CN118826690A - A multi-die stacked radio frequency device - Google Patents
A multi-die stacked radio frequency device Download PDFInfo
- Publication number
- CN118826690A CN118826690A CN202411106255.6A CN202411106255A CN118826690A CN 118826690 A CN118826690 A CN 118826690A CN 202411106255 A CN202411106255 A CN 202411106255A CN 118826690 A CN118826690 A CN 118826690A
- Authority
- CN
- China
- Prior art keywords
- layer
- die
- metal
- filter
- acoustic wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002184 metal Substances 0.000 claims abstract description 141
- 229910052751 metal Inorganic materials 0.000 claims abstract description 141
- 238000010168 coupling process Methods 0.000 claims abstract description 65
- 230000008878 coupling Effects 0.000 claims abstract description 62
- 238000005859 coupling reaction Methods 0.000 claims abstract description 62
- 238000010897 surface acoustic wave method Methods 0.000 claims abstract description 45
- 238000002955 isolation Methods 0.000 claims abstract description 31
- 239000000758 substrate Substances 0.000 claims abstract description 30
- 239000010408 film Substances 0.000 claims description 54
- 239000000463 material Substances 0.000 claims description 39
- 238000010521 absorption reaction Methods 0.000 claims description 27
- 238000005530 etching Methods 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 20
- 229920000620 organic polymer Polymers 0.000 claims description 16
- 230000004888 barrier function Effects 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 239000010409 thin film Substances 0.000 claims description 12
- 238000000137 annealing Methods 0.000 claims description 10
- 239000010949 copper Substances 0.000 claims description 10
- 238000009713 electroplating Methods 0.000 claims description 10
- 238000000227 grinding Methods 0.000 claims description 9
- 238000004544 sputter deposition Methods 0.000 claims description 8
- 239000003990 capacitor Substances 0.000 claims description 7
- 238000004806 packaging method and process Methods 0.000 claims description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 4
- 238000010276 construction Methods 0.000 claims description 3
- 238000002513 implantation Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 abstract description 4
- 230000010354 integration Effects 0.000 abstract description 4
- 239000002131 composite material Substances 0.000 abstract description 2
- 230000000149 penetrating effect Effects 0.000 abstract description 2
- 230000000903 blocking effect Effects 0.000 abstract 1
- 238000000605 extraction Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 177
- 235000012431 wafers Nutrition 0.000 description 81
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 34
- 239000013078 crystal Substances 0.000 description 22
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 16
- 229910052710 silicon Inorganic materials 0.000 description 15
- 239000010703 silicon Substances 0.000 description 15
- 229910052814 silicon oxide Inorganic materials 0.000 description 15
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 238000013461 design Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 235000012239 silicon dioxide Nutrition 0.000 description 10
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 9
- 239000000377 silicon dioxide Substances 0.000 description 9
- 238000004140 cleaning Methods 0.000 description 7
- 238000011161 development Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000010931 gold Substances 0.000 description 6
- 238000001465 metallisation Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 208000005156 Dehydration Diseases 0.000 description 4
- 229910018100 Ni-Sn Inorganic materials 0.000 description 4
- 229910018532 Ni—Sn Inorganic materials 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 238000001755 magnetron sputter deposition Methods 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 229920005591 polysilicon Polymers 0.000 description 4
- 238000001994 activation Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000000678 plasma activation Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 2
- 229910017755 Cu-Sn Inorganic materials 0.000 description 2
- 229910017927 Cu—Sn Inorganic materials 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 229910004696 Ti—Cu—Ni Inorganic materials 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 239000007771 core particle Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000002925 chemical effect Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Chemical group 0.000 description 1
- 229910052739 hydrogen Chemical group 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/46—Filters
- H03H9/64—Filters using surface acoustic waves
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/02535—Details of surface acoustic wave devices
- H03H9/02543—Characteristics of substrate, e.g. cutting angles
- H03H9/02574—Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/02—Details
- H03H9/05—Holders or supports
- H03H9/10—Mounting in enclosures
- H03H9/1064—Mounting in enclosures for surface acoustic wave [SAW] devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H9/00—Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
- H03H9/25—Constructional features of resonators using surface acoustic waves
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
技术领域Technical Field
本发明属于射频器件技术领域,尤其是涉及一种多管芯堆叠式射频器件。The present invention belongs to the technical field of radio frequency devices, and in particular relates to a multi-die stacked radio frequency device.
背景技术Background Art
频谱资源是现代通信和广播技术不可或缺的基础,其有效管理和合理利用对保障无线通信服务的稳定性和质量至关重要,频谱资源在现代社会中具有极高的经济价值,是支持移动通信、互联网接入、广播媒体和卫星通信等关键基础设施的基础。Spectrum resources are an indispensable foundation for modern communications and broadcasting technologies. Their effective management and rational use are crucial to ensuring the stability and quality of wireless communication services. Spectrum resources have extremely high economic value in modern society and are the basis for supporting key infrastructure such as mobile communications, Internet access, broadcast media and satellite communications.
随着移动终端的更新换代,市场需求上单部终端设备需要集成更多的射频滤波器,如一部手机由过去的几颗滤波器发展到今天的40~60颗滤波器,未来高性能手机还需要集成上百颗滤波器。这对于滤波器的小型化和封装提出了严峻挑战。滤波器的小型化压缩了器件的设计空间,使得滤波器的综合性能会有一定牺牲。With the upgrading of mobile terminals, the market demand requires the integration of more RF filters in a single terminal device. For example, a mobile phone has developed from a few filters in the past to 40 to 60 filters today. In the future, high-performance mobile phones will also need to integrate hundreds of filters. This poses a severe challenge to the miniaturization and packaging of filters. The miniaturization of filters compresses the design space of devices, resulting in a certain sacrifice in the comprehensive performance of filters.
三维堆叠技术的发展使得滤波器能够减小射频模块的占用面积,用空间高度换面积,然而也带来了封装制程成本高和封装可靠性差的问题。The development of three-dimensional stacking technology enables filters to reduce the area occupied by RF modules, exchanging spatial height for area. However, it also brings problems of high packaging process costs and poor packaging reliability.
发明内容Summary of the invention
为解决上述问题,本发明提供一种多管芯堆叠式射频器件,该射频器件能够在单位空间内集成更多的滤波器,可以具有更低的插损、更佳的隔离等综合性能。In order to solve the above problems, the present invention provides a multi-die stacked radio frequency device, which can integrate more filters in a unit space and can have comprehensive performance such as lower insertion loss and better isolation.
本发明为解决上述问题采用如下的技术方案:The present invention adopts the following technical solutions to solve the above problems:
一种多管芯堆叠式射频器件,包括第一裸片和多颗滤波器裸片,所述滤波器裸片与第一裸片的正面耦合,在第一裸片与耦合面相对的反面制作信号引出,所述第一裸片包括多层异质键合衬底、功能化金属孔、晶圆级封装以及至少一个制作于第一裸片正反面的声表面波滤波器,所述功能化金属孔包括贯穿式导通孔和/或介质阻隔式射频导通孔中的至少一种,所述声表面波滤波器金属化图案通过功能化金属孔进行射频信号联通。A multi-die stacked radio frequency device comprises a first die and a plurality of filter dies, wherein the filter die is coupled to the front side of the first die, and a signal lead is made on the back side of the first die opposite to the coupling side, the first die comprises a multi-layer heterogeneous bonding substrate, a functionalized metal hole, a wafer-level package, and at least one surface acoustic wave filter made on the front and back sides of the first die, the functionalized metal hole comprises at least one of a through-type conductive hole and/or a dielectric-barrier radio frequency conductive hole, and the metallized pattern of the surface acoustic wave filter is connected to the radio frequency signal through the functionalized metal hole.
进一步的,所述贯穿式导通孔的上下面制作互联图案构成三维螺旋电感,所述介质阻隔式射频导通孔制作介质层形成低损耗电容。Furthermore, interconnection patterns are fabricated on the upper and lower surfaces of the through-type vias to form a three-dimensional spiral inductor, and a dielectric layer is fabricated on the dielectric barrier type RF vias to form a low-loss capacitor.
进一步的,所述介质阻隔式射频导通孔中的介质可以是多层异质键合衬底中任意一层,且所述介质阻隔式射频导通孔中的介质的厚度不大于该介质层厚度。Furthermore, the medium in the dielectric-barrier RF via hole may be any layer in a multi-layer heterogeneous bonding substrate, and the thickness of the medium in the dielectric-barrier RF via hole is not greater than the thickness of the dielectric layer.
进一步的,所述第一裸片正反两面包含声表面波滤波器、多颗滤波器裸片的耦合位点、金属互联线和有机高分子聚合物,所述耦合位点和第一表面声表面波滤波器通过第一互联金属线将信号传递至金属化孔。Furthermore, the first bare chip comprises a surface acoustic wave filter, coupling sites of multiple filter bare chips, metal interconnection lines and organic high polymers on both the front and back sides, and the coupling sites and the first surface acoustic wave filter transmit signals to the metallized holes through the first interconnection metal lines.
进一步的,所述有机高分子聚合物在有声表面波谐振器的区域构建空腔,并对其谐振器进行密封,所述晶圆级封装包括有机高分子在谐振器上方空腔构建和晶圆耦合位点的UBM制作,所述耦合位点的UBM金属结构包含Ti-Cu-Ni、Ti-Cu-Ni-Sn、Ti-Cu-Ni-Pd-Au、Ti-Cu-Ni-Au、NiCr-Cu、NiCr-Cu-Sn、NiCr-Cu-Ni-Sn、NiCr-Cu-Ni-Au。Furthermore, the organic high polymer constructs a cavity in the area of the surface acoustic wave resonator and seals the resonator. The wafer-level packaging includes the construction of the cavity above the resonator by the organic high polymer and the UBM production at the wafer coupling site. The UBM metal structure at the coupling site includes Ti-Cu-Ni, Ti-Cu-Ni-Sn, Ti-Cu-Ni-Pd-Au, Ti-Cu-Ni-Au, NiCr-Cu, NiCr-Cu-Sn, NiCr-Cu-Ni-Sn, and NiCr-Cu-Ni-Au.
