基于报导子的分析、AP1报导子分析、SRF-LUC报导子分析、胞内IP3积累分析、用于测量胞内钙浓度的荧光成像平板读取器(FLIPR)分析等等。
在调节剂增加嗅觉GPCR活性的实施例中,在所述调节剂的存在下,嗅觉GPCR的活性与无所述药剂存在的合适对照物相比增加至少约10%、至少约20%、至少约30%、至少约50%、至少约80%、至少约100%、至少约500%或至少约10倍或10倍以上。合适的对照物可处于存在或不存在GPCR的原生配位体的情况下。
在调节剂降低嗅觉GPCR活性的实施例中,在所述调节剂的存在下,嗅觉GPCR的活性与无所述药剂存在的合适对照物相比降低至少约10%、至少约20%、至少约30%、至少约50%、至少约70%、至少约80%、至少约90%或至少约95%或95%以上。合适的对照物可处于存在或不存在GPCR的原生配位体的情况下。
在某些实施例中,这些方法也包括在存在或不存在例如候选药剂的测试化合物的情况下测量GPCR活性。这些分析可包括使经分离的本发明大胶质细胞(例如经培养细胞)、自本发明大胶质细胞分离的膜、本发明大胶质细胞的提取物与可有效调节GPCR活性的一定量的GPCR调节剂接触。
因此,本发明提供用以在存在或不存在GPCR的配位体(例如天然配位体)的情况下降低嗅觉GPCR的活性的嗅觉GPCR活性抑制剂和GPCR活性诱导剂,其中所述GPCR是通过为GPCR的天然配位体或非其天然配位体的化合物诱导。
在某些实施例中,GPCR活性可通过评定报导子信号来测量。在这些实施例中,可以适于高处理量分析的格式(例如96或384孔格式)执行所述分析,且可使用合适的自动机械(例如自动移液机械)和检测仪表(用于测定报导子活性的96或384孔格式的光度计或荧光读取器)。作为说明且并非限制,可使用Wallac 1450 Microbeta计数器(Perkin-Elmer)或基于CCD照相机的照明器测定报导子活性。
在相关实施例中,所述分析可为其中评定候选药剂与嗅觉GPCR的结合的结合分析。在这些实施例中,通常将所述候选药剂首先标记,与本发明大胶质细胞接触,并评定所述药剂与大胶质细胞的结合。
候选药剂
可通过上述方法筛选多种不同的测试化合物。尽管测试化合物通常为有机分子、优选为小有机化合物(意即具有大于50且小于约2,500道尔顿(例如100-1000Da,通常小于约500Da)的分子量的化合物),但其涵盖大量的化学物质种类。测试化合物包含与蛋白质的结构相互作用(尤其为氢键合)所必需的官能基,且通常至少包括胺基、羰基、羟基或羧基,优选为所述化学官能基中的至少两个。测试化合物通常包含经上述官能基中的一个或一个以上取代的环碳或杂环结构和/或芳族或聚芳族结构。例示性及非限制性测试化合物包括脂族酸、醇、酮和酯;具有芳环、脂环、多环和杂环结构的化学物质;和无数经取代的每一所述类型的化学物质;以及其组合。测试化合物也发现于包括肽、糖类、脂肪酸、类固醇、嘌呤、嘧啶、衍生物、结构类似物或其组合的生物分子中。其他测试化合物包括GCPR的原生配位体的变异体。
测试化合物可自包括合成或天然化合物库的广泛多种来源获得。例如,许多方式可用于广泛多种有机化合物和生物分子的随机和引导合成,其包括随机化寡核苷酸和寡肽的表达。或者,可获得或易于产生呈细菌、真菌、植物和动物提取物形式的天然化合物库。库可优选地包含天然或合成产生的与嗅觉关联的化合物。此外,天然或合成产生的库和化合物易于经由常规化学、物理和生化方式修饰,且其可用于产生组合库。已知的药理学药剂可经受诸如酰化、烷基化、酯化、氨化等的引导或随机化学修饰以产生结构类似物。
所关注的测试化合物为例如蛋白质药剂的多肽药剂。特定类型的所关注的多肽测试化合物为GPCR的抗体或其GPCR结合片断。抗体可为单克隆或多克隆,且可根据此项技术中已知的方法产生。对于具有已知的原生配位体的GPCR而言,其他测试化合物包括GCPR的原生配位体的变异体,例如通过至少一个氨基酸的取代、缺失或加入而改变或经化学修饰的原生配位体。在某些实施例中,测试化合物包括未知为GPCR配位体的内源性多肽。
测试化合物的上述表征意欲为说明且并非限制。
识别作为嗅觉GPCR配位体的候选药剂的方法
嗅觉GPCR的配位体可通过使候选药剂与所述嗅觉GPCR接触并测定所述候选药剂是否与所述嗅觉GPCR结合来识别,其中所述结合表明候选药剂是嗅觉GPCR的一配位体。在某些实施例中,候选药剂可经标记。在特定实施例中,候选药剂可经放射性标记。
可并入本发明候选药剂中的合适放射性核素包括(但不限于)2H(氘)、3H(氚)、11C、13C、14C、13N、15N、15O、17O、18O、18F、35S、36Cl、82Br、75Br、76Br、77Br、123I、124I、125I和131I。并入3H、14C、82Br、125I、131I、35S一般可能最为有用。
将放射性同位素并入有机化合物的合成方法可应用于本发明候选药剂,且已在此项技术中众所熟知。例如将活性含量的氚并入靶分子的这些合成方法如下:
A.用氚气催化还原—此程序通常得到高比活性产物且需要卤化或不饱和的前体。
B.用硼氢化钠[3H]还原—此程序相当廉价,且需要含有诸如醛、酮、内酯、酯等可还原官能基的前体。
C.用氢化铝锂[3H]还原—此程序提供几乎具有理论比活性的产物。其也需要含有诸如醛、酮、内酯、酯等可还原官能基的前体。
D.氚气暴露标记—此程序包括在合适催化剂的存在下将含有可交换质子的前体暴露在氚气中。
E.使用碘甲烷[3H]的N-甲基化—此程序通常用以通过以高比活性的碘甲烷(3H)处理适当前体来制备O-甲基或N-甲基(3H)产物。此方法总的来说允许有较高的比活性,诸如约70-90Ci/mmol。
将活性含量的125I并入靶分子的合成方法包括:
A.圣马亚反应(Sandmeyer)和类似反应—此程序将芳基或杂芳基胺转化为诸如四氟硼酸盐的重氮盐,且随后使用Na125I将其转化为经125I标记的化合物。代表性程序由Zhu,D.-G.和合作者报导于J.Org.Chem.2002,67,943-948中。
B.酚的邻125I碘化—如Collier,T.L.和合作者在J.Labeled Compd Radiopharm.1999,42,S264-S266中所报导,此程序允许在酚的邻位处并入125I。
C.芳基溴和杂芳基溴与125I的交换—此方法一般为两步骤方法。第一个步骤为在三烷基锡卤化物或六烷基二锡[例如(CH3)3SnSn(CH3)3]的存在下,使用例如Pd催化型反应[意即Pd(Ph3P)4]或经由芳基锂或杂芳基锂,将芳基溴或杂芳基溴转换为相应的三烷基锡中间体。代表性程序由Bas,M.-D.和同伴报导于J.Labeled Compd Radiopharm.2001,44,S280-S282中。
或者,嗅觉GPCR的配位体可通过在经标记的已知嗅觉GPCR配位体的存在下,使候选药剂与嗅觉GPCR接触来识别,其中在所述候选药剂的存在下,经标记的已知配位体结合的降低为所述候选药剂是嗅觉GPCR的配位体的指示。
识别气味剂模拟物的方法
本发明也提供识别气味剂模拟物的方法,其中模拟物为合成或天然的化学化合物,其具有与特定气味剂相似、大体上相同或完全相同的功能特征,但具有与所述气味剂不同的化学结构。换言之,本发明提供识别气味剂模拟物的方法,所述模拟物“闻起来”与所关注的气味剂相同,但并不具有与所关注的气味剂相同的化学结构。总的来说,这些方法包括使用上文所述的方法产生嗅觉GPCR库,识别由所关注的气味剂所活化的嗅觉GPCR组,并使所述嗅觉GPCR库与候选药剂接触以识别活化相同的嗅觉GPCR组的药剂。在大多数实施例中,活化与所关注的气味剂相同的嗅觉GPCR组的药剂为所关注的气味剂的模拟物,意即其应具有与所关注的气味剂相似的气味。
因此,这些方法通常包括使用上文所述的方法产生(例如100个或100个以上、200个或200个以上、300个或300个以上、400个或400个以上、500个或500个以上、600个或600个以上、通常多达约1000个或1000个以上)不同嗅觉GPCR的库,并评定所述GPCR以测定其是否由所关注的气味剂(例如具有所需气味或味道的已知或未知化学结构的化合物)活化。在许多实施例中,所关注的气味剂将活化嗅觉GPCR组,其中一组通常含有2-50、2-20或3-10个成员。由单一气味剂活化的嗅觉GPCR组提供“GPCR指纹”,其中单一气味剂是由其所活化的嗅觉GPCR组界定。所关注的气味剂的模拟物可通过筛选候选药剂库以识别与所关注的气味剂具有相同或接近相同的GPCR指纹的药剂来识别。
举例而言,气味剂模拟物可经识别从而使其与所关注的气味剂具有相似的经活化GPCR的“指纹”,例如所述模拟物所活化的GPCR或GPCR活性为所述气味剂所活化者的约60%、约75%、约80%、约90%、约95%。
因此,可对所关注的气味剂的模拟物加以识别。
生物感测方法
本发明也提供一种生物传感器,其中所述生物传感器通常为产生多个不同嗅觉GPCR的多个大胶质细胞。在许多实施例中,所述细胞以可寻址的格式排列,其中每一阵列位址都含有产生单一重组嗅觉GPCR的大胶质细胞。所述多个通常可为2个或2个以上、5个或5个以上、约10个或10个以上、约20个或20个以上、约50个或50个以上、约100个或100个以上、约200个或200个以上、约300个或300个以上、约500个或500个以上、约1000个或1000个以上或甚至多达约10,000个或10,000个以上。因此,生物传感器可含有约5个、约10个、约20个、约30个或30个以上、约50个或50个以上、约100个或100个以上、约200个或200个以上、通常多达500个或500个以上、通常多达约1000个或1000个以上重组嗅觉GPCR。嗅觉GPCR可具有已知特征或未知特征或其混合。嗅觉GPCR可来源于单一物种或者来源于2种、多达约5种、多达约10种、多达约50种、多达约100种或多达约1000种动物。在某些实施例中,嗅觉GPCR为人类的。
