CN101788835A - Band-gap reference source for realizing curvature correction through self-adaptive base current compensation - Google Patents
Band-gap reference source for realizing curvature correction through self-adaptive base current compensation Download PDFInfo
- Publication number
- CN101788835A CN101788835A CN 201010127309 CN201010127309A CN101788835A CN 101788835 A CN101788835 A CN 101788835A CN 201010127309 CN201010127309 CN 201010127309 CN 201010127309 A CN201010127309 A CN 201010127309A CN 101788835 A CN101788835 A CN 101788835A
- Authority
- CN
- China
- Prior art keywords
- triode
- drain
- transistor
- emitter
- pmos
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Control Of Electrical Variables (AREA)
- Amplifiers (AREA)
Abstract
带隙基准源被广泛的应用于各种模拟/数模混合集成电路中,基准电压源/电流源的温度稳定性决定了整体电路的性能。三极管的集电极电流密度相等(或成比例)是实现带隙基准的一个基本条件,但由于三极管流控器件的本质属性,发射极-基极电流的分流作用会影响集电极的电流密度,从而影响带隙基准的温度稳定性。针对这个问题,本发明公开了一种利用自适应基极电流补偿技术实现曲率校正的带隙基准源,通过电流补偿确保了三极管的集电极电流密度相等(或成比例)。本发明中的电路由带隙基准核心电路和两组自适应基极电流补偿电路组成。
Bandgap reference sources are widely used in various analog/digital-analog hybrid integrated circuits, and the temperature stability of the reference voltage source/current source determines the performance of the overall circuit. The equal (or proportional) collector current density of the triode is a basic condition for realizing the bandgap reference, but due to the essential properties of the triode flow control device, the shunting effect of the emitter-base current will affect the current density of the collector, thus Affects the temperature stability of the bandgap reference. Aiming at this problem, the present invention discloses a bandgap reference source that uses adaptive base current compensation technology to realize curvature correction, and ensures equal (or proportional) collector current densities of triodes through current compensation. The circuit in the invention is composed of a bandgap reference core circuit and two groups of self-adaptive base current compensation circuits.
Description
技术领域technical field
本发明属于集成电路设计领域,用于模拟/数模混合集成电路中的基准电压的生成。具体涉及一种在三极管的发射极加入补偿电流,从而精确的稳定通过三极管集电极的电流,提高带隙基准电路温度稳定性的技术。The invention belongs to the field of integrated circuit design and is used for generating reference voltages in analog/digital-analog hybrid integrated circuits. It specifically relates to a technique for adding compensation current to the emitter of the triode, thereby accurately stabilizing the current passing through the collector of the triode, and improving the temperature stability of the bandgap reference circuit.
背景技术Background technique
电流/电压基准是各种电路行为的基础,基准电路的稳定性,尤其是对温度的稳定性直接决定了整体电路的性能。不同的器件对温度呈现了不同的响应曲线,基于这个原理,利用不同器件相互补偿的方法可以实现与温度无关的基准源。The current/voltage reference is the basis of various circuit behaviors, and the stability of the reference circuit, especially the stability to temperature, directly determines the performance of the overall circuit. Different devices present different response curves to temperature. Based on this principle, a temperature-independent reference source can be realized by using different devices to compensate each other.
在众多构成基准源的方式里,带隙基准是一种较为常见的结构。在常见的CMOS/BiCMOS工艺中,PN结的结电势与温度成反比例关系[Equ.1],而工作于不同电流密度下的三极管(Bipolar Junction Transistor,BJT)的“发射极-基极”电压差ΔVBE则与温度呈现正比例关系[Equ.2],因此使用三极管的结电压VBE和结电压差ΔVBE互补,实现与温度无关的基准电压是一种行之有效的方法[Equ.3]。Among the many ways to form a reference source, the bandgap reference is a relatively common structure. In the common CMOS/BiCMOS process, the junction potential of the PN junction is inversely proportional to the temperature [Equ.1], and the "emitter-base" voltage of the triode (Bipolar Junction Transistor, BJT) working at different current densities The difference ΔV BE is proportional to the temperature [Equ.2], so using the junction voltage V BE of the triode and the junction voltage difference ΔV BE to complement each other is an effective method to achieve a temperature-independent reference voltage [Equ.3 ].