进一步的,所述多颗滤波器裸片的耦合位点与第一裸片上的功能化金属孔位置存在重合状态和不重合下通过金属互联线相连导通的状态,所述裸片耦合位点的面积为功能化金属孔的面积1-3倍。Furthermore, the coupling sites of the multiple filter bare chips overlap with the positions of the functionalized metal holes on the first bare chip, and are connected and conductive through metal interconnects without overlapping. The area of the bare chip coupling sites is 1-3 times the area of the functionalized metal holes.
进一步的,所述第一表面的裸片耦合位点和第一表面声表面波滤波器通过第一互联金属线将信号传递至金属化孔,所述第一互联金属线根据设计需要将所述第一裸片第一表面声表面波滤波器、所述多颗滤波器裸片的滤波器和所述第一表面金属孔进行连通耦合或隔离。Furthermore, the bare chip coupling site on the first surface and the first surface acoustic wave filter transmit the signal to the metallized hole through the first interconnected metal line, and the first interconnected metal line connects, couples or isolates the first bare chip first surface acoustic wave filter, the filters of the multiple filter bare chips and the first surface metal hole according to design requirements.
进一步的,所述第二表面的金属化孔位置和第二表面声表面波滤波器通过第二互联金属线将信号传递至信号引出耦合位点,所述第二互联金属线根据设计需要将所述第一裸片第二表面金属化孔位置的信号、所述第二表面声表面波滤波器和所述第二表面信号引出用耦合连接位点进行连通耦合或隔离。Furthermore, the metallized hole position on the second surface and the second surface acoustic wave filter transmit the signal to the signal lead-out coupling site through the second interconnected metal line, and the second interconnected metal line connects and couples or isolates the signal at the metallized hole position on the second surface of the first bare chip, the second surface acoustic wave filter and the second surface signal lead-out coupling connection site according to design requirements.
进一步的,所述滤波器裸片与第一裸片的耦合方式包含金属球植球倒扣、金属凸点-金属凸点键合、电镀金属柱-焊盘倒装回流。Furthermore, the coupling method of the filter bare chip and the first bare chip includes metal ball implantation flip-up, metal bump-metal bump bonding, and electroplated metal column-pad flip-chip reflow.
进一步的,所述滤波器裸片包含至少一片封装后的射频滤波器裸片,具体包括声表面波滤波器(SAW)、体声波滤波器(BAW)、集成无源滤波器(IPD)、低温共烧陶瓷滤波器、毫米波滤波器中的一种或多种。Furthermore, the filter die includes at least one packaged RF filter die, specifically including one or more of a surface acoustic wave filter (SAW), a bulk acoustic wave filter (BAW), an integrated passive filter (IPD), a low temperature co-fired ceramic filter, and a millimeter wave filter.
进一步的,所述多层异质键合衬底包含材料属性和材料参数相互独立的的第一薄膜压电层和第二薄膜压电层、第一隔离层和第二隔离层、第一吸收层和第二吸收层和中间衬底层。Furthermore, the multilayer heterogeneous bonding substrate comprises a first thin film piezoelectric layer and a second thin film piezoelectric layer, a first isolation layer and a second isolation layer, a first absorption layer and a second absorption layer, and an intermediate substrate layer, the material properties and material parameters of which are independent of each other.
进一步的,所述第一薄膜压电层和第二薄膜压电层材料包含铌酸锂、钽酸锂,所述第一隔离层和第二隔离层材料为低声速材料,包含二氧化硅,所述第一隔离层和第二隔离层材料的制备工艺不一定相同,所述制备工艺包含磁控溅射、离子束溅射、化学气相沉积、热氧化、凝胶-溶胶法,所述第一吸收层和第二吸收层材料捕捉电子,提升器件品质因子Q值,吸收层材料包含多晶硅,所述衬底层为高声速材料,包含高阻硅、碳化硅、金刚石、蓝宝石、石英。Furthermore, the materials of the first thin film piezoelectric layer and the second thin film piezoelectric layer include lithium niobate and lithium tantalate, the materials of the first isolation layer and the second isolation layer are low acoustic velocity materials, including silicon dioxide, the preparation processes of the first isolation layer and the second isolation layer materials are not necessarily the same, and the preparation processes include magnetron sputtering, ion beam sputtering, chemical vapor deposition, thermal oxidation, and gel-sol method. The materials of the first absorption layer and the second absorption layer capture electrons to improve the device quality factor Q value, the absorption layer material includes polycrystalline silicon, and the substrate layer is a high acoustic velocity material, including high-resistance silicon, silicon carbide, diamond, sapphire, and quartz.
进一步的,所述材料属性包含晶体材料的晶格结构、晶体类型、介电常数、磁导率、致密度、电光效应等物理化学特性;所述材料参数包含材料厚度、材料分布区域。Furthermore, the material properties include physical and chemical properties such as lattice structure, crystal type, dielectric constant, magnetic permeability, density, electro-optical effect, etc. of the crystal material; the material parameters include material thickness and material distribution area.
所述多层异质键合片制作通孔并金属化,通孔侧壁溅射绝缘层、黏附层和金属层,通孔内进行电镀铜的金属化填实从而连通多层异质键合片上下表面。The multi-layer heterogeneous bonding sheet is made into through holes and metalized, the through hole sidewalls are sputtered with insulating layers, adhesive layers and metal layers, and the through holes are metallized and filled with electroplated copper to connect the upper and lower surfaces of the multi-layer heterogeneous bonding sheet.
本发明还提供一种多管芯堆叠式射频器件的制作方法,所述制作方法包括如下步骤:The present invention also provides a method for manufacturing a multi-die stacked radio frequency device, the manufacturing method comprising the following steps:
S1:制造多层异质键合的第一裸片;S1: fabrication of the first die of multi-layer heterogeneous bonding;
S2:制造所述第一裸片的功能化金属孔,在贯穿式孔位置通过刻蚀所有层制作通孔,在介质阻隔式孔位置除第一裸片的某介质层外刻蚀所有层,上述两种孔刻蚀完毕后进行孔内溅射绝缘层、黏附层和导通层,电镀孔内金属铜直至填实,退火;S2: manufacturing functional metal holes of the first bare chip, making through holes at the through hole position by etching all layers, etching all layers except a dielectric layer of the first bare chip at the dielectric barrier hole position, sputtering insulating layers, adhesion layers and conductive layers in the holes after the etching of the above two types of holes is completed, electroplating metal copper in the holes until they are filled, and annealing;
S3:CMP研磨第一裸片正反面,去除表面电镀金属层直至完全露出压电薄膜层;S3: CMP grinding the front and back sides of the first bare chip to remove the surface electroplated metal layer until the piezoelectric film layer is completely exposed;
S4:在第一裸片的第一表面制作至少一个声表面波滤波器和多个耦合连接位点以及金属互连线;S4: fabricating at least one surface acoustic wave filter and a plurality of coupling connection sites and metal interconnection lines on a first surface of the first die;
S5:在第一裸片的第一表面制作有机高分子聚合物空腔,封闭声表面波谐振器区域;S5: forming an organic polymer cavity on the first surface of the first bare chip to enclose the surface acoustic wave resonator region;
S6:在第一裸片的第二表面制作至少一个声表面波滤波器和多个耦合连接位点以及金属互连线;S6: fabricating at least one surface acoustic wave filter and a plurality of coupling connection sites and metal interconnection lines on the second surface of the first die;
S7:在第一裸片的第二表面制作有机高分子聚合物空腔,封闭声表面波谐振器区域;S7: forming an organic polymer cavity on the second surface of the first bare chip to close the surface acoustic wave resonator region;
S8:制作多颗滤波器裸片;S8: making multiple filter bare chips;
S9:将所述多颗滤波器裸片依次耦合到第一裸片的第一表面。S9: sequentially coupling the plurality of filter bare chips to the first surface of the first bare chip.
本发明的有益效果在于:The beneficial effects of the present invention are:
1.用到双面压电薄膜的多层异质键合技术、通孔刻蚀技术和管芯间耦合技术,能够单片集成更多滤波器,且滤波器设计空间更大,插损更低,隔离更好,可靠性更高,具有更优器件综合性能;1. The use of multi-layer heterogeneous bonding technology, through-hole etching technology and inter-die coupling technology of double-sided piezoelectric films can integrate more filters on a single chip, and the filter design space is larger, the insertion loss is lower, the isolation is better, the reliability is higher, and the device has better overall performance;
2.多层异质键合晶圆结构中金属化孔的布局分为多种规格,每种规格下金属化孔大小和排布位置不同,在某种规格下的金属化孔大小和排布固定并成为声表面波滤波器脚位定义和设计的规则之一,便于复合片批产;2. The layout of the metallized holes in the multi-layer heterogeneous bonding wafer structure is divided into multiple specifications. The size and arrangement of the metallized holes are different under each specification. The size and arrangement of the metallized holes under a certain specification are fixed and become one of the rules for the definition and design of the SAW filter pins, which is convenient for batch production of composite wafers;
3.第一吸收层和第二吸收层材料包含多晶硅、氮化硅、金属,可以捕捉电子,提升器件品质因子Q值;3. The first absorption layer and the second absorption layer materials include polysilicon, silicon nitride, and metal, which can capture electrons and improve the device quality factor Q value;
4.功能化实心金属孔至少包含孔上下面贯穿式导通孔和中间介质阻隔式射频导通孔中的一种,在贯穿式孔的上下面制作互联图案可构成三维螺旋电感,在介质阻隔式实心孔制作介质层可形成一定容值的低损耗电容,在功能化实心金属孔基础上制作而来的电感和电容可被多管芯堆叠射频器件用作电路匹配或被串并联优化某个谐振器的性能。4. The functionalized solid metal hole includes at least one of a through-type conductive hole on the upper and lower surfaces of the hole and a dielectric barrier type RF conductive hole in the middle. An interconnection pattern is made on the upper and lower surfaces of the through-type hole to form a three-dimensional spiral inductor. A dielectric layer is made in the dielectric barrier type solid hole to form a low-loss capacitor with a certain capacitance. The inductor and capacitor made on the basis of the functionalized solid metal hole can be used for circuit matching in multi-die stacked RF devices or connected in series and parallel to optimize the performance of a resonator.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明具体实施方式,下面将对具体实施方式描述中所需要使用的附图作简单地介绍,下面描述中的附图为上文所述新型射频前端接收声表面波滤波器模组的示例图。显而易见地,下面描述的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引申获得其它的实施例附图。In order to more clearly illustrate the specific implementation of the present invention, the following will briefly introduce the drawings required for the description of the specific implementation. The drawings described below are example diagrams of the novel RF front-end receiving surface acoustic wave filter module described above. Obviously, the drawings described below are only exemplary. For ordinary technicians in this field, other embodiment drawings can be derived from the provided drawings without creative work.
