[go: up one dir, main page]

CN101630946A - Film bulk acoustic resonator (FBAR) and preparation method thereof - Google Patents

Film bulk acoustic resonator (FBAR) and preparation method thereof Download PDF

Info

Publication number
CN101630946A
CN101630946A CN200910101967A CN200910101967A CN101630946A CN 101630946 A CN101630946 A CN 101630946A CN 200910101967 A CN200910101967 A CN 200910101967A CN 200910101967 A CN200910101967 A CN 200910101967A CN 101630946 A CN101630946 A CN 101630946A
Authority
CN
China
Prior art keywords
fbar
substrate
passivation layer
integrated circuit
film bulk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910101967A
Other languages
Chinese (zh)
Inventor
董树荣
任天令
杨轶
赵士恒
彭平刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Zhejiang University ZJU
Original Assignee
Tsinghua University
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Zhejiang University ZJU filed Critical Tsinghua University
Priority to CN200910101967A priority Critical patent/CN101630946A/en
Publication of CN101630946A publication Critical patent/CN101630946A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明公开了一种薄膜体声波谐振器及其制备方法,薄膜体声波谐振器由集成为一体的基片、声波反射层和三明治压电堆三部分组成,所述的基片由可进行FBAR信号处理的集成电路芯片以及沉积在集成电路芯片上且表面经过抛光的钝化层构成,所述的声波反射层和三明治压电堆位于基片的钝化层表面。本发明薄膜体声波谐振器不另外占用硅片面积,可大大减小芯片面积和成本,且结构简单可靠,便于传感,FBAR与处理电路通过互连通孔连接,可减小射频信号的反射,可用于多种射频系统及微小质量传感系统的单芯片集成设计。The invention discloses a thin-film bulk acoustic resonator and a preparation method thereof. The thin-film bulk acoustic resonator is composed of an integrated substrate, an acoustic wave reflection layer and a sandwich piezoelectric stack. The substrate is composed of an FBAR The integrated circuit chip for signal processing and the passivation layer deposited on the integrated circuit chip and whose surface is polished, the acoustic wave reflection layer and the sandwich piezoelectric stack are located on the passivation layer surface of the substrate. The thin film bulk acoustic resonator of the present invention does not occupy additional silicon chip area, can greatly reduce the chip area and cost, and has a simple and reliable structure, which is convenient for sensing, and the FBAR and the processing circuit are connected through interconnection holes, which can reduce the reflection of radio frequency signals , can be used in the single-chip integrated design of various radio frequency systems and micro mass sensing systems.

Description

一种薄膜体声波谐振器及其制备方法 A thin film bulk acoustic resonator and its preparation method

技术领域 technical field

本发明涉及微电子技术领域,尤其涉及一种薄膜体声波谐振器FBAR及其制造方法。The invention relates to the technical field of microelectronics, in particular to a film bulk acoustic resonator FBAR and a manufacturing method thereof.

背景技术 Background technique

无线通信正朝着高通信频率、高传输速率、高密集复用和高集成化方向发展。目前半导体工艺已经完全可以将有源器件集成到一个芯片,但是无源的频率器件还不能集成,这严重制约了RFIC的发展。无源器件主要是多工器、滤波器、谐振器以及匹配LC网络,由谐振器可以构成多工器、滤波器、振荡器等,一个无线收发机需要多个谐振器来构成多工器、VCO和RF滤波器。因此,基本单元谐振器的集成化是问题的关键。目前无线通信要求在很窄的频段内实现更高容量的数据传输,比如码分多址(CDMA)频带的双工器要求非常陡峭的矩形系数和隔离度,又如新一代多通道输入输出(MIMO)要在很窄的通道实现多I/O通信,需要滤波特性优良的多工滤波器,又如低噪声低功耗的VCO需要一个高Q的谐振器;这就需要一种Q值高、温度系数低、损耗低的谐振器,来实现这些指标苛刻的滤波器、双工器和振荡器。总之寻找一种可以集成的高Q值的谐振器成为了RFIC集成技术的关键,也是各大跨国公司争相研究的热点。Wireless communication is developing towards high communication frequency, high transmission rate, high-intensity multiplexing and high integration. At present, semiconductor technology can fully integrate active devices into a chip, but passive frequency devices cannot be integrated, which seriously restricts the development of RFIC. Passive components are mainly multiplexers, filters, resonators and matching LC networks. Resonators can form multiplexers, filters, oscillators, etc. A wireless transceiver requires multiple resonators to form multiplexers, VCO and RF filter. Therefore, the integration of the basic unit resonator is the key to the problem. At present, wireless communication requires higher-capacity data transmission in a narrow frequency band. For example, the duplexer in the code division multiple access (CDMA) frequency band requires a very steep square coefficient and isolation, and a new generation of multi-channel input and output ( MIMO) To achieve multi-I/O communication in a very narrow channel, a multiplex filter with excellent filtering characteristics is required, and a VCO with low noise and low power consumption requires a high-Q resonator; this requires a high-Q value , low temperature coefficient, and low loss resonators to realize these demanding filters, duplexers, and oscillators. In short, finding a high-Q resonator that can be integrated has become the key to RFIC integration technology, and it is also a hot research topic for major multinational companies.

