CN101630946A - Film bulk acoustic resonator (FBAR) and preparation method thereof - Google Patents
Film bulk acoustic resonator (FBAR) and preparation method thereof Download PDFInfo
- Publication number
- CN101630946A CN101630946A CN200910101967A CN200910101967A CN101630946A CN 101630946 A CN101630946 A CN 101630946A CN 200910101967 A CN200910101967 A CN 200910101967A CN 200910101967 A CN200910101967 A CN 200910101967A CN 101630946 A CN101630946 A CN 101630946A
- Authority
- CN
- China
- Prior art keywords
- fbar
- substrate
- passivation layer
- integrated circuit
- film bulk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title abstract description 3
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 238000002161 passivation Methods 0.000 claims abstract description 20
- 238000012545 processing Methods 0.000 claims abstract description 12
- 239000010409 thin film Substances 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000011347 resin Substances 0.000 claims description 10
- 229920005989 resin Polymers 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 239000004593 Epoxy Substances 0.000 claims description 2
- 239000004642 Polyimide Substances 0.000 claims description 2
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 claims description 2
- 239000005388 borosilicate glass Substances 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims description 2
- 239000005360 phosphosilicate glass Substances 0.000 claims description 2
- 229920001721 polyimide Polymers 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052710 silicon Inorganic materials 0.000 abstract description 9
- 239000010703 silicon Substances 0.000 abstract description 9
- 238000013461 design Methods 0.000 abstract description 2
- 230000010354 integration Effects 0.000 description 19
- 238000005516 engineering process Methods 0.000 description 14
- 239000010408 film Substances 0.000 description 13
- 238000004891 communication Methods 0.000 description 5
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010897 surface acoustic wave method Methods 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Images
Landscapes
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
本发明公开了一种薄膜体声波谐振器及其制备方法,薄膜体声波谐振器由集成为一体的基片、声波反射层和三明治压电堆三部分组成,所述的基片由可进行FBAR信号处理的集成电路芯片以及沉积在集成电路芯片上且表面经过抛光的钝化层构成,所述的声波反射层和三明治压电堆位于基片的钝化层表面。本发明薄膜体声波谐振器不另外占用硅片面积,可大大减小芯片面积和成本,且结构简单可靠,便于传感,FBAR与处理电路通过互连通孔连接,可减小射频信号的反射,可用于多种射频系统及微小质量传感系统的单芯片集成设计。The invention discloses a thin-film bulk acoustic resonator and a preparation method thereof. The thin-film bulk acoustic resonator is composed of an integrated substrate, an acoustic wave reflection layer and a sandwich piezoelectric stack. The substrate is composed of an FBAR The integrated circuit chip for signal processing and the passivation layer deposited on the integrated circuit chip and whose surface is polished, the acoustic wave reflection layer and the sandwich piezoelectric stack are located on the passivation layer surface of the substrate. The thin film bulk acoustic resonator of the present invention does not occupy additional silicon chip area, can greatly reduce the chip area and cost, and has a simple and reliable structure, which is convenient for sensing, and the FBAR and the processing circuit are connected through interconnection holes, which can reduce the reflection of radio frequency signals , can be used in the single-chip integrated design of various radio frequency systems and micro mass sensing systems.
Description
技术领域 technical field
本发明涉及微电子技术领域,尤其涉及一种薄膜体声波谐振器FBAR及其制造方法。The invention relates to the technical field of microelectronics, in particular to a film bulk acoustic resonator FBAR and a manufacturing method thereof.