VREF=α1VBE+α2ΔVBE=α1VBE+α2(VTlnn) [Equ.3]V REF =α 1 V BE +α 2 ΔV BE =α 1 V BE +α 2 (V T lnn) [Equ.3]
图1是一种基于上述方法的基础形式的带隙基准结构,由于Q0管和Q1管具有成比例的发射极面积,且以等比例电流镜作为负载,因而具有成比例的集电极电流密度,使得通过电阻R1的电流是与温度成正比(Proportional to Absolute Temperature,PTAT)的电流,该电流经过Q2的“发射极-基极”电压VBE2的温度补偿,符合[Equ.3]的表达形式,所形成的VREF是与温度无关的基准电压。Figure 1 is a bandgap reference structure based on the basic form of the above method. Since the Q 0 tube and Q 1 tube have proportional emitter areas, and the equal-proportional current mirror is used as the load, they have proportional collector currents Density, so that the current through the resistor R1 is a current proportional to the temperature (Proportional to Absolute Temperature, PTAT), which is temperature-compensated by the "emitter-base" voltage V BE2 of Q2 , in accordance with [Equ.3 ] in the form of expression, the formed V REF is a temperature-independent reference voltage.
而事实上,在图1中的带隙基准的电路中,三极管Q0和Q1的集电极电流是不完全相等的,精确的分析可知[Equ.2]只能是近似成立,图2中给出了三极管的基极电流对发射极电流分流作用的示意,即流经三极管Q0和Q1的电流密度是不成比例的。不难看出,不论是对于发射极面积小的三极管Q0还是大面积的三极管Q1,由于“发射极-基极”电流的存在,[Equ.4]式精确成立。In fact, in the circuit of the bandgap reference in Figure 1, the collector currents of the transistors Q 0 and Q 1 are not completely equal. Accurate analysis shows that [Equ.2] can only be approximately established, and in Figure 2 A schematic diagram of the shunting effect of the base current of the triode on the emitter current is given, that is, the current density flowing through the triode Q 0 and Q 1 is not proportional. It is not difficult to see that, no matter for the triode Q 0 with a small emitter area or the transistor Q 1 with a large area, due to the existence of the "emitter-base" current, the formula [Equ.4] holds true exactly.
Ie=Ieb1+Ic1=Ieb2+Ic2 [Equ.4]I e =I eb1 +I c1 =I eb2 +I c2 [Equ.4]
在此基础之上,重新推导[Equ.2]式可以得到如下的过程:On this basis, the following process can be obtained by deriving [Equ.2] again:
从式[Equ.6]可以看出,由于三极管的“发射极-基极”电流存在对集电极电流的分流作用,并且由于Ieb1和Ieb2并不存在确定的比例关系,因此图1中三极管Q0和Q1的集电极电流并不相等,导致图1中的带隙基准电路不能满足[Equ.2]给出的关系式,从而从根本上破坏带隙基准成立的条件。反应到具体电路的特性,就表现为图1中带隙基准电路的温度稳定性较差。It can be seen from the formula [Equ.6] that since the "emitter-base" current of the triode has a shunting effect on the collector current, and because there is no definite proportional relationship between I eb1 and I eb2 , in Figure 1 The collector currents of transistors Q0 and Q1 are not equal, resulting in the bandgap reference circuit in Figure 1 not satisfying the relation given by [Equ.2], thus fundamentally destroying the conditions for the establishment of the bandgap reference. Reflecting the characteristics of the specific circuit, it is shown that the temperature stability of the bandgap reference circuit in Figure 1 is poor.
发明内容Contents of the invention
温度性能是带隙基准最重要的性能指标之一,如前文所述,由于三极管“发射极-基极”电流的存在,使得图1中基础结构的带隙基准无法提供稳定的温度无关的基准。Temperature performance is one of the most important performance indicators of the bandgap reference. As mentioned above, due to the existence of the "emitter-base" current of the triode, the bandgap reference of the basic structure in Figure 1 cannot provide a stable temperature-independent reference. .
事实上,导致电路温度性能较差的主要原因在于三极管流控器件的属性,“发射极-基极”的电流分流作用影响了三极管的集电极电流,从而在表达式[Equ.2]中引入了不确定项,这一点在图2给出的示意结构中得到表达。因此,一种有效的方法就是加入一种电流补偿措施,消除[Equ.6]中的干扰项,将[Equ.6]恢复为[Equ.2]的形式,从而确保[Equ.3]的温度稳定性。In fact, the main reason for the poor temperature performance of the circuit is the properties of the triode current control device. The "emitter-base" current shunt effect affects the collector current of the triode, so the expression [Equ.2] introduces Uncertain items are removed, which is expressed in the schematic structure shown in Figure 2. Therefore, an effective method is to add a current compensation measure to eliminate the interference term in [Equ.6], and restore [Equ.6] to the form of [Equ.2], thereby ensuring the [Equ.3] temperature stability.