目前射频滤波器主要是不能集成的介质滤波器和声表面波(SAW)滤波器。前者性能虽好但是体积太大,后者功率容量和工作频率低、插损和温度系数大、Q值低,难以满足射频系统所需要的选频特性、集成化和低功耗的综合性能。微机电系统(MEMS)技术发展,特别是薄膜体声波谐振器(FBAR)的出现给单芯片集成高性能的RFIC带来了曙光。FBAR是一种体声波(BAW)器件,结构非常简单,通常由制作在硅衬底上的三明治压电堆构成,其中三明治压电堆由下电极、压电薄膜和上电极构成,利用声纵波在下电极、压电薄膜、上电极的三明治结构中反射形成驻波谐振。At present, radio frequency filters are mainly dielectric filters and surface acoustic wave (SAW) filters that cannot be integrated. Although the former has good performance, it is too bulky. The latter has low power capacity and operating frequency, large insertion loss and temperature coefficient, and low Q value. It is difficult to meet the comprehensive performance of frequency selection characteristics, integration and low power consumption required by RF systems. Micro-Electro-Mechanical Systems (MEMS) technology development, especially the appearance of Film Bulk Acoustic Resonator (FBAR) has brought dawn to single-chip integrated high-performance RFIC. FBAR is a bulk acoustic wave (BAW) device with a very simple structure. It is usually composed of a sandwich piezoelectric stack fabricated on a silicon substrate. The sandwich piezoelectric stack is composed of a lower electrode, a piezoelectric film and an upper electrode. Standing wave resonance is formed by reflection in the sandwich structure of the lower electrode, the piezoelectric film, and the upper electrode.