本文所述的方法包括所述产生单一重组嗅觉GPCR的大胶质细胞与“亲和基质”结合。在某些实施例中,所述亲和基质为可寻址的。在特定实施例中,所述可寻址亲和基质为空间上可寻址的。亲和基质含有固体、半固体或不可溶支持体且其是由适于结合所述重组大胶质细胞且并不妨碍所使用的检测方法的任何材料制得。如所属领域技术人员将了解的,可能的亲和基质的数目相当大。可能的基质包括(但不限于)玻璃和经修饰或功能化的玻璃、塑料(包括丙烯酸树脂、聚苯乙烯和苯乙烯与其他材料的共聚物、聚丙烯、聚乙烯、聚丁烯、聚氨基甲酸酯、特氟龙(Teflon)等)、多糖类、尼龙或硝化纤维素、树脂、二氧化硅或基于二氧化硅的材料(包括硅和经修饰的硅)、碳、金属、无机玻璃、塑料、陶瓷和各种其他聚合物。在一优选实施例中,基质允许光学检测且其本身并不可观地发荧光或发光。此外,如此项技术中所已知,基质可涂布有任何数量的材料,包括诸如葡聚糖的聚合物、丙烯酰胺、明胶、琼脂、诸如蛋白质(包括牛及其他哺乳动物的血清白蛋白)的生物可相容物质。
“空间上可寻址”的亲和基质具有多个离散区域(例如多个所关注多肽的结合区域)以便每一区域都处于特别预定的位置(“位址”)。多孔微量滴定板为可寻址的(每一孔具有一位址),毛细管柱的阵列为可寻址的,沉积于固体支持体(例如尼龙或硝化纤维素膜)上的样本阵列为可寻址的。用于本文所述的方法中的亲和基质通常具有至少4个或4个以上、至少约12个、至少约24个、至少约48个、至少约96个或至少约384个可寻址区域。在特定实施例中,亲和基质是呈适于高处理量阵列的可寻址格式,例如24、48、96或384孔格式。
所述多孔格式适于由自动机械(例如自动移液机械)及其他检测仪表(用于测定报导子活性的96或384孔格式的光度计或荧光读取器)使用。作为说明且并非限制,可使用基于CCD照相机的照明器测量报导子活性。
在使用中,所述生物传感器通常与样本接触,并评定每一重组嗅觉GPCR的活化作用。所关注的气味剂的存在是通过预定嗅觉GPCR亚组的活化作用来检测,其中所述的预定嗅觉GPCR亚组与所述气味剂的先前经测定的“GPCR指纹”相对应。因此,如果所关注的气味剂的预定GPCR亚组由样本活化,那么所关注的气味剂存在于所述样本中。
在替代使用中,所述生物传感器通常与气味剂接触,并评定每一重组GPCR的活化作用。所述气味剂的“指纹”的识别是基于经活化的嗅觉GPCR亚组来指派。在所述替代使用的变体中,所述接触可在生物传感器的嗅觉GPCR的一种或一种以上促效剂的存在下进行,其中在所述一种或一种以上促效剂的存在下由气味剂活化的GPCR亚组代表将“指纹”指派给气味剂的另一方式。预期在促效剂、反向促效剂或拮抗剂的存在下,一种或一种以上嗅觉GPCR的活性可并入气味剂的“指纹”中。
在某些实施例中,GPCR活化作用可使用GPCR活化作用的发光报导子检测。例如,可使用任何发光报导子(例如荧光报导子等)分析,诸如下文所述的基于荧光素酶/GFP的分析或其变体可用于这些分析。
在某些实施例中,将所述嗅觉GPCR中的一种或一种以上活化为气味剂可记为特定水平,诸如例示性及非限制性地为预定最大反应的0-10%、11-25%、26-50%、51-75%或76-100%。预期气味剂的“指纹”可至少部分地通过所述嗅觉GPCR中的一种或一种以上的活化水平来测定。
因此,本发明提供一种发光生物传感器,其含有含嗅觉GPCR的可寻址大胶质细胞阵列,其中所关注的气味剂可通过来自所述生物传感器的光线的特定发射图案来检测。
在某些实施例中,待测试的样本为环境测试样本,例如气体(诸如可呼吸的大气或未知来源或组成的气体的样本)、液体(诸如水或未知来源或组成的液体的样本)或任何固体的样本。
上文所述的生物传感器方法特定用于例如:犯罪现场,其中例如对气味的认识可导致捕获犯罪嫌疑人;战区(例如战场),其中可检测某些化学物质,例如生物/化学战剂;食物,其中可检测例如某些污染物或合乎需要或不合需要的气味;和将特定的嗅觉GPCR或特定的嗅觉GPCR亚组合理地指派给合乎需要或不合需要的嗅觉感觉;和需要监测有毒化学物质的实验室中;和总的来说,需要监测或检测所关注的气味剂的任何情形中。
所关注的气味剂一般包括可由人类嗅觉系统的嗅觉GPCR所检测的任何化合物,例如可通过闻来检测的任何化合物。气味剂可为经纯化的化合物或可未经纯化(例如复杂组合物)。所述气味剂包括(但不限于)脂族酸、醇、酮和酯;具有芳族、脂环、多环和杂环结构的化学物质;和无数经取代的每一所述类型的化学物质;以及其组合。
效用
产生嗅觉GPCR的本发明方法用于多种研究及商业应用、尤其是那些与食品和芳香剂相关的应用中。
在许多应用中,例如食品或芳香剂的物品可通过加入使用上文所述的方法所识别的嗅觉GPCR调节剂加以改良,意即视需要而使其或多或少地合乎需要。总的来说,通常将所述调节剂与物品(例如食品或诸如香水的芳香剂)混合以改良物品的味道或气味。在许多实施例中,调节剂可为嗅觉GPCR活性的抑制剂,且因此“掩蔽”令人不悦的味道或气味。在其他实施例中,调节剂可为某些嗅觉GPCR的活化剂,且可用以改良其加入其中的物质或向所述物质中加入新的风味或香味。在其他实施例中,调节剂可为某些嗅觉GPCR的活化剂,且可用以改良杀虫剂的功效。在某些实施例中,其有益之处在于使诸如毒药和药品的某些物品的气味较不合乎需要,从而使得其不会被误食。在此情况下,提供令人不悦气味的药剂可通过上文所述的方法发现并加入那些物品中。
在其他应用中,提供合乎需要的气味剂(例如获自某些稀有花朵并用作现在的许多香水的起始材料的气味剂)的花费可通过使用上文所述的方法识别所述气味剂的模拟物而得以降低。在所述实施例中,这些模拟物可以比合乎需要的气味剂的价格大体上更低的价格制造,且其可用以补充或替代物品(例如香水等)中合乎需要的气味剂。
在其他应用中,对由个体产生的特定气味剂的检测可具有与疾病或病症相关的诊断或预测价值,其中所述特定气味剂的上升或下降已与所述疾病或病症关联。
当然,可向多个个体投与使用上文所述的方法获得的嗅觉GPCR调节剂。所述个体一般为哺乳动物,其中这些术语广泛用于描述哺乳动物纲内的生物体,包括肉食动物目(例如狗和猫)、啮齿目(例如小鼠、豚鼠和大鼠)和灵长目(例如人类、黑猩猩和猴子)以及商业上所关注的哺乳动物,诸如奶牛、绵羊、猪和马。预期也可向非哺乳类动物投与使用上文所述的方法获得的嗅觉GPCR调节剂。例示性及非限制性的非哺乳类动物包括鸟类(例如鸡)、爬行动物类、鱼类、节肢动物类和昆虫类(例如,蚊子、蚂蚁、蚜虫、甲虫、苍蝇、黄蜂、蜜蜂、蜘蛛或将疾病传播给人类或非人类动物或对农作物或观赏植物造成损害的任何昆虫)。在许多实施例中,所述个体将为人类。
实例
提出下列实例以向所属领域技术人员提供对如何产生和使用本发明的完整揭示和描述,且所述实例不意欲限制发明者视作其发明的范畴也不意欲表示下文的实验为所执行的全部或唯一的实验。
尽管已参考本发明的特定实施例来描述本发明,但所属领域的技术人员应了解,在不偏离本发明的真实精神和范畴的情况下,可进行多种改变并可替代等效物。此外,可进行许多修改以使特定的情形、材料、物质的组成、方法、方法步骤适应于本发明的目的、精神和范畴。预期所有这些修改处于本发明的范畴内。
实例1
在许旺氏细胞中的表达嗅觉GPCR
原代大鼠许旺氏细胞的分离:
许旺氏细胞的制备是根据先前所述完成的(例如Hung,Int.J.Oncol.20:475-82,2002;Hung,Int.J.Oncol.199914:409-15;Wood,Brain Res.115:361-75,1976;Wood,Ann.N.Y.Acad.Sci.605:1-14,1990;和Brockes,J.Exp.Biol.Dec;95:215-30,1981等)。简言之,收集来自P1新生大鼠的坐骨神经,并将细胞维持于补充有10%热灭活胎牛血清的杜贝卡氏经修饰依格培养基(Dulbecco’s modified Eagle media)中。用2μM毛喉素(forskolin)和牛垂体提取物(Sigma)使许旺氏细胞繁殖。使所述细胞生长三代,并将其冷冻储存。
短暂转染嗅觉GPCR:
将第5代许旺氏细胞以每孔8×104个细胞涂板于经聚D-赖氨酸涂布的8孔小室载玻片(Falcon)上。用0.5μg嗅觉GPCR表达质粒与Fugene6试剂(Roche)和Optimem无血清培养基(Invitrogen)转染许旺氏细胞。在37℃下将经转染的细胞保持在经5%CO2湿润的培养器中达4小时。用PBS洗涤细胞并更换新鲜的生长培养基。24小时后,分析所述细胞的表达。
对由HA染色测定的嗅觉GPCR的表达分析:
用PBSCM(PBS+0.5mM Ca2++1mM MgCl2)洗涤经转染的细胞,并用4%的福尔马林(Formalin)将其固定。用50mM NH4Cl/PBSCM淬灭细胞,并洗涤两次。在阻断缓冲液(溶于无曲通(triton)的PBSCM中的2%BSA)中按1∶1000稀释原代抗体抗小鼠HA(Roche),并留在细胞上历时1小时。用PBSCM洗涤三次后,使次级抗体(与Alex 488接合的驴抗小鼠IgG)1∶2000和DAPI 1∶2000在黑暗中留在细胞上历时三十分钟。用PBSCM洗涤细胞3次,并用由适当的紫外滤光片分析的荧光保存(Calbiochem)细胞盖片。
观察在细胞表面上产生嗅觉GPCR的细胞(参看图1)。
实例2
GPCR活化作用的分析
报导子表达:可如原代大鼠许旺氏细胞的实例1中所述进行大胶质细胞的短暂转染。大胶质细胞系的合适转染可如此处所述进行。
将大约12×106个大胶质细胞涂板于15cm组织培养板上,并使其在含有10%胎牛血清和1%丙酮酸钠、L-谷氨酰胺和抗生素的DME高葡萄糖培养基中生长。涂板大胶质细胞后经24小时(或直到约80%融合),使用12μg DNA转染所述细胞。所述12μg DNA与60μl脂质体转染剂(lipofectamine)和2mL DME高葡萄糖无血清培养基组合。将培养基自板中吸出,并用无血清培养基洗涤细胞1次。将DNA、脂质体转染剂和培养基的混合物连同10ml无血清培养基加入板中。在37摄氏度下培养四到五小时之后,吸出培养基,并加入25ml含有血清的培养基。转染后经24小时,再次吸出培养基,并加入新鲜的含血清培养基。转染后经48小时,吸出培养基,并加入含有遗传霉素(geneticin)(G418药物)的含血清培养基直到500μg/ml的最终浓度。经转染细胞此刻经受对含有G418抗性基因的经阳性转染细胞的选择。当选择进行时,每四到五天更换培养基。选择期间,使细胞生长以建立合适的库,或分裂以用于稳定克隆选择。