基于这一思想,本发明基于电流补偿的方法提出了一种新型的高稳定带隙基准结构,主要的技术点包括下列两个方面:Based on this idea, the present invention proposes a novel high-stable bandgap reference structure based on the method of current compensation. The main technical points include the following two aspects:
1.利用电流补偿方法,补偿三极管基极电流的分流作用,稳定三极管集电极电流;1. Use the current compensation method to compensate the shunt effect of the base current of the triode and stabilize the collector current of the triode;
2.自适应的基极电流拾取,避免了固定电流补偿中补偿精度不高的固有弊端。2. Adaptive base current pickup avoids the inherent disadvantage of low compensation accuracy in fixed current compensation.
本发明公开的基准源基于这两点考虑,重点关注稳定三极管集电极电流的技术,如图3中的电路示意,在三极管的发射极分别引入大小等于各自基极电流Ieb1和Ieb2的补偿电流,图4的电路用于拾取三极管的“发射极-基极”电流。本发明的技术优势在于:The reference source disclosed in the present invention is based on these two considerations, and focuses on the technology of stabilizing the collector current of the triode. As shown in the circuit diagram in Figure 3, the emitters of the triode are respectively introduced with compensations equal to the respective base currents I eb1 and I eb2 Current, the circuit in Figure 4 is used to pick up the "emitter-base" current of the triode. The technical advantage of the present invention is:
1.三极管“发射极-基极”电流的拾取使用的是自适应的方法,采样精确,且不影响核心电路中三极管的工作状态;1. The "emitter-base" current of the triode is picked up using an adaptive method, which is accurate in sampling and does not affect the working state of the triode in the core circuit;
2.在负载电流镜和补偿电流的共同作用下,带隙基准核心电路中的三极管的工作电流严格相等,确保[Equ.3]的成立。2. Under the combined action of the load current mirror and the compensation current, the operating currents of the triodes in the core circuit of the bandgap reference are strictly equal to ensure the establishment of [Equ.3].
附图说明Description of drawings
图1基础的带隙基准电路结构;The basic bandgap reference circuit structure of Fig. 1;
图2三极管基极电流对发射极电流的分流作用示意图;Fig. 2 is a schematic diagram of the shunting effect of the triode base current on the emitter current;
图3使用电流补偿的三极管工作状态示意图;Figure 3 is a schematic diagram of the working state of the triode using current compensation;
图4本发明公开的自适应基极电流采样电路;Fig. 4 self-adaptive base current sampling circuit disclosed by the present invention;
图5本发明公开的自适应基极电流补偿曲率校正的带隙基准源的电路结构;Fig. 5 is the circuit structure of the bandgap reference source of the self-adaptive base current compensation curvature correction disclosed by the present invention;
图6使用本发明公开的自适应基极电流补偿曲率校正技术的带隙基准的实际输出效果;Fig. 6 uses the actual output effect of the bandgap reference using the adaptive base current compensation curvature correction technology disclosed in the present invention;
图7未使用本发明公开的自适应基极电流补偿曲率校正技术的带隙基准的实际输出效果。FIG. 7 does not use the actual output effect of the bandgap reference using the adaptive base current compensation curvature correction technology disclosed in the present invention.
具体实施方式Detailed ways
以下结合附图,详细说明本发明公开的自适应基极电流补偿曲率校正的带隙基准源的结构和工作过程。The structure and working process of the bandgap reference source for curvature correction of adaptive base current compensation disclosed in the present invention will be described in detail below in conjunction with the accompanying drawings.
本发明公开的自适应基极电流补偿曲率校正的带隙基准源电路由三个部分构成,如图5所示,分别为两组自适应基极电流补偿电路和带隙基准核心电路,图中未表示出启动电路。The bandgap reference source circuit of the adaptive base current compensation curvature correction disclosed by the present invention is composed of three parts, as shown in Figure 5, which are two sets of adaptive base current compensation circuits and the bandgap reference core circuit respectively, in the figure The starting circuit is not shown.