背景技术 Background technique
无线通信正朝着高通信频率、高传输速率、高密集复用和高集成化方向发展。目前半导体工艺已经完全可以将有源器件集成到一个芯片,但是无源的频率器件还不能集成,这严重制约了RFIC的发展。无源器件主要是多工器、滤波器、谐振器以及匹配LC网络,由谐振器可以构成多工器、滤波器、振荡器等,一个无线收发机需要多个谐振器来构成多工器、VCO和RF滤波器。因此,基本单元谐振器的集成化是问题的关键。目前无线通信要求在很窄的频段内实现更高容量的数据传输,比如码分多址(CDMA)频带的双工器要求非常陡峭的矩形系数和隔离度,又如新一代多通道输入输出(MIMO)要在很窄的通道实现多I/O通信,需要滤波特性优良的多工滤波器,又如低噪声低功耗的VCO需要一个高Q的谐振器;这就需要一种Q值高、温度系数低、损耗低的谐振器,来实现这些指标苛刻的滤波器、双工器和振荡器。总之寻找一种可以集成的高Q值的谐振器成为了RFIC集成技术的关键,也是各大跨国公司争相研究的热点。Wireless communication is developing towards high communication frequency, high transmission rate, high-intensity multiplexing and high integration. At present, semiconductor technology can fully integrate active devices into a chip, but passive frequency devices cannot be integrated, which seriously restricts the development of RFIC. Passive components are mainly multiplexers, filters, resonators and matching LC networks. Resonators can form multiplexers, filters, oscillators, etc. A wireless transceiver requires multiple resonators to form multiplexers, VCO and RF filter. Therefore, the integration of the basic unit resonator is the key to the problem. At present, wireless communication requires higher-capacity data transmission in a narrow frequency band. For example, the duplexer in the code division multiple access (CDMA) frequency band requires a very steep square coefficient and isolation, and a new generation of multi-channel input and output ( MIMO) To achieve multi-I/O communication in a very narrow channel, a multiplex filter with excellent filtering characteristics is required, and a VCO with low noise and low power consumption requires a high-Q resonator; this requires a high-Q value , low temperature coefficient, and low loss resonators to realize these demanding filters, duplexers, and oscillators. In short, finding a high-Q resonator that can be integrated has become the key to RFIC integration technology, and it is also a hot research topic for major multinational companies.
目前射频滤波器主要是不能集成的介质滤波器和声表面波(SAW)滤波器。前者性能虽好但是体积太大,后者功率容量和工作频率低、插损和温度系数大、Q值低,难以满足射频系统所需要的选频特性、集成化和低功耗的综合性能。微机电系统(MEMS)技术发展,特别是薄膜体声波谐振器(FBAR)的出现给单芯片集成高性能的RFIC带来了曙光。FBAR是一种体声波(BAW)器件,结构非常简单,通常由制作在硅衬底上的三明治压电堆构成,其中三明治压电堆由下电极、压电薄膜和上电极构成,利用声纵波在下电极、压电薄膜、上电极的三明治结构中反射形成驻波谐振。At present, radio frequency filters are mainly dielectric filters and surface acoustic wave (SAW) filters that cannot be integrated. Although the former has good performance, it is too bulky. The latter has low power capacity and operating frequency, large insertion loss and temperature coefficient, and low Q value. It is difficult to meet the comprehensive performance of frequency selection characteristics, integration and low power consumption required by RF systems. Micro-Electro-Mechanical Systems (MEMS) technology development, especially the appearance of Film Bulk Acoustic Resonator (FBAR) has brought dawn to single-chip integrated high-performance RFIC. FBAR is a bulk acoustic wave (BAW) device with a very simple structure. It is usually composed of a sandwich piezoelectric stack fabricated on a silicon substrate. The sandwich piezoelectric stack is composed of a lower electrode, a piezoelectric film and an upper electrode. Standing wave resonance is formed by reflection in the sandwich structure of the lower electrode, the piezoelectric film, and the upper electrode.
