CN103197716A - Band-gap reference voltage circuit for reducing offset voltage influence - Google Patents
Band-gap reference voltage circuit for reducing offset voltage influence Download PDFInfo
- Publication number
- CN103197716A CN103197716A CN201310110341XA CN201310110341A CN103197716A CN 103197716 A CN103197716 A CN 103197716A CN 201310110341X A CN201310110341X A CN 201310110341XA CN 201310110341 A CN201310110341 A CN 201310110341A CN 103197716 A CN103197716 A CN 103197716A
- Authority
- CN
- China
- Prior art keywords
- reference voltage
- voltage
- resistor
- pnp
- emitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 abstract description 2
- 150000004706 metal oxides Chemical class 0.000 abstract description 2
- 239000004065 semiconductor Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
Images
Landscapes
- Control Of Electrical Variables (AREA)
- Amplifiers (AREA)
Abstract
Description
技术领域technical field
本发明涉及带隙基准电路,尤其是一种降低失调电压影响的带隙基准电压电路,属于双极型晶体管(BJT)以及金属氧化物半导体(MOS)晶体管集成电路技术领域。The invention relates to a bandgap reference circuit, in particular to a bandgap reference voltage circuit that reduces the influence of offset voltage, and belongs to the technical field of bipolar transistor (BJT) and metal oxide semiconductor (MOS) transistor integrated circuits.
背景技术Background technique
现有技术中存在一种如图1所示的传统带隙基准电压电路,设有PNP三极管Q1、Q2和Q3、运算放大器OP、电阻R1和R2、PMOS管M1、M2和M3;PNP三极管Q1、Q2和Q3的基极和集电极均接地,PNP三极管Q1的发射极通过电阻R1连接放大器OP的同相输入端和PMOS管M1的漏极(节点A),PNP三极管Q2的发射极连接放大器OP的反相输入端和PMOS管M2的漏极(节点B),运算放大器OP的输出端与PMOS管M1、M2、M3的栅极连接,PMOS管M1、M2、M3的源极和衬底均连接电源VDD,PNP三极管Q3的发射极通过电阻R2连接PMOS管M3的漏极(节点C)并作为输出端输出基准电压Vref。In the prior art, there is a traditional bandgap reference voltage circuit as shown in Figure 1, which is provided with PNP transistors Q1, Q2 and Q3, operational amplifier OP, resistors R1 and R2, PMOS transistors M1, M2 and M3; PNP transistor Q1 The bases and collectors of Q2 and Q3 are grounded, the emitter of PNP transistor Q1 is connected to the non-inverting input terminal of amplifier OP and the drain of PMOS transistor M1 (node A) through resistor R1, and the emitter of PNP transistor Q2 is connected to amplifier OP The inverting input terminal of the operational amplifier OP is connected to the drain of the PMOS transistor M2 (node B), the output terminal of the operational amplifier OP is connected to the gates of the PMOS transistors M1, M2, and M3, and the sources and substrates of the PMOS transistors M1, M2, and M3 are connected Connected to the power supply VDD, the emitter of the PNP transistor Q3 is connected to the drain of the PMOS transistor M3 (node C) through the resistor R2 and outputs the reference voltage V ref as an output terminal.