FBAR具有工作频率高、射频段性能优良、与半导体工艺兼容的潜力、功率承载性好等优点,被认为是目前最具前途的可完全芯片集成的GHz射频前端解决方案。其优良的滤波特性、低插损和低温度系数,使得其在超低功耗射频前端领域有着重要应用前景。同时由于其高灵敏度特性(Q>1200),FBAR也作为微质量传感器,被广泛应用于化学和生物领域。由于FBAR广阔的应用前景,其集成研究受到越来越多的关注。目前主要有混合集成和单片集成两种集成策略。混合集成即将FBAR电路和原有集成电路制作在两个相互独立的衬底上,然后用金属导线将两者键合到一起,构成完整电路,这样FBAR的MEMS工艺和信号处理电路的CMOS工艺可以分别完成,不用考虑其工艺兼容性。使用该方法集成FBAR作为振荡器可参见B.P.Otis等的“A 300uW 1.9GHz CMOS Oscillator UtilizingMicromachined Resonators”(IEEE J.Solid-State Circuit,Jul.2003,vol.38,pp1271-1274),但该集成方法机械牢固度不高,并不适合产品的批量生产。单片集成方法是将FBAR和FBAR的信号处理集成电路制作在一个硅片上,使用CMOS工艺实现FBAR的信号处理集成电路,再使用后CMOS工艺实现FBAR,并通过金属布线连接。1993年,美国专利US 5,260,596中公开了此技术,虽然面积比采用不同衬底的混合集成方法小,但由于是在同一衬底平面上制作和互联FBAR和CMOS电路,工艺复杂,而且面积并不会减小太多。2005年,开始有文献报道基于此技术的FBAR集成实现,可参见M.A.Dubois等的“Integration of high-Q BAW resonators andfilters above IC”(IEEE International Solid-State Circuits Conference,Digestof Technical Papers.2005,pp 392-393)以及J.F.Carpentier等的“A SiGe:CBiCMOS WCDMA Zero-IF RF Front-End Using an Above-IC BAW Filter”(IEEE International Solid-State Circuits Conference,Digest of TechnicalPapers.2005,pp 394-395)。2008年,专利文献WO 2008/101646A1提出了单片集成技术,是将FBAR倒置,用金属层支撑实现CMOS电路的电气接触,并形成一个空气隙结构,该方法可进一步降低芯片面积,但仍然需要两套不同工艺单独制备FBAR和CMOS电路,且该方法采用支撑结构,可靠性不够高,成品率会相对较低。上述集成技术,都需要单独一块硅片面积用于制造FBAR,制作在一个硅片上,而FBAR一般面积在1~5×104um2,这对于硅集成电路来说面积太大,成本太高。FBAR has the advantages of high operating frequency, excellent performance in the radio frequency band, potential compatibility with semiconductor processes, and good power carrying capacity. It is considered to be the most promising GHz radio frequency front-end solution that can be fully integrated on chips. Its excellent filtering characteristics, low insertion loss and low temperature coefficient make it have an important application prospect in the field of ultra-low power RF front-end. At the same time, due to its high sensitivity (Q>1200), FBAR is also used as a micromass sensor and is widely used in the fields of chemistry and biology. Due to the broad application prospects of FBAR, its integration research has received more and more attention. At present, there are mainly two integration strategies: hybrid integration and monolithic integration. Hybrid integration is to manufacture the FBAR circuit and the original integrated circuit on two mutually independent substrates, and then bond the two together with metal wires to form a complete circuit, so that the MEMS process of FBAR and the CMOS process of the signal processing circuit can be Completed separately, regardless of its process compatibility. Using this method to integrate FBAR as an oscillator can refer to "A 300uW 1.9GHz CMOS Oscillator Utilizing Micromachined Resonators" (IEEE J.Solid-State Circuit, Jul.2003, vol.38, pp1271-1274) by BPOtis et al. The firmness is not high, and it is not suitable for mass production of products. The monolithic integration method is to fabricate the FBAR and the FBAR signal processing integrated circuit on a silicon chip, use the CMOS process to realize the FBAR signal processing integrated circuit, and then use the post-CMOS process to realize the FBAR, and connect them through metal wiring. In 1993, this technology was disclosed in U.S. Patent No. 5,260,596. Although the area is smaller than the hybrid integration method using different substrates, because the FBAR and CMOS circuits are fabricated and interconnected on the same substrate plane, the process is complicated and the area is not large. would decrease too much. In 2005, there were reports on the implementation of FBAR integration based on this technology, which can be found in "Integration of high-Q BAW resonators and filters above IC" by MADubois et al. (IEEE International Solid-State Circuits Conference, Digest of Technical Papers.2005, pp 392- 393) and "A SiGe: CBiCMOS WCDMA Zero-IF RF Front-End Using an Above-IC BAW Filter" by JF Carpentier et al. (IEEE International Solid-State Circuits Conference, Digest of Technical Papers. 2005, pp 394-395). In 2008, the patent document WO 2008/101646A1 proposed a monolithic integration technology, which is to invert the FBAR, use a metal layer to support the electrical contact of the CMOS circuit, and form an air gap structure. This method can further reduce the chip area, but still requires Two sets of different processes prepare FBAR and CMOS circuits separately, and this method uses a support structure, the reliability is not high enough, and the yield rate will be relatively low. The above integration technologies all require a single silicon chip area for manufacturing FBAR, which is fabricated on a single silicon chip, and FBAR generally has an area of 1-5×10 4 um 2 , which is too large and expensive for silicon integrated circuits. high.

总之,实现简单集成,并同时缩小FBAR占用硅片面积是降低其成本的关键技术。因此,需要一种对FBAR集成工艺的需求,可实现FBAR与现有原有集成电路工艺的单片集成,芯片面积小,且结构可靠性高。In short, realizing simple integration and reducing the silicon area occupied by FBAR are the key technologies to reduce its cost. Therefore, there is a need for an FBAR integration process, which can realize the monolithic integration of the FBAR and the existing original integrated circuit process, with small chip area and high structural reliability.

发明内容 Contents of the invention

本发明提供一种薄膜体声波谐振器(FBAR)结构及其集成制作方法,本发明薄膜体声波谐振器不另外占用硅片面积,可大大减小芯片面积和成本,且结构简单可靠,便于传感,FBAR与处理电路通过互连通孔连接,可减小射频信号的反射,可用于多种射频系统及微小质量传感系统的单芯片集成设计。The present invention provides a film bulk acoustic resonator (FBAR) structure and its integrated manufacturing method. The film bulk acoustic resonator of the present invention does not occupy additional silicon chip area, can greatly reduce the chip area and cost, and has a simple and reliable structure, which is convenient for transmission. Sense, FBAR and processing circuit are connected through interconnection holes, which can reduce the reflection of radio frequency signals, and can be used in single-chip integrated design of various radio frequency systems and micro mass sensing systems.

一种薄膜体声波谐振器,由集成为一体的基片、声波反射层和三明治压电堆三部分组成,所述的基片由可进行FBAR信号处理的集成电路芯片以及沉积在集成电路芯片上且表面经过抛光的钝化层构成,所述的声波反射层位于基片的钝化层抛光表面,三明治压电堆位于声波反射层表面。A thin film bulk acoustic resonator is composed of an integrated substrate, an acoustic wave reflection layer and a sandwich piezoelectric stack. The substrate is composed of an integrated circuit chip capable of FBAR signal processing and deposited on the integrated circuit chip And the surface is composed of a polished passivation layer, the acoustic wave reflection layer is located on the polished surface of the passivation layer of the substrate, and the sandwich piezoelectric stack is located on the surface of the acoustic wave reflection layer.