FBAR具有工作频率高、射频段性能优良、与半导体工艺兼容的潜力、功率承载性好等优点,被认为是目前最具前途的可完全芯片集成的GHz射频前端解决方案。其优良的滤波特性、低插损和低温度系数,使得其在超低功耗射频前端领域有着重要应用前景。同时由于其高灵敏度特性(Q>1200),FBAR也作为微质量传感器,被广泛应用于化学和生物领域。由于FBAR广阔的应用前景,其集成研究受到越来越多的关注。目前主要有混合集成和单片集成两种集成策略。混合集成即将FBAR电路和原有集成电路制作在两个相互独立的衬底上,然后用金属导线将两者键合到一起,构成完整电路,这样FBAR的MEMS工艺和信号处理电路的CMOS工艺可以分别完成,不用考虑其工艺兼容性。使用该方法集成FBAR作为振荡器可参见B.P.Otis等的“A 300uW 1.9GHz CMOS Oscillator UtilizingMicromachined Resonators”(IEEE J.Solid-State Circuit,Jul.2003,vol.38,pp1271-1274),但该集成方法机械牢固度不高,并不适合产品的批量生产。单片集成方法是将FBAR和FBAR的信号处理集成电路制作在一个硅片上,使用CMOS工艺实现FBAR的信号处理集成电路,再使用后CMOS工艺实现FBAR,并通过金属布线连接。1993年,美国专利US 5,260,596中公开了此技术,虽然面积比采用不同衬底的混合集成方法小,但由于是在同一衬底平面上制作和互联FBAR和CMOS电路,工艺复杂,而且面积并不会减小太多。2005年,开始有文献报道基于此技术的FBAR集成实现,可参见M.A.Dubois等的“Integration of high-Q BAW resonators andfilters above IC”(IEEE International Solid-State Circuits Conference,Digestof Technical Papers.2005,pp 392-393)以及J.F.Carpentier等的“A SiGe:CBiCMOS WCDMA Zero-IF RF Front-End Using an Above-IC BAW Filter”(IEEE International Solid-State Circuits Conference,Digest of TechnicalPapers.2005,pp 394-395)。2008年,专利文献WO 2008/101646A1提出了单片集成技术,是将FBAR倒置,用金属层支撑实现CMOS电路的电气接触,并形成一个空气隙结构,该方法可进一步降低芯片面积,但仍然需要两套不同工艺单独制备FBAR和CMOS电路,且该方法采用支撑结构,可靠性不够高,成品率会相对较低。上述集成技术,都需要单独一块硅片面积用于制造FBAR,制作在一个硅片上,而FBAR一般面积在1~5×104um2,这对于硅集成电路来说面积太大,成本太高。FBAR has the advantages of high operating frequency, excellent performance in the radio frequency band, potential compatibility with semiconductor processes, and good power carrying capacity. It is considered to be the most promising GHz radio frequency front-end solution that can be fully integrated on chips. Its excellent filtering characteristics, low insertion loss and low temperature coefficient make it have an important application prospect in the field of ultra-low power RF front-end. At the same time, due to its high sensitivity (Q>1200), FBAR is also used as a micromass sensor and is widely used in the fields of chemistry and biology. Due to the broad application prospects of FBAR, its integration research has received more and more attention. At present, there are mainly two integration strategies: hybrid integration and monolithic integration. Hybrid integration is to manufacture the FBAR circuit and the original integrated circuit on two mutually independent substrates, and then bond the two together with metal wires to form a complete circuit, so that the MEMS process of FBAR and the CMOS process of the signal processing circuit can be Completed separately, regardless of its process compatibility. Using this method to integrate FBAR as an oscillator can refer to "A 300uW 1.9GHz CMOS Oscillator Utilizing Micromachined Resonators" (IEEE J.Solid-State Circuit, Jul.2003, vol.38, pp1271-1274) by BPOtis et al. The firmness is not high, and it is not suitable for mass production of products. The monolithic integration method is to fabricate the FBAR and the FBAR signal processing integrated circuit on a silicon chip, use the CMOS process to realize the FBAR signal processing integrated circuit, and then use the post-CMOS process to realize the FBAR, and connect them through metal wiring. In 1993, this technology was disclosed in U.S. Patent No. 5,260,596. Although the area is smaller than the hybrid integration method using different substrates, because the FBAR and CMOS circuits are fabricated and interconnected on the same substrate plane, the process is complicated and the area is not large. would decrease too much. In 2005, there were reports on the implementation of FBAR integration based on this technology, which can be found in "Integration of high-Q BAW resonators and filters above IC" by MADubois et al. (IEEE International Solid-State Circuits Conference, Digest of Technical Papers.2005, pp 392- 393) and "A SiGe: CBiCMOS WCDMA Zero-IF RF Front-End Using an Above-IC BAW Filter" by JF Carpentier et al. (IEEE International Solid-State Circuits Conference, Digest of Technical Papers. 2005, pp 394-395). In 2008, the patent document WO 2008/101646A1 proposed a monolithic integration technology, which is to invert the FBAR, use a metal layer to support the electrical contact of the CMOS circuit, and form an air gap structure. This method can further reduce the chip area, but still requires Two sets of different processes prepare FBAR and CMOS circuits separately, and this method uses a support structure, the reliability is not high enough, and the yield rate will be relatively low. The above integration technologies all require a single silicon chip area for manufacturing FBAR, which is fabricated on a single silicon chip, and FBAR generally has an area of 1-5×10 4 um 2 , which is too large and expensive for silicon integrated circuits. high.