图1工作原理如下:宽长比相同的PMOS管M1,M2和M3构成等比例电流镜,使流过三极管Q1,Q2和Q3的支路电流相等,即IQ1=IQ2=IQ3。三极管Q2的基极-发射极电压为:The working principle in Figure 1 is as follows: PMOS transistors M1, M2 and M3 with the same aspect ratio constitute an equal-proportion current mirror, so that the branch currents flowing through the transistors Q1, Q2 and Q3 are equal, that is, I Q1 =I Q2 =I Q3 . The base-emitter voltage of transistor Q2 is:
其中,VT为热电压,在常温下约为26mv,IS0为三极管Q2的饱和电流并且其值与三极管的发射极面积成正比。三极管的基极-发射极电压VBE为CTAT(负温度系数)电压,在常温下,当VBE≈750mV时,三极管Q1的基极-发射极电压为:Wherein, V T is the thermal voltage, which is about 26mv at normal temperature, and I S0 is the saturation current of the triode Q2 and its value is proportional to the emitter area of the triode. The base-emitter voltage V BE of the triode is the CTAT (negative temperature coefficient) voltage. At room temperature, when V BE ≈ 750mV, The base-emitter voltage of transistor Q1 is:
其中,N为三极管Q1和Q2发射极面积的比例,为了使三极管Q1和Q2的匹配性较好,N值通常取8。运算运算放大器OP工作于深度负反馈,使同向输入端和反向输入端节点A和B的电压相等,则电阻R1上的压降为:Wherein, N is the ratio of the emitter area of the triode Q1 and Q2, and the value of N is usually taken as 8 in order to make the matching of the triode Q1 and Q2 better. The operational amplifier OP works in deep negative feedback, so that the voltages of the nodes A and B of the same input terminal and the reverse input terminal are equal, and the voltage drop on the resistor R1 is:
又VT=kT/q,k是波尔兹曼常数,q是一个电子所带的电荷,VT的温度系数为:And V T =kT/q, k is Boltzmann's constant, q is the charge carried by an electron, and the temperature coefficient of V T is:
(公式4) (Formula 4)
其中,T0=300K,从上式可知热电压VT有正的温度系数,所以ΔVBE的温度系数也为正值,并且ΔVBE通过电阻R1得到一个PTAT(正温度系数)电流IQ1(电压转电流),由于IQ1=IQ3,显然IQ3也为PTAT电流,IQ3流过电阻R2产生一个PTAT电压(电流转电压),此电压与CTAT电压VBE3相加(电压求和)构成了输出基准电压Vref:Among them, T 0 =300K. It can be seen from the above formula that the thermal voltage V T has a positive temperature coefficient, so the temperature coefficient of ΔV BE is also positive, and ΔV BE obtains a PTAT (positive temperature coefficient) current I Q1 ( Voltage to current), since I Q1 = I Q3 , obviously I Q3 is also PTAT current, I Q3 flows through resistor R2 to generate a PTAT voltage (current to voltage), this voltage is added to CTAT voltage V BE3 (voltage summation) constitutes the output reference voltage V ref :
当VBE3≈750mV,N=8时,调节电阻R1,R2使得即可到一个近似与温度无关的基准电压,此时Vref≈1.2V。When V BE3 ≈750mV, N=8, adjust resistors R1 and R2 so that That is, a reference voltage that is approximately temperature-independent can be obtained, and V ref ≈1.2V at this time.
由于运算运算放大器同相端与反相端所在支路的不对称性以及有限的增益会使其受到输入失调的影响。当运算运算放大器存在失调电压Vos时,若Vb=Va-Vos,则考虑失调后的输出基准电压Vref,os为:Due to the asymmetry of the branch where the non-inverting terminal and the inverting terminal of the operational amplifier are located and the limited gain, it will be affected by the input offset. When there is an offset voltage V os in the operational amplifier, if V b =V a -V os , then the output reference voltage V ref,os after considering the offset is:
失调电压被放大了R2/R1倍,在基准电压中引入了误差,降低基准电压的精度。另外,失调电压Vos本身也会随温度变化,因此增大了基准电压的温漂。从上式可以看出,失调电压Vos的系数与ΔVBE的系数相同,为满足正、负温度系数相抵消,该系数是确定的。例如在公式5中,当VBE3≈750mV,取N=8,则失调电压Vos=±5mV将引起基准偏差ΔVref≈±41.5mV。可见,失调电压被放大了8.3倍,对基准精度影响较大。The offset voltage is amplified by R2/R1 times, which introduces errors in the reference voltage and reduces the accuracy of the reference voltage. In addition, the offset voltage V os itself will vary with temperature, thus increasing the temperature drift of the reference voltage. It can be seen from the above formula that the coefficient of the offset voltage V os is the same as that of ΔV BE , and this coefficient is determined in order to satisfy the offset of positive and negative temperature coefficients. For example, in formula 5, when V BE3 ≈750mV, take N=8, then An offset voltage V os =±5mV will cause a reference deviation ΔV ref ≈±41.5mV. It can be seen that the offset voltage is amplified by 8.3 times, which has a great influence on the reference accuracy.
