CN100588075C - Hybrid energy storage device for elevator and control method thereof - Google Patents
Hybrid energy storage device for elevator and control method thereof Download PDFInfo
- Publication number
- CN100588075C CN100588075C CN200610011629A CN200610011629A CN100588075C CN 100588075 C CN100588075 C CN 100588075C CN 200610011629 A CN200610011629 A CN 200610011629A CN 200610011629 A CN200610011629 A CN 200610011629A CN 100588075 C CN100588075 C CN 100588075C
- Authority
- CN
- China
- Prior art keywords
- supercapacitor
- charging
- bus
- battery
- discharging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 76
- 238000004146 energy storage Methods 0.000 title claims abstract description 69
- 238000007600 charging Methods 0.000 claims abstract description 116
- 238000007599 discharging Methods 0.000 claims abstract description 107
- 230000008569 process Effects 0.000 claims description 59
- 239000003990 capacitor Substances 0.000 claims description 29
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 238000005070 sampling Methods 0.000 claims description 13
- 230000002457 bidirectional effect Effects 0.000 claims description 12
- 238000002955 isolation Methods 0.000 claims description 11
- 230000001133 acceleration Effects 0.000 claims description 9
- 239000003792 electrolyte Substances 0.000 claims description 6
- 238000009434 installation Methods 0.000 abstract description 9
- 230000003139 buffering effect Effects 0.000 abstract description 2
- 238000005265 energy consumption Methods 0.000 abstract 1
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 230000008901 benefit Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 238000010277 constant-current charging Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000009993 protective function Effects 0.000 description 2
- 238000010278 pulse charging Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Landscapes
- Elevator Control (AREA)
Abstract
一种电梯用混合储能装置及其控制方法,包括超级电容器组[10],蓄电池组[20],超级电容器充放电电路[30],蓄电池充放电电路[40],超级电容器充放电控制电路[50],蓄电池充放电控制电路[60]。超级电容器组[10]通过超级电容器充放电电路[50]与电梯供电系统中的直流母线连接,蓄电池组[20]通过蓄电池充放电电路[40]与直流母线连接。本发明通过控制超级电容器充放电控制电路[50]和蓄电池充放电控制电路[60],可以实现不间断供电和功率缓冲功能;使超级电容器组[10]和蓄电池组[20]的安装容量最小化,节约了成本;使蓄电池组[20]处于优化的充放电工作状态,减少充放电循环次数,或者减小放电深度,延长使用寿命;可以节省泄放回路或者减小其安装容量,节约了空间,降低了能耗。在本发明的混合电源装置中,蓄电池组[20]只通过一级DC/DC与直流母线进行能量交换,储能效率大为提高。
A hybrid energy storage device for an elevator and its control method, comprising a supercapacitor bank [10], a battery pack [20], a supercapacitor charging and discharging circuit [30], a battery charging and discharging circuit [40], and a supercapacitor charging and discharging control circuit [50], battery charge and discharge control circuit [60]. The supercapacitor bank [10] is connected with the DC bus in the elevator power supply system through the supercapacitor charging and discharging circuit [50], and the battery pack [20] is connected with the DC bus through the battery charging and discharging circuit [40]. The present invention can realize uninterrupted power supply and power buffering function by controlling the supercapacitor charging and discharging control circuit [50] and the storage battery charging and discharging control circuit [60]; the installation capacity of the supercapacitor group [10] and the storage battery group [20] is minimized The cost is saved; the battery pack [20] is in an optimized charging and discharging working state, the number of charging and discharging cycles is reduced, or the depth of discharge is reduced, and the service life is prolonged; the discharge circuit can be saved or its installation capacity can be reduced, saving space and reduce energy consumption. In the hybrid power supply device of the present invention, the battery pack [20] exchanges energy with the DC bus only through the first-stage DC/DC, and the energy storage efficiency is greatly improved.
Description
技术领域 technical field
本发明涉及一种混合储能装置及其控制方法,特别涉及电梯用的混合储能装置及其控制方法。The invention relates to a hybrid energy storage device and a control method thereof, in particular to a hybrid energy storage device for an elevator and a control method thereof.
背景技术 Background technique
在电梯的驱动系统中,一般将电网电能进行直接整流,并汇流到直流母线,形成一个直流供电系统,再经过变频器进行逆变,产生变压变频的三相交流电驱动电机。由于电机在启动或加速时会从直流母线中吸收较大的功率,导致直流母线的端电压降低;而在停机或减速时又会因为电机处于发电状态而向直流母线回馈电能,导致母线电压升高。直流母线电压波动过大,会影响系统中变频器及电梯辅助设备的工作性能。为了防止直流母线电压过高,一般要配置能量泄放回路,但会造成一定的能量损失,降低了系统的经济性。In the drive system of the elevator, the electric energy of the grid is generally directly rectified and confluent to the DC bus to form a DC power supply system, which is then inverted by a frequency converter to generate a three-phase alternating current with variable voltage and frequency to drive the motor. Since the motor will absorb a large amount of power from the DC bus when it starts or accelerates, the terminal voltage of the DC bus will decrease; and when it stops or decelerates, it will feed back power to the DC bus because the motor is in the power generation state, resulting in a rise in the bus voltage. high. If the DC bus voltage fluctuates too much, it will affect the working performance of the frequency converter and elevator auxiliary equipment in the system. In order to prevent the DC bus voltage from being too high, it is generally necessary to configure an energy discharge circuit, but it will cause a certain amount of energy loss and reduce the economy of the system.
此外,当电网停电或发生瞬时电压中断或跌落时,如果没有备用能量支撑,电梯将无法正常运行,给人员、货物和装置带来不便甚至危险。配置储能装置,如,可充电蓄电池、超级电容器、飞轮储能装置等,在电网停电、电压中断跌落时可以为直流母线提供一定时间的能量支撑,以保证人员和货物到达安全的位置。此外,储能装置还可以起到功率缓冲的作用。当负载功率增大时,储能装置输出电能,与电网一起提供所需的功率,以降低电网的功率需求;当负载产生功率回馈时,储能装置吸收一部分功率,避免母线电压过高,也可以节省泄放回路或者减小其安装容量。In addition, when the power grid fails or an instantaneous voltage interruption or drop occurs, the elevator will not be able to operate normally without backup energy support, which will cause inconvenience and even danger to people, goods and devices. Equipped with energy storage devices, such as rechargeable batteries, supercapacitors, flywheel energy storage devices, etc., it can provide energy support for the DC bus for a certain period of time when the power grid fails or the voltage drops, so as to ensure that people and goods arrive at a safe location. In addition, the energy storage device can also play the role of power buffer. When the load power increases, the energy storage device outputs electric energy and provides the required power together with the grid to reduce the power demand of the grid; when the load generates power feedback, the energy storage device absorbs part of the power to avoid excessive bus voltage and also The discharge circuit can be saved or its installation capacity can be reduced.
可充电蓄电池是一种应用非常普遍的储能装置,如铅酸蓄电池、镉镍蓄电池、镍氢蓄电池等。将其应用于电梯的供电系统,直接与直流母线相连,或者通过充放电装置与直流母线相连,作为系统的应急电源,或者功率缓冲器。美国专利US6457565B2公开了一种电梯用应急电源。电网经过整流滤波后与直流母线汇接,采用可充电蓄电池作为储能装置,并通过可充电/放电的双向功率变换器与直流母线连接,当负荷较轻时,直流母线通过功率变换器给蓄电池充电。当由于电机电能回馈而导致母线电压升高时,直流母线通过功率变换器给蓄电池充电,并在负荷较重时释放出来以起到功率缓冲的作用。当电网停电,或者电压中断、跌落时,蓄电池通过功率变换器释放能量,以维持直流母线电压在正常的范围内,保证系统的正常工作。Rechargeable batteries are a very common energy storage device, such as lead-acid batteries, nickel-cadmium batteries, nickel-metal hydride batteries, etc. It is applied to the power supply system of the elevator, directly connected to the DC bus, or connected to the DC bus through a charging and discharging device, as an emergency power supply of the system, or a power buffer. US Patent US6457565B2 discloses an emergency power supply for elevators. After rectification and filtering, the power grid is connected to the DC bus, using a rechargeable battery as an energy storage device, and connected to the DC bus through a rechargeable/discharging bidirectional power converter. When the load is light, the DC bus passes through the power converter. Charge. When the bus voltage rises due to the electric energy feedback of the motor, the DC bus charges the battery through the power converter, and releases it when the load is heavy to play the role of power buffer. When the power grid fails, or the voltage is interrupted or dropped, the battery releases energy through the power converter to maintain the DC bus voltage within the normal range and ensure the normal operation of the system.
将可充电蓄电池应用于电梯的供电系统,存在一定的不足之处。首先,蓄电池在工作过程中电极活性物质会发生化学变化,引起电极结构的膨胀和收缩,导致蓄电池性能衰减。在电梯的供电系统中,由于蓄电池要不断地吸收能量和释放能量,在电网供电不可靠的地区为保证不间断供电还要经常进行深度充放电,导致蓄电池使用寿命的缩短,需要经常更换,增加了系统的成本。其次,蓄电池放电后的容量恢复时间较长,电网停电恢复后,由于蓄电池的放电深度较大,一般需要经过很长的时间才能使容量恢复到一定的水平,导致电梯在停电后要经过很长的恢复时间才能再次安全运行。第三,蓄电池的功率密度较小,而电梯的功率较大,为了保证系统在电网停电时的正常运行,蓄电池需要输出很大的功率。因此,在实际设计中,要配置容量很大的蓄电池组,提高了系统的成本,降低了经济性。此外,蓄电池的充放电效率较低,需要经常维护,而且使用后的金属材料不易处理,会造成环境污染。There are certain deficiencies in applying the rechargeable storage battery to the power supply system of the elevator. First of all, during the working process of the battery, the electrode active material will undergo chemical changes, which will cause the expansion and contraction of the electrode structure, resulting in the performance degradation of the battery. In the power supply system of the elevator, since the battery needs to absorb and release energy continuously, in areas where the grid power supply is unreliable, deep charging and discharging must be carried out frequently to ensure uninterrupted power supply, resulting in shortened service life of the battery, which needs to be replaced frequently, increasing cost of the system. Secondly, the recovery time of the capacity of the battery after discharge is relatively long. After the power grid is restored, due to the large discharge depth of the battery, it usually takes a long time to restore the capacity to a certain level, resulting in a long time for the elevator to recover after a power outage. recovery time to operate safely again. Thirdly, the power density of the battery is small, while the power of the elevator is relatively large. In order to ensure the normal operation of the system when the power grid is out of power, the battery needs to output a large power. Therefore, in the actual design, it is necessary to configure a battery pack with a large capacity, which increases the cost of the system and reduces the economy. In addition, the charging and discharging efficiency of the battery is low, requiring frequent maintenance, and the metal materials after use are not easy to handle, which will cause environmental pollution.
超级电容器是近年来出现的一种新型储能器件,目前一般认为超级电容器包括双电层电容器(Electric Double Layer Capacitor)和电化学电容器(Electrochemical Capacitor)两大类。其中,双电层电容器采用高比表面积活性炭,并基于碳电极与电解液界面上的电荷分离而产生双电层电容而工作的。电化学电容器采用RuO2等贵金属氧化物作电极,在氧化物电极表面及体相发生氧化还原反应而产生吸附电容,又称为法拉第准电容,根据电极材料的不同可分为金属氧化物和导电性高分子聚合物两类电化学电容器。由于法拉第准电容的产生机理与电池相似,在相同电极面积的情况下,它的电容量是双电层电容的几倍;但双电层电容器瞬间大电流放电的功率特性比法拉第电容器好。Supercapacitor is a new type of energy storage device that has emerged in recent years. At present, it is generally believed that supercapacitors include two types: Electric Double Layer Capacitor (Electric Double Layer Capacitor) and Electrochemical Capacitor (Electrochemical Capacitor). Among them, the electric double layer capacitor uses activated carbon with high specific surface area, and works based on the separation of charges on the interface between the carbon electrode and the electrolyte to generate an electric double layer capacitance. Electrochemical capacitors use noble metal oxides such as RuO 2 as electrodes, and oxidation-reduction reactions occur on the surface and bulk phase of oxide electrodes to generate adsorption capacitance, also known as Faraday quasi-capacitance, which can be divided into metal oxides and conductive capacitors according to different electrode materials. Two types of electrochemical capacitors based on permanent polymers. Since the generation mechanism of Faraday quasi-capacitance is similar to that of batteries, its capacitance is several times that of electric double layer capacitors under the same electrode area; but the power characteristics of instantaneous large current discharge of electric double layer capacitors are better than those of Faraday capacitors.
超级电容器具有很好的功率特性,可以大电流、高效率、快速地充放电。由于充放电过程始终是物理过程,不发生电化学反应和电极结构的变化,因此其循环使用寿命长。此外,超级电容器还具有高低温性能良好、能量判断简单准确、无需维护和环境友好等诸多优点,正日益发展成为一种高效、实用的能量储存器件。Supercapacitors have good power characteristics and can be charged and discharged quickly with high current and high efficiency. Since the charging and discharging process is always a physical process, there is no electrochemical reaction and no change in the electrode structure, so its cycle life is long. In addition, supercapacitors also have many advantages such as good high and low temperature performance, simple and accurate energy judgment, no maintenance, and environmental friendliness, and are increasingly becoming an efficient and practical energy storage device.
美国专利US6938733B2公开了一种电梯应急电源装置,超级电容器组通过一种功率调节设备与直流母线连接。当电网停电、电压跌落或中断时,超级电容器组通过功率调节设备向直流母线供电,以维持电机及电梯辅助设备的正常工作直至到达下一个楼层。超级电容器组通过功率调节设备,还可以不断地吸收或者释放能量,起到功率缓冲器的作用,以保证直流母线电压稳定而且处于正常的范围内。US Patent US6938733B2 discloses an elevator emergency power supply device, in which a supercapacitor bank is connected to a DC bus through a power regulating device. When the power grid fails, the voltage drops or is interrupted, the supercapacitor bank supplies power to the DC bus through the power conditioning equipment to maintain the normal operation of the motor and elevator auxiliary equipment until reaching the next floor. The supercapacitor bank can also continuously absorb or release energy through the power regulation equipment, and act as a power buffer to ensure that the DC bus voltage is stable and within the normal range.
尽管超级电容器具有很多优点,但其能量密度与可充电蓄电池相比较低,目前超级电容器的能量密度大约是阀控式铅酸蓄电池的20%,还不适宜于大容量的电力储能。由于电梯的功率较大,持续时间较长,如果采用超级电容器作为应急电源,需要配置很大容量的超级电容器组,才能输出所需的能量,这样会使设备过于庞大笨重。而且,目前超级电容器的价格较高,如此大容量的配置大幅度地提高了系统的成本,降低了经济性。Although supercapacitors have many advantages, their energy density is lower than that of rechargeable batteries. At present, the energy density of supercapacitors is about 20% of that of valve-regulated lead-acid batteries, and they are not suitable for large-capacity electric energy storage. Due to the high power and long duration of the elevator, if a supercapacitor is used as an emergency power supply, a supercapacitor bank with a large capacity needs to be configured to output the required energy, which will make the equipment too bulky and cumbersome. Moreover, the price of supercapacitors is relatively high at present, and the configuration of such a large capacity greatly increases the cost of the system and reduces the economy.
如果将超级电容器与可充电蓄电池混合使用,使蓄电池能量密度大与超级电容器功率密度大、循环寿命长等特点相结合,无疑会给电力储能装置带来很大的性能提高。超级电容器蓄电池混合储能装置具有较好的储能能力和功率输入输出能力,能够缩小储能装置的体积,改善可靠性。蓄电池通过一定的方式与超级电容器并联工作,可以优化蓄电池的充放电过程,减少充放电循环次数,降低内部损耗,增加放电时间,延长使用寿命。采用超级电容器蓄电池储能装置,可以大幅度地提高系统的技术性能和经济性能,是解决目前电力储能问题的一个很好的选择。在美国专利US6938733B2公开的电梯应急电源装置中,为了延长应急电源的放电时间,该专利提出了采用可充电蓄电池和超级电容器组合的设计方法,但没有给出两种储能装置的具体组合方案和能量管理方法。If supercapacitors are used in combination with rechargeable batteries, combining the high energy density of batteries with the characteristics of high power density and long cycle life of supercapacitors will undoubtedly bring great performance improvements to electric energy storage devices. The supercapacitor-battery hybrid energy storage device has good energy storage capacity and power input and output capacity, can reduce the volume of the energy storage device, and improve reliability. The battery works in parallel with the supercapacitor in a certain way, which can optimize the charging and discharging process of the battery, reduce the number of charging and discharging cycles, reduce internal loss, increase the discharge time, and prolong the service life. The use of supercapacitor battery energy storage devices can greatly improve the technical performance and economic performance of the system, and it is a good choice to solve the current power energy storage problems. In the elevator emergency power supply device disclosed in U.S. Patent US6938733B2, in order to prolong the discharge time of the emergency power supply, the patent proposes a design method using a combination of a rechargeable battery and a supercapacitor, but does not provide a specific combination of the two energy storage devices and energy management methods.
发明内容 Contents of the invention
本发明的目的在于提供一种电梯用混合储能装置及其控制方法,为其在电网停电或者发生电压跌落、中断时提供应急电源;并可以为因电机工况改变而导致的母线电压波动提供功率缓冲,维持母线电压稳定,以节省泄放回路或者减小其安装容量。The purpose of the present invention is to provide a hybrid energy storage device for elevators and its control method, which can provide emergency power supply for power grid failure or voltage drop or interruption; and can provide power for bus voltage fluctuations caused by changes in motor working conditions. Power buffering to maintain the bus voltage stability to save the discharge circuit or reduce its installation capacity.
本发明的混合储能装置由超级电容器组、蓄电池组、超级电容器充放电电路、蓄电池充放电电路、超级电容器充放电控制电路,以及蓄电池充放电控制电路组成。超级电容器组通过超级电容器充放电电路与直流母线连接,蓄电池组通过蓄电池充放电电路与直流母线连接,超级电容器充放电控制电路控制超级电容器充放电电路的工作,蓄电池充放电控制电路控制蓄电池充放电电路的工作。The hybrid energy storage device of the present invention is composed of a supercapacitor group, a storage battery group, a supercapacitor charging and discharging circuit, a storage battery charging and discharging circuit, a supercapacitor charging and discharging control circuit, and a storage battery charging and discharging control circuit. The supercapacitor bank is connected to the DC bus through the supercapacitor charge and discharge circuit, and the battery pack is connected to the DC bus through the battery charge and discharge circuit. The supercapacitor charge and discharge control circuit controls the operation of the supercapacitor charge and discharge circuit, and the battery charge and discharge control circuit controls the battery charge and discharge. circuit work.
超级电容器可以采用双电层电容器,也可以采用电化学电容器。单体超级电容器先串联组成串联支路,再将两个或者两个以上的串联支路并联,组合成超级电容器组,具体的串并联组合方案要视系统的实际情况而定。为了提高超级电容器组的容量利用率,并将单体电压限定在最高工作电压以下,超级电容器组可以采用串联均压器,还可以采用串并联转换电路。蓄电池组也是先由多个单体电池串联起来组成串联支路,再将两个或两个以上的串联支路并联组成蓄电池组,具体的串并联组合方案要视系统的实际情况而定。Supercapacitors can be electric double layer capacitors or electrochemical capacitors. Single supercapacitors are first connected in series to form a series branch, and then two or more series branches are connected in parallel to form a supercapacitor bank. The specific series-parallel combination scheme depends on the actual situation of the system. In order to improve the capacity utilization rate of the supercapacitor bank and limit the single voltage below the maximum working voltage, the supercapacitor bank can use a series voltage equalizer or a series-parallel conversion circuit. The battery pack also consists of a number of single cells connected in series to form a series branch, and then two or more series branches are connected in parallel to form a battery pack. The specific series-parallel combination scheme depends on the actual situation of the system.
超级电容器充放电电路和蓄电池充放电电路一般采用非隔离型DC/DC功率变换器,由于在实际工作过程中能量双向流动,因此要设计为双向DC/DC。本发明采用的双向DC/DC实际上是由一个降压型BUCK电路和一个升压型BOOST电路组合而成。两个电路共用一个电感器,每一个电路均有一对功率开关和功率二极管,当一个电路工作时,另一个电路的一对功率开关和功率二极管始终不工作,反之亦然。两个电路在不同的时间段交替工作,就形成了双向DC/DC。Supercapacitor charging and discharging circuits and battery charging and discharging circuits generally use non-isolated DC/DC power converters. Since energy flows bidirectionally during actual work, they should be designed as bidirectional DC/DC. The bidirectional DC/DC used in the present invention is actually composed of a step-down BUCK circuit and a step-up BOOST circuit. The two circuits share an inductor, and each circuit has a pair of power switches and power diodes. When one circuit is working, the pair of power switches and power diodes of the other circuit is always inactive, and vice versa. The two circuits work alternately in different time periods to form a bidirectional DC/DC.
超级电容器充放电控制电路和蓄电池充放电控制电路主要包括信号采样单元、A/D转换单元、用户指令单元、计算控制单元(CPU)、隔离驱动单元等,具体的控制管理过程则由软件实现。The supercapacitor charge and discharge control circuit and the battery charge and discharge control circuit mainly include signal sampling unit, A/D conversion unit, user command unit, calculation control unit (CPU), isolation drive unit, etc. The specific control and management process is realized by software.
信号采样单元检测系统的状态参数,包括蓄电池的电压、温度、电解液密度、充放电电流等;超级电容器的电压、充放电电流等;直流母线的电压及其变化过程;电梯的位置、载重量、速度、加速度等;以及电网电压、电压中断或跌落程度等。系统通过信号采样单元采样这些参数,产生相应的电压信号,送给A/D转换单元,A/D转换单元将转换的数字信号送给计算控制单元,作为系统控制的入口参数。The signal sampling unit detects the state parameters of the system, including battery voltage, temperature, electrolyte density, charge and discharge current, etc.; supercapacitor voltage, charge and discharge current, etc.; DC bus voltage and its change process; elevator position, load capacity , speed, acceleration, etc.; and grid voltage, voltage interruption or drop degree, etc. The system samples these parameters through the signal sampling unit, generates the corresponding voltage signal, and sends it to the A/D conversion unit, and the A/D conversion unit sends the converted digital signal to the calculation control unit as the entry parameter of the system control.
用户指令单元接受用户指令,包括电梯的升降、目的楼层等,并将这些指令送给计算控制单元,作为系统控制的入口参数。The user instruction unit accepts user instructions, including elevator lift, destination floor, etc., and sends these instructions to the calculation control unit as entry parameters for system control.
本发明的混合储能装置及其控制方法,在实现系统功能的前提下,力争高效、节能,并能降低储能装置的安装容量,延长蓄电池的使用寿命,提高经济性。其控制思想的基本原则包括以下几点。The hybrid energy storage device and its control method of the present invention, on the premise of realizing system functions, strive for high efficiency and energy saving, and can reduce the installation capacity of the energy storage device, prolong the service life of the storage battery, and improve the economy. The basic principles of its control thoughts include the following points.
第一,充分发挥蓄电池充放电电路、超级电容器充放电电路的变流控制作用,合理配置蓄电池组和超级电容器组的容量,实现以较小的容量满足较大的功率需求和能量需求,降低储能装置的安装成本。First, give full play to the variable current control function of the battery charging and discharging circuit and the supercapacitor charging and discharging circuit, and rationally configure the capacity of the battery pack and the supercapacitor pack to meet the larger power and energy demands with a smaller capacity and reduce the storage capacity. installation cost of the device.
第二,使直流母线与混合储能装置之间的能量交换,尽可能多地发生在超级电容器上,而尽可能少地发生在蓄电池上,以充分发挥超级电容器功率密度大、循环寿命长、充放电效率高和速度快的优点。Second, the energy exchange between the DC bus and the hybrid energy storage device occurs as much as possible on the supercapacitor and as little as possible on the battery, so as to fully utilize the high power density, long cycle life, and The advantages of high charging and discharging efficiency and fast speed.
第三,控制蓄电池充放电电路,优化蓄电池的充放电过程,减少充放电循环及小循环次数,或者减小放电深度,以延长使用寿命。Third, control the charging and discharging circuit of the battery, optimize the charging and discharging process of the battery, reduce the number of charging and discharging cycles and small cycles, or reduce the depth of discharge to prolong the service life.
第四,根据电网状态、储能装置的荷电状态、电梯状态等系统信息,以及用户指令,预先判断出混合储能装置需要输出或输入的功率和能量,及时准确地控制超级电容器组和蓄电池组的工作过程,提高储能装置的快速响应能力。Fourth, according to the system information such as the state of the power grid, the state of charge of the energy storage device, the state of the elevator, and user instructions, the power and energy that the hybrid energy storage device needs to output or input are judged in advance, and the supercapacitor bank and the battery are controlled in a timely and accurate manner. The working process of the group improves the rapid response capability of the energy storage device.
本发明的工作过程是,在电梯开始运行前,按照一定的方式给超级电容器组和蓄电池组充电,使其处于一定的荷电状态。采用较大的电流给超级电容器组充电,以优化的充电方式给蓄电池组充电,如恒流充电或脉冲充电等。The working process of the present invention is to charge the supercapacitor bank and the storage battery bank in a certain way before the elevator starts to run, so that they are in a certain state of charge. Use a larger current to charge the supercapacitor bank, and charge the battery pack with an optimized charging method, such as constant current charging or pulse charging.
电梯在启动、加速过程中通过变频器从直流母线中吸取较大的功率,导致母线电压下降,当电网电压发生短时中断、跌落时,也会导致母线电压下降。当母线电压低于一定的设定值时,超级电容器组通过充放电电路向直流母线供电,输出功率的大小要视母线功率的变化率而定,以使母线电压维持在一定范围之内。一般情况下,只通过超级电容器组就可以满足系统的峰值功率需求,但当超级电容器组因放电而导致端电压低于一定设定值时,或者根据系统状态和用户指令判断出蓄电池组需要释放一定的功率和能量时,蓄电池组通过蓄电池充放电电路恒流放电,与超级电容器组一起向直流母线供电。When the elevator starts and accelerates, it absorbs a large amount of power from the DC bus through the frequency converter, causing the voltage of the bus to drop. When the grid voltage is interrupted or dropped for a short time, the voltage of the bus will also drop. When the bus voltage is lower than a certain set value, the supercapacitor bank supplies power to the DC bus through the charging and discharging circuit, and the output power depends on the change rate of the bus power to maintain the bus voltage within a certain range. In general, the peak power demand of the system can be met only through the supercapacitor bank, but when the terminal voltage of the supercapacitor bank is lower than a certain set value due to discharge, or it is judged according to the system status and user instructions that the battery pack needs to be released When the power and energy are certain, the battery pack is discharged at a constant current through the battery charging and discharging circuit, and supplies power to the DC bus together with the supercapacitor bank.
当电机发生能量回馈时,直流母线的电压将会升高。当高于一定的设定值时,直流母线通过超级电容器充放电电路给超级电容器组充电,充电功率要视母线的功率变化率而定。一般情况下,只给超级电容器组充电就可以达到吸收峰值功率的目的,但当超级电容器组的端电压高于一定的设定值,或者根据系统状态和用户指令判断出蓄电池组需要吸收一定的功率和能量时,直流母线通过蓄电池充放电电路给蓄电池组充电,一般采用较为优化的恒流充电方式。When the motor regenerates energy, the voltage of the DC bus will increase. When it is higher than a certain set value, the DC bus charges the supercapacitor bank through the supercapacitor charging and discharging circuit, and the charging power depends on the power change rate of the busbar. Under normal circumstances, only charging the supercapacitor bank can achieve the purpose of absorbing the peak power, but when the terminal voltage of the supercapacitor bank is higher than a certain set value, or it is judged according to the system status and user instructions that the battery bank needs to absorb a certain amount of power. In terms of power and energy, the DC bus charges the battery pack through the battery charging and discharging circuit, and generally adopts a more optimized constant current charging method.
当电网停电时,混合储能装置需要给直流母线提供一定的功率和能量,以保证备用发电系统能够可靠启动并输出电能,或者保证用电设备能够安全停机,或者连续运行直至电网恢复正常供电。在应急供电过程中,控制蓄电池充放电电路,使蓄电池组以恒流方式放电,输出的功率等于电梯的平均功率;控制超级电容器充放电电路,使超级电容器组提供电梯在工作过程中的峰值功率。When the power grid fails, the hybrid energy storage device needs to provide a certain amount of power and energy to the DC bus to ensure that the backup power generation system can reliably start and output electric energy, or ensure that the electrical equipment can be shut down safely, or continue to run until the grid returns to normal power supply. In the process of emergency power supply, control the charging and discharging circuit of the battery, so that the battery pack is discharged in a constant current mode, and the output power is equal to the average power of the elevator; control the charging and discharging circuit of the supercapacitor, so that the supercapacitor bank provides the peak power of the elevator during work .
在高层观光塔或矿井中,电梯或矿井提升机因为停靠点很少而运行距离很长,辅助电源需要支持较长的时间,直至电梯到达停靠点并开门。还有一些特殊应用场合,需要电梯能够在停电后继续运行数小时。采用混合储能装置,可以充分利用蓄电池能量密度大的优点,控制蓄电池充放电电路,使蓄电池组以优化的恒流方式放电。In high-rise sightseeing towers or mines, the elevator or mine hoist travels a long distance due to few stops, and the auxiliary power supply needs to support for a long time until the elevator reaches the stop and opens the door. There are also some special applications that require the elevator to continue to run for several hours after a power outage. The hybrid energy storage device can make full use of the advantages of high energy density of the battery, control the charging and discharging circuit of the battery, and make the battery pack discharge in an optimized constant current mode.
当电网恢复正常时,为了保证安全工作(有可能出现两次停电时间间隔较短的情况),电梯不能立即工作,而需要按照一定的方式给混合储能装置充电。采用较大的电流给超级电容器组充电,以优化的充电方法给蓄电池组充电。当蓄电池组和超级电容器组的荷电状态达到设定值时,电梯才可以重新工作。When the power grid returns to normal, in order to ensure safe work (there may be a short interval between two power outages), the elevator cannot work immediately, but the hybrid energy storage device needs to be charged in a certain way. Use a larger current to charge the supercapacitor bank, and use an optimized charging method to charge the battery pack. When the state of charge of the storage battery pack and the supercapacitor pack reaches the set value, the elevator can work again.
本发明采用超级电容器蓄电池混合储能,并配备有效的控制方法,具有以下优点:The invention adopts supercapacitor-battery hybrid energy storage, and is equipped with an effective control method, which has the following advantages:
(1)采用超级电容器蓄电池混合储能,能够充分发挥蓄电池能量密度大和超级电容器功率密度大、循环寿命长、充放电速度快和储能效率高的优点,使储能装置具有良好的技术性能。(1) The hybrid energy storage of super capacitor and battery can give full play to the advantages of high energy density of battery and high power density of super capacitor, long cycle life, fast charge and discharge speed and high energy storage efficiency, so that the energy storage device has good technical performance.
(2)由于蓄电池充放电电路及其控制电路,可以优化蓄电池的充放电过程,减少充放电小循环次数,或者降低发生小循环时的放电深度,延长使用寿命。(2) Due to the battery charging and discharging circuit and its control circuit, the charging and discharging process of the battery can be optimized, the number of small charging and discharging cycles can be reduced, or the discharge depth when a small cycle occurs, and the service life can be extended.
(3)由于超级电容器充放电电路及其控制能力,超级电容器组的端电压与直流母线电压可以有很大的不同,在满足同样功率需求的前提下,超级电容器的能量利用率大为提高,减少了安装容量,降低了系统成本。(3) Due to the supercapacitor charging and discharging circuit and its control ability, the terminal voltage of the supercapacitor bank can be very different from the DC bus voltage. Under the premise of meeting the same power demand, the energy utilization rate of the supercapacitor is greatly improved. Reduced installation capacity and reduced system costs.
(4)由于蓄电池充放电电路和超级电容器充放电电路的变流作用,蓄电池组的端电压、超级电容器组的端电压、以及直流母线的端电压之间可以有很大的不同,使超级电容器组和蓄电池组的结构配置更为灵活。(4) Due to the variable flow effect of the battery charging and discharging circuit and the supercapacitor charging and discharging circuit, the terminal voltage of the battery pack, the terminal voltage of the supercapacitor bank, and the terminal voltage of the DC bus can be very different, so that the supercapacitor The structure configuration of battery pack and storage battery pack is more flexible.
(5)当电机发生能量回馈时,通过超级电容器充放电电路的控制作用,可以有效地吸收直流母线上的瞬间大功率,不需要采用泄放回路,或者可以大幅度减小泄放回路的安装容量,降低了功耗,节约成本。(5) When the motor generates energy feedback, through the control of the supercapacitor charging and discharging circuit, the instantaneous high power on the DC bus can be effectively absorbed, and the discharge circuit is not required, or the installation of the discharge circuit can be greatly reduced capacity, reducing power consumption and saving costs.
(6)蓄电池组只通过一级DC/DC功率变换器与直流母线进行能量交换,减少了能量损耗,提高了储能效率。(6) The battery pack only exchanges energy with the DC bus through the first-stage DC/DC power converter, which reduces energy loss and improves energy storage efficiency.
本发明将超级电容器与可充电蓄电池混合使用,使蓄电池能量密度大与超级电容器功率密度大、循环寿命长等特点相结合,提高了电力储能装置的性能。超级电容器蓄电池混合储能装置具有较好的储能能力和功率输入输出能力,能够缩小储能装置的体积,改善可靠性。蓄电池通过一定的方式与超级电容器并联工作,可以优化蓄电池的充放电过程,减少充放电循环次数,降低内部损耗,增加放电时间,延长使用寿命。采用超级电容器蓄电池储能装置,可以大幅度地提高系统的技术性能和经济性能,是解决目前电力储能问题的一个很好的选择,将其用于电梯,具有很明显的优势。The invention mixes the supercapacitor and the rechargeable storage battery, combines the characteristics of high energy density of the storage battery with the high power density and long cycle life of the supercapacitor, and improves the performance of the electric energy storage device. The supercapacitor-battery hybrid energy storage device has good energy storage capacity and power input and output capacity, can reduce the volume of the energy storage device, and improve reliability. The battery works in parallel with the supercapacitor in a certain way, which can optimize the charging and discharging process of the battery, reduce the number of charging and discharging cycles, reduce internal loss, increase the discharge time, and prolong the service life. The use of supercapacitor battery energy storage devices can greatly improve the technical performance and economic performance of the system. It is a good choice to solve the current power energy storage problem. Using it in elevators has obvious advantages.
附图说明 Description of drawings
图1是本发明混合储能装置应用于电梯供电系统的工作原理方框图;Fig. 1 is a block diagram of the working principle of the hybrid energy storage device of the present invention applied to the elevator power supply system;
图2是本发明超级电容器充放电电路的双向DC/DC变换器原理图;Fig. 2 is the schematic diagram of the bidirectional DC/DC converter of the supercapacitor charging and discharging circuit of the present invention;
图3是本发明蓄电池充放电电路的双向DC/DC变换器原理图;Fig. 3 is the schematic diagram of the bidirectional DC/DC converter of the storage battery charging and discharging circuit of the present invention;
图4是本发明超级电容器充放电控制电路的原理框图;Fig. 4 is the functional block diagram of supercapacitor charging and discharging control circuit of the present invention;
图5是本发明蓄电池充放电控制电路的原理框图;Fig. 5 is a functional block diagram of the battery charging and discharging control circuit of the present invention;
图6是本发明混合储能装置在电梯运行前预充电控制流程图;Fig. 6 is a flow chart of the pre-charging control of the hybrid energy storage device of the present invention before the elevator runs;
图7是本发明混合储能装置在母线电压下降时的控制流程图;Fig. 7 is a control flow chart of the hybrid energy storage device of the present invention when the bus voltage drops;
图8是本发明混合储能装置在负荷发生能量回馈时的控制流程图;Fig. 8 is a control flow chart of the hybrid energy storage device of the present invention when the load generates energy feedback;
图9是本发明混合储能装置在电网停电时的控制流程图;Fig. 9 is a control flow chart of the hybrid energy storage device of the present invention when the grid is powered off;
图10是本发明混合储能装置应用于多电梯供电系统的工作原理框图。Fig. 10 is a working principle block diagram of the hybrid energy storage device of the present invention applied to a multi-elevator power supply system.
具体实施方式 Detailed ways
以下结合附图和具体实施方式进一步说明本发明。The present invention will be further described below in conjunction with the accompanying drawings and specific embodiments.
如图1所示,本发明的电梯装置包括整流器200,直流母线11,母线滤波电容300,泄放回路100,变频器901,电机及其负载902。其中,泄放回路100与直流母线11并联连接,包括泄放电阻101和泄放控制开关102。电网的三相交流电经过整流器200整流,输出供给直流母线11,母线滤波电容300对直流母线11进行滤波,变频器901的输入端与直流母线11连接,输出的三相交流驱动电机及其负载902。As shown in FIG. 1 , the elevator device of the present invention includes a
本发明用于电梯的混合储能装置包括超级电容器组10、蓄电池组20、超级电容器充放电电路30、蓄电池充放电电路40、超级电容器充放电控制电路50、蓄电池充放电控制电路60。超级电容器组10通过超级电容器充放电电路30与直流母线11相连,蓄电池组20通过蓄电池充放电电路40与直流母线11相连。超级电容器充放电控制电路50控制超级电容器充放电电路30的工作,决定了超级电容器组10与直流母线11之间的能量流动过程。在电梯开始工作前,直流母线11通过超级电容器充放电电路30以较大的功率对超级电容器组10充电,直至超级电容器组10的其荷电状态达到设定值。蓄电池充放电控制电路60控制蓄电池充放电电路40的工作,决定了蓄电池组20与直流母线11之间的能量流动过程。在电梯开始工作前,直流母线11通过蓄电池充放电电路40以优化的恒流方式或脉冲方式对蓄电池组20充电,直至其荷电状态达到设定值。在工作过程中,根据系统状态和用户指令决定蓄电池组20的工作过程。当蓄电池组20需要在特定的时间内提供一定的能量时,控制蓄电池充放电电路40,使蓄电池组20以优化的恒流方式放电。当蓄电池组20需要在特定的时间内吸收一定的能量时,控制蓄电池充放电电路40,使蓄电池组20以优化的恒流方式或脉冲方式充电。The hybrid energy storage device for elevators of the present invention includes a
图2所示为本发明超级电容器充放电电路30的双向DC/DC变换器。由可控功率开关管32、34,功率二极管33、35,电感31,滤波电容36、37,端口38、39组成。电感31的一端31a与端口38的正端38a连接;电感31的另一端31b与功率开关管32的集电极32a连接,并与功率二极管33的阴极33a连接,功率开关管32的发射极32b与二极管33的阳极33b连接,同时与端口38的负端38b及端口39的负端39b连接;电感31的另一端31b与功率开关管34的发射极34a连接,并与功率二极管35的阳极35a连接,功率开关管34的集电极34b与二极管35的阴极35b连接,并与端口39的正端39a连接;滤波电容36与端口38并联连接,滤波电容37与端口39并联连接。其中,可控功率开关管32和34包括但不限于MOSFET、IGBT、IGCT等,本实施例采用将IGBT功率开关器件及其驱动电路集成在一起的IPM模块,该模块内部带有过流、过热保护功能。当端口38作为输入端,端口39作为输出端时,电路为升压型DC/DC,功率开关管34和二极管33不工作,功率开关管32作为可控开关管,与二极管35一起控制电路的工作。当端口39作为输入端,端口38作为输出端时,电路为降压型DC/DC,功率开关管32和功率二极管35不工作,功率开关管34作为可控开关管,与功率二极管33一起控制电路的工作。由于直流母线11的电压较高,因此,端口38接超级电容器组10,端口39接直流母线11。当能量从超级电容器组10流向直流母线11时,为升压型DC/DC,当能量从直流母线11流向超级电容器组10时,为降压型DC/DC。FIG. 2 shows the bidirectional DC/DC converter of the supercapacitor charging and discharging
图3所示为本发明蓄电池充放电电路40的双向DC/DC变换器。由可控功率开关管42、44,功率二极管43、45,电感41,滤波电容46、47,端口48、49组成。电感41的一端41a与端口48的正端48a连接;电感41的另一端41b与功率开关管42的集电极42a连接,并与功率二极管43的阴极43a连接,功率开关管42的发射极42b与二极管43的阳极43b连接,并与端口48的负端48b及端口49的负端49b连接;电感41的另一端41b与功率开关管44的发射极44a连接,并与功率二极管45的阳极45a连接,功率开关管44的集电极44b与二极管45的阴极45b连接,并与端口49的正端49a连接;滤波电容46与端口48并联连接,滤波电容47与端口49并联连接。其中,可控功率开关管42和44包括但不限于MOSFET、IGBT、IGCT等,本实施例采用将IGBT功率开关器件及其驱动电路集成在一起的IPM模块,该模块内部带有过流、过热保护功能。由于直流母线11的电压较高,因此,端口48接蓄电池组20,端口49接直流母线11。这样,当能量从蓄电池组20流向直流母线11时,为升压型DC/DC,当能量从直流母线11流向蓄电池组20时,为降压型DC/DC。FIG. 3 shows the bidirectional DC/DC converter of the storage battery charging and discharging
如图4所示,本发明超级电容器充放电控制电路50包括信号采样单元51,A/D转换单元52,用户指令单元53,计算控制单元54,以及隔离驱动单元55。其中,计算控制单元54包括但不限于数字信号处理器DSP,单片机,嵌入式系统等。信号采样单元51分别采用电压传感器、电流传感器、温度传感器、速度传感器、加速度传感器、位置传感器、浓度传感器、称重传感器对系统的状态参数进行采样,包括,电网电压,母线电压,电梯的位置、载重量、速度和加速度,超级电容器组10的电压和充放电电流,蓄电池组20的电压、温度、电解液密度和充放电电流。输出电压信号送给A/D转换单元52,并将转化的数字信号送给计算控制单元54。用户指令单元53将用户指令送给计算控制单元54,包括电梯的升降、目的楼层。计算控制单元54按照设定的控制过程输出控制信号,经过隔离驱动单元55,驱动超级电容器充放电电路30中的功率开关管32和34,实现控制过程。设定的控制过程包括:在电梯运行前,控制功率开关管32截止,驱动功率开关管34,直流母线11给超级电容器组10供电;在电梯的启动、加速过程中,控制功率开关管[34]截止,驱动功率开关管32,超级电容器组10向直流母线11提供能量;在电梯产生能量回馈过程中,控制开关管32截止,驱动功率开关管34,直流母线11给超级电容器组10供电;在电网停电过程中,控制功率开关管34截止,驱动功率开关管32,超级电容器组10向直流母线11提供能量。As shown in FIG. 4 , the supercapacitor charge and
如图5所示,本发明蓄电池充放电控制电路60包括信号采样单元61,A/D转换单元62,用户指令单元63,计算控制单元64,以及隔离驱动单元65。其中,计算控制单元54包括但不限于数字信号处理器DSP,单片机,嵌入式系统等。信号采样单元61分别采用电压传感器、电流传感器、温度传感器、速度传感器、加速度传感器、位置传感器、浓度传感器、称重传感器对系统的状态参数进行采样,包括,电网电压,母线电压,电梯的位置、载重量、速度和加速度,超级电容器组10的电压和充放电电流,蓄电池组20的电压、温度、电解液密度和充放电电流等。输出的电压信号送给A/D转换单元62,并将转换的数字信号送给计算控制单元64。用户指令单元63将用户指令送给计算控制单元64,包括电梯的升降、目的楼层等。计算控制单元64按照设定的控制过程输出控制信号,经过隔离驱动单元65,驱动蓄电池充放电电路40中的功率开关管42和44,实现控制过程。设定的控制过程包括:在电梯运行前,控制功率开关管42截止,驱动功率开关管44,直流母线11给蓄电池组20供电;在电梯的启动、加速过程中,若超级电容器组10的端电压下降到一定设定值时,控制功率开关管44截止,驱动功率开关管42,向直流母线11提供能量;在电梯产生能量回馈过程中,若超级电容器组10的端电压上升到一定的设定值时,控制功率开关管42截止,驱动功率开关管44,直流母线11给蓄电池组20供电;在电网停电过程中,控制功率开关管44截止,驱动功率开关管42,向直流母线11提供能量,其输出功率等于电梯在工作过程中的平均功率。As shown in FIG. 5 , the battery charge and
在实际应用中,超级电容器充放电控制电路50和蓄电池充放电控制电路60共用信号采集单元、A/D转换单元,以及用户指令单元,计算控制单元可以采用一个CPU,也可以采用多个CPU,多个CPU之间具有数据通讯通道。In practical applications, the supercapacitor charge and
电梯在开始运行前,电网通过整流器200给直流母线11供电,为其建立起工作电压。混合储能装置开始预充电,充电过程如图6所示。根据系统状态和用户指令,包括电梯位置、载重量、升降距离等,决定蓄电池组20和超级电容器组10应该达到的荷电状态。直流母线11通过超级电容器充放电电路30给超级电容器组10充电,充电功率较大,以使其荷电状态较快地达到设定的要求。在这个工作过程中,功率开关管32始终断开,超级电容器充放电控制电路50输出的驱动信号控制开关管34,控制直流母线11向超级电容器组10的供电过程。同时,直流母线11通过蓄电池充放电电路40给蓄电池组20充电,采用优化的恒流充电或脉冲充电方式。在这个工作过程中,功率开关管42始终断开,蓄电池充放电控制电路60输出驱动信号控制开关管44,控制直流母线11向蓄电池组20的供电过程。当超级电容器组10和蓄电池组20的荷电状态达到了设定值,停止充电,电梯准备就绪,可以运行。Before the elevator starts running, the grid supplies power to the
电梯在启动、加速过程中,功率需求加大,导致直流母线11电压降低;此外,当电网电压发生中断、跌落时,也会引起母线电压将低。混合储能装置向直流母线11供电,以使其电压维持在一定的范围内,过程如图7所示。超级电容器组10通过超级电容器充放电电路30给直流母线11供电。在这个过程中,功率开关管34始终断开,超级电容器充放电控制电路50输出的控制信号驱动功率开关管32,控制超级电容器组10向直流母线11的供电过程。一般情况下,只通过超级电容器组10的放电就可以满足系统要求,但当超级电容器组10持续放电而导致其端电压下降到一定设定值时,或者根据系统状态和用户指令判断出蓄电池组20需要释放一定的功率和能量时,蓄电池组20通过蓄电池充放电电路40向直流母线11供电。在这个过程中,功率开关管44始终断开,蓄电池充放电控制电路60输出的驱动信号控制功率开关管42,控制蓄电池组20向直流母线11的供电过程。蓄电池组20一般工作于较优化的恒流放电方式。检测超级电容器组10和蓄电池组20的荷电状态,如果低于一定的设定值,控制电梯安全停机,混合储能装置停止供电。During the start-up and acceleration process of the elevator, the power demand increases, which causes the voltage of the
电梯在减速、停机过程中,电机处于发电状态,并通过变频器901向直流母线11馈电,导致母线电压升高。混合储能装置以一定的方式吸收这部分功率和能量,过程如图8所示。超级电容器充放电控制电路50控制超级电容器充放电电路30,使直流母线11通过超级电容器充放电电路30给超级电容器组10充电。在这个工作过程中,功率开关管32始终断开,超级电容器充放电控制电路60输出的驱动信号控制开关管34,控制直流母线11向超级电容器组10的供电过程。一般情况下,只给超级电容器组10充电就可以达到吸收峰值功率的目的,但当超级电容器组10持续充电而导致其端电压上升到一定设定值时,或者由系统状态和用户指令判断出蓄电池组20需要吸收一部分功率或能量时,蓄电池充放电控制电路60控制蓄电池充放电电路40,直流母线11通过蓄电池充放电电路40给蓄电池组20充电。在这个过程中,功率开关管42始终断开,蓄电池充放电控制电路60输出的驱动信号控制功率开关管44,控制直流母线11向蓄电池组20的供电过程。一般蓄电池组20工作于优化的恒流充电方式。当超级电容器组10和蓄电池组20充电至设定荷电状态而直流母线11的端电压仍然高于设定的电压值时,泄放回路100中的控制开关102闭合,直流母线11通过泄放电阻101放电,直至直流母线11的端电压下降到设定的电压值,控制开关102断开。During the process of deceleration and stop of the elevator, the motor is in the state of generating power, and feeds power to the
当电网停电时,由混合储能装置提供电梯正常运行所需的功率和能量,实现不间断供电,过程如图9所示。蓄电池组20通过蓄电池充放电电路40给直流母线11供电,蓄电池组20恒流放电,其输出功率等于电梯运行过程中的平均功率。在这个过程中,功率开关管44始终断开,蓄电池充放电控制电路60输出的驱动信号控制功率开关管42,控制蓄电池组20向直流母线11的供电过程。超级电容器组10通过超级电容器充放电电路30给直流母线11供电,主要用于提供电梯在启动、加速时的峰值功率需求,并在电梯减速、停机等功率需求较低时接受直流母线11的充电。在这个过程中,超级电容器充放电控制电路50输出的驱动信号控制功率开关管32和34在不同的时间段交替工作,实现能量的双向流动。混合储能装置持续工作,直至电梯继续运行至下一楼层并打开电梯门,或者其它备用发电设备启动并输出电能,或者连续运行直至电网恢复供电。如果停电时间过长,蓄电池组20和超级电容器组10的荷电状态低于设定的下限值,系统控制电梯在适当的楼层安全停机,并停止混合储能装置的供电。When the power grid fails, the hybrid energy storage device provides the power and energy required for the normal operation of the elevator to achieve uninterrupted power supply. The process is shown in Figure 9. The
图10是本发明混合储能装置在多电梯供电系统中的应用实施例。在图1所示系统的基础上,电网通过整流电路200整流并将产生的直流电传送给直流母线11,直流母线11驱动多组由变频器901和电机902组成的负荷90,在本实施例中,所有电梯装置通过直流母线11共用一套泄放回路100(包括泄放电组101和泄放控制开关102)。Fig. 10 is an application example of the hybrid energy storage device of the present invention in a multi-elevator power supply system. On the basis of the system shown in Figure 1, the power grid is rectified by the
混合储能装置的工作过程和控制方法与图1所示实施例相似。本实施例的优点在于,通过一组直流母线11驱动多组负荷90,可以充分发挥各负荷之间因工作过程不同步而出现的能量互补作用,这样可以进一步缩小混合储能装置的安装容量,减少超级电容器组10和蓄电池组20的工作过程,提高了能量利用效率。The working process and control method of the hybrid energy storage device are similar to the embodiment shown in FIG. 1 . The advantage of this embodiment is that, by driving multiple sets of
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610011629A CN100588075C (en) | 2006-04-10 | 2006-04-10 | Hybrid energy storage device for elevator and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610011629A CN100588075C (en) | 2006-04-10 | 2006-04-10 | Hybrid energy storage device for elevator and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1835329A CN1835329A (en) | 2006-09-20 |
CN100588075C true CN100588075C (en) | 2010-02-03 |
Family
ID=37002983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200610011629A Expired - Fee Related CN100588075C (en) | 2006-04-10 | 2006-04-10 | Hybrid energy storage device for elevator and control method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100588075C (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101924372A (en) * | 2010-08-10 | 2010-12-22 | 北京国电富通科技发展有限责任公司 | Energy storage control system |
US11014786B2 (en) | 2017-02-22 | 2021-05-25 | Otis Elevator Company | Power control system for a battery driven elevator |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101252290B (en) * | 2008-03-31 | 2010-11-10 | 江苏双登集团有限公司 | Wind electricity change paddle UPS system based on super capacitor |
CN101789620A (en) * | 2010-03-18 | 2010-07-28 | 大连理工大学 | Active parallel-connection type mixing energy storing system based on battery and super capacitor |
CN101931366B (en) * | 2010-08-03 | 2012-04-25 | 浙江大学 | Super capacitor-based energy-saving drive circuit of motor and control method |
CN101950974A (en) * | 2010-08-03 | 2011-01-19 | 大连理工大学 | Electric energy quality regulating system based on energy storing of super capacitor |
CN102001557A (en) * | 2010-12-01 | 2011-04-06 | 大连山亿电子有限公司 | HYBRID elevator control cabinet and control method thereof |
CN102180390B (en) * | 2011-03-08 | 2013-10-23 | 苏州圣元电器有限公司 | Frequency-conversion traction equipment energy-saving system for elevator |
CN102280924B (en) * | 2011-07-18 | 2013-05-22 | 北京四方继保自动化股份有限公司 | Uninterrupted power supply system for relay protection device |
CN102377192B (en) * | 2011-10-31 | 2013-11-06 | 清华大学 | Direct-driving wave power-generating and energy-storing device and control method |
CN102723763A (en) * | 2012-06-04 | 2012-10-10 | 天津大学 | Super-capacitor energy storage type quick elevator charge protection controller |
CN103490442B (en) * | 2012-06-14 | 2015-09-16 | 华锐风电科技(集团)股份有限公司 | Stabilize the energy storage device of Wind turbines output-power fluctuation, system and method |
CN102842963B (en) * | 2012-09-21 | 2015-03-18 | 中国科学院广州能源研究所 | Secondary battery and super capacitor mixed energy storage management system |
JP6196764B2 (en) * | 2012-10-09 | 2017-09-13 | 三菱重工業株式会社 | Power supply apparatus, power supply method and program |
CN102983563B (en) * | 2012-11-15 | 2014-07-23 | 中国电力科学研究院 | Coordination control method for common direct current bus mixing energy storage systems |
CN104104237A (en) * | 2014-06-20 | 2014-10-15 | 任磊 | Frequency converter having high/low voltage ride-through function |
CN105914861B (en) * | 2016-04-21 | 2018-05-25 | 中国北方车辆研究所 | Composite energy storage power supply and the method that stable DC busbar voltage is realized using it |
CN106849259B (en) * | 2017-03-15 | 2019-04-02 | 易事特集团股份有限公司 | UPS system and intelligent charging and discharging circuit thereof |
CN107645171B (en) * | 2017-07-25 | 2020-11-20 | 西北工业大学 | Energy control method and device for hybrid energy storage elevator of super capacitor and battery pack |
CN107352338B (en) * | 2017-09-05 | 2019-06-18 | 莆田学院 | Elevator energy-saving device based on dual energy storage mode and its control operation method |
CN108408515B (en) * | 2018-03-21 | 2020-01-07 | 上海交通大学 | Elevator energy recovery system and method based on energy storage battery |
CN108448700B (en) * | 2018-05-17 | 2023-06-02 | 深圳市安顺节能科技发展有限公司 | Hybrid energy storage device, system and control method of hoisting system |
CN109066949A (en) * | 2018-09-26 | 2018-12-21 | 上海节卡机器人科技有限公司 | A kind of robot distribution system based on super capacitor |
CN109889073B (en) * | 2019-04-11 | 2020-09-29 | 美的集团武汉制冷设备有限公司 | Drive control circuit and household electrical appliance |
CN110581596B (en) * | 2019-08-30 | 2022-03-11 | 漳州科华电气技术有限公司 | Multi-source energy storage direct current power supply device and UPS equipment |
CN111106614A (en) * | 2019-12-31 | 2020-05-05 | 北京德亚特应用科技有限公司 | Asynchronous motor energy balance circuit and method |
CN111403445B (en) * | 2020-03-23 | 2023-04-18 | 京东方科技集团股份有限公司 | Display panel and manufacturing method thereof |
CN111987756A (en) * | 2020-05-20 | 2020-11-24 | 杭州士兰微电子股份有限公司 | Charging circuit |
CN111969580B (en) * | 2020-08-13 | 2022-07-08 | 鲁逢源 | Energy storage type direct current power buffer system |
CN112477608A (en) * | 2020-12-19 | 2021-03-12 | 陕西航空电气有限责任公司 | Energy feedback device for aviation electric drive system and control method |
CN112688396B (en) * | 2020-12-31 | 2022-09-20 | 中际联合(北京)科技股份有限公司 | Control system of lifting equipment, lifting equipment and control method |
CN113708396A (en) * | 2021-08-27 | 2021-11-26 | 西安热工研究院有限公司 | Elevator energy-saving control system and method based on grid connection of hybrid energy storage device |
CN113725907A (en) * | 2021-09-01 | 2021-11-30 | 远景能源有限公司 | Auxiliary power supply for power generation system and corresponding power generation system |
CN113949056A (en) * | 2021-10-25 | 2022-01-18 | 西子电梯科技有限公司 | An elevator energy conversion system and conversion method thereof |
CN114221363B (en) * | 2021-11-26 | 2023-11-21 | 三峡大学 | Supercapacitor-battery hybrid energy storage system based on impedance source topology |
CN115241863A (en) * | 2022-08-18 | 2022-10-25 | 中国核动力研究设计院 | Control rod power control device and control method based on super capacitor-battery |
CN115483734B (en) * | 2022-08-25 | 2024-10-29 | 邓立保 | Elevator energy storage control device and method |
WO2024050656A1 (en) * | 2022-09-05 | 2024-03-14 | 航霈科技(深圳)有限公司 | Power supply apparatus, method and system |
CN117833194B (en) * | 2024-01-08 | 2024-05-28 | 广东裕华兴建筑机械制造有限公司 | Direct current bus power supply and energy storage system applied to vertical transportation equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1138776A (en) * | 1995-06-22 | 1996-12-25 | 三菱电机株式会社 | Elevator controlling unit |
US6457565B2 (en) * | 2000-02-28 | 2002-10-01 | Mitsubishi Denki Kabushiki Kaisha | Elevator apparatus with rechargeable power supply and discharge control |
-
2006
- 2006-04-10 CN CN200610011629A patent/CN100588075C/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1138776A (en) * | 1995-06-22 | 1996-12-25 | 三菱电机株式会社 | Elevator controlling unit |
US6457565B2 (en) * | 2000-02-28 | 2002-10-01 | Mitsubishi Denki Kabushiki Kaisha | Elevator apparatus with rechargeable power supply and discharge control |
Non-Patent Citations (1)
Title |
---|
发展中的电化学电容器. 张文保等.CBIA2005中国国际电池学术交流会论文集. 2005 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101924372A (en) * | 2010-08-10 | 2010-12-22 | 北京国电富通科技发展有限责任公司 | Energy storage control system |
CN101924372B (en) * | 2010-08-10 | 2013-05-29 | 北京国电富通科技发展有限责任公司 | Energy storage control system |
US11014786B2 (en) | 2017-02-22 | 2021-05-25 | Otis Elevator Company | Power control system for a battery driven elevator |
Also Published As
Publication number | Publication date |
---|---|
CN1835329A (en) | 2006-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100588075C (en) | Hybrid energy storage device for elevator and control method thereof | |
CN100588074C (en) | Hybrid energy storage device for elevator and control method thereof | |
CN1845417B (en) | A hybrid energy storage device for elevators and its control method | |
CN101252290B (en) | Wind electricity change paddle UPS system based on super capacitor | |
CN106828126B (en) | Hybrid energy management system and control method for tram | |
CN105904976B (en) | A kind of fuel cell hybrid locomotive Energy Management System and method | |
CN101309017A (en) | A complementary power supply system for wind power generation and photovoltaic power generation based on supercapacitor battery hybrid energy storage | |
CN101286655A (en) | Complementary power supply system of wind power generation and photovoltaic power generation based on supercapacitor energy storage | |
CN101807821B (en) | Energy saving system of elevator | |
CN101697429B (en) | Micro power consumption elevator | |
CN212400925U (en) | Energy management system of extended-range hybrid power engineering machinery | |
CN106427616B (en) | A kind of composite power source based on charge pump and its switching method in different operating modes | |
CN101567572A (en) | Mobile robot power supply | |
CN107591870B (en) | Energy storage system for elevator | |
CN102013754A (en) | Energy-saving elevator power distribution system | |
Tominaga et al. | Development of energy-saving elevator using regenerated power storage system | |
CN107834635A (en) | A kind of hybrid accumulator and control method for traction elevator | |
CN104821610B (en) | Three-level high-reliability renewable energy control method and device based on double super-capacitor module groups | |
CN102055203B (en) | Power supply device for intelligently adjusting power grid load peak and valley in communication base station | |
JP5602473B2 (en) | Elevator control device | |
CN201530655U (en) | Micro-energy consumption elevator | |
CN212400926U (en) | Multi-power-source engineering machinery energy management system | |
CN101950978A (en) | Energy-saving emergency type elevator feedback power system | |
CN109455605B (en) | Elevator energy-saving device | |
CN213959823U (en) | Uninterrupted aluminum fuel power supply system based on aluminum-air battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20100203 Termination date: 20150410 |
|
EXPY | Termination of patent right or utility model |