图1为只包含贯穿式金属孔的多管芯堆叠式射频器件的结构图;FIG1 is a structural diagram of a multi-die stacked RF device containing only through-type metal vias;
图2为多层异质键合晶圆表面滤波器、焊盘和功能化金属孔分布及连接方式示意图;FIG2 is a schematic diagram of the distribution and connection of filters, pads and functionalized metal holes on the surface of a multi-layer heterogeneous bonded wafer;
图3为多层异质键合晶圆典型结构图;FIG3 is a typical structure diagram of a multi-layer heterogeneous bonding wafer;
图4为多层异质键合晶圆开孔的结构示意图;FIG4 is a schematic diagram of the structure of a multi-layer heterogeneous bonding wafer opening;
图5为多层异质键合晶圆通孔金属化的结构示意图;FIG5 is a schematic diagram of the structure of multi-layer heterogeneous bonding wafer through-hole metallization;
图6为多层异质键合晶圆双面研磨抛光的结构示意图;FIG6 is a schematic diagram of the structure of double-sided grinding and polishing of a multi-layer heterogeneous bonded wafer;
图7为多层异质键合晶圆双面制作声表面波滤波器及晶圆级封装的结构示意图;FIG7 is a schematic diagram of the structure of a double-sided surface acoustic wave filter fabricated on a multi-layer heterogeneous bonding wafer and wafer-level packaging;
图8为裸片集合组件植球的结构简图;FIG8 is a schematic diagram of the structure of the bare chip assembly ball planting;
图9为包含贯穿式和介质电容隔断式金属孔的多管芯堆叠式射频器件的结构图。FIG. 9 is a structural diagram of a multi-die stacked RF device including through-type and dielectric capacitor isolation metal holes.
图中:1-叉指换能器金属指;2-有机高分子聚合物空腔;3-有机高分子聚合物;4-裸片耦合位点;5-金属互连线;6-功能化金属孔;7-第二压电薄膜层;8-第二隔离层;9-第二吸收层;10-衬底层;11-第一吸收层;12-第一隔离层;13-第一压电薄膜层;14-功能化金属孔耦合面板;15-滤波器裸片;16-滤波器裸片和多层异质键合晶圆耦合位点;17-功能化金属孔与耦合位点的互连线;18-短距离金属互联线;19-长距离金属互连线;20-多层异质键合晶圆表面滤波器焊盘;21-多层异质键合晶圆表面滤波器;22-多层异质键合晶圆表面;23-多层异质键合晶圆表面金属焊盘;25-电镀填充后的功能化金属孔;26-表面电镀金属层;28-刻蚀完毕的功能化金属孔;29-研磨去除表面金属层后的贯穿式导通孔;30-介质阻隔式射频导通孔。In the figure: 1-interdigital transducer metal finger; 2-organic polymer cavity; 3-organic polymer; 4-die coupling site; 5-metal interconnection line; 6-functionalized metal hole; 7-second piezoelectric film layer; 8-second isolation layer; 9-second absorption layer; 10-substrate layer; 11-first absorption layer; 12-first isolation layer; 13-first piezoelectric film layer; 14-functionalized metal hole coupling panel; 15-filter die; 16-filter die and multi-layer heterogeneous bonding wafer coupling site; 17-functionalized metal Interconnection line between hole and coupling site; 18-short distance metal interconnection line; 19-long distance metal interconnection line; 20-multi-layer heterogeneous bonded wafer surface filter pad; 21-multi-layer heterogeneous bonded wafer surface filter; 22-multi-layer heterogeneous bonded wafer surface; 23-multi-layer heterogeneous bonded wafer surface metal pad; 25-functionalized metal hole after electroplating filling; 26-surface electroplated metal layer; 28-functionalized metal hole after etching; 29-through conductive hole after grinding and removing the surface metal layer; 30-dielectric barrier RF conductive hole.
具体实施方式DETAILED DESCRIPTION
下面将参照附图更详细地描述本专利的示例性实施例。虽然附图中显示了本专利的示例性实施例,然而应当理解,可以以各种形式实现本专利而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本专利,并且能够将本专利的范围完整的传达给本领域的技术人员。需要说明的是,在不冲突的情况下,本专利中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本专利。The exemplary embodiments of the present patent will be described in more detail below with reference to the accompanying drawings. Although exemplary embodiments of the present patent are shown in the accompanying drawings, it should be understood that the present patent can be implemented in various forms and should not be limited by the embodiments described herein. On the contrary, these embodiments are provided to enable a more thorough understanding of the present patent and to fully convey the scope of the present patent to those skilled in the art. It should be noted that the embodiments in the present patent and the features in the embodiments can be combined with each other without conflict. The present patent will be described in detail below with reference to the accompanying drawings and in combination with the embodiments.
实施例1Example 1
如图1-2所示,本发明提供一种多管芯堆叠式射频器件,包括第一裸片和多颗滤波器裸片15,第一裸片包含正反面,正面为第一表面,反面为第二表面,滤波器裸片15与第一裸片的正面耦合,滤波器裸片15与第一裸片的耦合方式包含金属球植球倒扣、金属凸点-金属凸点键合、电镀金属柱-焊盘倒装回流,在第一裸片与耦合面相对的反面制作信号引出,第一裸片包括多层异质键合衬底、贯穿第一裸片的功能化金属孔6以及晶圆级封装,第一裸片的正反两面分别制作至少一个薄膜型声表面波滤波器金属化图案,声表面波滤波器金属化图案通过功能化金属孔6进行射频信号联通;第一裸片正反两面包含声表面波滤波器、多颗滤波器裸片的耦合位点、金属互联线和有机高分子聚合物,耦合位点和第一表面声表面波滤波器通过第一互联金属线将信号传递至金属化孔,滤波器裸片包含至少一片封装后的射频滤波器裸片,具体包括声表面波滤波器(SAW)、体声波滤波器(BAW)、集成无源滤波器(IPD)、低温共烧陶瓷滤波器、毫米波滤波器中的一种或多种。As shown in Fig. 1-2, the present invention provides a multi-die stacked RF device, including a first die and a plurality of filter die 15, the first die including a front and a back, the front being a first surface, the back being a second surface, the filter die 15 is coupled with the front of the first die, the coupling method of the filter die 15 with the first die includes metal ball implantation flip-flop, metal bump-metal bump bonding, electroplated metal column-pad flip-chip reflow, a signal lead is made on the back of the first die opposite to the coupling surface, the first die includes a multi-layer heterogeneous bonding substrate, a functionalized metal hole 6 penetrating the first die, and a wafer-level package, at least one thin film is made on each of the front and back sides of the first die A membrane-type surface acoustic wave filter metallization pattern, the surface acoustic wave filter metallization pattern is connected to the radio frequency signal through a functionalized metal hole 6; the front and back sides of the first bare chip include a surface acoustic wave filter, coupling sites of multiple filter bare chips, metal interconnects and organic high polymers, the coupling sites and the first surface acoustic wave filter transmit signals to the metallization holes through the first interconnected metal lines, and the filter bare chip includes at least one packaged radio frequency filter bare chip, specifically including one or more of a surface acoustic wave filter (SAW), a bulk acoustic wave filter (BAW), an integrated passive filter (IPD), a low-temperature co-fired ceramic filter, and a millimeter wave filter.
本实施例中,功能化金属孔6只包括贯穿式导通孔,贯穿式导通孔的上下面制作互联图案构成三维螺旋电感,在功能化金属孔6基础上制作而来的电感可被多管芯堆叠射频器件用作电路匹配或被串并联优化某个谐振器的性能。In this embodiment, the functionalized metal hole 6 only includes a through-type conductive hole, and the upper and lower surfaces of the through-type conductive hole are made into an interconnected pattern to form a three-dimensional spiral inductor. The inductor made on the basis of the functionalized metal hole 6 can be used for circuit matching in a multi-die stacked RF device or connected in series and parallel to optimize the performance of a certain resonator.
有机高分子聚合物3在有声表面波谐振器的区域构建有机高分子聚合物空腔2,并对其谐振器进行密封,晶圆级封装包括有机高分子在谐振器上方空腔构建和晶圆耦合位点的UBM制作,耦合位点的UBM金属结构包含含Ti-Cu-Ni、Ti-Cu-Ni-Sn、Ti-Cu-Ni-Pd-Au、Ti-Cu-Ni-Au、NiCr-Cu、NiCr-Cu-Sn、NiCr-Cu-Ni-Sn、NiCr-Cu-Ni-Au。The organic polymer 3 constructs an organic polymer cavity 2 in the area of the acoustic surface wave resonator and seals the resonator. The wafer-level packaging includes the construction of the organic polymer cavity above the resonator and the UBM production of the wafer coupling site. The UBM metal structure of the coupling site includes Ti-Cu-Ni, Ti-Cu-Ni-Sn, Ti-Cu-Ni-Pd-Au, Ti-Cu-Ni-Au, NiCr-Cu, NiCr-Cu-Sn, NiCr-Cu-Ni-Sn, and NiCr-Cu-Ni-Au.