总之,实现简单集成,并同时缩小FBAR占用硅片面积是降低其成本的关键技术。因此,需要一种对FBAR集成工艺的需求,可实现FBAR与现有原有集成电路工艺的单片集成,芯片面积小,且结构可靠性高。In short, realizing simple integration and reducing the silicon area occupied by FBAR are the key technologies to reduce its cost. Therefore, there is a need for an FBAR integration process, which can realize the monolithic integration of the FBAR and the existing original integrated circuit process, with small chip area and high structural reliability.
发明内容 Contents of the invention
本发明提供一种薄膜体声波谐振器(FBAR)结构及其集成制作方法,本发明薄膜体声波谐振器不另外占用硅片面积,可大大减小芯片面积和成本,且结构简单可靠,便于传感,FBAR与处理电路通过互连通孔连接,可减小射频信号的反射,可用于多种射频系统及微小质量传感系统的单芯片集成设计。The present invention provides a film bulk acoustic resonator (FBAR) structure and its integrated manufacturing method. The film bulk acoustic resonator of the present invention does not occupy additional silicon chip area, can greatly reduce the chip area and cost, and has a simple and reliable structure, which is convenient for transmission. Sense, FBAR and processing circuit are connected through interconnection holes, which can reduce the reflection of radio frequency signals, and can be used in single-chip integrated design of various radio frequency systems and micro mass sensing systems.
一种薄膜体声波谐振器,由集成为一体的基片、声波反射层和三明治压电堆三部分组成,所述的基片由可进行FBAR信号处理的集成电路芯片以及沉积在集成电路芯片上且表面经过抛光的钝化层构成,所述的声波反射层位于基片的钝化层抛光表面,三明治压电堆位于声波反射层表面。A thin film bulk acoustic resonator is composed of an integrated substrate, an acoustic wave reflection layer and a sandwich piezoelectric stack. The substrate is composed of an integrated circuit chip capable of FBAR signal processing and deposited on the integrated circuit chip And the surface is composed of a polished passivation layer, the acoustic wave reflection layer is located on the polished surface of the passivation layer of the substrate, and the sandwich piezoelectric stack is located on the surface of the acoustic wave reflection layer.
三明治压电堆和基片中的集成电路芯片使用互连通孔连接,所述的互连通孔内灌注导电介质(如钨等),以实现三明治压电堆和基片中的集成电路芯片电路连接。The integrated circuit chip in the sandwich piezoelectric stack and the substrate is connected by an interconnection via hole, and a conductive medium (such as tungsten, etc.) is poured into the interconnection via hole to realize the sandwich piezoelectric stack and the integrated circuit chip in the substrate circuit connection.
为了不影响薄膜体声波谐振器的正常工作,所述的互连通孔的位置应该避开三明治压电堆的压电工作区。In order not to affect the normal operation of the thin-film bulk acoustic resonator, the position of the interconnection holes should avoid the piezoelectric working area of the sandwich piezoelectric stack.
声波反射层和三明治压电堆之间的位置只需按照现有技术布置即可,本发明薄膜体声波谐振器与现有技术主要区别在于采用的基片为可进行FBAR信号处理的集成电路芯片,并将该集成电路芯片表面做了钝化及抛光处理,芯片与压电堆之间使用互连通孔技术连接。The position between the acoustic reflection layer and the sandwich piezoelectric stack only needs to be arranged according to the prior art. The main difference between the film bulk acoustic resonator of the present invention and the prior art is that the substrate used is an integrated circuit chip capable of FBAR signal processing , and the surface of the integrated circuit chip is passivated and polished, and the chip and the piezoelectric stack are connected by interconnection via technology.
本发明还提供了一种所述的薄膜体声波谐振器的制作方法,包括如下步骤:The present invention also provides a method for manufacturing the thin film bulk acoustic resonator, comprising the following steps:
(1)利用现有技术制作可进行FBAR信号处理的集成电路芯片(可以是在保证其功能的前提下,选用各种工艺类型的芯片),在所述的集成电路芯片表面沉积钝化层,钝化层的材料为二氧化硅、硼硅玻璃、磷硅玻璃、氮化硅或光敏树脂,厚度在0.1~100um,钝化层的沉积可以采用低压化学气相淀积设备等现有技术完成,再对钝化层的表面经过化学机械抛光(CMP)等抛光处理,获得基片。(1) Utilize the existing technology to make an integrated circuit chip capable of FBAR signal processing (can be under the premise of ensuring its function, select a chip of various process types), deposit a passivation layer on the surface of the integrated circuit chip, The material of the passivation layer is silicon dioxide, borosilicate glass, phosphosilicate glass, silicon nitride or photosensitive resin, with a thickness of 0.1-100um. The deposition of the passivation layer can be completed by existing technologies such as low-pressure chemical vapor deposition equipment. Then, the surface of the passivation layer is polished by chemical mechanical polishing (CMP) to obtain a substrate.
