[go: up one dir, main page]

login
A037153
a(n) = p-n!, where p is the smallest prime > n!+1.
19
2, 3, 5, 5, 7, 7, 11, 23, 17, 11, 17, 29, 67, 19, 43, 23, 31, 37, 89, 29, 31, 31, 97, 131, 41, 59, 47, 67, 223, 107, 127, 79, 37, 97, 61, 131, 311, 43, 97, 53, 61, 97, 71, 47, 239, 101, 233, 53, 83, 61, 271, 53, 71, 223, 71, 149, 107, 283, 293, 271, 769, 131, 271, 67, 193
OFFSET
1,1
COMMENTS
Analogous to Fortunate numbers and like them, the entries appear to be primes. In fact, the first 1200 terms are primes. Are all terms prime?
a(n) is the first (smallest) m such that m > 1 and n!+ m is prime. The second such m is A087202(n). a(n) must be greater than nextprime(n)-1. - Farideh Firoozbakht, Sep 01 2003
Sequence A069941, which counts the primes between n! and n!+n^2, provides numerical evidence that the smallest prime p greater than n!+1 is a prime distance from n!; that is, p-n! is a prime number. For p-n! to be a composite number, p would have to be greater than n!+n^2, which would imply that A069941(n)=0. - T. D. Noe, Mar 06 2010
The first 4003 terms are prime. - Dana Jacobsen, May 10 2015
LINKS
Ray Chandler and Dana Jacobsen, Table of n, a(n) for n = 1..4000 [first 1200 terms from Ray Chandler]
Antonín Čejchan, Michal Křížek, and Lawrence Somer, On Remarkable Properties of Primes Near Factorials and Primorials, Journal of Integer Sequences, Vol. 25 (2022), Article 22.1.4.
Hisanori Mishima, Primes near to factorial, Dec 2008.
MATHEMATICA
NextPrime[ n_Integer ] := (k=n+1; While[ !PrimeQ[ k ], k++ ]; Return[ k ]); f[ n_Integer ] := (p = n! + 1; q = NextPrime[ p ]; Return[ q - p + 1 ]); Table[ f[ n ], {n, 1, 75} ] (* Robert G. Wilson v *)
PROG
(Magma) z:=125; [p-f where p is NextPrime(f+1) where f is Factorial(n): n in [1..z]]; // Klaus Brockhaus, Mar 02 2010
(MuPAD) for n from 1 to 65 do f := n!:a := nextprime(f+2)-f:print(a) end_for; // Zerinvary Lajos, Feb 22 2007
(PARI) a(n)=nextprime(n!+2)-n! \\ Charles R Greathouse IV, Jul 02 2013; Corrected by Dana Jacobsen, May 10 2015
(Perl) use ntheory ":all"; for my $n (1..1000) { my $f=factorial($n); say "$n ", next_prime($f+1)-$f; } # Dana Jacobsen, May 10 2015
(Python)
from sympy import factorial, nextprime
def a(n): fn = factorial(n); return nextprime(fn+1) - fn
print([a(n) for n in range(1, 66)]) # Michael S. Branicky, May 22 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Mar 06 2010
STATUS
approved