OFFSET
0,3
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, Third Ed., 1998.
Helmut Klingen, Introductory Lectures on Siegel Modular Forms, Cambrifge, 1990, p. 123.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..100
N. J. A. Sloane, Notes on Two-dimensional Theta Series of Lattices (Notes on some joint work with Eric M. Rains), pages 96-115, circa Jun 08 1998, of N. J. A. Sloane's notebook "Lattices Volume 79".
FORMULA
MAPLE
# Maple code from N. J. A. Sloane, Dec 12 2020. Will also be useful for related sequences.
# get standard theta series in Maple. First set max degree, maxd.
maxd:=201:
# get th2, th3, th4 = Jacobi theta constants out to degree maxd (Ref. Conway-Sloane, p. 102)
temp0:=trunc(evalf(sqrt(maxd)))+2:
a:=0: for i from -temp0 to temp0 do a:=a+q^( (i+1/2)^2): od:
th2:=series(a, q, maxd);
a:=0: for i from -temp0 to temp0 do a:=a+q^(i^2): od:
th3:=series(a, q, maxd);
th4:=series(subs(q=-q, th3), q, maxd);
# get Dedekind eta function
a:=q^(1/24) : for m from 1 to maxd do a:=a*(1-q^m); od:
eta:=a;
# get phi0 and phi1 (Ref. Conway-Sloane, p. 103)
phi0:=series( subs(q=q^2, th2)*subs(q=q^6, th2)+subs(q=q^2, th3)*subs(q=q^6, th3), q, maxd );
phi1:=series( subs(q=q^2, th2)*subs(q=q^6, th3)+subs(q=q^2, th3)*subs(q=q^6, th2), q, maxd );
# get delta12 (Ref. Conway-Sloane, p. 204, where it is called Delta_6)
delta12:=series((subs(q=q^3, eta)*eta)^6, q, maxd);
delta12:=series(subs(q=q^2, delta12), q, maxd);
# To get the present sequence: (Ref. Sloane notebook pages)
x:=phi0; y:=delta12;
w1:= x^12-72*x^6*y-1728*y^2; w1s:=series(w1, q, maxd); w2:=subs(q=sqrt(t), w1s); w3:=series(w2, t, 101);
w4:=seriestolist(w3); # A037150
CROSSREFS
KEYWORD
sign
AUTHOR
EXTENSIONS
Entry revised by N. J. A. Sloane, Dec 12 2020
STATUS
approved