在实际应用中,失调电压问题会更加凸显。因为不仅电路结构会引入失调,在工艺上引起失调的因素亦有很多,如电阻间的不匹配,晶体管的不匹配,运放输入级晶体管阈值电压的不匹配等等。In practical applications, the problem of offset voltage will be more prominent. Because not only the circuit structure will introduce offset, but also there are many factors that cause offset in the process, such as the mismatch between resistors, the mismatch of transistors, the mismatch of threshold voltage of transistors in the input stage of op amps, and so on.
为了解决这一问题,现有技术大都是从设计运算放运算放大器的角度通过各种方法减小失调电压Vos的值来减小失调电压对基准电压的影响。然而,如上所述,VOS是很难完全消除的。In order to solve this problem, most of the existing technologies reduce the value of the offset voltage V os by various methods from the perspective of designing an operational amplifier to reduce the influence of the offset voltage on the reference voltage. However, as mentioned above, V OS is difficult to completely eliminate.
发明内容Contents of the invention
针对上述失调电压对基准电压产生影响的问题,本发明提供一种降低失调电压影响的带隙基准电压电路,其发明点在于通过降低失调电压的系数,来减小失调电压在基准电压中所占的比重。Aiming at the above-mentioned problem that the offset voltage has an influence on the reference voltage, the present invention provides a bandgap reference voltage circuit that reduces the influence of the offset voltage. proportion.
为实现本发明目的,采取的技术方案如下:一种降低失调电压影响的带隙基准电压电路,基于传统的带隙基准电压电路结构,设有PNP三极管Q1、Q2和Q3、运算放大器OP、电阻R1和R2、PMOS管M1、M2和M3;PNP三极管Q1、Q2和Q3的基极和集电极均接地,PNP三极管Q1的发射极通过电阻R1连接放大器OP的同相输入端和PMOS管M1的漏极,PNP三极管Q2的发射极连接放大器OP的反相输入端和PMOS管M2的漏极,运算放大器OP的输出端与PMOS管M1、M2、M3的栅极连接,PMOS管M1、M2、M3的源极和衬底均连接电源VDD,PNP三极管Q3的发射极通过电阻R2连接PMOS管M3的漏极并作为输出端输出基准电压Vref;其特征在于:在PNP三极管Q1及Q2的发射极与基极之间分别增设电阻R3及R5,在PNP三极管Q1及Q2的基极与地之间分别增设电阻R4及R6。For realizing the object of the present invention, the technical scheme that takes is as follows: a kind of bandgap reference voltage circuit that reduces offset voltage influence, based on traditional bandgap reference voltage circuit structure, is provided with PNP triode Q1, Q2 and Q3, operational amplifier OP, resistor R1 and R2, PMOS transistors M1, M2 and M3; the bases and collectors of PNP transistors Q1, Q2 and Q3 are grounded, and the emitter of PNP transistor Q1 is connected to the non-inverting input terminal of the amplifier OP and the drain of PMOS transistor M1 through resistor R1 The emitter of the PNP transistor Q2 is connected to the inverting input of the amplifier OP and the drain of the PMOS transistor M2, the output of the operational amplifier OP is connected to the gates of the PMOS transistors M1, M2, M3, and the PMOS transistors M1, M2, M3 Both the source and the substrate of the PNP transistor Q3 are connected to the power supply VDD, and the emitter of the PNP transistor Q3 is connected to the drain of the PMOS transistor M3 through the resistor R2 and used as the output terminal to output the reference voltage V ref ; Resistors R3 and R5 are respectively added between the ground and the base, and resistors R4 and R6 are respectively added between the bases of the PNP transistors Q1 and Q2 and the ground.
所述电阻R3=R5,R4=R6,R3<R4。The resistance R3=R5, R4=R6, R3<R4.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
本发明提供的带隙基准电压电路结构不是从设计运算放大器的角度减小失调电压,而是从更本质的带隙基准结构入手,通过引入电阻分压网络来实现三极管的基极-发射极电压倍增,从结构上减小Vos的系数,从而减小运放失调电压对基准电压的影响,具有更普遍的意义。The bandgap reference voltage circuit structure provided by the present invention does not reduce the offset voltage from the perspective of designing an operational amplifier, but starts with a more essential bandgap reference structure, and realizes the base-emitter voltage of the triode by introducing a resistor divider network Doubling, reducing the coefficient of V os structurally, thereby reducing the influence of the offset voltage of the operational amplifier on the reference voltage, has a more general significance.