多颗滤波器裸片15的耦合位点与第一裸片上的功能化金属孔位置存在重合状态和不重合下通过金属互联线相连导通的状态,裸片耦合位点的面积为功能化金属孔的面积1-3倍;第一表面的耦合位点和第一表面声表面波滤波器通过第一互联金属线将信号传递至金属化孔,第一互联金属线根据设计需要将第一裸片第一表面声表面波滤波器、多颗滤波器裸片的滤波器和第一表面金属孔进行连通耦合或隔离;第二表面的金属化孔位置和第二表面声表面波滤波器通过第二互联金属线将信号传递至信号引出耦合位点,第二互联金属线根据设计需要将第一裸片第二表面金属化孔位置的信号、第二表面声表面波滤波器和第二表面信号引出用耦合连接位点进行连通耦合或隔离。The coupling sites of the multiple filter bare chips 15 overlap with the functionalized metal hole positions on the first bare chip, and are connected and conductive through metal interconnections when they are not overlapped. The area of the bare chip coupling sites is 1-3 times the area of the functionalized metal holes. The coupling sites on the first surface and the first surface acoustic wave filter transmit signals to the metallized holes through the first interconnected metal wires. The first interconnected metal wires connect and couple or isolate the first surface acoustic wave filter of the first bare chip, the filters of the multiple filter bare chips, and the first surface metal holes according to design requirements. The metallized hole positions on the second surface and the second surface acoustic wave filters transmit signals to the signal lead-out coupling sites through the second interconnected metal wires. The second interconnected metal wires connect and couple or isolate the signals at the metallized hole positions on the second surface of the first bare chip, the second surface acoustic wave filter, and the second surface signal lead-out coupling connection sites according to design requirements.
本实施例中多管芯堆叠式射频器件结构包括:第一裸片和多颗滤波器裸片15,第一裸片包括第一压电薄膜层13,第一隔离层12,第一吸收层11,衬底层10,第二吸收层9,第二隔离层8,第二压电薄膜层7、功能化金属孔6、功能化金属孔耦合面板14、第一裸片上叉指换能器金属指1、有机高分子聚合物3、有机高分子聚合物空腔2、金属互连线5、第一裸片功能化金属孔与耦合位点的互连线17、裸片耦合位点4、第一压电薄膜层13和第二压电薄膜层7为铌酸锂薄膜,两者的晶体切向、厚度不一定相同,本实施例根据正反面声表面波滤波器设计要求,在制备前通过专业的软件进行多模块耦合声电仿真,确定压电材料在多种晶向下对应的滤波器性能,在正反面布局了不一样的晶体材料结构,在第一裸片的第一表面设计压电薄膜层13的晶体切向为15°YX-铌酸锂,厚度为500nm,设计第一裸片的第二表面压电薄膜层7的晶体切向为128°YX-钽酸锂,厚度为750nm;第一裸片的第一隔离层12和第二隔离层8的材料参数和制备工艺不一定相同,第一隔离层12和第二隔离层8实施例优选的为二氧化硅,通过磁控溅射的方式制备,实施例调节磁控溅射中衬底温度、溅射气氛和离化强度来改变二氧化硅的致密度和介电常数等重要材料参数;第一隔离层12和第二隔离层8厚度在500nm,第一吸收层11和第二吸收层9采用多晶硅材料,通过溅射的方式在单晶衬底层上制作厚度1um的多晶硅层,衬底层10为高声速材料,考虑到硅衬底良好的高声阻抗特性以及目前成熟的硅通孔(TSV)工艺,实施例选用高阻硅衬底,硅晶向为(1,1,1),衬底硅厚度为500um。In this embodiment, the multi-die stacked RF device structure includes: a first bare chip and multiple filter bare chips 15, the first bare chip includes a first piezoelectric film layer 13, a first isolation layer 12, a first absorption layer 11, a substrate layer 10, a second absorption layer 9, a second isolation layer 8, a second piezoelectric film layer 7, a functionalized metal hole 6, a functionalized metal hole coupling panel 14, a metal finger 1 of the interdigital transducer on the first bare chip, an organic polymer 3, an organic polymer cavity 2, a metal interconnection line 5, an interconnection line 17 between the functionalized metal hole and the coupling site of the first bare chip, a bare chip coupling site 4, the first piezoelectric film layer 13 and the second piezoelectric film layer 7 are lithium niobate films, and the crystal tangent and thickness of the two are not necessarily the same. According to the design requirements of the front and back surface acoustic wave filters, this embodiment uses professional software to perform multi-module coupled acoustic and electrical simulation before preparation to determine the filter performance corresponding to the piezoelectric material under multiple crystal directions, and different crystal material structures are arranged on the front and back sides. The crystal of the piezoelectric film layer 13 is designed on the first surface of the first bare chip. The tangent is 15°YX-lithium niobate and the thickness is 500nm. The crystal tangent of the second surface piezoelectric film layer 7 of the first bare chip is designed to be 128°YX-lithium tantalate and the thickness is 750nm. The material parameters and preparation process of the first isolation layer 12 and the second isolation layer 8 of the first bare chip are not necessarily the same. The first isolation layer 12 and the second isolation layer 8 are preferably silicon dioxide in the embodiment, which are prepared by magnetron sputtering. The embodiment adjusts the substrate temperature, sputtering atmosphere and ionization intensity in the magnetron sputtering to change the important material parameters such as the density and dielectric constant of silicon dioxide. The thickness of the first isolation layer 12 and the second isolation layer 8 is 500nm. The first absorption layer 11 and the second absorption layer 9 are made of polycrystalline silicon material. A polycrystalline silicon layer with a thickness of 1um is made on a single crystal substrate layer by sputtering. The substrate layer 10 is a high acoustic velocity material. Considering the good high acoustic impedance characteristics of the silicon substrate and the currently mature through silicon via (TSV) process, the embodiment selects a high-resistance silicon substrate with a silicon crystal orientation of (1,1,1) and a substrate silicon thickness of 500um.
对于压电薄膜层,目前常见的刻蚀是Ar物理刻蚀和湿法刻蚀;但湿法刻蚀受到压电晶体材料的各向异性的影响较大,一般导致孔形貌不好,Ar物理轰击刻蚀是目前学术界和产业界常见的做法,通过在压电薄膜层表面制作掩膜,用Ar物理轰击刻蚀穿透压电薄膜层和二氧化硅隔离层,在硅层上用CF4和SF6气体进行循环刻蚀,去除孔内多晶硅吸收层和单晶硅衬底层,得到直径在50~80um的通孔;通孔贯穿第一裸片,金属化后连接正反面信号,实施例在制作完成后的通孔内溅射绝缘层二氧化硅1um,溅射粘附层Ti0.3um和电镀种子层3um,电镀填实并将表面的金属铜用CMP的方式去除,抛光表面,此时形成了金属化孔表面和压电薄膜无高度差、无缝隙衔接的第一裸片第一和第二表面;通孔内的金属填实质量可通过XRD的方式检测。For the piezoelectric film layer, the common etching methods at present are Ar physical etching and wet etching; however, wet etching is greatly affected by the anisotropy of the piezoelectric crystal material, which generally leads to poor hole morphology. Ar physical bombardment etching is a common practice in academia and industry. A mask is made on the surface of the piezoelectric film layer, and Ar physical bombardment etching is used to penetrate the piezoelectric film layer and the silicon dioxide isolation layer. CF4 and SF6 gases are used to perform cyclic etching on the silicon layer to remove the polysilicon absorption layer and the single crystal silicon substrate layer in the hole, so as to obtain a through hole with a diameter of 50 to 80 um; the through hole passes through the first bare chip, and the front and back signals are connected after metallization. In the embodiment, an insulating layer of silicon dioxide of 1 um, an adhesion layer of Ti of 0.3 um and an electroplating seed layer of 3 um are sputtered in the through hole after the manufacturing is completed, and the electroplating is filled and the metal copper on the surface is removed by CMP, and the surface is polished. At this time, the first and second surfaces of the first bare chip with no height difference between the metallized hole surface and the piezoelectric film and seamless connection are formed; the metal filling quality in the through hole can be detected by XRD.
在第一裸片表面制作声表面波滤波器,通过涂胶光刻显影、蒸发镀膜、剥离、汇流条加厚等成熟的半导体加工工艺制作出第一裸片第一表面的金属图案,在图案中也根据设计将必要的金属互联线和金属焊盘制作其中。A surface acoustic wave filter is manufactured on the surface of the first bare chip. The metal pattern on the first surface of the first bare chip is manufactured through mature semiconductor processing techniques such as coating, photolithography, development, evaporation coating, stripping, and bus bar thickening. Necessary metal interconnects and metal pads are also manufactured in the pattern according to the design.
