[go: up one dir, main page]

login
A168065
If n = Product p(k)^e(k) then a(n) = (Product (p(k)+1)^e(k) + Product (p(k)-1)^e(k))/2, a(1) = 1.
6
1, 2, 3, 5, 5, 7, 7, 14, 10, 11, 11, 19, 13, 15, 16, 41, 17, 26, 19, 29, 22, 23, 23, 55, 26, 27, 36, 39, 29, 40, 31, 122, 34, 35, 36, 74, 37, 39, 40, 83, 41, 54, 43, 59, 56, 47, 47, 163, 50, 62, 52, 69, 53, 100, 56, 111, 58, 59, 59, 112, 61, 63, 76, 365, 66, 82, 67, 89, 70, 84, 71
OFFSET
1,2
COMMENTS
a(n) = n iff n is 1 or a prime;
a(n) = n+1 iff n is a biprime, i.e., n = p*q, p <= q primes;
a(n) = n+(p+q+r) iff n is a triprime, i.e., n = p*q*r, p <= q <= r primes;
a(n) = n + (p*q + p*r + p*s + q*r + q*s + r*s) + 1 iff n is a quadprime, i.e., n = p*q*r*s, p <= q <= r <= s primes;
...
LINKS
FORMULA
a(n) = (A003959(n) + A003958(n))/2.
PROG
(PARI) a(n) = {f = factor(n); return ((prod(k=1, #f~, (f[k, 1]+1)^f[k, 2]) + prod(k=1, #f~, (f[k, 1]-1)^f[k, 2]))/2); } \\ Michel Marcus, Jun 13 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Daniel Forgues, Nov 18 2009
STATUS
approved