附图说明Description of drawings
图1为现有技术中的一种带隙基准电压电路;Fig. 1 is a kind of bandgap reference voltage circuit in the prior art;
图2为本发明降低失调电压影响的带隙基准电压电路;Fig. 2 is the bandgap reference voltage circuit of the present invention that reduces the influence of offset voltage;
图3为图2的另一种实施例。Fig. 3 is another embodiment of Fig. 2 .
具体实施方式Detailed ways
以下结合附图对本发明的原理和特征进行描述,所举的实例只用于解释本发明,并非用于限定本发明的范围。The principles and features of the present invention will be described below in conjunction with the accompanying drawings, and the examples given are only used to explain the present invention, and are not intended to limit the scope of the present invention.
参看图2,本发明降低失调电压影响的带隙基准电压电路包括PNP三极管Q1、Q2和Q3,PMOS管M1、M2和M3,运算放大器OP,电阻R1、R2、R3、R4、R5、R6;电阻R4跨接在PNP三极管Q1的基极与地之间,电阻R3跨接在PNP三极管Q1的基极与发射极之间,电阻R6跨接在PNP三极管Q2的基极与地之间,电阻R5跨接在PNP三极管Q2的基极与发射极之间,PNP三极管Q1、Q2的集电极接地,PNP三极管Q3的基极和集电极接地,PNP三极管Q1的发射极通过电阻R1与运算运算放大器OP的同相输入端及PMOS管M1的漏极相连并记为节点A,PNP三极管Q2的发射极与运算运算放大器OP的反相输入端及PMOS管M2的漏极相连并记为节点B,运算运算放大器OP的输出端与PMOS管M1、M2和M3的栅极连接,PNP三极管Q3的发射极通过电阻R2与PMOS管M3的漏极相连并记为节点C,PMOS管M1、M2和M3的源极和衬底接电源电压VDD,节点C输出基准电压Vref。Referring to Fig. 2, the bandgap reference voltage circuit of the present invention that reduces the influence of the offset voltage includes PNP transistors Q1, Q2 and Q3, PMOS transistors M1, M2 and M3, operational amplifier OP, resistors R1 , R2 , R3 , R4 , R 5 , R 6 ; Resistor R4 is connected across the base of PNP transistor Q1 and ground, resistor R3 is connected between the base and emitter of PNP transistor Q1, and resistor R6 is connected across the base of PNP transistor Q2 Between the ground and the ground, the resistor R5 is connected between the base and the emitter of the PNP transistor Q2, the collectors of the PNP transistors Q1 and Q2 are grounded, the base and collector of the PNP transistor Q3 are grounded, and the emitter of the PNP transistor Q1 passes through Resistor R1 is connected to the non-inverting input terminal of the operational amplifier OP and the drain of the PMOS transistor M1 and is marked as node A, and the emitter of the PNP transistor Q2 is connected to the inverting input terminal of the operational amplifier OP and the drain of the PMOS transistor M2 And marked as node B, the output terminal of the operational amplifier OP is connected to the gates of PMOS transistors M1, M2 and M3, the emitter of PNP transistor Q3 is connected to the drain of PMOS transistor M3 through resistor R2 and marked as node C, The sources and substrates of the PMOS transistors M1, M2 and M3 are connected to the power supply voltage VDD, and the node C outputs the reference voltage V ref .
本发明电路与图1中传统结构相比,在PNP三极管Q1的基极与地之间和基极与发射极之间分别增设电阻R4、R3;在PNP三极管Q2的基极与地之间和基极与发射极之间分别增设电阻R6、R5,R3=R5,R4=R6,R3<R4。Compared with the conventional structure in Fig. 1, the circuit of the present invention adds resistors R4 and R3 respectively between the base and the ground of the PNP transistor Q1 and between the base and the emitter; between the base and the ground of the PNP transistor Q2 and Resistors R6 and R5 are respectively added between the base and the emitter, R3=R5, R4=R6, R3<R4.