所述的光敏树脂为聚酰亚胺光敏树脂、苯并环丁烯光敏树脂或环氧光敏树脂;The photosensitive resin is polyimide photosensitive resin, benzocyclobutene photosensitive resin or epoxy photosensitive resin;
(2)在基片的经过抛光的钝化层表面依次形成声波反射层和三明治压电堆。(2) On the surface of the polished passivation layer of the substrate, an acoustic wave reflection layer and a sandwich piezoelectric stack are sequentially formed.
本发明薄膜体声波谐振器的优点为:The advantages of the thin film bulk acoustic resonator of the present invention are:
(1)FBAR作为与集成电路配合的频率相关的功能器件,是位于原有集成电路之上,可以大大减小整个电路的面积,提高集成度;(1) FBAR, as a frequency-related functional device that cooperates with integrated circuits, is located on top of the original integrated circuit, which can greatly reduce the area of the entire circuit and increase the degree of integration;
(2)采用接触孔技术实现互联,省去了键合线,减少互联寄生,可提高电路性能。采用互连通孔连接FBAR和集成电路,降低了射频信号的互扰;(2) Using contact hole technology to realize interconnection, eliminating the need for bonding wires, reducing interconnection parasitics, and improving circuit performance. Interconnection holes are used to connect FBAR and integrated circuits, which reduces the mutual interference of radio frequency signals;
(3)钝化层对集成电路部分起到保护作用,特别是对单片集成的FBAR传感器;(3) The passivation layer protects the integrated circuit part, especially for the monolithically integrated FBAR sensor;
(4)机械牢度强,结构简单可靠,便于传感,非常适于恶劣环境的高性能射频或传感系统应用。(4) Strong mechanical fastness, simple and reliable structure, convenient for sensing, very suitable for high-performance radio frequency or sensing system applications in harsh environments.
附图说明 Description of drawings
图1是本发明的采用布拉格反射层的固态装配型FBAR的集成结构俯视示意图;Fig. 1 is the top view schematic diagram of the integrated structure of the solid-state assembly type FBAR adopting the Bragg reflection layer of the present invention;
图2是本发明的采用布拉格反射层的固态装配型FBAR的集成结构剖面示意图。Fig. 2 is a schematic cross-sectional view of the integrated structure of the solid-state assembled FBAR using the Bragg reflective layer of the present invention.
具体实施方式 Detailed ways
参见图1,本发明的用布拉格反射层的FBAR的集成结构俯视示意图,图2是本发明的实施方式所涉及的采用布拉格反射层的FBAR的集成结构剖面示意图。Referring to FIG. 1 , a schematic top view of an integrated structure of an FBAR using a Bragg reflection layer according to the present invention, and FIG. 2 is a schematic cross-sectional view of an integrated structure of an FBAR using a Bragg reflection layer according to an embodiment of the present invention.