两组自适应基极电流补偿电路的结构基本相似,自适应基极电流补偿电路1由电流镜MP4/MP5/MP6、电流镜MN0/MN1/MN2/MN3、PMOS管MP3和三极管Q3组成,其中Q3具有与Q1相同的结构,MP3/MP4/MP5/MP6的源端接电源,MP5的栅漏短接并连接到MP5/MP6的栅端和MN1的漏端,MP3的漏极连接三极管Q3的发射极、MN1/MN3的栅极和MP5的漏极,三极管Q3的基极连接MN0/MN2的栅极和MN3的漏极,Q3的集电极接地,MP3的栅极连接运算放大器OP的输出,MN0的漏极连接MN1的源极,MN2的漏极连接MN3的源极,MP6的漏极连接三极管Q1的发射极,MN0/MN2的源极接地。The structures of the two groups of adaptive base current compensation circuits are basically similar. The adaptive base
自适应基极电流补偿电路2,由电流镜MP8/MP9/MP10/MP11、电流镜MN4/MN5/MN6/MN7、PMOS管MP7和三极管Q4组成,其中Q4具有与Q0/Q2相同的结构,MP7/MP8/MP9/MP10/MP11的源极接电源,MP8的栅漏短接并连接到MP9/MP10/MP11的栅端和MN5的漏端,MP7的漏端连接三极管Q4的发射极、MN5/MN7的栅极和MP9的漏极,MP7的栅极连接运算放大器OP的输出端,三极管Q4的基极连接MN4/MN6的栅极和MN7的漏极,Q4的集电极接地,MN4的漏极连接MN5的源极,MN6的漏极连接MN7的源极,MN4/MN6的源极接地,MP10的漏极连接三极管Q0的发射极,MP11的漏极连接三极管Q2的发射极。Adaptive base
带隙基准核心电路由三极管Q0/Q1/Q2、电流镜MP0/MP1/MP2、运算放大器OP和电阻R0/R1构成,其中三极管Q0/Q2的结构相同,且发射结面积与Q1的发射结面积呈比例关系,MP0/MP1/MP2的源端接电源,栅端连接运算放大器OP的输出,三极管Q0/Q1/Q2的基极和集电极均接地,MP0的漏极连接Q0的发射极和运算放大器OP的反相输入端,MP1的漏极连接电阻R0的一端和运算放大器OP的同相输入端,电阻R0的另一端连接到三极管Q1的发射极,MP2的漏极连接到电阻R1的一端,电阻R1的另一端连接到Q2的发射极,MP2的漏极作为基准电压的输出端。The core circuit of the bandgap reference is composed of triode Q 0 /Q 1 /Q 2 , current mirror MP 0 /MP 1 /MP 2 , operational amplifier OP and resistor R 0 /R 1 , in which the triode Q 0 /Q 2 has the same structure, And the emitter junction area is proportional to the emitter junction area of Q 1 , the source terminal of MP 0 /MP 1 /MP 2 is connected to the power supply, the gate terminal is connected to the output of the operational amplifier OP, and the base of the transistor Q 0 /Q 1 /Q 2 and the collector are grounded, the drain of MP 0 is connected to the emitter of Q 0 and the inverting input of the operational amplifier OP, the drain of MP 1 is connected to one end of the resistor R 0 and the non-inverting input of the operational amplifier OP, and the resistor R 0 The other end of the transistor is connected to the emitter of transistor Q 1 , the drain of MP 2 is connected to one end of resistor R 1 , the other end of resistor R 1 is connected to the emitter of Q 2 , and the drain of MP 2 is used as the output end of the reference voltage .