本发明电路的工作原理为:The operating principle of the circuit of the present invention is:
假设本发明电路图2中PNP三极管Q1、Q2和Q3的发射极面积分别与传统结构图1中PNP三极管Q1、Q2和Q3的发射极面积相等;本发明电路图2流过各PNP三极管的电流IQ1、IQ2、IQ3也均与传统结构图1各PNP三极管的电流IQ1、IQ2、IQ3分别相等,则本发明电路图2中各PNP三极管的基极-发射极电压VBE1也分别相等。那么由电阻分压原理,本发明电路图2中Q1的发射极电压为为传统带隙基准电路中的倍,Q2的发射极电压为为传统带隙基准电路中的倍。运算放大器OP工作在深度负反馈使得节点A和节点B的电压相等,即Assuming that the emitter areas of PNP transistors Q1, Q2 and Q3 in circuit diagram 2 of the present invention are equal to the emitter areas of PNP transistors Q1, Q2 and Q3 in traditional structure Fig. 1 respectively; Circuit diagram 2 of the present invention flows through the current I Q1 of each PNP transistors , I Q2 , I Q3 are also equal to the current I Q1 , I Q2 , I Q3 of each PNP transistor in the traditional structure Fig. 1, then the base-emitter voltage V BE1 of each PNP transistor in the circuit Fig. 2 of the present invention is also equal respectively . Then by the principle of resistance voltage division, the emitter voltage of Q1 in the circuit diagram 2 of the present invention is for traditional bandgap reference circuits times, the emitter voltage of Q2 is for traditional bandgap reference circuits times. The operational amplifier OP works in deep negative feedback so that the voltages of nodes A and B are equal, that is
VA=VB (公式7)V A =V B (Equation 7)
由于电流镜管M2和M1具有相同的宽长比,且为电流镜连接,因此I1=I2,为了保证IQ1=IQ2,要求流过两个电阻网络的电流相等,这里取 则运算放大器OP同相端和反相端所在的支路电流为:Since the current mirror tubes M2 and M1 have the same width-to-length ratio and are connected by a current mirror, so I 1 =I 2 , in order to ensure that I Q1 =I Q2 , the currents flowing through the two resistor networks are required to be equal, which is taken here Then the branch current of the non-inverting terminal and the inverting terminal of the operational amplifier OP is:
VBE1和VBE2是PNP三极管Q1和Q2的基极-发射极电压,N是PNP三极管Q1和Q2的发射极面积之比,在电阻R1上完成电压-电流转换。I1正比于热电压VT,即I1是与绝对温度成正比的电流(PTAT电流)。由于电流镜管M3和M1、M2具有相同的宽长比,且为电流镜连接,因此V BE1 and V BE2 are the base-emitter voltages of PNP transistors Q1 and Q2, N is the ratio of the emitter areas of PNP transistors Q1 and Q2, The voltage-to-current conversion is done across resistor R1. I 1 is proportional to the thermal voltage V T , i.e. I 1 is a current proportional to absolute temperature (PTAT current). Since the current mirror tube M3 has the same width-to-length ratio as M1 and M2, and is connected by a current mirror, therefore
I3=I1=I2 (公式9)I 3 =I 1 =I 2 (Equation 9)
I3流经电阻R2完成电流-电压转换,得到与绝对温度成正比的电压(PTAT电压):I 3 flows through the resistor R 2 to complete the current-voltage conversion, and obtain a voltage proportional to the absolute temperature (PTAT voltage):
将此PTAT电压R2I3与CTAT电压VBE3相加,得到输出基准电压为:Adding this PTAT voltage R 2 I 3 to the CTAT voltage V BE3 gives the output reference voltage as:
当VBE3≈750mV,取N=8,令时即可到一个近似与温度无关的基准电压,此时Vref≈1.2V。When V BE3 ≈750mV, take N=8, let A reference voltage that is approximately temperature-independent can be obtained when V ref ≈ 1.2V.