三明治压电堆和基片中的集成电路芯片使用互连通孔连接,所述的互连通孔内灌注导电介质(如钨等),以实现三明治压电堆和基片中的集成电路芯片电路连接。The integrated circuit chip in the sandwich piezoelectric stack and the substrate is connected by an interconnection via hole, and a conductive medium (such as tungsten, etc.) is poured into the interconnection via hole to realize the sandwich piezoelectric stack and the integrated circuit chip in the substrate circuit connection.

为了不影响薄膜体声波谐振器的正常工作,所述的互连通孔的位置应该避开三明治压电堆的压电工作区。In order not to affect the normal operation of the thin-film bulk acoustic resonator, the position of the interconnection holes should avoid the piezoelectric working area of the sandwich piezoelectric stack.

声波反射层和三明治压电堆之间的位置只需按照现有技术布置即可,本发明薄膜体声波谐振器与现有技术主要区别在于采用的基片为可进行FBAR信号处理的集成电路芯片,并将该集成电路芯片表面做了钝化及抛光处理,芯片与压电堆之间使用互连通孔技术连接。The position between the acoustic reflection layer and the sandwich piezoelectric stack only needs to be arranged according to the prior art. The main difference between the film bulk acoustic resonator of the present invention and the prior art is that the substrate used is an integrated circuit chip capable of FBAR signal processing , and the surface of the integrated circuit chip is passivated and polished, and the chip and the piezoelectric stack are connected by interconnection via technology.

本发明还提供了一种所述的薄膜体声波谐振器的制作方法,包括如下步骤:The present invention also provides a method for manufacturing the thin film bulk acoustic resonator, comprising the following steps:

(1)利用现有技术制作可进行FBAR信号处理的集成电路芯片(可以是在保证其功能的前提下,选用各种工艺类型的芯片),在所述的集成电路芯片表面沉积钝化层,钝化层的材料为二氧化硅、硼硅玻璃、磷硅玻璃、氮化硅或光敏树脂,厚度在0.1~100um,钝化层的沉积可以采用低压化学气相淀积设备等现有技术完成,再对钝化层的表面经过化学机械抛光(CMP)等抛光处理,获得基片。(1) Utilize the existing technology to make an integrated circuit chip capable of FBAR signal processing (can be under the premise of ensuring its function, select a chip of various process types), deposit a passivation layer on the surface of the integrated circuit chip, The material of the passivation layer is silicon dioxide, borosilicate glass, phosphosilicate glass, silicon nitride or photosensitive resin, with a thickness of 0.1-100um. The deposition of the passivation layer can be completed by existing technologies such as low-pressure chemical vapor deposition equipment. Then, the surface of the passivation layer is polished by chemical mechanical polishing (CMP) to obtain a substrate.

所述的光敏树脂为聚酰亚胺光敏树脂、苯并环丁烯光敏树脂或环氧光敏树脂;The photosensitive resin is polyimide photosensitive resin, benzocyclobutene photosensitive resin or epoxy photosensitive resin;

(2)在基片的经过抛光的钝化层表面依次形成声波反射层和三明治压电堆。(2) On the surface of the polished passivation layer of the substrate, an acoustic wave reflection layer and a sandwich piezoelectric stack are sequentially formed.

本发明薄膜体声波谐振器的优点为:The advantages of the thin film bulk acoustic resonator of the present invention are:

(1)FBAR作为与集成电路配合的频率相关的功能器件,是位于原有集成电路之上,可以大大减小整个电路的面积,提高集成度;(1) FBAR, as a frequency-related functional device that cooperates with integrated circuits, is located on top of the original integrated circuit, which can greatly reduce the area of the entire circuit and increase the degree of integration;

(2)采用接触孔技术实现互联,省去了键合线,减少互联寄生,可提高电路性能。采用互连通孔连接FBAR和集成电路,降低了射频信号的互扰;(2) Using contact hole technology to realize interconnection, eliminating the need for bonding wires, reducing interconnection parasitics, and improving circuit performance. Interconnection holes are used to connect FBAR and integrated circuits, which reduces the mutual interference of radio frequency signals;

(3)钝化层对集成电路部分起到保护作用,特别是对单片集成的FBAR传感器;(3) The passivation layer protects the integrated circuit part, especially for the monolithically integrated FBAR sensor;

(4)机械牢度强,结构简单可靠,便于传感,非常适于恶劣环境的高性能射频或传感系统应用。(4) Strong mechanical fastness, simple and reliable structure, convenient for sensing, very suitable for high-performance radio frequency or sensing system applications in harsh environments.