图中FBAR包括基片110,及其上的声波反射层和三明治压电堆111,图中的声波反射层由一层低声阻抗薄膜104和一层高声阻抗薄膜105构成。The FBAR in the figure includes a
基片110由可进行FBAR信号处理的集成电路芯片109以及沉积在集成电路芯片109上且表面经过抛光的钝化层106构成。The
三明治压电堆包括上电极101、下电极103和压电层102。The sandwich piezoelectric stack includes an
三明治压电堆111和基片中的集成电路109通过内部填装导电介质钨的互连通孔107和互连通孔108实现电路连通。The sandwich piezoelectric stack 111 and the
本发明FBAR制作时,首先是在硅晶圆上使用CMOS工艺制造可进行FBAR信号处理的集成电路芯片109,然后采用低压化学气相淀积设备(LPCVD)在集成电路芯片109上镀覆50um的厚氧钝化层106(氮化硅),再对钝化层106进行化学机械抛光(CMP),将上表面打磨平整,此时形成本发明FBAR集成结构的基片110,基片110表面的平整性影响着声波在表面的反射,越光滑平整,则FBAR的Q值也越高。When FBAR of the present invention is made, at first be to use CMOS technology to manufacture the
然后在基片110表面上方依次制作FBAR的布拉格声波反射层对,即低声阻抗薄膜104和高声阻抗薄膜105。Then, on the surface of the
低声阻抗薄膜104选用铝(Al)并使用直流磁控溅射方法制备,高声阻抗薄膜105选用SiO2并使用LPCVD方法制备。The low
接下来要在布拉格反射层之上制作FBAR的三明治结构压电堆111,包括上电极101、压电层102、和下电极103,上、下电极选用铝(Al)电极并采用直流溅射法制备,压电层102材料可以选择氮化铝(AlN)并采用射频磁控反应溅射方法制备,制作顺序依次为:下电极103、压电层102、上电极101。Next, the FBAR sandwich structure piezoelectric stack 111 is to be fabricated on the Bragg reflective layer, including the
最后制作互连通孔107和互连通孔108,使用钨塞技术分别将FBAR的上电极101和下电极103同所述集成电路109连接起来,实现单片集成系统的完整功能。Finally, the interconnection via
采用本发明集成化FBAR,其集成机械牢度强,结构简单可靠,便于传感,应用于射频或传感系统,对各种复杂环境适应性好。The integrated FBAR of the present invention has strong integrated mechanical fastness, simple and reliable structure, is convenient for sensing, is applied to radio frequency or sensing systems, and has good adaptability to various complex environments.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910101967A CN101630946A (en) | 2009-08-27 | 2009-08-27 | Film bulk acoustic resonator (FBAR) and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910101967A CN101630946A (en) | 2009-08-27 | 2009-08-27 | Film bulk acoustic resonator (FBAR) and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101630946A true CN101630946A (en) | 2010-01-20 |
Family
ID=41575923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910101967A Pending CN101630946A (en) | 2009-08-27 | 2009-08-27 | Film bulk acoustic resonator (FBAR) and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101630946A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101895269A (en) * | 2010-07-30 | 2010-11-24 | 中国科学院声学研究所 | Method for preparing piezoelectric film bulk acoustic wave resonator |
CN101924529A (en) * | 2010-08-31 | 2010-12-22 | 庞慰 | Piezoelectric resonator structure |
CN102621026A (en) * | 2012-03-12 | 2012-08-01 | 山东科技大学 | Thin film acoustic wave resonance biochemical sensor integrating microchannel |
CN103326692A (en) * | 2013-05-28 | 2013-09-25 | 江苏艾伦摩尔微电子科技有限公司 | Electrically tunable film bulk acoustic resonator and manufacturing method thereof |
CN103326689A (en) * | 2013-05-28 | 2013-09-25 | 江苏艾伦摩尔微电子科技有限公司 | Single chip integrated temperature compensation film buck acoustic resonator |
CN103731117A (en) * | 2013-12-31 | 2014-04-16 | 江苏艾伦摩尔微电子科技有限公司 | Thin film volume acoustic wave harmonic oscillator structure and manufacturing method thereof |
CN105353143A (en) * | 2010-06-30 | 2016-02-24 | 安派科生物医学科技有限公司 | Apparatus for disease detection |
CN107342748A (en) * | 2017-07-04 | 2017-11-10 | 浙江大学 | A kind of bulk acoustic wave resonator of based single crystal piezoelectric membrane and preparation method thereof |
GB2554400A (en) * | 2016-09-26 | 2018-04-04 | Univ Warwick | Bulk acoustic wave resonator based sensor |
CN108649921A (en) * | 2012-01-18 | 2018-10-12 | 三星电子株式会社 | Bulk acoustic wave resonator |
CN108964631A (en) * | 2017-05-18 | 2018-12-07 | 三星电机株式会社 | Bulk acoustic wave resonator |
CN109639251A (en) * | 2018-12-10 | 2019-04-16 | 开元通信技术(厦门)有限公司 | Bulk acoustic wave resonator and preparation method thereof, filter |
CN109802645A (en) * | 2018-12-26 | 2019-05-24 | 天津大学 | A kind of heterogeneous integrated approach of air-gap type piezoelectric sound wave device and the device |