当考虑运算放大器存在失调电压Vos时,输出基准电压Vref,os为:When considering the offset voltage V os of the operational amplifier, the output reference voltage V ref,os is:
值得注意的是,与传统带隙电路中的公式6相比,本结构中失调电压Vos的系数只与ΔVBE的部分系数相关,可以通过调整电阻R1和R2的比值,减小失调电压的影响,当R2/R1<1时,失调电压被衰减,而不是像传统结构中被放大。当取VBE3≈750mV,取N=8,R4=19R3时,则运放失调电压Vos=±5mV时将引起基准偏差ΔVref≈±2.075mV。即在本发明中,失调电压不但没有被放大,反而被衰减了,因此本发明可以显著地降低失调电压对对基准电压的影响。在精确度要求较高的场合,将的值设为几十甚至上百倍可以使失调电压的影响降至极低。It is worth noting that, compared with formula 6 in the traditional bandgap circuit, the coefficient of the offset voltage V os in this structure is only related to the partial coefficient of ΔV BE , and the ratio of the resistors R1 and R2 can be adjusted to reduce the coefficient of the offset voltage Influence, when R2/R1<1, the offset voltage is attenuated instead of being amplified like in the traditional structure. When V BE3 ≈750mV, N=8, R 4 =19R 3 , then The reference deviation ΔV ref ≈±2.075mV will be caused when the operational amplifier offset voltage V os =±5mV. That is, in the present invention, the offset voltage is not amplified but attenuated, so the present invention can significantly reduce the impact of the offset voltage on the reference voltage. Where higher accuracy is required, the The value of is set to tens or even hundreds of times to make the influence of the offset voltage extremely low.
图3为本发明电路的另一种实施例。将图2中的PNP三极管换成NPN三极管。Fig. 3 is another embodiment of the circuit of the present invention. Replace the PNP transistor in Figure 2 with an NPN transistor.
分析同图2,得到输出基准电压为:The analysis is the same as in Figure 2, and the output reference voltage is obtained as:
当考虑运算放大器存在失调电压Vos时,输出基准电压Vref,os为When considering the offset voltage V os of the operational amplifier, the output reference voltage V ref,os is
与图2对比,可以发现,本实施例中采用NPN三极管,同样可以实现降低失调电压对基准电压影响的效果。Compared with FIG. 2 , it can be found that the NPN transistor used in this embodiment can also achieve the effect of reducing the influence of the offset voltage on the reference voltage.
以上所述仅为本发明的优选实例而已,并不限于本发明,对于本领域的技术人员来说,本发明可有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred examples of the present invention, and are not limited to the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310110341XA CN103197716A (en) | 2013-03-29 | 2013-03-29 | Band-gap reference voltage circuit for reducing offset voltage influence |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310110341XA CN103197716A (en) | 2013-03-29 | 2013-03-29 | Band-gap reference voltage circuit for reducing offset voltage influence |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103197716A true CN103197716A (en) | 2013-07-10 |
Family
ID=48720378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310110341XA Pending CN103197716A (en) | 2013-03-29 | 2013-03-29 | Band-gap reference voltage circuit for reducing offset voltage influence |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103197716A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103441741A (en) * | 2013-08-30 | 2013-12-11 | 江苏物联网研究发展中心 | Operational amplifying circuit structure reducing offset voltage based on band-gap reference |
CN103645769A (en) * | 2013-12-10 | 2014-03-19 | 电子科技大学 | low-voltage band-gap reference source circuit |
CN103941789A (en) * | 2014-01-20 | 2014-07-23 | 威盛电子股份有限公司 | Low Offset Bandgap Circuit and Corrector |
CN104035471A (en) * | 2014-06-27 | 2014-09-10 | 东南大学 | Current mode bandgap reference voltage source with subthreshold current compensation function |
CN104238614A (en) * | 2014-09-03 | 2014-12-24 | 李倩 | Reference voltage circuit |
CN104503528A (en) * | 2014-12-24 | 2015-04-08 | 电子科技大学 | Low-noise band-gap reference circuit reducing detuning influence |
CN104699164A (en) * | 2013-12-10 | 2015-06-10 | 展讯通信(上海)有限公司 | Band-gap reference circuit |