附图说明 Description of drawings

图1是本发明的采用布拉格反射层的固态装配型FBAR的集成结构俯视示意图;Fig. 1 is the top view schematic diagram of the integrated structure of the solid-state assembly type FBAR adopting the Bragg reflection layer of the present invention;

图2是本发明的采用布拉格反射层的固态装配型FBAR的集成结构剖面示意图。Fig. 2 is a schematic cross-sectional view of the integrated structure of the solid-state assembled FBAR using the Bragg reflective layer of the present invention.

具体实施方式 Detailed ways

参见图1,本发明的用布拉格反射层的FBAR的集成结构俯视示意图,图2是本发明的实施方式所涉及的采用布拉格反射层的FBAR的集成结构剖面示意图。Referring to FIG. 1 , a schematic top view of an integrated structure of an FBAR using a Bragg reflection layer according to the present invention, and FIG. 2 is a schematic cross-sectional view of an integrated structure of an FBAR using a Bragg reflection layer according to an embodiment of the present invention.

图中FBAR包括基片110,及其上的声波反射层和三明治压电堆111,图中的声波反射层由一层低声阻抗薄膜104和一层高声阻抗薄膜105构成。The FBAR in the figure includes a substrate 110 , an acoustic wave reflection layer on it and a sandwich piezoelectric stack 111 , and the acoustic wave reflection layer in the figure is composed of a layer of low acoustic impedance film 104 and a layer of high acoustic impedance film 105 .

基片110由可进行FBAR信号处理的集成电路芯片109以及沉积在集成电路芯片109上且表面经过抛光的钝化层106构成。The substrate 110 is composed of an integrated circuit chip 109 capable of FBAR signal processing and a passivation layer 106 deposited on the integrated circuit chip 109 and whose surface is polished.

三明治压电堆包括上电极101、下电极103和压电层102。The sandwich piezoelectric stack includes an upper electrode 101 , a lower electrode 103 and a piezoelectric layer 102 .

三明治压电堆111和基片中的集成电路109通过内部填装导电介质钨的互连通孔107和互连通孔108实现电路连通。The sandwich piezoelectric stack 111 and the integrated circuit 109 in the substrate realize circuit communication through the interconnection via hole 107 and the interconnection via hole 108 filled with conductive medium tungsten.

本发明FBAR制作时,首先是在硅晶圆上使用CMOS工艺制造可进行FBAR信号处理的集成电路芯片109,然后采用低压化学气相淀积设备(LPCVD)在集成电路芯片109上镀覆50um的厚氧钝化层106(氮化硅),再对钝化层106进行化学机械抛光(CMP),将上表面打磨平整,此时形成本发明FBAR集成结构的基片110,基片110表面的平整性影响着声波在表面的反射,越光滑平整,则FBAR的Q值也越高。When FBAR of the present invention is made, at first be to use CMOS technology to manufacture the integrated circuit chip 109 that can carry out FBAR signal processing on the silicon wafer, adopt the low pressure chemical vapor deposition equipment (LPCVD) to plate the thick 50um on the integrated circuit chip 109 then Oxygen passivation layer 106 (silicon nitride), then chemical mechanical polishing (CMP) is carried out to passivation layer 106, the upper surface is polished smooth, and the substrate 110 of the FBAR integrated structure of the present invention is formed at this moment, and the smoothness of the substrate 110 surface The property affects the reflection of sound waves on the surface, the smoother and smoother the Q value of FBAR is, the higher it will be.

然后在基片110表面上方依次制作FBAR的布拉格声波反射层对,即低声阻抗薄膜104和高声阻抗薄膜105。Then, on the surface of the substrate 110 , a pair of Bragg acoustic reflection layers of the FBAR, that is, a low acoustic impedance film 104 and a high acoustic impedance film 105 , is sequentially fabricated.

低声阻抗薄膜104选用铝(Al)并使用直流磁控溅射方法制备,高声阻抗薄膜105选用SiO2并使用LPCVD方法制备。The low acoustic impedance film 104 is made of aluminum (Al) and prepared by DC magnetron sputtering method, and the high acoustic impedance film 105 is made of SiO 2 and prepared by LPCVD method.

接下来要在布拉格反射层之上制作FBAR的三明治结构压电堆111,包括上电极101、压电层102、和下电极103,上、下电极选用铝(Al)电极并采用直流溅射法制备,压电层102材料可以选择氮化铝(AlN)并采用射频磁控反应溅射方法制备,制作顺序依次为:下电极103、压电层102、上电极101。Next, the FBAR sandwich structure piezoelectric stack 111 is to be fabricated on the Bragg reflective layer, including the upper electrode 101, the piezoelectric layer 102, and the lower electrode 103. The upper and lower electrodes are made of aluminum (Al) electrodes and DC sputtering method is used. For preparation, the material of the piezoelectric layer 102 can be selected from aluminum nitride (AlN) and prepared by radio frequency magnetron reactive sputtering.