CN110265544A (en) * | 2019-06-24 | 2019-09-20 | 京东方科技集团股份有限公司 | Piezoelectric transducer and preparation method, the method and electronic equipment that carry out fingerprint recognition |
CN111010130A (en) * | 2019-12-19 | 2020-04-14 | 诺思(天津)微系统有限责任公司 | Bulk acoustic wave resonator with temperature compensation layer and electrical layer, filter and electronic equipment |
WO2020125355A1 (en) * | 2018-12-18 | 2020-06-25 | 天津大学 | Filter having increased via hole area and electronic apparatus |
CN112737539A (en) * | 2019-10-28 | 2021-04-30 | 天津威盛电子有限公司 | Air gap type film bulk acoustic resonator |
CN112968123A (en) * | 2021-02-04 | 2021-06-15 | 电子科技大学 | Flexible film type piezoelectric acoustic emission sensor and manufacturing method thereof |
WO2021217749A1 (en) * | 2020-04-26 | 2021-11-04 | 深圳市信维通信股份有限公司 | Filtering device, radio frequency front-end device and wireless communication device |
US11606080B2 (en) | 2020-04-26 | 2023-03-14 | Shenzhen Sunway Communication Co., Ltd. | Filter device, RF front-end device and wireless communication device |
WO2024140167A1 (en) * | 2022-12-28 | 2024-07-04 | 深圳飞骧科技股份有限公司 | Heterogeneously integrated elastic wave filter and radio-frequency chip |
-
2009
- 2009-08-27 CN CN200910101967A patent/CN101630946A/en active Pending
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105353143A (en) * | 2010-06-30 | 2016-02-24 | 安派科生物医学科技有限公司 | Apparatus for disease detection |
CN101895269B (en) * | 2010-07-30 | 2012-09-05 | 中国科学院声学研究所 | Method for preparing piezoelectric film bulk acoustic wave resonator |
CN101895269A (en) * | 2010-07-30 | 2010-11-24 | 中国科学院声学研究所 | Method for preparing piezoelectric film bulk acoustic wave resonator |
CN101924529B (en) * | 2010-08-31 | 2012-10-10 | 庞慰 | Piezoelectric resonator structure |
CN101924529A (en) * | 2010-08-31 | 2010-12-22 | 庞慰 | Piezoelectric resonator structure |
CN108649921A (en) * | 2012-01-18 | 2018-10-12 | 三星电子株式会社 | Bulk acoustic wave resonator |
CN108649921B (en) * | 2012-01-18 | 2023-08-25 | 三星电子株式会社 | bulk acoustic wave resonator |
CN102621026A (en) * | 2012-03-12 | 2012-08-01 | 山东科技大学 | Thin film acoustic wave resonance biochemical sensor integrating microchannel |
CN103326692A (en) * | 2013-05-28 | 2013-09-25 | 江苏艾伦摩尔微电子科技有限公司 | Electrically tunable film bulk acoustic resonator and manufacturing method thereof |
CN103326689A (en) * | 2013-05-28 | 2013-09-25 | 江苏艾伦摩尔微电子科技有限公司 | Single chip integrated temperature compensation film buck acoustic resonator |
CN103731117A (en) * | 2013-12-31 | 2014-04-16 | 江苏艾伦摩尔微电子科技有限公司 | Thin film volume acoustic wave harmonic oscillator structure and manufacturing method thereof |
GB2554400A (en) * | 2016-09-26 | 2018-04-04 | Univ Warwick | Bulk acoustic wave resonator based sensor |
US11249049B2 (en) | 2016-09-26 | 2022-02-15 | The University Of Warwick | Bulk acoustic wave resonator based sensor |
CN108964631A (en) * | 2017-05-18 | 2018-12-07 | 三星电机株式会社 | Bulk acoustic wave resonator |
CN108964631B (en) * | 2017-05-18 | 2022-02-18 | 三星电机株式会社 | Bulk acoustic wave resonator |
CN107342748A (en) * | 2017-07-04 | 2017-11-10 | 浙江大学 | A kind of bulk acoustic wave resonator of based single crystal piezoelectric membrane and preparation method thereof |
CN107342748B (en) * | 2017-07-04 | 2020-04-28 | 浙江大学 | Bulk acoustic wave resonator based on single crystal piezoelectric film and preparation method thereof |
CN109639251A (en) * | 2018-12-10 | 2019-04-16 | 开元通信技术(厦门)有限公司 | Bulk acoustic wave resonator and preparation method thereof, filter |
WO2020125355A1 (en) * | 2018-12-18 | 2020-06-25 | 天津大学 | Filter having increased via hole area and electronic apparatus |