CN107209528A (en) * | 2015-03-20 | 2017-09-26 | 德州仪器公司 | Band gap voltage is produced |
CN108733114A (en) * | 2017-04-24 | 2018-11-02 | 中芯国际集成电路制造(上海)有限公司 | The complex function circuit and electronic system of band-gap reference and electrification reset |
CN109471486A (en) * | 2019-01-14 | 2019-03-15 | 电子科技大学 | A low-noise bandgap reference circuit with reduced offset effects |
CN115328258A (en) * | 2022-09-22 | 2022-11-11 | 武汉泽声微电子有限公司 | Band gap reference circuit |
WO2023124636A1 (en) * | 2021-12-28 | 2023-07-06 | 深圳飞骧科技股份有限公司 | Low-mismatch operational amplifier, bandgap reference circuit, and chip |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5229711A (en) * | 1991-08-30 | 1993-07-20 | Sharp Kabushiki Kaisha | Reference voltage generating circuit |
CN101226413A (en) * | 2008-01-22 | 2008-07-23 | 无锡硅动力微电子股份有限公司 | Reference circuit for restraining misadjusted CMOS energy gap |
CN101226414A (en) * | 2008-01-30 | 2008-07-23 | 北京中星微电子有限公司 | Method for dynamic compensation of reference voltage and band-gap reference voltage source |
CN101788835A (en) * | 2010-03-19 | 2010-07-28 | 中国人民解放军国防科学技术大学 | Band-gap reference source for realizing curvature correction through self-adaptive base current compensation |
CN101807088A (en) * | 2009-02-18 | 2010-08-18 | 台湾积体电路制造股份有限公司 | Bandgap Reference Circuit with Output Independent of Offset Voltage |
JP2011081517A (en) * | 2009-10-05 | 2011-04-21 | Toppan Printing Co Ltd | Bandgap reference circuit, ad converter including the same, and adjustment method for the same |
JP2011186744A (en) * | 2010-03-08 | 2011-09-22 | Fujitsu Semiconductor Ltd | Band gap circuit, low voltage detection circuit and regulator circuit |
CN102393785A (en) * | 2011-11-28 | 2012-03-28 | 杭州矽力杰半导体技术有限公司 | Low-offset band-gap reference voltage source |
-
2013
- 2013-03-29 CN CN201310110341XA patent/CN103197716A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5229711A (en) * | 1991-08-30 | 1993-07-20 | Sharp Kabushiki Kaisha | Reference voltage generating circuit |
CN101226413A (en) * | 2008-01-22 | 2008-07-23 | 无锡硅动力微电子股份有限公司 | Reference circuit for restraining misadjusted CMOS energy gap |
CN101226414A (en) * | 2008-01-30 | 2008-07-23 | 北京中星微电子有限公司 | Method for dynamic compensation of reference voltage and band-gap reference voltage source |
CN101807088A (en) * | 2009-02-18 | 2010-08-18 | 台湾积体电路制造股份有限公司 | Bandgap Reference Circuit with Output Independent of Offset Voltage |
JP2011081517A (en) * | 2009-10-05 | 2011-04-21 | Toppan Printing Co Ltd | Bandgap reference circuit, ad converter including the same, and adjustment method for the same |
JP2011186744A (en) * | 2010-03-08 | 2011-09-22 | Fujitsu Semiconductor Ltd | Band gap circuit, low voltage detection circuit and regulator circuit |
CN101788835A (en) * | 2010-03-19 | 2010-07-28 | 中国人民解放军国防科学技术大学 | Band-gap reference source for realizing curvature correction through self-adaptive base current compensation |
CN102393785A (en) * | 2011-11-28 | 2012-03-28 | 杭州矽力杰半导体技术有限公司 | Low-offset band-gap reference voltage source |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103441741A (en) * | 2013-08-30 | 2013-12-11 | 江苏物联网研究发展中心 | Operational amplifying circuit structure reducing offset voltage based on band-gap reference |
CN103441741B (en) * | 2013-08-30 | 2016-05-04 | 江苏物联网研究发展中心 | Based on the discharge circuit structure that reduces offset voltage of band-gap reference |
CN103645769A (en) * | 2013-12-10 | 2014-03-19 | 电子科技大学 | low-voltage band-gap reference source circuit |
CN104699164B (en) * | 2013-12-10 | 2016-08-17 | 展讯通信(上海)有限公司 | Band-gap reference circuit |
CN104699164A (en) * | 2013-12-10 | 2015-06-10 | 展讯通信(上海)有限公司 | Band-gap reference circuit |
CN103941789B (en) * | 2014-01-20 | 2016-06-08 | 威盛电子股份有限公司 | Low offset bandgap circuit and corrector |