最后制作互连通孔107和互连通孔108,使用钨塞技术分别将FBAR的上电极101和下电极103同所述集成电路109连接起来,实现单片集成系统的完整功能。Finally, the interconnection via hole 107 and the interconnection via hole 108 are made, and the upper electrode 101 and the lower electrode 103 of the FBAR are respectively connected with the integrated circuit 109 by using tungsten plug technology, so as to realize the complete function of the monolithic integrated system.

采用本发明集成化FBAR,其集成机械牢度强,结构简单可靠,便于传感,应用于射频或传感系统,对各种复杂环境适应性好。The integrated FBAR of the present invention has strong integrated mechanical fastness, simple and reliable structure, is convenient for sensing, is applied to radio frequency or sensing systems, and has good adaptability to various complex environments.

Claims (6)

1、一种薄膜体声波谐振器,其特征在于,由集成为一体的基片、声波反射层和三明治压电堆三部分组成,所述的基片由可进行FBAR信号处理的集成电路芯片以及沉积在集成电路芯片上且表面经过抛光的钝化层构成,所述的声波反射层位于基片钝化层的抛光表面,所述的三明治压电堆位于声波反射层表面。1. A thin film bulk acoustic resonator is characterized in that it is composed of an integrated substrate, an acoustic reflection layer and a sandwich piezoelectric stack. The substrate is composed of an integrated circuit chip that can process FBAR signals and The passivation layer is deposited on the integrated circuit chip and its surface is polished, the acoustic wave reflection layer is located on the polished surface of the substrate passivation layer, and the sandwich piezoelectric stack is located on the surface of the acoustic wave reflection layer. 2、如权利要求1所述的薄膜体声波谐振器,其特征在于,所述的三明治压电堆和基片中的集成电路芯片使用互连通孔实现电路连接。2. The thin film bulk acoustic resonator according to claim 1, characterized in that the sandwich piezoelectric stack and the integrated circuit chip in the substrate are connected by interconnection holes. 3、一种薄膜体声波谐振器的制作方法,其特征在于,包括如下步骤:3. A method for manufacturing a thin-film bulk acoustic resonator, comprising the steps of: (1)制作可进行FBAR信号处理的集成电路芯片,在所述的集成电路芯片表面沉积钝化层后对钝化层的表面经过抛光,获得基片;(1) making an integrated circuit chip capable of FBAR signal processing, after depositing a passivation layer on the surface of the integrated circuit chip, the surface of the passivation layer is polished to obtain a substrate; (2)在基片的抛光钝化层表面依次形成声波反射层和三明治压电堆。(2) An acoustic wave reflection layer and a sandwich piezoelectric stack are sequentially formed on the surface of the polished passivation layer of the substrate. 4、如权利要求3所述的制作方法,其特征在于,所述的钝化层的材料为二氧化硅、硼硅玻璃、磷硅玻璃、氮化硅或光敏树脂。4. The manufacturing method according to claim 3, wherein the material of the passivation layer is silicon dioxide, borosilicate glass, phosphosilicate glass, silicon nitride or photosensitive resin. 5、如权利要求3所述的制作方法,其特征在于,所述的钝化层的厚度为0.1~100um。5. The manufacturing method according to claim 3, wherein the passivation layer has a thickness of 0.1-100um. 6、如权利要求4所述的制作方法,其特征在于,所述的光敏树脂为聚酰亚胺光敏树脂、苯并环丁烯光敏树脂或环氧光敏树脂。6. The manufacturing method according to claim 4, wherein the photosensitive resin is polyimide photosensitive resin, benzocyclobutene photosensitive resin or epoxy photosensitive resin.
CN200910101967A 2009-08-27 2009-08-27 Film bulk acoustic resonator (FBAR) and preparation method thereof Pending CN101630946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910101967A CN101630946A (en) 2009-08-27 2009-08-27 Film bulk acoustic resonator (FBAR) and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910101967A CN101630946A (en) 2009-08-27 2009-08-27 Film bulk acoustic resonator (FBAR) and preparation method thereof

Publications (1)

Publication Number Publication Date
CN101630946A true CN101630946A (en) 2010-01-20

Family

ID=41575923

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910101967A Pending CN101630946A (en) 2009-08-27 2009-08-27 Film bulk acoustic resonator (FBAR) and preparation method thereof

Country Status (1)