CN109802645A (en) * | 2018-12-26 | 2019-05-24 | 天津大学 | A kind of heterogeneous integrated approach of air-gap type piezoelectric sound wave device and the device |
CN110265544A (en) * | 2019-06-24 | 2019-09-20 | 京东方科技集团股份有限公司 | Piezoelectric transducer and preparation method, the method and electronic equipment that carry out fingerprint recognition |
US12016249B2 (en) | 2019-06-24 | 2024-06-18 | Boe Technology Group Co., Ltd. | Piezoelectric sensor and manufacturing method thereof, method for recognizing fingerprint, and electronic device |
CN112737539A (en) * | 2019-10-28 | 2021-04-30 | 天津威盛电子有限公司 | Air gap type film bulk acoustic resonator |
CN111010130A (en) * | 2019-12-19 | 2020-04-14 | 诺思(天津)微系统有限责任公司 | Bulk acoustic wave resonator with temperature compensation layer and electrical layer, filter and electronic equipment |
WO2021217749A1 (en) * | 2020-04-26 | 2021-11-04 | 深圳市信维通信股份有限公司 | Filtering device, radio frequency front-end device and wireless communication device |
US11606080B2 (en) | 2020-04-26 | 2023-03-14 | Shenzhen Sunway Communication Co., Ltd. | Filter device, RF front-end device and wireless communication device |
CN112968123A (en) * | 2021-02-04 | 2021-06-15 | 电子科技大学 | Flexible film type piezoelectric acoustic emission sensor and manufacturing method thereof |
CN112968123B (en) * | 2021-02-04 | 2022-11-04 | 电子科技大学 | A flexible film piezoelectric acoustic emission sensor and its manufacturing method |
WO2024140167A1 (en) * | 2022-12-28 | 2024-07-04 | 深圳飞骧科技股份有限公司 | Heterogeneously integrated elastic wave filter and radio-frequency chip |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101630946A (en) | Film bulk acoustic resonator (FBAR) and preparation method thereof | |
US7233218B2 (en) | Air-gap type FBAR, and duplexer using the FBAR | |
US8283835B2 (en) | Guided bulk acoustic wave device having reduced height and method for manufacturing | |
US7675154B2 (en) | RF module with multi-stack structure | |
CN205195673U (en) | Wafer -level package device | |
CN114008918A (en) | Separated step acoustic wave filter | |
CN109831174A (en) | A kind of duplexer | |
JP2005536958A (en) | Resonator and element with hermetic encapsulation member | |
CN103731117A (en) | Thin film volume acoustic wave harmonic oscillator structure and manufacturing method thereof | |
CN101977026A (en) | Manufacturing method of cavity-type film bulk acoustic resonator (FBAR) | |
KR20050098056A (en) | Film bulk acoustic resonator and the method thereof | |
JP2008505573A (en) | A filter with volume wave resonators that can operate symmetrically on both sides | |
KR100555762B1 (en) | Air gap type thin film bulk acoustic resonator and its manufacturing method, filter and duplexer using same | |
CN101951238A (en) | Piezoelectric film bulk acoustic wave resonator | |
CN206542385U (en) | FBAR and communication device with supporting construction | |
CN203675062U (en) | Film bulk acoustic wave resonator structure | |
CN113659953B (en) | Bulk acoustic wave resonator assembly, manufacturing method and communication device | |
WO2020134665A1 (en) | Control circuit, integration method for acoustic wave filter, and integration structure | |
KR100822469B1 (en) | System-on-chip structures, duplexers, and methods for fabricating the air cavity for isolating a plurality of devices from each other | |
CN118826690A (en) | A multi-die stacked radio frequency device | |
CN206542386U (en) | FBAR and communication device based on insulator silicon chip | |
CN114826192B (en) | Three-dimensional integrated MEMS oscillator | |
CN114614790A (en) | Surface acoustic wave filter and method of making the same | |
Kubena et al. | Next generation quartz oscillators and filters for VHF-UHF systems | |
Ha et al. | Novel 1-chip FBAR filter for wireless handsets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Open date: 20100120 |