膜结合分析:[35S]GTPγS分析:当G蛋白偶合受体处于其活性状态时,由于配位体的结合或组成型活化,受体偶合到G蛋白并刺激GDP的释放,且随后使GTP与G蛋白结合。G蛋白受体复合物的α亚单位充当GTP酶,并使GTP缓慢水解成GDP,此时受体通常已失活。经活化的受体继续将GDP换成GTP。不可水解的GTP类似物[35S]GTPγS可用于表明[35S]GTPγS与表达经活化受体的膜的结合增强。使用[35S]GTPγS结合测量活化的优势在于:(a)其一般可应用于所有的G蛋白偶合受体;(b)其最接近膜表面使得其不太可能获得影响胞内级联的分子。
所述分析利用G蛋白偶合受体刺激[35S]GTPγS与表达相关受体的膜的结合的能力。因此,所述分析可用于筛选内源GPCR和非内源、组成型活化的GPCR的候选化合物的直接识别方法中。所述分析是一般性的并应用于所有G蛋白偶合受体的药物发现中。
[35S]GTPγS分析是于20mM HEPES和介于1与约20mM之间的MgCl2(尽管20mM是优选的,但此剂量可经调节以使结果优化)pH7.4、具有介于约0.3与约1.2nM之间的[35S]GTPγS(尽管是1.2优选的,但此剂量可经调节以使结果优化)的结合缓冲液和12.5到75μg的膜蛋白(此剂量可经调节以优化)和10μM GDP(此剂量可经改变以优化)中培养1小时。随后加入麦芽凝集素珠粒(25μl;Amersham)并在室温下培养混合物另外30分钟。接着在室温下以1500×g使管离心,且随后在闪烁计数器中对其计数。
腺苷酰环化酶:可对经设计以用于基于细胞的分析的Flash PlateTM腺苷酰环化酶试剂盒(New England Nuclear;目录号SMP004A)进行改进以用于粗原生质膜。Flash Plate孔可含有闪烁涂料,所述涂料也含有辨别cAMP的特异性抗体。可通过直接竞争放射活性cAMP示踪剂与cAMP抗体的结合来对孔中所产生的cAMP进行定量。下文作为测量表达受体的全部细胞中cAMP含量改变的简要方案。
短暂转染后大约24小时收集经转染的细胞。小心地吸出培养基并将其丢弃。将10mlPBS缓慢地加入每一个细胞盘中,随后小心地吸出。将1ml Sigma细胞解离液和3ml PBS加入每一板中。将细胞自所述板中移出并将细胞悬浮液收集到50ml圆锥形离心管中。随后在室温下以1,100rpm使细胞离心5分钟。小心地使细胞小球再悬浮于适当体积的PBS(约3毫升/板)中。接着,使用血球计计数细胞,并加入额外的PBS以得到适当数量的细胞(具有约50微升/孔的最终体积)。
制备cAMP标准和检测缓冲液(包含1μCi的示踪剂[125I cAMP(50μl)]与11ml检测缓冲液)并根据制造商的说明加以维持。新鲜制备用于筛选的分析缓冲液,且其含有50μl刺激缓冲液、3μl测试化合物(12μM的最终分析浓度)和50μl细胞。将分析缓冲液储存于冰上直到利用时为止。通过将50μl cAMP标准加入适当的孔中,随后将50μl PBSA加入孔H11和H12中来开始分析。将50μl刺激缓冲液加入所有孔中。使用能够分配3μl化合物溶液的针点工具将DMSO(或所选候选化合物)加入适当的孔中,使其具有12μM测试化合物的最终分析浓度和100μl的总分析体积。随后将细胞加入孔中,并在室温下培养60分钟。接着将100μl含有示踪剂cAMP的检测混合液加入孔中。随后将板额外培养2小时,接着在Wallac MicroBeta闪烁计数器中计数。接着由标准cAMP曲线推断每一分析板内所含的每孔的cAMP的值。
用于Gi偶合靶GPCR的基于细胞的cAMP:TSHR为活化后引起cAMP积累的Gs偶合GPCR。TSHR将通过使氨基酸残基623突变(意即,丙氨酸残基变为异亮氨酸残基)而组成型活化。预期Gi偶合受体抑制腺苷酰环化酶,且因此降低可对cAMP激发水平进行评定的cAMP的产生水平。作为对Gi偶合受体组成型活化的指示,用于测量cAMP产生降低的有效技术可通过共转染、最优选为作为“信号增强子”的非内源性、组成型活化的TSHR(TSHR-A623I)(或内源性、组成型活性Gs偶合受体)与连接Gi的靶GPCR共转染以建立基线含量的cAMP来实现。建立非内源型式的Gi偶合受体之后,接着使此非内源型式的靶GPCR与信号增强子共转染,且此即为可用于筛选的材料。我们将利用这一方法在使用cAMP分析时有效地产生信号,此方法优选用于直接识别对抗Gi偶合受体的候选化合物。应注意对于Gi偶合GPCR而言,当使用此方法时,靶GPCR的反向促效剂将增加cAMP信号且促效剂将降低cAMP信号。
第一天时,每孔将析出2×104个大胶质细胞。第二天时,将制备两个反应管(每一管遵循的比例为每板的比例):管A将通过在1.2ml无血清DMEM(Irvine Scientific,Irvine,CA)中混合转染到哺乳动物细胞中的每一受体的2μg DNA、总共4μg DNA(例如pCMV载体、具有经突变THSR(TSHR-A623I)、TSHR-A623I和GPCR等的pCMV载体)来制备;管B将通过在1.2ml无血清DMEM中混合120μl脂质体转染剂(GibcoBRL)来制备。接着,将通过倒位(数次)且随后在室温下培养30-45分钟而使管A和B混合。所述混合物被称为“转染混合物”。将用1×PBS洗涤已析出的大胶质细胞,随后加入10ml无血清DMEM。接着,将2.4ml转染混合物加入细胞中,随后在37℃/5%CO2下培养4小时。接着,转染混合物将通过抽吸移除,随后加入25ml DMEM/10%胎牛血清。接着,将在37℃/5%CO2下培养细胞。培养24小时之后,接着将收集细胞并用于分析。
Flash PlateTM腺苷酰环化酶试剂盒(New England Nuclear;目录号SMP004A)经设计以用于基于细胞的分析,然而,其可视所属领域技术人员的需要而经改进以用于粗原生质膜。Flash Plate孔将含有闪烁涂料,所述闪烁涂料也含有识别cAMP的特异性抗体。可通过放射活性cAMP示踪剂与cAMP抗体结合的直接竞争来量化孔中所产生的cAMP。下文为测量表达受体的全部细胞中cAMP含量改变的简要方案。
短暂转染后大约24小时收集经转染的细胞。将小心地吸出培养基并将其丢弃。将10ml PBS缓慢地加入每一个细胞盘中,随后小心地吸出,将1ml Sigma细胞解离液和3ml PBS加入每一板中。将细胞自所述板中移出并将细胞悬浮液收集到50ml圆锥形离心管中。随后在室温下以1,100rpm使细胞离心5分钟。将小心地使细胞小球再悬浮于适当体积的PBS(约3毫升/板)中。接着,使用血球计计数细胞,并加入额外的PBS以得到适当数量的细胞(具有约50微升/孔的最终体积)。
将制备cAMP标准和检测缓冲液(包含1μCi的示踪剂[125I cAMP(50μl)]与11ml检测缓冲液)并根据制造商的说明加以维持。应新鲜制备用于筛选的分析缓冲液,且其含有50μl刺激缓冲液、3μl测试化合物(12μM的最终分析浓度)和50μl细胞。分析缓冲液可储存于冰上直到利用时为止。通过将50μl cAMP标准加入适当的孔中,随后将50μl PBSA加入孔H11和H12中来开始分析。将50μl刺激缓冲液加入所有孔中。使用能够分配3μl化合物溶液的针点工具将所选化合物(例如TSH)加入适当的孔中,使其具有12μM测试化合物的最终分析浓度和100μl的总分析体积。随后将细胞加入孔中,并在室温下培养60分钟。接着将100μl含有示踪剂cAMP的检测混合液加入孔中。随后将板额外培养2小时,接着在Wallac MicroBeta闪烁计数器中计数。接着由标准cAMP曲线推断每一分析板内所含的每孔的cAMP的值。
基于报导子的分析:Cre-Luc报导子分析(Gs关联受体):使大胶质细胞以每孔2×104个细胞的密度在96孔板上析出,且次日根据制造商的说明使用脂质体转染试剂(BRL)将其转染。用于每一6孔转染的DNA/脂质混合物制备如下:缓慢地使100μlDMEM中的260ng质粒DNA与100μl DMEM中的2μl脂质混合(所述260ng质粒DNA是由200ng 8×CRE-Luc报导子质粒、50ng包含内源报导子或非内源报导子的pCMV或单独pCMV和10ng GPRS表达质粒(pcDNA3中的GPRS(Invitrogen))组成)。所述8×CRE-Luc报导子质粒制备如下:通过克隆在pβgal-Basic载体(Clontech)中的BglV-HindIII位点处的大鼠生长激素抑制素启动子(-71/+51)来获得载体SRIF-β-gal。通过PCR由腺病毒模板AdpCF126CCRE8获得cAMP反应元件的八(8)个拷贝(参看7Human Gene Therapy 1883(1996)),并将其克隆到Kpn-BgIV位点处的SRIF-β-gal载体中,由此产生8×CRE-β-gal报导子载体。8×CRE-Luc报导子质粒是通过将8×CRE-β-gal报导子载体中的β-半乳糖苷酶基因在HindIII-BamHI位点处以获自pGL3-基本载体(Promega)的荧光素酶基因替换而产生。在室温下培养30分钟后,用400μl DMEM稀释DNA/脂质混合物,并将100μl经稀释的混合物加入每一孔中。在细胞培养器中培养4小时之后,将100μl具有10%FCS的DMEM加入每一孔中。次日,用200微升/孔的具有10%FCS的DMEM交换经转染的细胞。八(8)小时后,经PBS洗涤一次之后,在无酚红的情况下将所述孔变为100微升/孔的DMEM。次日,使用LucLiteTM报导子基因分析试剂盒(Packard)遵循制造商的说明测量荧光素酶活性,并于1450MicroBetaTM闪烁及发光计数器(Wallac)上读出。
AP1报导子分析(Gq关联受体):检测Gq刺激的方法视用以在启动子中引起含有AP1元件的基因活化的Gq依赖性磷脂酶C的已知特性而定。可遵循上文关于CREB报导子分析所述的方案利用PathdetectTM AP-1顺式报导系统(Stratagene,Catalogue #219073),其例外为磷酸钙沉淀的组份为410ng pAP1-Luc、80ng pCMV-报导子表达质粒和20ng CMV-SEAP。