对于两组自适应基极电流补偿电路而言,工作过程基本相同,以自适应基极电流补偿电路2为例,由于MP7/MP0管具有相同的物理参数,且栅源连接方式相同,使得三极管Q4和Q0具有相同的直流负载。For the two sets of adaptive base current compensation circuits, the working process is basically the same. Taking the adaptive base
因此可知:Therefore it can be seen that:
Ieb4=Ieb0 [Equ.7]I eb4 =I eb0 [Equ.7]
从而可得:Thus available:
IMN7=IMN6=IMN5=IMN4=Ieb4 [Equ.8]I MN7 =I MN6 =I MN5 =I MN4 =I eb4 [Equ.8]
IMN5=IMP8=IMP9=IMP10=IMP11 [Equ.9]I MN5 =I MP8 =I MP9 =I MP10 =I MP11 [Equ.9]
从[Equ.7]、[Equ.8]和[Equ.9]的传递关系中不难看出,PMOS管MP10和MP11的漏极电流与三极管Q0的基极分流大小相同,即:It is not difficult to see from the transfer relationship of [Equ.7], [Equ.8] and [Equ.9] that the drain current of PMOS transistors MP 10 and MP 11 is the same as the base shunt of triode Q 0 , that is:
Ieb0=Ieb2=IMP10=IMP11 [Equ.10]I eb0 =I eb2 =I MP10 =I MP11 [Equ.10]
因此,将MP10的漏极电流注入Q0的发射极,可以有效的补偿Q0的基极分流Ieb0,通过对三极管应用基尔霍夫电流方程,可知[Equ.11]式成立,结合[Equ.10],使得[Equ.12]成立。Therefore, injecting the drain current of MP 10 into the emitter of Q 0 can effectively compensate the base shunt I eb0 of Q 0. By applying the Kirchhoff current equation to the triode, it can be seen that [Equ.11] is established, combined with [Equ.10], making [Equ.12] established.
Ie+IMP10=Ic0+Ieb0 [Equ.11]I e +I MP10 =I c0 +I eb0 [Equ.11]
Ic0=Ic2=Ie [Equ.12]I c0 =I c2 =I e [Equ.12]
同理,对于自适应基极电流补偿电路1而言,同样可以得到如下的表达式:Similarly, for the adaptive base
Ieb3=Ieb1=IMP6 [Equ.13]I eb3 =I eb1 =I MP6 [Equ.13]
Ic1=Ie [Equ.14]I c1 =I e [Equ.14]
建立在[Equ.12]和[Equ.14]的基础之上,带隙基准核心电路中的三极管均工作在完全相同的集电极电流下,可以严格的满足[Equ.3]式成立的条件,从而提高基准电压的温度稳定性。Based on the basis of [Equ.12] and [Equ.14], the triodes in the core circuit of the bandgap reference work at exactly the same collector current, which can strictly satisfy the conditions for the establishment of the formula [Equ.3] , thus improving the temperature stability of the reference voltage.
图6和图7是本发明公开的自适应基极电流补偿曲率校正的带隙基准电路的实际输出效果对比,其中图7为使用核心电路,未进行基极电流补偿的输出效果,在-40℃~125℃条件下,随着温度的变化,基准输出变化了约3.1mV,相当于温度稳定性指标15.4ppm/℃;图6为进行基极电流补偿后的基准输出效果,在同样的工作条件下,随着温度的变化,基准输出仅变化了约1.27mV,相当于温度稳定性指标提高到6.2ppm/℃,而功耗开销仅增加了约40μW。Fig. 6 and Fig. 7 are the comparison of the actual output effect of the bandgap reference circuit of the adaptive base current compensation curvature correction disclosed by the present invention, wherein Fig. 7 is the output effect of using the core circuit without base current compensation, at -40 Under the condition of ℃~125℃, as the temperature changes, the reference output changes by about 3.1mV, which is equivalent to the temperature stability index of 15.4ppm/℃; Figure 6 shows the reference output effect after base current compensation, in the same work Under normal conditions, as the temperature changes, the reference output only changes by about 1.27mV, which is equivalent to an increase in the temperature stability index to 6.2ppm/°C, while the power consumption only increases by about 40μW.