Country Link
CN (1) CN101630946A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101895269A (en) * 2010-07-30 2010-11-24 中国科学院声学研究所 Method for preparing piezoelectric film bulk acoustic wave resonator
CN101924529A (en) * 2010-08-31 2010-12-22 庞慰 Piezoelectric resonator structure
CN102621026A (en) * 2012-03-12 2012-08-01 山东科技大学 Thin film acoustic wave resonance biochemical sensor integrating microchannel
CN103326692A (en) * 2013-05-28 2013-09-25 江苏艾伦摩尔微电子科技有限公司 Electrically tunable film bulk acoustic resonator and manufacturing method thereof
CN103326689A (en) * 2013-05-28 2013-09-25 江苏艾伦摩尔微电子科技有限公司 Single chip integrated temperature compensation film buck acoustic resonator
CN103731117A (en) * 2013-12-31 2014-04-16 江苏艾伦摩尔微电子科技有限公司 Thin film volume acoustic wave harmonic oscillator structure and manufacturing method thereof
CN105353143A (en) * 2010-06-30 2016-02-24 安派科生物医学科技有限公司 Apparatus for disease detection
CN107342748A (en) * 2017-07-04 2017-11-10 浙江大学 A kind of bulk acoustic wave resonator of based single crystal piezoelectric membrane and preparation method thereof
GB2554400A (en) * 2016-09-26 2018-04-04 Univ Warwick Bulk acoustic wave resonator based sensor
CN108649921A (en) * 2012-01-18 2018-10-12 三星电子株式会社 Bulk acoustic wave resonator
CN108964631A (en) * 2017-05-18 2018-12-07 三星电机株式会社 Bulk acoustic wave resonator
CN109639251A (en) * 2018-12-10 2019-04-16 开元通信技术(厦门)有限公司 Bulk acoustic wave resonator and preparation method thereof, filter
CN109802645A (en) * 2018-12-26 2019-05-24 天津大学 A kind of heterogeneous integrated approach of air-gap type piezoelectric sound wave device and the device
CN110265544A (en) * 2019-06-24 2019-09-20 京东方科技集团股份有限公司 Piezoelectric transducer and preparation method, the method and electronic equipment that carry out fingerprint recognition
CN111010130A (en) * 2019-12-19 2020-04-14 诺思(天津)微系统有限责任公司 Bulk acoustic wave resonator with temperature compensation layer and electrical layer, filter and electronic equipment
WO2020125355A1 (en) * 2018-12-18 2020-06-25 天津大学 Filter having increased via hole area and electronic apparatus
CN112737539A (en) * 2019-10-28 2021-04-30 天津威盛电子有限公司 Air gap type film bulk acoustic resonator
CN112968123A (en) * 2021-02-04 2021-06-15 电子科技大学 Flexible film type piezoelectric acoustic emission sensor and manufacturing method thereof
WO2021217749A1 (en) * 2020-04-26 2021-11-04 深圳市信维通信股份有限公司 Filtering device, radio frequency front-end device and wireless communication device
US11606080B2 (en) 2020-04-26 2023-03-14 Shenzhen Sunway Communication Co., Ltd. Filter device, RF front-end device and wireless communication device
WO2024140167A1 (en) * 2022-12-28 2024-07-04 深圳飞骧科技股份有限公司 Heterogeneously integrated elastic wave filter and radio-frequency chip