如图2所示,本实施例在第一裸片的第二表面制作了不完整的声表面波滤波器21、多层异质键合晶圆表面金属焊盘23、短距金属互联线18,多层异质键合晶圆表面滤波器21上自带多层异质键合晶圆表面滤波器焊盘20,不完全依赖第一裸片的第二表面上的多层异质键合晶圆表面金属焊盘23,第二表面上的贯穿式导通孔6、裸片耦合位点4和多层异质键合晶圆表面金属焊盘23的直径为120um,用来和外接射频电路耦合,通过第二表面上设置的短距金属互联线18、金属互连线5、长距金属互联线19用来和外接射频电路耦合;多层异质键合晶圆表面金属焊盘23的底部为无贯穿式导通孔6的压电薄膜层或有贯穿式导通孔6的压电薄膜层,在本实施例中第二面上设置了大尺寸的cell,包含六个尺寸大小不一致的多层异质键合晶圆表面22,在每个多层异质键合晶圆表面22内设计并制作不同的多层异质键合晶圆表面滤波器21,且每个多层异质键合晶圆表面滤波器21之间的空隙分布有多个贯穿式导通孔6和多个多层异质键合晶圆表面金属焊盘23,贯穿式导通孔6的信号连接第一裸片第一表面的电信号。As shown in FIG2 , in this embodiment, an incomplete surface acoustic wave filter 21, a multi-layer heterogeneous bonding wafer surface metal pad 23, and a short-distance metal interconnection line 18 are manufactured on the second surface of the first bare die. The multi-layer heterogeneous bonding wafer surface filter 21 has its own multi-layer heterogeneous bonding wafer surface filter pad 20, which is not completely dependent on the multi-layer heterogeneous bonding wafer surface metal pad 23 on the second surface of the first bare die. The diameter of the through-type via 6, the bare die coupling site 4, and the multi-layer heterogeneous bonding wafer surface metal pad 23 on the second surface is 120 um, which is used to couple with an external RF circuit, through the short-distance metal interconnection line 18, the metal interconnection line 5, and the long-distance metal interconnection line 19 arranged on the second surface. Used to couple with an external RF circuit; the bottom of the multi-layer heterogeneous bonded wafer surface metal pad 23 is a piezoelectric film layer without a through-type conductive hole 6 or a piezoelectric film layer with a through-type conductive hole 6. In this embodiment, a large-size cell is arranged on the second surface, including six multi-layer heterogeneous bonded wafer surfaces 22 of inconsistent sizes. Different multi-layer heterogeneous bonded wafer surface filters 21 are designed and manufactured in each multi-layer heterogeneous bonded wafer surface 22, and the gaps between each multi-layer heterogeneous bonded wafer surface filter 21 are distributed with multiple through-type conductive holes 6 and multiple multi-layer heterogeneous bonded wafer surface metal pads 23. The signal of the through-type conductive hole 6 is connected to the electrical signal of the first surface of the first bare chip.
设置贯穿式导通孔6、第一压电薄膜层13、金属互连线5、短距金属互联线18和长距金属互联线19,一方面,贯穿式导通孔6通过金属互连线5、短距金属互联线18或长距金属互联线19将第一表面上的电信号传递至多层异质键合晶圆表面金属焊盘23,然后接入射频电路内,起到短距离导通和集成的作用,另一方面,使多个滤波器之间的性能耦合,增加了更多设计空间,在第一裸片的正反面分别制作滤波器提升器件的隔离度,或者通过互联贯穿式导通孔6的上下表面构成三维螺旋电感接入滤波器中构成匹配电路提升器件特定指标,或者将多个不同的滤波器接地端共接的方式实现特定频段带外抑制等。A through-type via 6, a first piezoelectric film layer 13, a metal interconnection line 5, a short-distance metal interconnection line 18 and a long-distance metal interconnection line 19 are provided. On the one hand, the through-type via 6 transmits the electrical signal on the first surface to the metal pad 23 on the surface of the multi-layer heterogeneous bonding wafer through the metal interconnection line 5, the short-distance metal interconnection line 18 or the long-distance metal interconnection line 19, and then connects to the radio frequency circuit to play a role of short-distance conduction and integration. On the other hand, the performance of multiple filters is coupled, which increases more design space. Filters are respectively made on the front and back sides of the first bare chip to improve the isolation of the device, or a three-dimensional spiral inductor is formed by interconnecting the upper and lower surfaces of the through-type via 6 to connect to the filter to form a matching circuit to improve the specific indicators of the device, or a plurality of different filter ground terminals are connected in common to achieve out-of-band suppression in a specific frequency band, etc.
第一表面与滤波器裸片5直接耦合,因此多层异质键合晶圆表面金属焊盘23的位置规格以及滤波器裸片的尺寸大小及布局密切相关,第一表面的滤波器裸片堆叠耦合后通过第一裸片功能化金属孔与耦合位点的互连线17与裸片耦合位点4、贯穿式导通孔6连接或者裸片耦合位点4的底部与贯穿式导通孔6直接接触后导通并将信号传输至第二表面,第一表面上的多层异质键合晶圆表面滤波器21通过第一裸片功能化金属孔与耦合位点的互连线17将各个信号端导通至贯穿式导通孔6,第一裸片功能化金属孔与耦合位点的互连线17之间能够相互导通,若将共地端通过第一表面的第一裸片功能化金属孔与耦合位点的互连线17导通后,能够将第一表面的多层异质键合晶圆表面滤波器21与滤波器裸片耦合,从而增加多种滤波器之间的组合以及达到性能上耦合的灵活度,并提高器件的集成度。The first surface is directly coupled to the filter die 5, so the position specification of the metal pad 23 on the surface of the multi-layer heterogeneous bonding wafer is closely related to the size and layout of the filter die. After the filter die stacking and coupling on the first surface is connected to the die coupling site 4 and the through-type conductive hole 6 through the first die functionalized metal hole and the interconnection line 17 at the coupling site, or the bottom of the die coupling site 4 is directly in contact with the through-type conductive hole 6, and then the signal is transmitted to the second surface. The multi-layer heterogeneous bonding wafer surface filter 21 on the first surface conducts each signal end to the through-type conductive hole 6 through the first die functionalized metal hole and the interconnection line 17 at the coupling site. The first die functionalized metal hole and the interconnection line 17 at the coupling site can be mutually conductive. If the common ground end is connected through the first die functionalized metal hole on the first surface and the interconnection line 17 at the coupling site, the multi-layer heterogeneous bonding wafer surface filter 21 on the first surface can be coupled to the filter die, thereby increasing the combination of multiple filters and achieving the flexibility of coupling in performance, and improving the integration of the device.
上述多管芯堆叠式射频器件的制作方法,其制作的中间状态如图3-图7所示,具体步骤如下:The manufacturing method of the multi-die stacked RF device, the intermediate states of which are shown in FIG. 3 to FIG. 7 , and the specific steps are as follows:
1)提供两片双面抛光且平整的压电单晶材料,压电单晶材料厚度均为250um,在后续的离子注入和退火剥离后成为第二压电薄膜层7和第一压电薄膜层13,第一压电晶体为15°YX-铌酸锂,第二压电晶体为128°YX-钽酸锂,晶圆切向下能够使得声表面波滤波器的综合性能较佳,滤波器综合性能包含通带插损、带宽和品质因子,第一压电晶体材料包括晶圆上表面和下表面,晶圆上表面即第一表面,晶圆下表面即第二表面,第一表面为He+注入的面。第二压电晶体材料包括晶圆上表面和下表面,晶圆上表面即第三表面,晶圆下表面第四表面,第三表面为He+注入的面。1) Provide two double-sided polished and flat piezoelectric single crystal materials, the thickness of the piezoelectric single crystal materials is 250um, and after subsequent ion implantation and annealing and peeling, they become the second piezoelectric film layer 7 and the first piezoelectric film layer 13. The first piezoelectric crystal is 15°YX-lithium niobate, and the second piezoelectric crystal is 128°YX-lithium tantalate. When the wafer is cut down, the comprehensive performance of the surface acoustic wave filter is better. The comprehensive performance of the filter includes the passband insertion loss, bandwidth and quality factor. The first piezoelectric crystal material includes the upper surface and the lower surface of the wafer. The upper surface of the wafer is the first surface, and the lower surface of the wafer is the second surface. The first surface is the He + injected surface. The second piezoelectric crystal material includes the upper surface and the lower surface of the wafer. The upper surface of the wafer is the third surface, and the lower surface of the wafer is the fourth surface. The third surface is the He + injected surface.
2)在铌酸锂晶片中注入He+,注入离子能量根据所需的薄膜厚度(即注入深度)选择。本实施例中第一压电晶圆的材料采用铌酸锂薄膜且厚度为500nm,第二压电晶圆的材料采用薄膜钽酸锂厚度为750nm,将设备的加速电压和能量设置到某一范围,使15°YX-铌酸锂中He+离子注入深度达到500nm,128°YX-钽酸锂中He+离子注入深度达到750nm。2) He + is injected into the lithium niobate wafer, and the injection ion energy is selected according to the required film thickness (i.e., the injection depth). In this embodiment, the material of the first piezoelectric wafer is a lithium niobate film with a thickness of 500nm, and the material of the second piezoelectric wafer is a thin film lithium tantalate with a thickness of 750nm. The acceleration voltage and energy of the equipment are set to a certain range, so that the He + ion injection depth in 15°YX-lithium niobate reaches 500nm, and the He + ion injection depth in 128°YX-lithium tantalate reaches 750nm.
3)提供一高阻硅衬底,作为多层异质键合的衬底层10,高阻硅衬底的厚度为500um,高阻硅衬底分为第一表面和第二表面,在第一和第二表面分别溅射多晶硅薄膜的第二吸收层9和第一吸收层11,第二吸收层9和第一吸收层11作为吸收层,可捕捉晶圆内泄漏的电子,提升器件的Q值,多晶硅薄膜厚度为1um。3) Provide a high-resistance silicon substrate as a substrate layer 10 for multi-layer heterogeneous bonding. The thickness of the high-resistance silicon substrate is 500um. The high-resistance silicon substrate is divided into a first surface and a second surface. A second absorption layer 9 and a first absorption layer 11 of polycrystalline silicon film are sputtered on the first and second surfaces respectively. The second absorption layer 9 and the first absorption layer 11 serve as absorption layers to capture electrons leaked from the wafer and improve the Q value of the device. The thickness of the polycrystalline silicon film is 1um.