综上所述,鉴于“发射极-基极”电流的分流作用会严重的影响带隙基准的温度稳定性,本发明公开了一种电流补偿曲率校正技术,通过在三极管的发射极施加大小等于“发射极-基极”电流的补偿电流,结合负载电流镜的作用,精确的稳定通过三极管集电极的电流,从而有效的提高带隙基准电路的温度稳定性。In summary, in view of the fact that the shunting effect of the "emitter-base" current will seriously affect the temperature stability of the bandgap reference, the present invention discloses a current compensation curvature correction technology, by applying a magnitude equal to The compensation current of the "emitter-base" current, combined with the function of the load current mirror, accurately stabilizes the current passing through the collector of the triode, thereby effectively improving the temperature stability of the bandgap reference circuit.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101273099A CN101788835B (en) | 2010-03-19 | 2010-03-19 | Band-gap reference source for realizing curvature correction through self-adaptive base current compensation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010101273099A CN101788835B (en) | 2010-03-19 | 2010-03-19 | Band-gap reference source for realizing curvature correction through self-adaptive base current compensation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101788835A true CN101788835A (en) | 2010-07-28 |
CN101788835B CN101788835B (en) | 2011-12-21 |
Family
ID=42532074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010101273099A Expired - Fee Related CN101788835B (en) | 2010-03-19 | 2010-03-19 | Band-gap reference source for realizing curvature correction through self-adaptive base current compensation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101788835B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101976095A (en) * | 2010-11-19 | 2011-02-16 | 长沙景嘉微电子有限公司 | High-precision band-gap reference source circuit based on emitter current compensation |
CN103197716A (en) * | 2013-03-29 | 2013-07-10 | 东南大学 | Band-gap reference voltage circuit for reducing offset voltage influence |
CN104375553A (en) * | 2014-12-10 | 2015-02-25 | 中国电子科技集团公司第四十七研究所 | Bandgap reference circuit and base current compensation circuit |
CN105955392A (en) * | 2016-06-06 | 2016-09-21 | 电子科技大学 | Band-gap reference voltage source with base current compensation characteristic |
CN109343639A (en) * | 2018-11-01 | 2019-02-15 | 西安电子科技大学 | A low temperature drift bandgap reference voltage circuit, method and chip |
CN109471485A (en) * | 2017-09-08 | 2019-03-15 | 英飞凌科技股份有限公司 | Bandgap Curvature Correction |
CN110928353A (en) * | 2019-11-25 | 2020-03-27 | 上海申矽凌微电子科技有限公司 | PTAT current source circuit |
DE102021112735B3 (en) | 2021-05-17 | 2022-08-04 | Infineon Technologies Ag | BANDGAP REFERENCE CIRCUIT |
CN115268555A (en) * | 2022-07-27 | 2022-11-01 | 成都振芯科技股份有限公司 | Second-order temperature compensation band gap reference voltage circuit and differential circuit |
CN115454200A (en) * | 2022-09-27 | 2022-12-09 | 思瑞浦微电子科技(苏州)股份有限公司 | Voltage generation circuit, leakage current compensation method and chip |
EP4435556A1 (en) * | 2023-03-24 | 2024-09-25 | Samsung Electronics Co., Ltd. | Managing curvature compensation in bandgap reference voltage output in compensation circuit |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6677808B1 (en) * | 2002-08-16 | 2004-01-13 | National Semiconductor Corporation | CMOS adjustable bandgap reference with low power and low voltage performance |
CN1508643A (en) * | 2002-12-20 | 2004-06-30 | 上海贝岭股份有限公司 | Voltage source using second-order temperature compensating energy gap reference voltage and method thereof |
CN1952829A (en) * | 2006-11-03 | 2007-04-25 | 清华大学 | Bandgap reference source with multiple point curvature compensation |
US20090058392A1 (en) * | 2007-08-31 | 2009-03-05 | Oki Electric Industry Co., Ltd. | Reference voltage circuit |
-
2010
- 2010-03-19 CN CN2010101273099A patent/CN101788835B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6677808B1 (en) * | 2002-08-16 | 2004-01-13 | National Semiconductor Corporation | CMOS adjustable bandgap reference with low power and low voltage performance |
CN1508643A (en) * | 2002-12-20 | 2004-06-30 | 上海贝岭股份有限公司 | Voltage source using second-order temperature compensating energy gap reference voltage and method thereof |
CN1952829A (en) * | 2006-11-03 | 2007-04-25 | 清华大学 | Bandgap reference source with multiple point curvature compensation |
US20090058392A1 (en) * | 2007-08-31 | 2009-03-05 | Oki Electric Industry Co., Ltd. | Reference voltage circuit |
Non-Patent Citations (1)
Title |
---|
《重庆邮电大学学报(自然科学版)》 20071215 刘涛等 一种高阶曲率补偿的带隙电压基准 第19卷, 第06期 2 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101976095A (en) * | 2010-11-19 | 2011-02-16 | 长沙景嘉微电子有限公司 | High-precision band-gap reference source circuit based on emitter current compensation |