SRF-LUC报导子分析(Gq关联受体):一种检测Gq刺激的方法视用以引起启动子中含有血清反应因子的基因活化的Gq依赖性磷脂酶C的已知特性而定。可利用PathdetectTM SRF-Luc-报导系统(Stratagene)分析例如COS7细胞中的Gq偶合活性。使用Mammalian TransfectionTM试剂盒(Stratagene,目录号200285)依据制造商的说明,用所述系统的质粒组份和编码内源或非内源GPCR的指定表达质粒使细胞转染。简言之,按照制造商的说明,在磷酸钙沉淀中组合410ng SRF-Luc、80ng pCMV-报导子表达质粒和20ng CMV-SEAP(已分泌的碱性磷酸酶表达质粒;碱性磷酸酶活性是在经转染细胞的培养基中测量以控制样本之间转染效率的变化)。将所述沉淀的一半均等地分布于96孔板的3个孔中,在无血清培养基中保持细胞24小时。最后5小时时,一起培养细胞与所选化合物。随后使细胞溶解,并使用LucliteTM试剂盒(Packard,目录号6016911)和“Trilux 1450Microbeta”液体闪烁及发光计数器(Wallac)按照制造商的说明分析荧光素酶活性。可使用GraphPad PrismTM 2.0a(GraphPad Software Inc.)分析数据。
细胞内1,4,5-三磷酸肌醇(IP3)积累分析(Gq关联受体):第1天时,可将包含受体(内源和/或非内源)的细胞涂板于24孔板上,通常为1×105个细胞/孔(尽管此数量可优化)。第2天时,可通过首先混合50μl无血清DMEM/孔中的0.25μg DNA和50μl无血清DMEM/孔中的2μl脂质体转染剂使细胞转染。缓慢地将溶液混合,并在室温下培养15-30分钟。用0.5ml PBS洗涤细胞,并将400μl无血清培养基与转染培养基混合,并将其加入到所述细胞中。随后,在37℃/5%CO2下培养所述细胞3-4小时,且接着移除所述转染培养基并替换为1毫升/孔的常规生长培养基。
第3天时,用3H-肌醇标记所述细胞。简言之,移除培养基,并用0.5ml PBS洗涤细胞。随后以每孔0.25μCi 3H-肌醇向每孔中加入0.5ml无肌醇/无血清培养基(GIBCOBRL),并于37℃/5%CO2下培养细胞16-18小时。第4天时,用0.5ml PBS洗涤细胞,并加入0.45ml含有无肌醇/无血清培养基、10μM巴吉林(pargyline)、10mM氯化锂的分析培养基或0.4ml分析培养基和50μl 10×酮舍林(ketanserin)(ket)直到10μM的最终浓度。接着,在37℃下培养细胞30分钟。随后,用0.5ml PBS洗涤细胞,并于每孔加入200μl新鲜/冰冷的终止溶液(1M KOH;18mM硼酸钠;3.8mM EDTA)。使所述溶液在冰上保持5-10分钟或直到溶解细胞时为止,且接着由200μl新鲜/冰冷的中和溶液(7.5%HCl)将其中和。
然后,将溶胞产物转移到1.5ml eppendorf管中,并于每管中加入1ml氯仿/甲醇(1∶2)。将溶液涡旋15秒,并将上部相应用于Biorad AG1-X8TM阴离子交换树脂(100-200目)。首先,以1∶1.25W/V的比例用水洗涤树脂,并将0.9ml上部相装载于管柱上。用10ml的5mM肌醇和10ml的5mM硼酸钠/60mM甲酸钠洗涤管柱。将三磷酸肌醇洗脱到含有10ml具有2ml 0.1M甲酸/1M甲酸铵的闪烁混合液的闪烁瓶中。通过用10ml0.1M甲酸/3M甲酸铵洗涤使管柱再生,并用去离子水冲洗两次,且于4℃储存于水中。
用于测量细胞内钙浓度的荧光成像平板读取器(FLIPR):将来自个别无性繁殖系的经稳定转染细胞的靶受体(实验性)和pCMV(阴性对照)以5.5×104个细胞/孔接种于经聚D-赖氨酸预处理的具有完全培养基(具有10%FBS、2mM L-谷氨酰胺和1mM丙酮酸钠的DMEM)的96孔板(Becton-Dickinson,#356640)中用于次日分析。为制备Fluo4-AM(Molecular Probe,#F14202)培养缓冲液储备液,将1mg Fluo4-AM溶解于467μl DMSO和467μl泊洛尼克酸(Pluoronic acid)(Molecular Probe,#P3000)中以得到可在-20℃下储存一个月的1mM储备溶液。Fluo4-AM是一种钙荧光指示剂染料。
候选化合物是在洗涤缓冲液(1×HBSS/2.5mM丙磺舒(Probenicid)/20mM HEPES,pH7.4)中制备。
分析时,自孔中移除培养基,并使细胞装载有100μl 4μM Fluo4-AM/2.5mM丙磺舒(Sigma,#P8761)/20mM HEPBS/完全培养基,pH为7.4。使培养在37℃/5%CO2下进行60分钟。
培养1小时后,移除Fluo4-AM培养缓冲液,并用100μl洗涤缓冲液将细胞洗涤2次。在每一孔中留下100μl洗涤缓冲液。将板放回37℃/5%CO2的培养器中历时60分钟。
FLIPR(荧光成像平板读取器,Molecular Device)经设计以于第30秒时加入50μl候选化合物,并记录由所述候选化合物所引起的细胞内钙浓度([Ca2+])的短暂改变历时另外150秒。使用FLIPR软件,使用荧光改变总数测定促效剂活性。工具软件将荧光读数标准化以给出零点的对等初始读数。
在某些实施例中,包含靶受体的细胞进一步包含混杂的Qα15/16或嵌合的Gq/Giα单元。
尽管前文使用经稳定转染的细胞提供促效剂活性的FLIPR分析,但所属领域技术人员将能够容易地改变所述分析以便表征拮抗剂活性。所属领域的技术人员也将容易地了解可替代性地使用经短暂转染的细胞。
由上述结果和讨论显而易见,本发明提供用于产生嗅觉GPCR的重要的新方式。详言之,本发明提供用于筛选化学药剂库以寻找嗅觉GPCR调节剂的系统。由此,本方法和系统可用于各种不同的应用中,包括研究、食品和芳香剂改良及其他应用。因此,本发明代表着对此项技术的杰出贡献。
表1
OR51B2 P47884 Q8VGE1 Q8VG94 Q8VG21 Q8VEZ0 Q8VGS5 Q8VGU6
Q9Y5P0 P58170 Q8VGJ1 Q8VG95 Q8VG34 Q8VEZ9 Q8VGS6 Q8VGU7
Q9H255 P30953 Q8VGJ6 Q8VGA0 Q8VG41 Q8VF01 Q8VGS7 Q8VGU8
Q88628 P47887 Q8VGP8 Q8VGA9 Q8VG47 Q8VF12 Q8VGS8 Q8VGX1
Q9H343 O43749 Q8VGT6 Q8VGB1 Q8VG57 Q8VF13 Q8VGS9 Q8VGX5
Q9H344 P47890 Q8VGT7 Q8VGB2 Q8VG58 Q8VF14 Q8VGT8 Q9JHB2
Q9H341 O60431 Q8VGT9 Q8VGB6 Q8VG59 Q8VF15 Q8VGU3 Q9JHW3
Q9UKL2 Q15612 Q920G5 Q8VGB7 Q8VG60 Q8VF19 Q8VGY2 Q9JM16
Q96RD2 P23269 Q9EPG3 Q8VGC8 Q8VG61 Q8VF22 Q8VH07 O35184
Q9H346 P23274 Q9EPG4 Q8VGD6 Q8VG62 Q8VF25 Q8VH08 W96RD0
Q96RD3 P23273 Q9JKA6 Q8VGD7 Q8VG63 Q8VF34 Q8VH10 Q96RC9
Q8NGF0 P23266 Q9GZK7 Q8VGD8 Q8VG73 Q8VF36 Q920P1 Q15620
Q8NGF1 P23271 Q8NG94 Q8VGD9 Q8VG74 Q8VF50 Q920P2 Q8WZ84
Q8NGF3 P23272 Q8NGC1 Q8VGI0 Q8VG82 Q8VF51 Q923Q6 Q9GZM6
Q8NGH5 P30955 Q8NGC7 Q8VGJ5 Q8VG86 Q8VF52 Q923Q8 Q63395
Q8NGH6 P70526 Q8NGC9 Q8VGL6 Q8VGE4 Q8VF53 Q9EQ84 Q8N0Y1
Q8NGH7 Q62942 Q8NH07 Q8VGL7 Q8VGE5 Q8VF54 Q9EQ85 Q8NG78
Q8NGH8 Q8NGA1 Q8VEV3 Q8VGP4 Q8VGE6 Q8VF59 Q9EQ86 Q8NG88
Q8NGH9 Q8NGQ3 Q8VEV4 Q8VGP5 Q8VGE7 Q8VF60 Q9EQ87 Q8NGG6
Q8NGI0 Q8NGR2 Q8VF70 Q8VGP6 Q8VGE8 Q8VF61 Q9EQ88 Q8NGG7
Q8NGI1 Q8NGR5 Q8VFC3 Q8VGT5 Q8VGE9 Q8VF65 Q9QY00 Q8NGG8
Q8NGI2 Q8NGR7 Q8VFD8 Q8VGU0 Q8VGF1 Q8VF66 Q9WU91 Q8NGG9
Q8NGI3 Q8NGR8 Q8VFE3 Q8VGW6 Q8VGF2 Q8VF67 O13036 Q8NGH0
Q8NGJ2 Q8NGR9 Q8VFT6 Q8VGW9 Q8VGF3 Q8VF68 O57597 Q8NGH1
Q8NGJ3 Q8NGS0 Q8VFT7 Q8VGX0 Q8VGF4 Q8VF71 O95222 Q8NGH2
Q8NGJ4 Q8NGS1 Q8VFT8 Q8VGX2 Q8VGF5 Q8VF72 O95007 Q8NGM9
Q8NGJ5 Q8NGS2 Q8VFT9 Q92022 Q8VGF6 Q8VF73 O70269 Q8VEY0
Q8NGJ6 Q8NGS3 Q9WU86 Q9D3U9 Q8VGF7 Q8VF74 O70270 Q8VF23
Q8NGJ7 Q8NGZ1 P58182 Q9D4F9 Q8VGF8 Q8VF75 O70271 Q8VF62
Q8NGJ8 Q8NH92 Q9UFF7 Q9EP55 Q8VGF9 Q8VF76 P23267 Q8VF63
Q8NGJ9 Q8NH93 Q8NHA7 Q9EP67 Q8VGG0 Q8VF77 P23270 Q8VF64
Q8NGK0 Q8NH94 Q8VG96 Q9EPF5 Q8VGG1 Q8VFC4 Q8C0U2 Q8VF78