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353143A (en) * 2010-06-30 2016-02-24 安派科生物医学科技有限公司 Apparatus for disease detection
CN101895269B (en) * 2010-07-30 2012-09-05 中国科学院声学研究所 Method for preparing piezoelectric film bulk acoustic wave resonator
CN101895269A (en) * 2010-07-30 2010-11-24 中国科学院声学研究所 Method for preparing piezoelectric film bulk acoustic wave resonator
CN101924529B (en) * 2010-08-31 2012-10-10 庞慰 Piezoelectric resonator structure
CN101924529A (en) * 2010-08-31 2010-12-22 庞慰 Piezoelectric resonator structure
CN108649921A (en) * 2012-01-18 2018-10-12 三星电子株式会社 Bulk acoustic wave resonator
CN108649921B (en) * 2012-01-18 2023-08-25 三星电子株式会社 bulk acoustic wave resonator
CN102621026A (en) * 2012-03-12 2012-08-01 山东科技大学 Thin film acoustic wave resonance biochemical sensor integrating microchannel
CN103326692A (en) * 2013-05-28 2013-09-25 江苏艾伦摩尔微电子科技有限公司 Electrically tunable film bulk acoustic resonator and manufacturing method thereof
CN103326689A (en) * 2013-05-28 2013-09-25 江苏艾伦摩尔微电子科技有限公司 Single chip integrated temperature compensation film buck acoustic resonator
CN103731117A (en) * 2013-12-31 2014-04-16 江苏艾伦摩尔微电子科技有限公司 Thin film volume acoustic wave harmonic oscillator structure and manufacturing method thereof
GB2554400A (en) * 2016-09-26 2018-04-04 Univ Warwick Bulk acoustic wave resonator based sensor
US11249049B2 (en) 2016-09-26 2022-02-15 The University Of Warwick Bulk acoustic wave resonator based sensor
CN108964631A (en) * 2017-05-18 2018-12-07 三星电机株式会社 Bulk acoustic wave resonator
CN108964631B (en) * 2017-05-18 2022-02-18 三星电机株式会社 Bulk acoustic wave resonator
CN107342748A (en) * 2017-07-04 2017-11-10 浙江大学 A kind of bulk acoustic wave resonator of based single crystal piezoelectric membrane and preparation method thereof
CN107342748B (en) * 2017-07-04 2020-04-28 浙江大学 Bulk acoustic wave resonator based on single crystal piezoelectric film and preparation method thereof
CN109639251A (en) * 2018-12-10 2019-04-16 开元通信技术(厦门)有限公司 Bulk acoustic wave resonator and preparation method thereof, filter
WO2020125355A1 (en) * 2018-12-18 2020-06-25 天津大学 Filter having increased via hole area and electronic apparatus
CN109802645A (en) * 2018-12-26 2019-05-24 天津大学 A kind of heterogeneous integrated approach of air-gap type piezoelectric sound wave device and the device
CN110265544A (en) * 2019-06-24 2019-09-20 京东方科技集团股份有限公司 Piezoelectric transducer and preparation method, the method and electronic equipment that carry out fingerprint recognition
US12016249B2 (en) 2019-06-24 2024-06-18 Boe Technology Group Co., Ltd. Piezoelectric sensor and manufacturing method thereof, method for recognizing fingerprint, and electronic device
CN112737539A (en) * 2019-10-28 2021-04-30 天津威盛电子有限公司 Air gap type film bulk acoustic resonator
CN111010130A (en) * 2019-12-19 2020-04-14 诺思(天津)微系统有限责任公司 Bulk acoustic wave resonator with temperature compensation layer and electrical layer, filter and electronic equipment
WO2021217749A1 (en) * 2020-04-26 2021-11-04 深圳市信维通信股份有限公司 Filtering device, radio frequency front-end device and wireless communication device
US11606080B2 (en) 2020-04-26 2023-03-14 Shenzhen Sunway Communication Co., Ltd. Filter device, RF front-end device and wireless communication device
CN112968123A (en) * 2021-02-04 2021-06-15 电子科技大学 Flexible film type piezoelectric acoustic emission sensor and manufacturing method thereof
CN112968123B (en) * 2021-02-04 2022-11-04 电子科技大学 A flexible film piezoelectric acoustic emission sensor and its manufacturing method
WO2024140167A1 (en) * 2022-12-28 2024-07-04 深圳飞骧科技股份有限公司 Heterogeneously integrated elastic wave filter and radio-frequency chip

Similar Documents

Publication Publication Date Title
CN101630946A (en) Film bulk acoustic resonator (FBAR) and preparation method thereof
US7233218B2 (en) Air-gap type FBAR, and duplexer using the FBAR
US8283835B2 (en) Guided bulk acoustic wave device having reduced height and method for manufacturing
US7675154B2 (en) RF module with multi-stack structure
CN205195673U (en) Wafer -level package device
CN114008918A (en) Separated step acoustic wave filter
CN109831174A (en) A kind of duplexer
JP2005536958A (en) Resonator and element with hermetic encapsulation member
CN103731117A (en) Thin film volume acoustic wave harmonic oscillator structure and manufacturing method thereof
CN101977026A (en) Manufacturing method of cavity-type film bulk acoustic resonator (FBAR)
KR20050098056A (en) Film bulk acoustic resonator and the method thereof
JP2008505573A (en) A filter with volume wave resonators that can operate symmetrically on both sides
KR100555762B1 (en) Air gap type thin film bulk acoustic resonator and its manufacturing method, filter and duplexer using same
CN101951238A (en) Piezoelectric film bulk acoustic wave resonator
CN206542385U (en) FBAR and communication device with supporting construction
CN203675062U (en) Film bulk acoustic wave resonator structure
CN113659953B (en) Bulk acoustic wave resonator assembly, manufacturing method and communication device
WO2020134665A1 (en) Control circuit, integration method for acoustic wave filter, and integration structure
KR100822469B1 (en) System-on-chip structures, duplexers, and methods for fabricating the air cavity for isolating a plurality of devices from each other
CN118826690A (en) A multi-die stacked radio frequency device
CN206542386U (en) FBAR and communication device based on insulator silicon chip
CN114826192B (en) Three-dimensional integrated MEMS oscillator
CN114614790A (en) Surface acoustic wave filter and method of making the same
Kubena et al. Next generation quartz oscillators and filters for VHF-UHF systems
Ha et al. Novel 1-chip FBAR filter for wireless handsets

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20100120