CN103941789A (en) * | 2014-01-20 | 2014-07-23 | 威盛电子股份有限公司 | Low Offset Bandgap Circuit and Corrector |
US9246479B2 (en) | 2014-01-20 | 2016-01-26 | Via Technologies, Inc. | Low-offset bandgap circuit and offset-cancelling circuit therein |
CN104035471A (en) * | 2014-06-27 | 2014-09-10 | 东南大学 | Current mode bandgap reference voltage source with subthreshold current compensation function |
CN104238614A (en) * | 2014-09-03 | 2014-12-24 | 李倩 | Reference voltage circuit |
CN104503528B (en) * | 2014-12-24 | 2016-03-30 | 电子科技大学 | A Low Noise Bandgap Reference Circuit with Reduced Offset Effect |
CN104503528A (en) * | 2014-12-24 | 2015-04-08 | 电子科技大学 | Low-noise band-gap reference circuit reducing detuning influence |
CN107209528A (en) * | 2015-03-20 | 2017-09-26 | 德州仪器公司 | Band gap voltage is produced |
CN107209528B (en) * | 2015-03-20 | 2019-05-07 | 德州仪器公司 | Band gap voltage generates |
CN108733114A (en) * | 2017-04-24 | 2018-11-02 | 中芯国际集成电路制造(上海)有限公司 | The complex function circuit and electronic system of band-gap reference and electrification reset |
CN109471486A (en) * | 2019-01-14 | 2019-03-15 | 电子科技大学 | A low-noise bandgap reference circuit with reduced offset effects |
WO2023124636A1 (en) * | 2021-12-28 | 2023-07-06 | 深圳飞骧科技股份有限公司 | Low-mismatch operational amplifier, bandgap reference circuit, and chip |
CN115328258A (en) * | 2022-09-22 | 2022-11-11 | 武汉泽声微电子有限公司 | Band gap reference circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103197716A (en) | Band-gap reference voltage circuit for reducing offset voltage influence | |
CN108052154B (en) | High-order low-temperature drift band gap reference circuit without operational amplifier | |
CN102193574B (en) | Band-gap reference voltage source with high-order curvature compensation | |
CN104503528B (en) | A Low Noise Bandgap Reference Circuit with Reduced Offset Effect | |
US10671109B2 (en) | Scalable low output impedance bandgap reference with current drive capability and high-order temperature curvature compensation | |
JP4817825B2 (en) | Reference voltage generator | |
CN102622031B (en) | Low-voltage high-precision band-gap reference voltage source | |
US8169256B2 (en) | Bandgap reference circuit with an output insensitive to offset voltage | |
CN106959723A (en) | A kind of bandgap voltage reference of wide input range high PSRR | |
CN102323842A (en) | A Bandgap Voltage Reference Source with High-order Temperature Compensation | |
CN205485709U (en) | Need not operational amplifier's band gap reference circuit | |
CN104111688B (en) | A kind of BiCMOS with temperature-monitoring function is without amplifier band gap voltage reference source | |
CN105974996B (en) | Reference voltage source | |
CN207882791U (en) | A kind of no amplifier high-order Low Drift Temperature band-gap reference circuit | |
CN103399612B (en) | Resistance-less bandgap reference source | |
CN108052151B (en) | Band-gap reference voltage source of no-clamping operational amplifier | |
CN107168442A (en) | Band gap reference voltage source circuit | |
CN102809979B (en) | Third-order compensation band-gap reference voltage source | |
CN104977968B (en) | Band-gap reference circuit with high-order temperature compensation function | |
CN101320279B (en) | current generator | |
CN111061329A (en) | A Bandgap Reference Circuit with High Loop Gain and Double Loop Negative Feedback | |
CN112260655B (en) | Asymmetric triode input folding operational amplifier and bandgap reference circuit | |
CN202075651U (en) | High-order curvature compensation band-gap resistance voltage source | |
CN107728690B (en) | Bandgap Reference Circuit | |
CN112306142A (en) | Negative voltage reference circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20130710 |