4)在吸收层多晶硅表面制作氧化硅薄膜。氧化硅薄膜构成了声学低阻抗层,即第二隔离层8和第一隔离层12,氧化硅薄膜可通过热氧化生长的方式在多晶硅表面生长,所需的多晶硅的厚度为生长的氧化硅厚度和预留吸收层厚度的大致总和。该种生长方式下氧化硅和多晶硅的界面结合完美。氧化硅薄膜的制备也可通过溅射的方式制备,通过调节磁控溅射O2和Ar的气氛压强和电场离化强度等参数调节生成的二氧化硅纯度和致密度。优选的,本实施例中通过硅靶与离化的O反应并在偏置电压的作用下在晶圆表面生成致密的二氧化硅。衬底层10第一表面和第二表面均设置有厚度为500nm的二氧化硅薄膜。4) A silicon oxide film is made on the surface of the polycrystalline silicon of the absorption layer. The silicon oxide film constitutes an acoustic low impedance layer, namely the second isolation layer 8 and the first isolation layer 12. The silicon oxide film can be grown on the surface of the polycrystalline silicon by thermal oxidation growth. The required thickness of the polycrystalline silicon is the approximate sum of the thickness of the grown silicon oxide and the thickness of the reserved absorption layer. Under this growth mode, the interface bonding between silicon oxide and polycrystalline silicon is perfect. The preparation of the silicon oxide film can also be prepared by sputtering. The purity and density of the generated silicon dioxide are adjusted by adjusting the parameters such as the atmosphere pressure and electric field ionization intensity of magnetron sputtering O2 and Ar. Preferably, in this embodiment, dense silicon dioxide is generated on the surface of the wafer by reacting the silicon target with ionized O and under the action of the bias voltage. A silicon dioxide film with a thickness of 500nm is provided on the first surface and the second surface of the substrate layer 10.
5)15°YX-铌酸锂压电单晶材料的第一表面和硅氧晶圆的第一表面在O2、N2等离子活化下展现出优于Ar的活化效果,形成强亲水性,从而有利于亲水键合;并将压电晶圆和硅氧晶圆置于O2和N2气氛下的等离子活化,其具有物理和化学作用,能够去除杂质、断裂化学键,并通过与水反应在表面形成羟基和氢键,增强亲水性,在键合工艺中,晶圆表面粗糙度影响键合效果,在等离子活化后需要进行兆声清洗,兆声清洗技术使用高频率声波,通过声压和声流效应,对溶液中的微细颗粒进行高效清洗,确保无污染物残留,为键合工艺提供高质量基础。本实施例中选择在300W功率下对需要键合的硅衬底和15°YX-铌酸锂压电晶圆进行兆声清洗120s。5) The first surface of the 15°YX-lithium niobate piezoelectric single crystal material and the first surface of the silicon oxide wafer exhibit an activation effect superior to that of Ar under O 2 and N 2 plasma activation, forming strong hydrophilicity, which is conducive to hydrophilic bonding; and the piezoelectric wafer and the silicon oxide wafer are placed in the plasma activation under O 2 and N 2 atmosphere, which has physical and chemical effects, can remove impurities, break chemical bonds, and form hydroxyl groups and hydrogen bonds on the surface by reacting with water to enhance hydrophilicity. In the bonding process, the surface roughness of the wafer affects the bonding effect. Megasonic cleaning is required after plasma activation. Megasonic cleaning technology uses high-frequency sound waves to efficiently clean fine particles in the solution through sound pressure and acoustic flow effects to ensure that no pollutants remain, providing a high-quality foundation for the bonding process. In this embodiment, the silicon substrate and the 15°YX-lithium niobate piezoelectric wafer to be bonded are subjected to megasonic cleaning for 120s at a power of 300W.
6)将经过活化、清洗处理的15°YX-铌酸锂压电单晶材料的第一表面和硅氧晶圆的第一表面进行活化面对齐接触,此时铌酸锂和硅氧晶圆的表面都具有合适的羟基密度,通过施压使两个晶圆表面的羟基足够接近,在室温下利用界面力贴合自发形成脱水缩合反应,实现原子级的晶圆键合。6) The first surface of the activated and cleaned 15°YX-lithium niobate piezoelectric single crystal material and the first surface of the silicon oxide wafer are brought into contact with each other by activation. At this time, the surfaces of the lithium niobate and silicon oxide wafers have appropriate hydroxyl density. By applying pressure, the hydroxyl groups on the surfaces of the two wafers are brought close enough, and the interface force is used to spontaneously form a dehydration condensation reaction at room temperature, thereby achieving atomic-level wafer bonding.
7)退火加固。预键合晶圆室温存放后界面能会增强,这主要是因为H2O分子沿着键合界面逐渐扩散到空气或SiO2层中。高温退火可加速此过程形成稳定连接,增强键合强度,减少气泡。然而常规退火容易导致晶圆碎裂,铌酸锂晶体和硅的热膨胀系数差异大,阶梯式升降温退火工艺可减缓应力。本实施例对预键合后的晶圆进行阶梯式退火加固,从室温1℃/min的速率升至90℃,在此温度下恒温5h,再继续以1℃/min的速率升至150℃并保持10h,随后以1℃/min的速率降至室温。7) Annealing reinforcement. The interface energy of the pre-bonded wafer will be enhanced after being stored at room temperature. This is mainly because the H2O molecules gradually diffuse into the air or SiO2 layer along the bonding interface. High temperature annealing can accelerate this process to form a stable connection, enhance the bonding strength, and reduce bubbles. However, conventional annealing can easily cause wafer breakage. The thermal expansion coefficients of lithium niobate crystals and silicon are very different. The step-by-step temperature rise and fall annealing process can relieve stress. In this embodiment, the pre-bonded wafer is subjected to step-by-step annealing reinforcement, rising from room temperature at a rate of 1°C/min to 90°C, and kept at this temperature for 5 hours, and then continued to rise to 150°C at a rate of 1°C/min and maintained for 10 hours, and then dropped to room temperature at a rate of 1°C/min.
8)性能表征。键合强度是键合工艺中最重要的测定特征之一,低强度可能导致晶圆开裂,本实施例通过双悬臂梁测试法通过测试裂缝长度来评估键合强度,实施例中测试的键合强度达到1.94J/cm2,能够承受后续加工中的机械、热和水应力腐蚀,为晶圆剥离和器件制备提供坚实基础。8) Performance characterization. Bond strength is one of the most important characteristics in the bonding process. Low strength may cause wafer cracking. In this embodiment, the bonding strength is evaluated by testing the crack length using a dual cantilever beam test method. The bond strength tested in the embodiment reaches 1.94 J/cm 2 , which can withstand mechanical, thermal and water stress corrosion in subsequent processing, providing a solid foundation for wafer stripping and device preparation.
9)128°YX-钽酸锂压电单晶材料的第三表面和硅氧晶圆的第二表面在O2、N2等离子活化,活化后进行兆声清洗,兆声清洗技术使用高频率声波,通过声压和声流效应,对溶液中的微细颗粒进行高效清洗,确保无污染物残留,为键合工艺提供高质量基础。本实施例选择在300W功率下对需要键合的硅衬底和128°YX-钽酸锂压电晶圆进行兆声清洗120S。9) The third surface of the 128°YX-lithium tantalate piezoelectric single crystal material and the second surface of the silicon oxide wafer are activated in O 2 and N 2 plasma, and then megasonic cleaning is performed. The megasonic cleaning technology uses high-frequency sound waves to efficiently clean the fine particles in the solution through sound pressure and acoustic flow effects, ensuring that no pollutants remain, providing a high-quality foundation for the bonding process. In this embodiment, the silicon substrate and the 128°YX-lithium tantalate piezoelectric wafer to be bonded are subjected to megasonic cleaning for 120S at a power of 300W.
10)将经过活化、清洗处理的128°YX-钽酸锂压电单晶材料的第三表面和硅氧晶圆的第二表面进行活化面对齐接触,此时铌酸锂和硅氧晶圆的表面都具有合适的羟基密度,通过施压使两个晶圆表面的羟基足够接近,在室温下利用界面力贴合自发形成脱水缩合反应,实现原子级的晶圆键合。10) The third surface of the activated and cleaned 128°YX-lithium tantalate piezoelectric single crystal material and the second surface of the silicon oxide wafer are brought into contact with each other by activation. At this time, the surfaces of the lithium niobate and silicon oxide wafers have appropriate hydroxyl density. By applying pressure, the hydroxyl groups on the surfaces of the two wafers are brought close enough, and the interface force is used to spontaneously form a dehydration condensation reaction at room temperature, thereby achieving atomic-level wafer bonding.
11)退火加固。对预键合后的晶圆进行阶梯式退火加固,从室温1℃/min的速率升至90℃,在此温度下恒温5h,再继续以1℃/min的速率升至150℃并保持10h,随后以1℃/min的速率降至室温。11) Annealing. The pre-bonded wafers are subjected to step-wise annealing, from room temperature to 90°C at a rate of 1°C/min, kept at this temperature for 5 hours, then continued to rise to 150°C at a rate of 1°C/min and maintained for 10 hours, and then dropped to room temperature at a rate of 1°C/min.
12)性能表征。本实施例通过双悬臂梁测试法通过测试裂缝长度来评估键合强度,实施例中测试的键合强度达到1.97J/cm2,能够承受后续加工中的机械、热和水应力腐蚀,为晶圆剥离和器件制备提供坚实基础。12) Performance characterization. In this embodiment, the bonding strength is evaluated by testing the crack length using a dual cantilever beam test method. The bonding strength tested in the embodiment reaches 1.97 J/cm 2 , which can withstand mechanical, thermal and water stress corrosion in subsequent processing, and provides a solid foundation for wafer stripping and device preparation.
13)压电薄膜层的制备。首先在165℃并保持16h,随后在190℃下退火6h,以进一步提高键合强度,再将样品温度升至约228℃,使He+注入层与铌酸锂施体材料实现分离,从而将正反两面的压电晶圆从所需深度处分离开来。13) Preparation of piezoelectric film layer. First, keep it at 165℃ for 16h, then anneal it at 190℃ for 6h to further improve the bonding strength, and then raise the sample temperature to about 228℃ to separate the He + injection layer from the lithium niobate donor material, thereby separating the piezoelectric wafers on the front and back sides from the desired depth.
14)双面研磨。对键合和剥离完毕的第一裸片进行双面研磨,使剥离后粗糙的压电薄膜表面光滑。14) Double-sided grinding: Double-sided grinding is performed on the first bare chip after bonding and peeling to make the rough surface of the piezoelectric film smooth after peeling.