Q8NGK1 Q8NHA8 Q920Y8 Q9EPF6 Q8VGG2 Q8VFC5 Q8K4Z9 Q8VFB3
Q8NGK2 Q8VET9 Q920Y9 Q9EPF7 Q8VGG7 Q8VFC9 Q8K501 Q8VFB4
Q8NGK3 Q8VEU7 Q920Z0 Q9EPF8 Q8VGG8 Q8VFD0 Q8NGC5 Q8VFB5
Q8NGK4 Q8VEY8 Q95047 Q9EPF9 Q8VGG7 Q8VFD1 Q8NGD9 Q8VFB6
Q8NGK5 Q8VEZ6 Q9GZK3 Q9EPH0 Q8VGH8 Q8VFD2 Q8NGE1 Q8VFD7
Q8NGK6 Q8VEZ7 O76000 Q9EPG5 Q8VGH9 Q8VFD3 Q8NGE2 Q8VFN2
Q8NGM7 Q8VF79 P58173 Q9EPG6 Q8VGM3 Q8VFG0 Q8NGM8 Q8VFN3
Q8NH53 Q8VFA1 O95371 Q9EPV1 Q8VGM4 Q8VFG1 Q8NGN1 Q8VFN4
Q8NH55 Q8VFD9 Q9H210 Q9GZK1 Q8VGM5 Q8VFG5 Q8NGQ2 Q8VFN5
Q8NH56 Q8VFE0 Q13607 Q9GZK6 Q8VGM6 Q8VFG6 Q8NGT5 Q8VG15
Q8NH57 Q8VFE1 O95006 Q9QW34 Q8VGM7 Q8VFJ7 Q8NGU2 Q8VG16
Q8NH60 Q8VFE4 Q9H205 Q9QW38 Q8VGM8 Q8VFJ8 Q8NGW0 Q8VG17
Q8NH61 Q8VFE5 Q9GZK4 Q9QZ17 Q8VGM9 Q8VFJ9 Q8NGW1 Q8VG50
Q8NH63 Q8VFE6 O95918 Q9QZI8 Q8VGN0 Q8VFK0 Q8NGW6 Q8VG51
表1
Q8NH64 Q8VFM9 Q15062 Q9QZ19 Q8VGN1 Q8VFK1 Q8NGX0 Q8VG52
Q8NH67 Q8VFP4 O76002 Q9QZ20 Q8VGN2 Q8VFK2 Q8NGX8 Q8VG53
Q8NH68 Q8VFP5 O76001 Q9QZ21 Q8VGN3 Q8VFK3 Q8NGX9 Q8VG54
Q8NH76 Q8VFP6 Q9NQN1 Q9QZ22 Q8VGN4 Q8VFK4 Q8NGY2 Q8VG55
Q8NH78 Q8VFP7 O43869 Q9R0Z2 Q8VGN5 Q8VFK5 Q8NGY3 Q8VG56
Q8TCB6 Q8VFP8 Q9Y3N9 P47881 Q8VGN6 Q8VFK6 Q8NGY4 Q8VG67
Q8VBV9 Q8VFP9 O35434 P47893 Q8VGN7 Q8VFK7 Q8NGY5 Q8VG68
Q8VEW7 Q8VFT2 O95499 P47888 Q8VGN8 Q8VFK8 Q8NGY6 Q8VG69
Q8VEW8 Q8VFY1 P23275 P47883 Q8VGN9 Q8VFK9 Q8NHZ6 Q8VG70
Q8VEX9 Q8VGB9 Q95156 Q8VFX6 Q8VGP0 Q8VFL0 Q8NH40 Q8VG71
Q8VF02 Q8VGG9 Q63394 Q8VFX7 Q8VGP1 Q8VFL1 Q8NH79 Q8VG75
Q8VF03 Q8VGH0 Q8N349 Q8VFX8 Q8VGP2 Q8VFL2 Q8VEU0 Q8VG76
Q8VF06 Q8VGH1 Q8N628 Q8VFX9 Q8VGP3 Q8VFL4 Q8VEU1 Q8VG80
Q8VF07 Q8VGI1 Q8NG76 Q8VGR1 Q9QW37 Q8VFL5 Q8VEW0 Q8VG89
Q8VF08 Q8VGI2 Q8NG77 Q8VGR2 Q9R0K1 Q8VFL6 Q8VEX2 Q8VG90
Q8VF09 Q8VGI3 Q8NG80 QT9SM7 Q9R0K2 Q8VFL7 Q8VEX8 Q8VG92
Q8VF27 Q8VGJ7 Q8NG81 Q9TSM8 Q9R0K3 Q8VFL8 Q8VF24 Q8VG93
Q8VF28 Q8VGJ8 Q8NG82 Q9TU88 Q9R0K4 Q8VFL9 Q8VF26 Q8VGB4
Q8VFZ7 Q8VGJ9 Q8NG83 Q9TU89 Q9R0K5 Q8VFM0 Q8VF30 Q8VGC9
Q8VG01 Q8VGK0 Q8NG84 Q9TU97 Q96R09 Q8VFM1 Q8VF31 Q8VGD0
Q8VG18 Q8VGK1 Q8NG85 Q9TUA0 Q96R08 Q8VFN7 Q8VF33 Q8VGD1
Q8VG19 Q8VGK2 Q8NG86 Q9TUA4 O95221 Q8VFN8 Q8VF82 Q8VGD2
Q8VG22 Q8VGK3 Q8NG97 Q15615 Q13606 Q8VFN9 Q8VFB7 Q8VGD3
Q8VG23 Q8VGK4 Q8NGH3 P58180 Q8WZ92 Q8VFP1 Q8VFE7 Q8VGD4
Q8VG24 Q8VGK5 Q8NGH4 O95013 Q8WZ94 Q8VFQ3 Q8VFH3 Q8VGD5
Q8VG25 Q8VGK6 Q8NGS4 Q8IXE1 Q9UGF5 Q8VFQ4 Q8VFH4 Q8VGE2
Q8VG26 Q8VGK7 Q8NGS5 Q8K4Z8 Q9UGF6 Q8VFQ5 Q8VFH5 Q8VGE3
Q8VG28 Q8VGK8 Q8NGS6 Q8K500 O77756 Q8VFQ6 Q8VFH6 Q8VH09
Q8VG77 Q8VGK9 Q8NGS7 Q8N0Y3 O77757 Q8VFQ7 Q8VFH7 Q9EQ89
Q8VG78 Q8VGL0 Q8NGS8 Q8NGA8 O77758 Q8VFQ8 Q8VFH8 Q9EQ90
Q8VG79 Q8VGP7 Q8NGS9 Q8NGB1 Q95154 Q8VFQ9 Q8VFH9 Q9EQ91
Q8VG84 Q8VGR3 Q8NGT0 Q8NGB2 P37067 Q8VFR0 Q8VFI0 Q9EQ92
Q8VG85 Q8VGR4 Q8NGT1 Q8NGB4 Q95155 Q8VFR1 Q8VFI1 Q9EQ93
Q8VGA1 Q8VGR5 Q8NGT2 Q8NGB6 P37068 Q8VFR2 Q8VFI2 Q9EQ94
Q8VGU9 Q8VGR6 Q8NGT6 Q8NGB8 P37069 Q8VFR3 Q8VFI3 Q9EQ95
Q8VGV0 Q8VGR7 Q8NGT7 Q8NGB9 P37070 Q8VFR4 Q8VFI4 Q9EQ96
Q8VGV1 Q8VGT0 Q8NGT8 Q8NGC2 P37071 Q8VFR5 Q8VFI5 Q9EQ97
Q8VGV2 Q8VGT1 Q8NGT9 Q8NGC6 P37072 Q8VFR6 Q8VFN6 Q9EQ98
Q8VGV3 Q8VGT2 Q8NGU4 Q8NGD0 Q62943 Q8VFR7 Q8VFP0 Q9EQ99
Q8VGV4 Q8VGT3 Q8NGV0 Q8NGD1 Q62944 Q8VFR8 Q8VFP2 Q9EQA0
Q8VGV5 Q920Y6 Q8NGV1 Q8NGD2 Q8C0S2 Q8VFR9 Q8VFU0 Q9EQA1
Q8VGV6 Q920Y7 Q8NGV4 Q8NGD3 Q8IVL3 Q8VFS0 Q8VFU1 Q9EQA2
Q8VGV8 Q9JHE2 Q8NGV5 Q8NGD4 Q8IXE7 Q8VFS7 Q8VFU2 Q9EQA3
Q8VGV9 Q9QW35 Q8NGW7 Q8NGD5 Q8N0Y5 Q8VFS8 Q8VFU5 Q9EQA4
Q8VGW0 Q9TQX4 Q8NGX1 Q8NGD6 Q8N127 Q8VFS9 Q8VFY9 Q9EQA5
Q8VGW1 Q9TSN0 Q8NGX2 Q8NGE8 Q8N146 Q8VFT0 Q8VFZ0 Q9EQA6
表1
Q8VGW2 Q9TU84 Q8NGY9 Q8NGF8 Q8N162 Q8VFU3 Q8VFZ1 Q9EQA7
Q8VGW3 Q9TU86 Q8NGZ0 Q8NGF9 Q8NG75 Q8VFU4 Q8VFZ2 Q9EQA8
Q8VGW4 Q9TU90 Q8NGZ4 Q8NGI4 Q8NGC0 Q8VFU6 Q8VFZ8 Q9EQA9
Q8VGW5 Q9TU92 Q8NGZ5 Q8NGI6 Q8NGC3 Q8VFU7 Q8VFZ9 Q9EQB0
Q8VGX3 Q9TU93 Q8NGZ9 Q8NGJ1 Q8NGC4 Q8VFV2 Q8VG27 Q9EQB1
Q8VGX4 Q9TU94 Q8NH00 Q8NGL6 Q8NGE7 Q8VFV3 Q8VG29 Q9EQB2
Q8VGX6 Q9TU95 Q8NH01 Q8NGL7 Q8NGE9 Q8VFV4 Q8VG33 Q9EQB3
Q8VGX7 Q9TU99 Q8NH02 Q8NGL8 Q8NGF4 Q8VFV5 Q8VG45 Q9EQB4
Q8VGX8 Q9TUA1 Q8NH04 Q8NGL9 Q8NGF5 Q8VFV6 Q8VG46 Q9EQB5
Q8VGX9 Q9TUA2 Q8NH16 Q8NGM0 Q8NGF7 Q8VFV7 Q8VG64 Q9EQB6
Q8VGY0 Q9TUA3 Q8NH95 Q8NGN0 Q8NGG0 Q8VFV8 Q8VGC2 Q9EQB7
Q8VGY1 Q9TUA6 Q8NHA4 Q8NGN8 Q8NGG2 Q8VFV9 Q8VGC4 Q9EQB8
Q8VGY3 Q9TUA7 Q8NHA6 Q8NGN9 Q8NGG3 Q8VFW0 Q8VGC5 Q9EQG1
Q8VGY4 Q9TUA8 Q8NHC8 Q8NGP0 Q8NGG4 Q8VFW1 Q8VGH3 Q9ERU6
Q8VGY5 Q9TUA9 Q8VES9 Q8NH05 Q8NGG5 Q8VFW2 Q8VGH4 Q9QW36
Q8VGY6 Q9UDD9 Q8VET2 Q8NH21 Q8NG18 Q8VFW3 Q8VGH5 Q8N148
Q8VGY7 O70265 Q8VEV0 Q8NH37 Q8NGI9 Q8VFW4 Q8VGH6 Q8NG79