CN101976095B (en) * | 2010-11-19 | 2012-06-06 | 长沙景嘉微电子有限公司 | High-precision band-gap reference source circuit based on emitter current compensation |
CN103197716A (en) * | 2013-03-29 | 2013-07-10 | 东南大学 | Band-gap reference voltage circuit for reducing offset voltage influence |
CN104375553A (en) * | 2014-12-10 | 2015-02-25 | 中国电子科技集团公司第四十七研究所 | Bandgap reference circuit and base current compensation circuit |
CN105955392A (en) * | 2016-06-06 | 2016-09-21 | 电子科技大学 | Band-gap reference voltage source with base current compensation characteristic |
CN109471485A (en) * | 2017-09-08 | 2019-03-15 | 英飞凌科技股份有限公司 | Bandgap Curvature Correction |
CN109471485B (en) * | 2017-09-08 | 2022-04-15 | 英飞凌科技股份有限公司 | Bandgap curvature correction |
CN109343639A (en) * | 2018-11-01 | 2019-02-15 | 西安电子科技大学 | A low temperature drift bandgap reference voltage circuit, method and chip |
CN110928353A (en) * | 2019-11-25 | 2020-03-27 | 上海申矽凌微电子科技有限公司 | PTAT current source circuit |
DE102021112735B3 (en) | 2021-05-17 | 2022-08-04 | Infineon Technologies Ag | BANDGAP REFERENCE CIRCUIT |
CN115268555A (en) * | 2022-07-27 | 2022-11-01 | 成都振芯科技股份有限公司 | Second-order temperature compensation band gap reference voltage circuit and differential circuit |
CN115268555B (en) * | 2022-07-27 | 2024-05-28 | 成都振芯科技股份有限公司 | Second-order temperature compensation band gap reference voltage circuit and differential circuit |
CN115454200A (en) * | 2022-09-27 | 2022-12-09 | 思瑞浦微电子科技(苏州)股份有限公司 | Voltage generation circuit, leakage current compensation method and chip |
CN115454200B (en) * | 2022-09-27 | 2024-01-19 | 思瑞浦微电子科技(苏州)股份有限公司 | Voltage generating circuit, leakage current compensation method and chip |
EP4435556A1 (en) * | 2023-03-24 | 2024-09-25 | Samsung Electronics Co., Ltd. | Managing curvature compensation in bandgap reference voltage output in compensation circuit |
Also Published As
Publication number | Publication date |
---|---|
CN101788835B (en) | 2011-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101788835B (en) | Band-gap reference source for realizing curvature correction through self-adaptive base current compensation | |
CN107121997B (en) | A kind of high-precision band-gap reference source with self-adaption high-order compensation | |
CN106959723B (en) | A kind of bandgap voltage reference of wide input range high PSRR | |
CN106125811B (en) | A kind of ultra-low temperature drift high PSRR bandgap voltage reference | |
CN103869868B (en) | A Bandgap Reference Circuit with Temperature Compensation | |
CN105320205B (en) | A Bandgap Reference Source with Low Offset Voltage and High PSRR | |
CN104035471B (en) | A Current Mode Bandgap Voltage Reference with Subthreshold Current Compensation | |
CN108037791B (en) | A Bandgap Reference Circuit Without Operation Amplifier | |
CN104714588B (en) | A kind of based on the linearizing Low Drift Temperature bandgap voltage reference of VBE | |
CN103412605B (en) | Higher-order temperature compensation non-resistor band-gap reference voltage source | |
CN104199509B (en) | A kind of temperature-compensation circuit for band gap reference | |
CN103399611B (en) | High-precision resistance-free band-gap reference voltage source | |
CN105786077B (en) | A kind of band-gap reference circuit of no amplifier high-order temperature drift compensation | |
CN107390771B (en) | The Fiducial reference source circuit with gap of various temperature characteristic reference electric current is generated simultaneously | |
CN103389766B (en) | Sub-threshold non-bandgap reference voltage source | |
CN102981546B (en) | Index-compensation band-gap reference voltage source | |
CN106406410A (en) | Band-gap reference source circuit with self-biased structure | |
CN102323847A (en) | Temperature compensation based voltage reference circuit | |
CN104156023B (en) | A kind of High-precision band-gap reference circuit | |
CN105022441A (en) | Temperature-independent current reference | |
CN103399606A (en) | Low-voltage bandgap-free reference voltage source | |
CN103246311B (en) | Non-resistor band-gap reference voltage source with high-order curvature compensation | |
CN103926966B (en) | Low Voltage Bandgap Reference Circuit | |
CN205692085U (en) | A kind of band-gap reference circuit of the temperature drift compensation of high-order without amplifier | |
CN104216458B (en) | A kind of temperature curvature complimentary reference source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111221 Termination date: 20170319 |