经过上述步骤的制备,得到了图3的双面压电薄膜的多层异质键合晶圆。接着进行贯穿式导通孔制作和贯穿式导通孔金属化。After the preparation steps above, a multilayer heterogeneous bonding wafer of double-sided piezoelectric film is obtained as shown in Figure 3. Then, through-type via hole production and through-type via hole metallization are performed.
15)在正反压电薄膜层表面制作软掩膜材料,本实施例用光刻胶HSQ,光刻显影后制作出需要刻蚀的孔。15) A soft mask material is made on the surface of the positive and negative piezoelectric film layer. In this embodiment, photoresist HSQ is used, and holes required for etching are made after photolithography and development.
16)利用Ar离子刻蚀机刻蚀正反面薄膜层包括压电薄膜层和隔离层。调节Ar离子的电压和气体氛围,控制好孔刻蚀的侧壁角度,使之接近垂直角度的侧壁刻蚀。16) Use an Ar ion etcher to etch the front and back thin film layers including the piezoelectric thin film layer and the isolation layer. Adjust the voltage and gas atmosphere of the Ar ions to control the side wall angle of the hole etching so that it is close to the vertical angle of the side wall etching.
17)用成熟的TSV工艺刻蚀多晶硅层和高阻硅层,得到刻蚀完毕的功能化金属孔28,并超声清洗去除孔内的杂质,得到图4的晶圆结构。17) The polysilicon layer and the high-resistance silicon layer are etched using a mature TSV process to obtain an etched functionalized metal hole 28, and then ultrasonic cleaning is performed to remove impurities in the hole to obtain the wafer structure shown in FIG. 4 .
18)溅射通孔内孔壁绝缘层,本实施例中溅射氧化硅层厚度为300nm,溅射沉积金属Ti厚度为300nm和电镀种子层Cu厚度为3000nm,本实施例选择高深宽比覆盖能力大于5:1的溅射机台,从而实现孔壁绝缘层、粘附层、电镀种子层的均匀覆盖。18) Sputter the insulating layer on the inner wall of the through hole. In this embodiment, the thickness of the sputtered silicon oxide layer is 300nm, the thickness of the sputtered deposited metal Ti is 300nm, and the thickness of the electroplated seed layer Cu is 3000nm. In this embodiment, a sputtering machine with a high aspect ratio coverage capability greater than 5:1 is selected to achieve uniform coverage of the hole wall insulating layer, adhesion layer, and electroplated seed layer.
19)电镀功能化金属孔,本实施例中调节电镀液配方和电镀电势位的分布使得通孔内的金属铜实心化填充,填充后的结构图参阅图5,其中在晶圆表面电镀附着金属形成表面电镀金属层26,电镀金属在通孔位置明显凹陷形成电镀填充后的贯穿式导通孔25。19) Electroplating functionalized metal holes. In this embodiment, the plating solution formula and the distribution of the plating potential are adjusted to allow the metal copper in the through hole to be solidly filled. The structure after filling is shown in FIG5 , wherein the attached metal is plated on the surface of the wafer to form a surface electroplated metal layer 26, and the electroplated metal is obviously recessed at the through hole position to form a through-type conductive hole 25 after electroplating filling.
20)双面研磨和抛光,对制备完成的第一裸片的正反两面进行CMP研磨处理直至完全露出压电薄膜层表面,抛光,得到图6的结构,研磨去除表面金属层后的贯穿式导通孔29和晶圆表面平齐且无金属残留,片内均匀性PTTV、TTV等平整度参数达到晶片标准。20) Double-sided grinding and polishing: CMP grinding and polishing are performed on both sides of the prepared first bare chip until the surface of the piezoelectric film layer is completely exposed, and polishing is performed to obtain the structure of Figure 6. After the surface metal layer is removed by grinding, the through-type via 29 is flush with the wafer surface and there is no metal residue. The flatness parameters such as PTTV and TTV within the chip meet the wafer standard.
21)第一裸片第一表面的声表面波滤波器制备和封装。将芯片通过光刻、剥离工艺制备成包含电镀互联的金属图案。将第一裸片的第一表面通过光刻胶旋涂、光刻版曝光、TMAH显影得到一系列的胶条/胶缝光刻胶图案,蒸发金属Ti10nm-Al300nm,用NMP去胶液冲压剥离去除金属胶条,留下第一裸片上叉指换能器金属指1和金属互连线5、第一裸片功能化金属孔与耦合位点的互连线17。在第一表面真空无气泡式贴有机高分子聚合物3的干膜,后烘烤,再进行i线曝光,干膜专用显影液显影后得到谐振器和耦合焊盘表面裸露,参考图7的有机高分子聚合物空腔2、裸片耦合位点4、金属互连线5、贯穿式导通孔6,形成一个谐振器、耦合焊盘区域无伤害、无污染的窗口,其他区域干膜经过烘烤后与表面紧密贴合,再将第一层干膜在200℃下固化2小时,使干膜进行充分的化学反应。21) Preparation and packaging of the surface acoustic wave filter on the first surface of the first bare chip. The chip is prepared into a metal pattern including electroplated interconnection by photolithography and stripping process. The first surface of the first bare chip is subjected to photoresist spin coating, photomask exposure, and TMAH development to obtain a series of strip/slit photoresist patterns, and metal Ti10nm-Al300nm is evaporated. The metal strip is removed by stamping and stripping with NMP stripping liquid, leaving the metal fingers 1 and metal interconnection lines 5 of the interdigital transducer on the first bare chip, and the interconnection lines 17 between the functionalized metal holes of the first bare chip and the coupling sites. A dry film of an organic high molecular polymer 3 is attached to the first surface in a vacuum and bubble-free manner, then baked and then exposed to i-line. After development with a special developer for the dry film, the surface of the resonator and the coupling pad is exposed. Referring to the organic high molecular polymer cavity 2, the bare chip coupling site 4, the metal interconnection line 5, and the through-type via 6 in FIG. 7 , a window without damage or pollution is formed in the resonator and coupling pad area. The dry film in other areas is tightly attached to the surface after baking, and then the first layer of dry film is cured at 200° C. for 2 hours to allow the dry film to undergo a sufficient chemical reaction.
22)在第一裸片的第一表面进行第二层负性干膜制备。将第二层干膜进行真空环境下与第一裸片进行无缝隙无气泡式贴膜,后烘烤,再进行i线曝光,干膜专用显影液显影后得到耦合位点裸露、表面无伤害无污染的窗口,参考图7的裸片耦合位点4、贯穿式导通孔6,其他区域干膜经过烘烤后与表面紧密贴合,从而在谐振器上方构建出了一个有机高分子聚合物空腔2,再将第二层干膜在200℃下固化2小时,使干膜进行充分的化学反应。22) A second negative dry film is prepared on the first surface of the first bare chip. The second dry film is laminated to the first bare chip without gaps or bubbles in a vacuum environment, then baked and then exposed to i-line. After development with a special developer for the dry film, a window with exposed coupling sites and no damage or pollution on the surface is obtained. Referring to the bare chip coupling sites 4 and through-type vias 6 in FIG. 7 , the dry films in other areas are tightly bonded to the surface after baking, thereby constructing an organic high molecular polymer cavity 2 above the resonator. The second dry film is then cured at 200° C. for 2 hours to allow the dry film to undergo a sufficient chemical reaction.
23)第一裸片第二表面声表面波滤波器制备和封装,和步骤21类似。23) The second surface acoustic wave filter of the first bare chip is prepared and packaged, similar to step 21.
24)在第一裸片的第二表面进行第二层负性干膜制备,和步骤22类似。24) Preparing a second negative dry film on the second surface of the first die, similar to step 22.
25)制作裸片集合组件。参考图1、图2、图8,滤波器裸片15包含声表面波滤波器(SAW)、体声波滤波器(BAW)、集成无源滤波器(IPD)、低温共烧陶瓷滤波器、毫米波滤波器等类型,在本实施例中制作了六颗不同的裸片,对其进行封装。然后在封装后的滤波器裸片15的表面耦合位点上用金线超声按压植球的方式制作了多颗直径100um、高度50um的滤波器裸片和多层异质键合晶圆耦合位点16,并将该晶圆划片切割成一颗颗小芯粒,然后将多种不同类型晶圆的小芯粒依次倒扣在多层异质键合晶圆表面22上,实现了多管芯堆叠(图1)。25) Make a bare chip assembly. Referring to Figures 1, 2, and 8, the filter bare chip 15 includes surface acoustic wave filters (SAW), bulk acoustic wave filters (BAW), integrated passive filters (IPD), low temperature co-fired ceramic filters, millimeter wave filters, etc. In this embodiment, six different bare chips are made and packaged. Then, a plurality of filter bare chips with a diameter of 100um and a height of 50um and a multi-layer heterogeneous bonding wafer coupling site 16 are made on the surface coupling site of the packaged filter bare chip 15 by using a gold wire ultrasonic pressing and ball planting method, and the wafer is diced and cut into small core particles, and then the small core particles of various types of wafers are successively turned upside down on the surface 22 of the multi-layer heterogeneous bonding wafer, so as to realize multi-die stacking (Figure 1).
实施例2:Embodiment 2:
如图9所示,功能化金属孔6包括贯穿式导通孔和介质阻隔式射频导通孔30,介质阻隔式射频导通孔30中的介质可以是多层异质键合衬底中任意一层,且介质阻隔式射频导通孔中的介质的厚度不大于该介质层厚度;贯穿式导通孔的上下面制作互联图案构成三维螺旋电感,介质阻隔式射频导通孔30制作介质层形成低损耗电容,在功能化金属孔6基础上制作而来的电感和电容可被多管芯堆叠射频器件用作电路匹配或被串并联优化某个谐振器的性能,其他技术特征同实施例1。As shown in Figure 9, the functionalized metal hole 6 includes a through-type conductive hole and a dielectric barrier type RF conductive hole 30. The dielectric in the dielectric barrier type RF conductive hole 30 can be any layer in the multi-layer heterogeneous bonding substrate, and the thickness of the dielectric in the dielectric barrier type RF conductive hole is not greater than the thickness of the dielectric layer; the upper and lower surfaces of the through-type conductive hole are made into interconnected patterns to form a three-dimensional spiral inductor, and the dielectric barrier type RF via 30 is made into a dielectric layer to form a low-loss capacitor. The inductor and capacitor made on the basis of the functionalized metal hole 6 can be used as circuit matching by a multi-die stacked RF device or can be connected in series and parallel to optimize the performance of a resonator. Other technical features are the same as those in Example 1.