Q8VGY8 O70266 Q8VEV1 Q8NH41 Q8NGJ0 Q8VFW5 Q8VGI7 Q8NG92
Q8VGY9 O70267 Q8VEV9 Q8NH42 Q8NGK9 Q8VFW6 Q8VGI8 Q8NGE0
Q8VGZ0 O70268 Q8VEW4 Q8NH43 Q8NGL0 Q8VFW7 Q8VGI9 Q8NGR1
Q8VGZ1 P58181 Q8VEW9 Q8NH49 Q8NGL1 Q8VFW8 Q8VGJ0 Q8NGR6
Q8VGZ2 Q9H209 Q8VEY4 Q8NH70 Q8NGL2 Q8VFW9 Q8VGJ2 Q8NGV6
Q8VGZ3 Q9H207 Q8VEY6 Q8NH72 Q8NGL3 Q8VFX0 Q8VGJ3 Q8NGV7
Q8VGZ4 Q96KK4 Q8VEY7 Q8NH73 Q8NGL4 Q8VFX1 Q8VGL1 Q8NGZ3
Q8VGZ5 Q9Y4A9 Q8VF05 Q8NH83 Q8NGL5 Q8VFX2 Q8VGU1 Q8NH08
Q8VGZ6 O60403 Q8VF17 Q8NH84 Q8NGN2 Q8VFX3 Q8VGU4 Q8NH09
Q8VGZ7 O60404 Q8VF18 Q8VET0 Q8NGN3 Q8VFX4 Q8VGU5 Q8NH14
Q8VGZ8 P30954 Q8VF37 Q8VET4 Q8NGN4 Q8VFX5 Q8VGW8 Q8NH44
Q8VGZ9 Q62007 Q8VF44 Q8VEX0 Q8NGN5 Q8VFZ3 Q924H8 Q8NHB7
Q8VH00 Q8CG22 Q8VF69 Q8VEX1 Q8NGN6 Q8VG00 Q9EPG1 Q8NHB8
Q8VH01 Q8NGA5 Q8VF80 Q8VEX3 Q8NGN7 Q8VG02 Q9EPG2 Q8NHC5
Q8VH02 Q8NG6A Q8VF81 Q8VEX7 Q8NGP2 Q8VG03 Q9EPV0 Q8NHC6
Q8VH03 Q8NGE3 Q8VF87 Q8VEY5 Q8NGP3 Q8VG04 Q9H206 Q8VET6
Q8VH04 Q8NGE5 Q8VF88 Q8VEZ1 Q8NGP4 Q8VG05 Q9QWU6 Q8VET7
Q8VH05 Q8NGF6 Q8VF89 Q8VEZ2 Q8NGP6 Q8VG06 Q9Z1V0 Q8VEX5
Q8VH06 Q8NGI7 Q8VF92 Q8VEZ3 Q8NGP8 Q8VG07 P34987 Q8VEX6
Q8VH11 Q8NGM4 Q8VFA2 Q8VF10 Q8NGP9 Q8VG08 Q15622 Q8VF04
Q8VH12 Q8NGQ4 Q8VFA3 Q8VF11 Q8NGQ0 Q8VG09 O76100 Q8VF16
Q8VH13 Q8NGX3 Q8VFA4 Q8VF21 Q8NGQ1 Q8VG11 O14581 Q8VF32
Q8VH14 Q8NGX5 Q8VFA5 Q8VF29 Q8NGQ5 Q8VG13 O76099 Q8VF35
Q8VH15 Q8NGX6 Q8VFA6 Q8VF38 Q8NGQ6 Q8VG20 O60412 Q8VF42
Q8VH16 Q8NGY0 Q8VFA7 Q8VF39 Q8NGR3 Q8VG30 P23268 Q8VF43
Q8VH17 Q8NGY1 Q8VFA8 Q8VF40 Q8NGR4 Q8VG35 P23265 Q8VF93
Q8VH18 Q8NH19 Q8VFA9 Q8VF41 Q8NGZ2 Q8VG36 Q95157 Q8VFB8
Q8VH19 Q8NH36 Q8VFB2 Q8VF45 Q8NH10 Q8VG37 Q8N133 Q8VFB9
Q8VH20 Q8NH74 Q8VFC1 Q8VF46 Q8NH18 Q8VG38 Q8NG95 Q8VFC0
表1
Q8VH21 Q8NHC4 Q8VFC2 Q8VF47 Q8NH48 Q8VG39 Q8NG98 Q8VFE8
Q8VH22 Q8VBW9 Q8VFD4 Q8VF48 Q8NH50 Q8VG40 Q8NG99 Q8VFE9
Q924X8 Q8VES6 Q8VFD5 Q8VF56 Q8NH51 Q8VG42 Q8NGA0 Q8VFP3
Q99NH4 Q8VES7 Q8VFD6 Q8VF57 Q8NH69 Q8VG43 Q8NGA2 Q8VFY0
Q9EPN8 Q8VEU3 Q8VFF0 Q8VF58 Q8NH80 Q8VG44 Q8NH99 Q8VFY6
Q9EPN9 Q8VEV2 Q8VFG2 Q8VF83 Q8NH81 Q8VG65 Q8NHB5 Q8VFY7
Q9EQQ5 Q8VEW1 Q8VFG3 Q8VF84 Q8NH85 Q8VG66 Q8NHC1 Q8VG48
Q9EQQ6 Q8VEX4 Q8VFG4 Q8VF85 Q8NH86 Q8VG81 Q8VET8 Q8VGH2
Q9EQQ7 Q8VEY1 Q8VFG7 Q8VF86 Q8NH87 Q8VG83 Q8VEW3 Q8VGJ4
Q9GKV8 Q8VEZ4 Q8VFG8 Q8VF90 Q8NH88 Q8VG91 Q8VEY9 Q8VGL2
Q9H2C5 Q8VEZ5 Q8VFG9 Q8VF91 Q8NH89 Q8VG97 Q8VFF1 Q8VGL3
Q9H2C6 Q8VEZ8 Q8VFH0 Q8VF94 Q8NH90 Q8VGA2 Q8VFF2 Q8VGL4
Q9H2C8 Q8VF00 Q8VFH1 Q8VF95 Q8NH91 Q8VGA3 Q8VFF3 Q8VGL5
Q9H339 Q8VF20 Q8VFH2 Q8VF96 Q8NHC7 Q8VGA4 Q8VFF4 Q8VGL8
Q9H340 Q8VF55 Q8VFL3 Q8VF97 Q8VES8 Q8VGA5 Q8VFF5 Q8VGL9
Q9H342 Q8VFE2 Q8VFM2 Q8VF98 Q8VET1 Q8VGA6 Q8VFF6 Q8VGM0
Q9H345 Q8VFM7 Q8VFM3 Q8VF99 Q8VET3 Q8VGA7 Q8VFF7 Q8VGM1
Q9WU88 Q8VFQ0 Q8VFM4 Q8VFA0 Q8VET5 Q8VGA8 Q8VFI7 Q8VGM2
Q9WU89 Q8VFQ2 Q8VFM5 Q8VFB0 Q8VEU2 Q8VGB0 Q8VFI8 Q8VGP9
Q9WU90 Q8VFS1 Q8VFM6 Q8VFB1 Q8VEU4 Q8VGB3 Q8VFJ0 Q8VGQ0
Q9WU93 Q8VFT1 Q8VFN0 Q8VFC6 Q8VEU5 Q8VGB5 Q8VFJ1 Q8VGQ1
Q9WU94 Q8VFY4 Q8VFQ1 Q8VFC7 Q8VEU6 Q8VGC6 Q8VFJ2 Q8VGQ2
Q9WVD7 Q8VFY5 Q8VFS2 Q8VFC8 Q8VEU8 Q8VGC7 Q8VFJ3 Q8VGQ3
Q9WVD8 Q8VFZ4 Q8VFS3 Q8VFF8 Q8VEU9 Q8VGF0 Q8VFJ4 Q8VGQ4
Q9WVD9 Q8VFZ5 Q8VFS4 Q8VFF9 Q8VEV5 Q8VGI4 Q8VFJ5 Q8VGQ5
Q9WVN4 Q8VFZ6 Q8VFS5 Q8VFN1 Q8VEV6 Q8VGI5 Q8VFJ6 Q8VGQ6
Q9WVN5 Q8VG10 Q8VFS6 Q8VFT3 Q8VEV7 Q8VGI6 Q8VFM8 Q8VGQ7
Q9WVN6 Q8VG31 Q8VFY2 Q8VFT4 Q8VEV8 Q8VGR8 Q8VG88 Q8VGQ8
Q9YH55 Q8VG32 Q8VFY3 Q8VFT5 Q8VEW2 Q8VGR9 Q8VGB8 Q8VGQ9
Q9P1Q5 Q8VG98 Q8VG14 Q8VFU8 Q8VEW5 Q8VGS0 Q8VGG3 Q8VGR0
Q9Y585 Q8VG99 Q8VG49 Q8VFU9 Q8VEW6 Q8VGS1 Q8VGG4 Q8VGT4
Q15619 Q8VGC0 Q8VG72 Q8VFV0 Q8VEY2 Q8VGS2 Q8VGG5 Q8VGU2
P34982 Q8VGC1 Q8VG87 Q8VFV1 Q8VEY3 Q8VGS3 Q8VGG6 Q8VGV7
Q8VGE0 Q8VG12 Q8VGS4 Q8VGW7
Claims (28)
1.一种产生嗅觉GPCR的方法,其包含:
在体外将表达盒引入大胶质细胞中,所述表达盒包含可经由操作连接到编码所述嗅觉GPCR的核酸的启动子,和
在适于产生所述嗅觉GPCR的条件下维持所述细胞,以产生所述嗅觉GPCR。
2.根据权利要求1所述的方法,其中所述大胶质细胞为髓磷脂产生细胞。
3.根据权利要求1所述的方法,其中所述大胶质细胞为许旺氏(Schwann)细胞、寡突细胞或嗅鞘细胞。
4.根据权利要求3所述的方法,其中所述大胶质细胞为原代许旺氏细胞。
5.根据权利要求1所述的方法,其中所述细胞为永生化大胶质细胞。
6.根据权利要求1所述的方法,其中所述嗅觉GPCR可在细胞表面上检测到。
7.一种筛选嗅觉调节剂的方法,其包含:
根据权利要求1所述的方法在大胶质细胞中产生嗅觉GPCR,其中所述嗅觉GPCR偶合到G蛋白;
使所述细胞与候选药剂接触;和
评定所述候选药剂对所述嗅觉GPCR的活性的作用,
其中调节所述嗅觉GPCR的活性的候选药剂为嗅觉调节剂。
8.一种筛选嗅觉GPCR的调节剂的方法,其包含:
根据权利要求1所述的方法在大胶质细胞中产生所述嗅觉GPCR,其中所述嗅觉GPCR偶合到G蛋白;
使所述细胞与候选药剂接触;和
评定所述候选药剂对所述嗅觉GPCR的活性的作用,
其中调节所述嗅觉GPCR的活性的候选药剂为所述嗅觉GPCR的调节剂。
9.根据权利要求7或权利要求8所述的方法,其中所述药剂为小有机分子。
10.根据权利要求7或权利要求8所述的方法,其中所述药剂为气味剂。
11.根据权利要求7或权利要求8所述的方法,其中所述接触是在已知的嗅觉GPCR促效剂的存在下进行。
12.根据权利要求7或权利要求8所述的方法,其中所述调节剂是选自由促效剂、部分促效剂、反向促效剂和拮抗剂组成的群组。
13.根据权利要求7或权利要求8所述的方法,其中所述评定是通过对GTPγS结合水平的测量来进行。
