[go: up one dir, main page]

login
A349142
a(n) = Sum_{d|n} psi(n/d) * A348507(d), where psi is Dedekind psi (A001615), A348507(n) = A003959(n) - n, and A003959 is fully multiplicative with a(p) = (p+1).
7
0, 1, 1, 8, 1, 13, 1, 40, 11, 17, 1, 80, 1, 21, 19, 164, 1, 99, 1, 112, 23, 29, 1, 364, 17, 33, 77, 144, 1, 191, 1, 604, 31, 41, 27, 528, 1, 45, 35, 524, 1, 243, 1, 208, 165, 53, 1, 1424, 23, 187, 43, 240, 1, 597, 35, 684, 47, 65, 1, 1072, 1, 69, 209, 2084, 39, 347, 1, 304, 55, 327, 1, 2244, 1, 81, 221, 336, 39, 399
OFFSET
1,4
COMMENTS
Dirichlet convolution of A001615 with A348507.
LINKS
FORMULA
a(n) = Sum_{d|n} A001615(n/d) * A348507(d).
For all n >= 1, a(n) >= A347132(n) >= A348982(n).
a(n) = A349172(n) - A327251(n). - Antti Karttunen, Nov 14 2021
MATHEMATICA
f1[p_, e_] := (p + 1)*p^(e - 1); psi[1] = 1; psi[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := (p + 1)^e; s[1] = 1; s[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := DivisorSum[n, (s[#] - #)*psi[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
PROG
(PARI)
A001615(n) = if(1==n, n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
A348507(n) = (A003959(n) - n);
A349142(n) = sumdiv(n, d, A001615(d)*A348507(n/d));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 08 2021
STATUS
approved