本实施例提供一种多管芯堆叠式射频器件,器件结构包括:第一裸片和多颗滤波器裸片,第一裸片包括第一压电薄膜层13,第一隔离层12,第一隔离层延伸出来的介质层30,第一吸收层11,衬底层10,第二吸收层9,第二隔离层8,第二压电薄膜层7、功能化金属孔6、功能化金属孔耦合面板14、第一裸片上叉指换能器金属指1、有机高分子聚合物3、有机高分子聚合物空腔2、金属互连线5、第一裸片功能化金属孔与耦合位点的互连线17、裸片耦合位点4、第一压电薄膜层13和第二压电薄膜层7为铌酸锂薄膜,两者的晶体切向、厚度不一定相同。The present embodiment provides a multi-die stacked RF device, the device structure includes: a first bare chip and multiple filter bare chips, the first bare chip includes a first piezoelectric film layer 13, a first isolation layer 12, a dielectric layer 30 extending from the first isolation layer, a first absorption layer 11, a substrate layer 10, a second absorption layer 9, a second isolation layer 8, a second piezoelectric film layer 7, a functionalized metal hole 6, a functionalized metal hole coupling panel 14, metal fingers 1 of the interdigital transducer on the first bare chip, an organic polymer 3, an organic polymer cavity 2, a metal interconnection line 5, an interconnection line 17 between the functionalized metal hole of the first bare chip and the coupling site, a bare chip coupling site 4, the first piezoelectric film layer 13 and the second piezoelectric film layer 7 are lithium niobate films, and the crystal tangent and thickness of the two are not necessarily the same.
本实施例在结构和工艺流程上和实施例1相近,最重要的区别在于本实施例的功能化金属孔6包含贯穿式金属孔和介质阻隔式射频导通孔30,介质阻隔式射频导通孔30是多层异质键合晶圆的某些材料层刻蚀豁免出来的,在制作工艺上要比实施例1复杂,涉及到双面对准刻蚀,通过在晶圆的正反面制作对准标记,例如对准式通孔,可以实现较高精度的正反面对准,从而在正面刻蚀去除表面压电薄膜后,在背面进行刻蚀多层材料,并控制好刻蚀的配方和时间。This embodiment is similar to Embodiment 1 in structure and process flow, with the most important difference being that the functionalized metal hole 6 of this embodiment includes a through-type metal hole and a dielectric barrier type RF via 30. The dielectric barrier type RF via 30 is exempted from etching of certain material layers of a multi-layer heterogeneous bonded wafer, and is more complicated in manufacturing process than Embodiment 1, involving double-sided alignment etching. By making alignment marks on the front and back sides of the wafer, such as alignment through holes, high-precision front and back alignment can be achieved, so that after etching away the surface piezoelectric film on the front side, etching of multiple layers of material is performed on the back side, and the etching formula and time can be well controlled.
基于实施例1的工艺基础上,修改15~19的步骤,本实施例修改部分的工艺如下:Based on the process of Example 1, steps 15 to 19 are modified. The process of the modified part of this embodiment is as follows:
15)在正反压电薄膜层表面制作软掩膜材料,本实施例用光刻胶HSQ,光刻显影后制作出需要刻蚀的孔;15) A soft mask material is made on the surface of the positive and negative piezoelectric film layer. In this embodiment, a photoresist HSQ is used, and holes to be etched are made after photolithography and development;
16)利用Ar离子刻蚀机刻蚀正反面薄膜层包括第一、第二压电薄膜层和第二隔离层。调节Ar离子的电压和气体氛围,控制好Ar离子刻蚀深度,使刻蚀到指定深度即停止。控制好孔刻蚀的侧壁角度,使之接近垂直角度的侧壁刻蚀;16) Use an Ar ion etcher to etch the front and back thin film layers including the first and second piezoelectric thin film layers and the second isolation layer. Adjust the voltage and gas atmosphere of the Ar ions, control the Ar ion etching depth, and stop etching at the specified depth. Control the side wall angle of the hole etching to make it close to the vertical angle of the side wall etching;
17)用成熟的TSV工艺从背面刻蚀多晶硅材料的第一吸收层11、第二吸收层9和高阻硅材料的中间衬底层10,并超声清洗去除孔内的杂质;17) Etching the first absorption layer 11, the second absorption layer 9 and the middle substrate layer 10 of the polysilicon material from the back side using a mature TSV process, and then ultrasonically cleaning to remove impurities in the hole;
18)溅射通孔内孔壁绝缘层,本实施例中溅射氧化硅层300nm,溅射沉积金属Ti300nm和电镀种子层Cu3000nm,本实施例选择高深宽比覆盖能力大于5:1的溅射机台,从而实现孔壁绝缘层、粘附层、电镀种子层的均匀覆盖;18) Sputtering the insulating layer on the inner wall of the through hole. In this embodiment, a 300nm silicon oxide layer is sputtered, and a 300nm metal Ti and a 3000nm electroplated seed layer Cu are sputtered and deposited. In this embodiment, a sputtering machine with a high aspect ratio coverage capability greater than 5:1 is selected to achieve uniform coverage of the hole wall insulating layer, the adhesion layer, and the electroplated seed layer;
19)电镀功能化金属孔,本实施例调节电镀液配方和电镀电势位的分布使得通孔和盲孔内的金属铜实心化填充。19) Electroplating functionalized metal holes. In this embodiment, the formula of the electroplating solution and the distribution of the electroplating potential are adjusted to make the metal copper in the through holes and blind holes solidly filled.
需要特别说明的是,本文内容和示例性实施例仅用于说明本专利的技术方案,但本专利的实施方式不受上述内容的限制,其他任何未背离本专利创新实质和原理下所做的改变、修饰、替换、组合等,都包含在本专利的保护范围内。对于本领域技术人员而言,可根据具体情况理解上述术语在专利中的具体含义。It should be noted that the content and exemplary embodiments of this article are only used to illustrate the technical solution of this patent, but the implementation of this patent is not limited by the above content. Any other changes, modifications, substitutions, combinations, etc. that do not deviate from the innovative essence and principles of this patent are included in the protection scope of this patent. For those skilled in the art, the specific meanings of the above terms in the patent can be understood according to the specific circumstances.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411106255.6A CN118826690A (en) | 2024-08-13 | 2024-08-13 | A multi-die stacked radio frequency device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202411106255.6A CN118826690A (en) | 2024-08-13 | 2024-08-13 | A multi-die stacked radio frequency device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118826690A true CN118826690A (en) | 2024-10-22 |
Family
ID=93072710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202411106255.6A Pending CN118826690A (en) | 2024-08-13 | 2024-08-13 | A multi-die stacked radio frequency device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118826690A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119154836A (en) * | 2024-11-19 | 2024-12-17 | 天通瑞宏科技有限公司 | Package structure of filter |
-
2024
- 2024-08-13 CN CN202411106255.6A patent/CN118826690A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119154836A (en) * | 2024-11-19 | 2024-12-17 | 天通瑞宏科技有限公司 | Package structure of filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11245376B2 (en) | Single crystal acoustic resonator and bulk acoustic wave filter | |
WO2022116396A1 (en) | Passive cavity type single crystal thin-film bulk acoustic resonator structure and preparation method therefor | |
US11164891B2 (en) | Integrated circuits with components on both sides of a selected substrate and methods of fabrication | |
US12095448B2 (en) | Transversely-excited film bulk acoustic resonator package and method | |
US12119808B2 (en) | Transversely-excited film bulk acoustic resonator package | |
CN101656244A (en) | Multilayer interconnection packaging structure of silica-based embedded microwave multi chip module and manufacturing method | |
CN210444236U (en) | FBAR filter | |
CN101630946A (en) | Film bulk acoustic resonator (FBAR) and preparation method thereof | |
US20230037168A1 (en) | Metal cavity for transversely-excited film bulk acoustic resonator (xbar) | |
CN105811914B (en) | A kind of bulk acoustic wave device, integrated morphology and manufacturing method | |
US12160225B2 (en) | Transversely-excited film bulk acoustic resonator package | |
WO2022116395A1 (en) | Structure for monolithic and heterogeneous integration of passive cavity-type single-crystal fbar and active gan hemt | |
CN118826690A (en) | A multi-die stacked radio frequency device | |
CN207938784U (en) | Substrate-integrated waveguide structure based on Ti/Ni/Ag material system | |
CN110544689B (en) | Active device and passive single crystal device and monolithic integration method in radio frequency front-end module | |
JP2011211347A (en) | Piezoelectric device, integrated branching filter using the same, and integrated filter | |
WO2021135009A1 (en) | Semiconductor structure having stacking unit, manufacturing method, and electronic device | |
US20230134889A1 (en) | Stacked die transversely-excited film bulk acoustic resonator (xbar) filters | |
CN109802216A (en) | Miniaturization Wilkinson power divider and preparation method thereof based on thin-film integration passive device technique | |
Lee et al. | Design and fabrication of band-pass filter on glass IPD for 5G new radio | |
CN110911785B (en) | a duplexer | |
CN113410221A (en) | Multiplexer integrating acoustic mechanical wave device and passive device | |
CN117097291A (en) | Semiconductor packaging structure and preparation method thereof | |
WO2020134665A1 (en) | Control circuit, integration method for acoustic wave filter, and integration structure | |
CN112777563A (en) | Manufacturing method of airtight radio frequency MEMS device and airtight radio frequency MEMS device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |