Displaying 1-9 of 9 results found.
page
1
a(n) = A003959(n) - n, where A003959 is multiplicative with a(p^e) = (p+1)^e.
+10
14
0, 1, 1, 5, 1, 6, 1, 19, 7, 8, 1, 24, 1, 10, 9, 65, 1, 30, 1, 34, 11, 14, 1, 84, 11, 16, 37, 44, 1, 42, 1, 211, 15, 20, 13, 108, 1, 22, 17, 122, 1, 54, 1, 64, 51, 26, 1, 276, 15, 58, 21, 74, 1, 138, 17, 160, 23, 32, 1, 156, 1, 34, 65, 665, 19, 78, 1, 94, 27, 74, 1, 360, 1, 40, 69, 104, 19, 90, 1, 406, 175, 44, 1, 204
COMMENTS
a(p*(n/p)) - (n/p) = (p+1)*a(n/p) holds for all prime divisors p of n, which can be seen by expanding the left hand side as ( A003959(p*(n/p)) - (p*(n/p))) - (n/p) = (p+1)* A003959(n/p)-((p+1)*(n/p)) = (p+1)*( A003959(n/p)-(n/p)) = (p+1)*a(n/p). This implies that a(n) >= A003415(n) for all n. (See also comments in A348970). - Antti Karttunen, Nov 06 2021
MATHEMATICA
f[p_, e_] := (p + 1)^e; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* Amiram Eldar, Oct 30 2021 *)
PROG
(PARI)
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
(PARI)
A020639(n) = if(1==n, n, (factor(n)[1, 1]));
CROSSREFS
Cf. A001065, A003415, A003959, A020639, A032742, A348029, A348508, A348929 [= gcd(n,a(n))], A348950, A348970.
a(n) = A003959(n) - A129283(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and A129283(n) is sum of n and its arithmetic derivative.
+10
9
0, 0, 0, 1, 0, 1, 0, 7, 1, 1, 0, 8, 0, 1, 1, 33, 0, 9, 0, 10, 1, 1, 0, 40, 1, 1, 10, 12, 0, 11, 0, 131, 1, 1, 1, 48, 0, 1, 1, 54, 0, 13, 0, 16, 12, 1, 0, 164, 1, 13, 1, 18, 0, 57, 1, 68, 1, 1, 0, 64, 0, 1, 14, 473, 1, 17, 0, 22, 1, 15, 0, 204, 0, 1, 14, 24, 1, 19, 0, 230, 67, 1, 0, 80, 1, 1, 1, 96, 0, 75, 1, 28
COMMENTS
There are no negative terms. We prove this by induction over the prime factorization of n, showing that A348507(n) >= A003415(n) for all values of n >= 1. At n=1, both sequences have value 0, and at the primes both sequences obtain the value 1, so the base cases hold. We know that A348507(n)-(n/p) = (p+1)* A348507(n/p) for all prime factors p of n (see comment in A348507). With the arithmetic derivative we obtain respectively that A003415(n) = A003415(p*(n/p)) = A003415(p)*(n/p) + p* A003415(n/p) = (n/p) + p* A003415(n/p), for any prime factor p of n. Now A348507(p*(n/p)) >= A003415(p*(n/p)) iff A348507(p*(n/p)) - (n/p) >= A003415(p*(n/p)) - (n/p), that is, iff (p+1)* A348507(n/p) >= p* A003415(n/p), which indeed follows by the induction hypothesis, which assumes that A348507(x) >= A003415(x) for all proper divisors x of n.
MATHEMATICA
d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); f[p_, e_] := (p + 1)^e; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - n - d[n]; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
a(n) = gcd(sigma(n), A003959(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors function.
+10
7
1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 8, 8, 30, 72, 32, 9, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 24, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72, 3, 74, 114, 4, 20, 96, 168, 80, 6, 1, 126, 84, 32
COMMENTS
This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 196 = 4*49, where a(196) = 3, although a(4) = 1 and a(49) = 4.
MATHEMATICA
f[p_, e_] := (p + 1)^e; a[1] = 1; a[n_] := GCD[Times @@ f @@@ FactorInteger[n], DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Oct 21 2021 *)
PROG
(PARI)
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
a(n) = sigma(n) / gcd(sigma(n), A003959(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors function.
+10
5
1, 1, 1, 7, 1, 1, 1, 5, 13, 1, 1, 7, 1, 1, 1, 31, 1, 13, 1, 7, 1, 1, 1, 5, 31, 1, 5, 7, 1, 1, 1, 7, 1, 1, 1, 91, 1, 1, 1, 5, 1, 1, 1, 7, 13, 1, 1, 31, 57, 31, 1, 7, 1, 5, 1, 5, 1, 1, 1, 7, 1, 1, 13, 127, 1, 1, 1, 7, 1, 1, 1, 65, 1, 1, 31, 7, 1, 1, 1, 31, 121, 1, 1, 7, 1, 1, 1, 5, 1, 13, 1, 7, 1, 1, 1, 7, 1, 57, 13
COMMENTS
Not multiplicative. For example, a(196) = 133 != a(4) * a(49).
MATHEMATICA
f[p_, e_] := (p + 1)^e; a[1] = 1; a[n_] := (s = DivisorSigma[1, n]) / GCD[s, Times @@ f @@@ FactorInteger[n]]; Array[a, 100] (* Amiram Eldar, Oct 21 2021 *)
PROG
(PARI)
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 6, 0, 0, 0, 0, 75, 0, 0, 0, 6, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 72, 0, 0, 0, 0, 0, 18, 0, 24, 0, 0, 0, 0, 0, 0, 0, 270, 0, 0, 0, 0, 0, 0, 0, 66, 0, 0, 0, 0, 0, 0, 0, 108, 48, 0, 0, 0, 0, 0, 0, 36, 0, 0, 0, 0, 0, 0, 0, 300, 0, 0, 0, 10
MATHEMATICA
f1[p_, e_] := (p^(e + 1) - 1)/(p - 1); f2[p_, e_] := (p + 1)^e; f3[p_, e_] := p^e + 1; a[1] = 0; a[n_] := (Times @@ f2 @@@ (f = FactorInteger[n]) + Times @@ f3 @@@ f) / 2 - Times @@ f1 @@@ f; Array[a, 100] (* Amiram Eldar, Nov 05 2021 *)
PROG
(PARI)
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); };
a(n) = A003968(n) - n, where A003968 is multiplicative with a(p^e) = p*(p+1)^(e-1).
+10
4
0, 0, 0, 2, 0, 0, 0, 10, 3, 0, 0, 6, 0, 0, 0, 38, 0, 6, 0, 10, 0, 0, 0, 30, 5, 0, 21, 14, 0, 0, 0, 130, 0, 0, 0, 36, 0, 0, 0, 50, 0, 0, 0, 22, 15, 0, 0, 114, 7, 10, 0, 26, 0, 42, 0, 70, 0, 0, 0, 30, 0, 0, 21, 422, 0, 0, 0, 34, 0, 0, 0, 144, 0, 0, 15, 38, 0, 0, 0, 190, 111, 0, 0, 42, 0, 0, 0, 110, 0, 30, 0, 46
MATHEMATICA
f[p_, e_] := p*(p + 1)^(e - 1); a[n_] := Times @@ f @@@ FactorInteger[n] - n; Array[a, 100] (* Amiram Eldar, Oct 20 2021 *)
PROG
(PARI)
A003968(n) = {my(f=factor(n)); for (i=1, #f~, p= f[i, 1]; f[i, 1] = p*(p+1)^(f[i, 2]-1); f[i, 2] = 1); factorback(f); }
a(n) = A003959(n) / gcd(sigma(n), A003959(n)), where A003959 is multiplicative with a(p^e) = (p+1)^e and sigma is the sum of divisors function.
+10
4
1, 1, 1, 9, 1, 1, 1, 9, 16, 1, 1, 9, 1, 1, 1, 81, 1, 16, 1, 9, 1, 1, 1, 9, 36, 1, 8, 9, 1, 1, 1, 27, 1, 1, 1, 144, 1, 1, 1, 9, 1, 1, 1, 9, 16, 1, 1, 81, 64, 36, 1, 9, 1, 8, 1, 9, 1, 1, 1, 9, 1, 1, 16, 729, 1, 1, 1, 9, 1, 1, 1, 144, 1, 1, 36, 9, 1, 1, 1, 81, 256, 1, 1, 9, 1, 1, 1, 9, 1, 16, 1, 9, 1, 1, 1, 27, 1, 64
COMMENTS
Not multiplicative. For example, a(196) = 192 != a(4) * a(49).
MATHEMATICA
f[p_, e_] := (p + 1)^e; a[1] = 1; a[n_] := (m = Times @@ f @@@ FactorInteger[n]) / GCD[m, DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Oct 21 2021 *)
PROG
(PARI)
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
a(n) = A003959(n) - A034448(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and A034448 (usigma) is multiplicative with a(p^e) = (p^e)+1.
+10
3
0, 0, 0, 4, 0, 0, 0, 18, 6, 0, 0, 16, 0, 0, 0, 64, 0, 18, 0, 24, 0, 0, 0, 72, 10, 0, 36, 32, 0, 0, 0, 210, 0, 0, 0, 94, 0, 0, 0, 108, 0, 0, 0, 48, 36, 0, 0, 256, 14, 30, 0, 56, 0, 108, 0, 144, 0, 0, 0, 96, 0, 0, 48, 664, 0, 0, 0, 72, 0, 0, 0, 342, 0, 0, 40, 80, 0, 0, 0, 384, 174, 0, 0, 128, 0, 0, 0, 216, 0, 108
MATHEMATICA
f1[p_, e_] := (p + 1)^e; f2[p_, e_] := p^e + 1; a[n_] := Times @@ f1 @@@ (f = FactorInteger[n]) - Times @@ f2 @@@ f; Array[a, 100] (* Amiram Eldar, Oct 31 2021 *)
PROG
(PARI)
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
A034448(n) = { my(f = factor(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
a(n) = A003959(n) - 2*n, where A003959 is multiplicative with a(p^e) = (p+1)^e.
+10
2
-1, -1, -2, 1, -4, 0, -6, 11, -2, -2, -10, 12, -12, -4, -6, 49, -16, 12, -18, 14, -10, -8, -22, 60, -14, -10, 10, 16, -28, 12, -30, 179, -18, -14, -22, 72, -36, -16, -22, 82, -40, 12, -42, 20, 6, -20, -46, 228, -34, 8, -30, 22, -52, 84, -38, 104, -34, -26, -58, 96, -60, -28, 2, 601, -46, 12, -66, 26, -42, 4, -70, 288
FORMULA
For all n >= 1, a( A138636(n)) = 12.
(End)
MATHEMATICA
f[p_, e_] := (p + 1)^e; a[1] = -1; a[n_] := Times @@ f @@@ FactorInteger[n] - 2*n; Array[a, 100] (* Amiram Eldar, Oct 30 2021 *)
PROG
(PARI)
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
Search completed in 0.009 seconds
|