14.根据权利要求7或权利要求8所述的方法,其中所述评定是通过对选自由环AMP(cAMP)、环GMP(cGMP)、1,4,5-三磷酸肌醇(IP3)、二酰基甘油(DAG)和Ca2+组成的群组的第二信使的含量的测量来进行。
15.根据权利要求14所述的方法,其中所述第二信使为cAMP。
16.一种筛选嗅觉GPCR的配位体的方法,其包含:
根据权利要求1所述的方法在大胶质细胞中产生所述嗅觉GPCR;
使所述嗅觉GPCR与候选药剂接触;和
评定所述候选药剂与所述嗅觉GPCR的结合。
17.根据权利要求16所述的方法,其中所述候选药剂是经标记的。
18.一种筛选嗅觉GPCR的配位体的方法,其包含:
根据权利要求1所述的方法在大胶质细胞中产生所述嗅觉GPCR;
在经标记的已知嗅觉GPCR配位体的存在下,使所述嗅觉GPCR与候选药剂接触;和
评定所述经标记的已知嗅觉GPCR配位体的结合;
其中在所述候选药剂的存在下,所述经标记已知配位体结合的降低表明所述候选药剂为所述嗅觉GPCR的配位体。
19.一种筛选嗅觉调节剂的方法,其包含:
根据权利要求1所述的方法产生多个不同的嗅觉GPCR,其中每一所述嗅觉GPCR都偶合到G蛋白;
识别由第一药剂活化的一组不同嗅觉GPCR,其中所述第一药剂为已知的嗅觉调节剂;
使所述GPCR组与第二药剂接触;和
评定所述第二药剂对所述嗅觉GPCR的活性的作用,
其中调节由所述第一药剂所调节的所述一组不同GPCR中的一个或一个以上GPCR的第二药剂为嗅觉调节剂。
20.根据权利要求19所述的方法,其中所述组包含三个或三个以上的GPCR。
21.一种大胶质细胞,其包含编码嗅觉GPCR的重组核酸。
22.一种试剂盒,其包含:
大胶质细胞;和
编码嗅觉GPCR的核酸。
23.根据权利要求22所述的试剂盒,其进一步包含用于使用所述大胶质细胞产生所述嗅觉GPCR的说明。
24.一种识别样本中所关注的气味剂的方法,其包含:
使样本与根据权利要求1所述的方法产生多个不同嗅觉GPCR的多个大胶质细胞接触,其中每一所述嗅觉GPCR都偶合到G蛋白;和
评定所述嗅觉GPCR的活化作用以评定所述气味剂的存在;
其中一预定嗅觉GPCR组的活化作用指示所述样本中所述气味剂的存在。
25.一种测定气味剂的“指纹”的方法,其包含:
使样本与根据权利要求1所述的方法产生多个不同嗅觉GPCR的多个大胶质细胞接触,其中每一所述嗅觉GPCR都偶合到G蛋白;和
评定所述嗅觉GPCR的活化作用以评定由所述气味剂引起的活化作用;
其中所述“指纹”包含由所述气味剂活化的所述一组不同嗅觉GPCR。
26.根据权利要求25所述的方法,其中所述接触是在所述多个嗅觉GPCR的一个或一个以上的已知促效剂的存在下进行。
27.根据权利要求24至26中任一权利要求所述的方法,其中所述多个细胞为一可寻址的细胞阵列,其中所述阵列的每一地址都含有产生单一重组嗅觉GPCR的大胶质细胞。
28.根据权利要求27所述的方法,其中所述GPCR活化作用是使用GPCR活化作用的发光报导子来评定。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US52394003P | 2003-11-21 | 2003-11-21 | |
US60/523,940 | 2003-11-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1882689A true CN1882689A (zh) | 2006-12-20 |
Family
ID=34632847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2004800341570A Pending CN1882689A (zh) | 2003-11-21 | 2004-11-15 | 产生嗅觉gpcr的方法 |
Country Status (8)
Country | Link |
---|---|
US (3) | US20080009015A1 (zh) |
EP (1) | EP1694844A2 (zh) |
JP (2) | JP2008503201A (zh) |
CN (1) | CN1882689A (zh) |
AU (1) | AU2004292536A1 (zh) |
CA (1) | CA2545553A1 (zh) |
IL (1) | IL175375A0 (zh) |
WO (1) | WO2005051984A2 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101960306A (zh) * | 2008-04-11 | 2011-01-26 | 花王株式会社 | 嗅觉灵敏度抑制剂的筛选方法 |
CN103608674A (zh) * | 2011-04-14 | 2014-02-26 | 上海交通大学医学院 | 一种配位金属的气味化合物的探测方法 |
CN109071626A (zh) * | 2016-02-24 | 2018-12-21 | 阿罗姆斯公司 | 用于检测气味、香味和味道的生物传感器 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9012169B2 (en) * | 2004-07-21 | 2015-04-21 | Givaudan S.A. | Metabolic method to identify compounds having flavor or fragrance |
WO2008059023A1 (en) | 2006-11-15 | 2008-05-22 | High Point Pharmaceuticals, Llc | New haloalkylsulfone substituted compounds useful for treating obesity and diabetes |
EP2097388B1 (en) | 2006-11-15 | 2011-09-07 | High Point Pharmaceuticals, LLC | Novel 2-(2-hydroxyphenyl)benzimidazoles useful for treating obesity and diabetes |
US8022066B2 (en) | 2006-11-15 | 2011-09-20 | High Point Pharmaceuticals, Llc | 2-(2-hydroxyphenyl) benzothiadiazines useful for treating obesity and diabetes |
US9085798B2 (en) | 2009-04-30 | 2015-07-21 | Prognosys Biosciences, Inc. | Nucleic acid constructs and methods of use |
US10787701B2 (en) | 2010-04-05 | 2020-09-29 | Prognosys Biosciences, Inc. | Spatially encoded biological assays |
US20190300945A1 (en) | 2010-04-05 | 2019-10-03 | Prognosys Biosciences, Inc. | Spatially Encoded Biological Assays |
AU2011237729B2 (en) | 2010-04-05 | 2014-04-03 | Prognosys Biosciences, Inc. | Spatially encoded biological assays |
EP2694709B1 (en) | 2011-04-08 | 2016-09-14 | Prognosys Biosciences, Inc. | Peptide constructs and assay systems |
GB201106254D0 (en) | 2011-04-13 | 2011-05-25 | Frisen Jonas | Method and product |
EP3511423B2 (en) | 2012-10-17 | 2024-05-29 | Spatial Transcriptomics AB | Methods and product for optimising localised or spatial detection of gene expression in a tissue sample |
EP3736573A1 (en) | 2013-03-15 | 2020-11-11 | Prognosys Biosciences, Inc. | Methods for detecting peptide/mhc/tcr binding |
CA2916662C (en) | 2013-06-25 | 2022-03-08 | Prognosys Biosciences, Inc. | Methods and systems for determining spatial patterns of biological targets in a sample |
US10288608B2 (en) | 2013-11-08 | 2019-05-14 | Prognosys Biosciences, Inc. | Polynucleotide conjugates and methods for analyte detection |
CA2982146A1 (en) | 2015-04-10 | 2016-10-13 | Spatial Transcriptomics Ab | Spatially distinguished, multiplex nucleic acid analysis of biological specimens |
WO2019010172A1 (en) * | 2017-07-03 | 2019-01-10 | The Rockefeller University | COMPOSITIONS AND METHODS FOR UNIVERSAL CLINICAL TEST FOR OLFACTORY DYSFUNCTION |
US10209239B1 (en) * | 2017-08-16 | 2019-02-19 | Aromyx Corporation | Method of making an aromagraph comprising ectopic olfactory receptors |
KR102047292B1 (ko) * | 2017-12-29 | 2019-11-21 | 한국표준과학연구원 | 초파리의 후각 조직으로부터 7-막관통 단백질을 분리하는 방법 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5849585A (en) * | 1995-05-10 | 1998-12-15 | Genetech, Inc. | Isolating and culturing Schwann cells |
JPH11196870A (ja) * | 1998-01-08 | 1999-07-27 | Katsuhiko Mikoshiba | 受容体の機能解析法及びリガンド分子のスクリーニング法 |
WO2000035274A1 (en) * | 1998-12-17 | 2000-06-22 | The Johns Hopkins University School Of Medicine | Olfactory receptor expression libraries and methods of making and using them |
AU778603B2 (en) * | 1999-01-25 | 2004-12-09 | Yale University | Novel odorant receptors in drosophila |
ES2315227T3 (es) | 1999-02-25 | 2009-04-01 | The Trustees Of Columbia University In The City Of New York | Genes que codifican los receptores de odorizantes de insecto y usos de los mismos. |
AU764158B2 (en) | 1999-07-20 | 2003-08-14 | Regents Of The University Of California, The | Odorant receptors |
EP1322760A2 (en) * | 2000-10-06 | 2003-07-02 | Inctye Genomics, Inc. | G-protein coupled receptors |
AU2002309196A1 (en) * | 2001-06-26 | 2003-01-08 | Decode Genetics Ehf. | Nucleic acids encoding olfactory receptors |
AU2003218234A1 (en) * | 2002-03-15 | 2003-09-29 | Arena Pharmaceuticals, Inc. | Methods of expressing non-endogenous g protein coupled receptors in cells |
-
2004
- 2004-11-15 CA CA002545553A patent/CA2545553A1/en not_active Abandoned
- 2004-11-15 US US10/579,399 patent/US20080009015A1/en not_active Abandoned
- 2004-11-15 WO PCT/US2004/038339 patent/WO2005051984A2/en active Application Filing
- 2004-11-15 JP JP2006541322A patent/JP2008503201A/ja active Pending
- 2004-11-15 EP EP04811155A patent/EP1694844A2/en not_active Withdrawn
- 2004-11-15 AU AU2004292536A patent/AU2004292536A1/en not_active Abandoned
- 2004-11-15 CN CNA2004800341570A patent/CN1882689A/zh active Pending
-
2006
- 2006-05-01 IL IL175375A patent/IL175375A0/en unknown
-
2008
- 2008-10-22 US US12/256,311 patent/US20090280487A1/en not_active Abandoned
-
2010
- 2010-08-20 US US12/860,621 patent/US20110177522A1/en not_active Abandoned
-
2011
- 2011-02-28 JP JP2011043290A patent/JP2011139709A/ja not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101960306A (zh) * | 2008-04-11 | 2011-01-26 | 花王株式会社 | 嗅觉灵敏度抑制剂的筛选方法 |
US9012153B2 (en) | 2008-04-11 | 2015-04-21 | Kao Corporation | Method for screening olfactory sensibility inhibitor |
CN103608674A (zh) * | 2011-04-14 | 2014-02-26 | 上海交通大学医学院 | 一种配位金属的气味化合物的探测方法 |
CN109071626A (zh) * | 2016-02-24 | 2018-12-21 | 阿罗姆斯公司 | 用于检测气味、香味和味道的生物传感器 |
Also Published As
Publication number | Publication date |
---|---|
EP1694844A2 (en) | 2006-08-30 |
CA2545553A1 (en) | 2005-06-09 |
WO2005051984A2 (en) | 2005-06-09 |
JP2011139709A (ja) | 2011-07-21 |
IL175375A0 (en) | 2006-09-05 |
WO2005051984A3 (en) | 2005-10-20 |
US20090280487A1 (en) | 2009-11-12 |
AU2004292536A1 (en) | 2005-06-09 |
US20080009015A1 (en) | 2008-01-10 |
US20110177522A1 (en) | 2011-07-21 |
JP2008503201A (ja) | 2008-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1882689A (zh) | 产生嗅觉gpcr的方法 | |
CN1192109C (zh) | 锚定于细胞膜的抗凝血融合蛋白 | |
CN1178952C (zh) | 编码与感觉转导有关的g-蛋白偶联受体的核酸 | |
CN1198836C (zh) | 编码与感觉转导有关的g-蛋白偶联受体的核酸 | |
CN1525981A (zh) | T1r味觉受体及其编码基因 | |
CN1191568A (zh) | 包含蜕皮激素受体的基因开关 | |
CN1284966A (zh) | 新型g蛋白偶联受体 | |
CN1215432A (zh) | 调节外源性基因在哺乳动物系统中表达的激素介导的方法及其相关产物 | |
CN1091469A (zh) | Ptp 1d:一种新蛋白质酪氨酸磷酸 | |
CN101065501A (zh) | 确定基因毒性的方法 | |
CN1141059A (zh) | P53-结合多肽和编码该多肽的多核苷酸 | |
CN1493597A (zh) | 分离树突状细胞膜蛋白基因 | |
CN1549858A (zh) | 内源和非内源型人g蛋白偶联受体 | |
CN1330663A (zh) | 低氧-诱导因子1αHIF-1α变体和鉴定HIF-1α调节剂的方法 | |
CN1788017A (zh) | 炎症状态下在血脑屏障中差异表达的核酸 | |
CN1296384C (zh) | 具有preptin功能的肽 | |
CN1615439A (zh) | 编码g蛋白偶联受体的基因及其使用方法 | |
CN1294143C (zh) | 能在体内或体外改变卵泡生长的卵母细胞因子的核苷酸序列和氨基酸序列 | |
CN1390256A (zh) | 新型蛋白质及其dna | |
CN1195374A (zh) | 整合素调节/信号传递的细胞质调节剂 | |
CN1597988A (zh) | 人sel-10多肽及编码其的多核苷酸 | |
CN1556814A (zh) | 含有非功能性Kvβ1.1亚基N末端的敲入转基因哺乳动物 | |
CN1684975A (zh) | 治疗缺血性心脏病及充血性心衰竭的人类g蛋白偶联受体及其调节物 | |
CN1795205A (zh) | Spex组合物和使用方法 | |
CN1310758A (zh) | 基因克隆的新方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |