[go: up one dir, main page]

login
Search: a141809 -id:a141809
     Sort: relevance | references | number | modified | created      Format: long | short | data
Irregular triangle in which first row is 1, n-th row (n > 1) lists distinct prime factors of n.
+10
239
1, 2, 3, 2, 5, 2, 3, 7, 2, 3, 2, 5, 11, 2, 3, 13, 2, 7, 3, 5, 2, 17, 2, 3, 19, 2, 5, 3, 7, 2, 11, 23, 2, 3, 5, 2, 13, 3, 2, 7, 29, 2, 3, 5, 31, 2, 3, 11, 2, 17, 5, 7, 2, 3, 37, 2, 19, 3, 13, 2, 5, 41, 2, 3, 7, 43, 2, 11, 3, 5, 2, 23, 47, 2, 3, 7, 2, 5, 3, 17, 2, 13, 53, 2, 3, 5, 11, 2, 7, 3, 19, 2, 29, 59, 2, 3, 5, 61, 2, 31
OFFSET
1,2
COMMENTS
Number of terms in n-th row is A001221(n) for n > 1.
From Reinhard Zumkeller, Aug 27 2011: (Start)
A008472(n) = Sum_{k=1..A001221(n)} T(n,k), n>1;
A007947(n) = Product_{k=1..A001221(n)} T(n,k);
A006530(n) = Max_{k=1..A001221(n)} T(n,k).
A020639(n) = Min_{k=1..A001221(n)} T(n,k).
(End)
Subsequence of A027750 that lists the divisors of n. - Michel Marcus, Oct 17 2015
LINKS
Eric Weisstein's World of Mathematics, Distinct Prime Factors.
EXAMPLE
Triangle begins:
1;
2;
3;
2;
5;
2, 3;
7;
2;
3;
2, 5;
11;
2, 3;
13;
2, 7;
...
MAPLE
with(numtheory): [ seq(factorset(n), n=1..100) ];
MATHEMATICA
Flatten[ Table[ FactorInteger[n][[All, 1]], {n, 1, 62}]](* Jean-François Alcover, Oct 10 2011 *)
PROG
(Haskell)
import Data.List (unfoldr)
a027748 n k = a027748_tabl !! (n-1) !! (k-1)
a027748_tabl = map a027748_row [1..]
a027748_row 1 = [1]
a027748_row n = unfoldr fact n where
fact 1 = Nothing
fact x = Just (p, until ((> 0) . (`mod` p)) (`div` p) x)
where p = a020639 x -- smallest prime factor of x
-- Reinhard Zumkeller, Aug 27 2011
(PARI) print1(1); for(n=2, 20, f=factor(n)[, 1]; for(i=1, #f, print1(", "f[i]))) \\ Charles R Greathouse IV, Mar 20 2013
(Python)
from sympy import primefactors
for n in range(2, 101):
print([i for i in primefactors(n)]) # Indranil Ghosh, Mar 31 2017
CROSSREFS
Cf. A000027, A001221, A001222 (with repetition), A027746, A141809, A141810.
a(A013939(A000040(n))+1) = A000040(n).
A284411 gives column medians.
KEYWORD
nonn,easy,tabf,nice
EXTENSIONS
More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)
STATUS
approved
If n = Product (p_j^k_j) then a(n) = Sum (p_j^k_j) (a(1) = 0 by convention).
+10
58
0, 2, 3, 4, 5, 5, 7, 8, 9, 7, 11, 7, 13, 9, 8, 16, 17, 11, 19, 9, 10, 13, 23, 11, 25, 15, 27, 11, 29, 10, 31, 32, 14, 19, 12, 13, 37, 21, 16, 13, 41, 12, 43, 15, 14, 25, 47, 19, 49, 27, 20, 17, 53, 29, 16, 15, 22, 31, 59, 12, 61, 33, 16, 64, 18, 16, 67, 21, 26, 14, 71, 17, 73
OFFSET
1,2
COMMENTS
For n>1, a(n) is the minimal number m such that the symmetric group S_m has an element of order n. - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 26 2001
If gcd(u,w) = 1, then a(u*w) = a(u) + a(w); behaves like logarithm; compare A001414 or A056239. - Labos Elemer, Mar 31 2003
REFERENCES
F. J. Budden, The Fascination of Groups, Cambridge, 1972; pp. 322, 573.
József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter IV, p. 147.
T. Z. Xuan, On some sums of large additive number theoretic functions (in Chinese), Journal of Beijing normal university, No. 2 (1984), pp. 11-18.
LINKS
Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 10000 terms from T. D. Noe)
John Bamberg, Grant Cairns and Devin Kilminster, The crystallographic restriction, permutations and Goldbach's conjecture, Amer. Math. Monthly, Vol. 110, No. 3 (March 2003), pp. 202-209.
Roger B. Eggleton and William P. Galvin, Upper Bounds on the Sum of Principal Divisors of an Integer, Mathematics Magazine, Vol. 77, No. 3 (Jun., 2004), pp. 190-200.
FORMULA
Additive with a(p^e) = p^e.
a(A000961(n)) = A000961(n); a(A005117(n)) = A001414(A005117(n)).
a(n) = Sum_{k=1..A001221(n)} A027748(n,k) ^ A124010(n,k) for n>1. - Reinhard Zumkeller, Oct 10 2011
a(n) = Sum_{k=1..A001221(n)} A141809(n,k) for n > 1. - Reinhard Zumkeller, Jan 29 2013
Sum_{k=1..n} a(k) ~ (Pi^2/12)* n^2/log(n) + O(n^2/log(n)^2) (Xuan, 1984). - Amiram Eldar, Mar 04 2021
EXAMPLE
a(180) = a(2^2 * 3^2 * 5) = 2^2 + 3^2 + 5 = 18.
MAPLE
A008475 := proc(n) local e, j; e := ifactors(n)[2]:
add(e[j][1]^e[j][2], j=1..nops(e)) end:
seq(A008475(n), n=1..60); # Peter Luschny, Jan 17 2010
MATHEMATICA
f[n_] := Plus @@ Power @@@ FactorInteger@ n; f[1] = 0; Array[f, 73]
PROG
(PARI) for(n=1, 100, print1(sum(i=1, omega(n), component(component(factor(n), 1), i)^component(component(factor(n), 2), i)), ", "))
(PARI) a(n)=local(t); if(n<1, 0, t=factor(n); sum(k=1, matsize(t)[1], t[k, 1]^t[k, 2])) /* Michael Somos, Oct 20 2004 */
(PARI) A008475(n) = { my(f=factor(n)); vecsum(vector(#f~, i, f[i, 1]^f[i, 2])); }; \\ Antti Karttunen, Nov 17 2017
(Haskell)
a008475 1 = 0
a008475 n = sum $ a141809_row n
-- Reinhard Zumkeller, Jan 29 2013, Oct 10 2011
(Python)
from sympy import factorint
def a(n):
f=factorint(n)
return 0 if n==1 else sum([i**f[i] for i in f]) # Indranil Ghosh, May 20 2017
KEYWORD
nonn,nice
STATUS
approved
Irregular triangle read by rows: T(n,k) = multiplicity of prime(k) as a divisor of n!.
+10
31
1, 1, 1, 3, 1, 3, 1, 1, 4, 2, 1, 4, 2, 1, 1, 7, 2, 1, 1, 7, 4, 1, 1, 8, 4, 2, 1, 8, 4, 2, 1, 1, 10, 5, 2, 1, 1, 10, 5, 2, 1, 1, 1, 11, 5, 2, 2, 1, 1, 11, 6, 3, 2, 1, 1, 15, 6, 3, 2, 1, 1, 15, 6, 3, 2, 1, 1, 1, 16, 8, 3, 2, 1, 1, 1, 16, 8, 3, 2, 1, 1, 1, 1
OFFSET
2,4
COMMENTS
The factorization of n! is n! = 2^T(n,1)*3^T(n,2)*...*p_(pi(n))^T(n,pi(n)) where p_k = k-th prime, pi(n) = A000720(n).
Nonzero terms of A085604; T(n,k) = A085604(n,k), k = 1..A000720(n). - Reinhard Zumkeller, Nov 01 2013
For n=2, 3, 4 and 5, all terms of the n-th row are odd. Are there other such rows? - Michel Marcus, Nov 11 2018
From Gus Wiseman, May 15 2019: (Start)
Differences between successive rows are A067255, so row n is the sum of the first n row-vectors of A067255 (padded with zeros on the right so that all n row-vectors have length A000720(n)). For example, the first 10 rows of A067255 are
{}
1
0 1
2 0
0 0 1
1 1 0
0 0 0 1
3 0 0 0
0 2 0 0
1 0 1 0
with column sums (8,4,2,1), which is row 10.
(End)
For all prime p > 7, 3*p > 2*nextprime(p), so for any n > 21 there will always be a prime p dividing n! with exponent 2 and there are no further rows with all entries odd. - Charlie Neder, Jun 03 2019
LINKS
H. T. Davis, Tables of the Mathematical Functions, Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX. [Annotated scan of pages 204-208 of Volume 2.] See Table 2 on page 206.
Wenguang Zhai, On the prime power factorization of n!, Journal of Number Theory, Volume 129, Issue 8, August 2009, pages 1820-1836.
FORMULA
T(n,k) = Sum_{i=1..inf} floor(n/(p_k)^i). (Although stated as an infinite sum, only finitely many terms are nonzero.)
T(n,k) = Sum_{i=1..floor(log(n)/log(p_k))} floor(u_i) where u_0 = n and u_(i+1) = floor((u_i)/p_k). - David A. Corneth, Jun 22 2014
EXAMPLE
From Gus Wiseman, May 09 2019: (Start)
Triangle begins:
1
1 1
3 1
3 1 1
4 2 1
4 2 1 1
7 2 1 1
7 4 1 1
8 4 2 1
8 4 2 1 1
10 5 2 1 1
10 5 2 1 1 1
11 5 2 2 1 1
11 6 3 2 1 1
15 6 3 2 1 1
15 6 3 2 1 1 1
16 8 3 2 1 1 1
16 8 3 2 1 1 1 1
18 8 4 2 1 1 1 1
(End)
m such that 5^m||101!: floor(log(101)/log(5)) = 2 terms. floor(101/5) = 20. floor(20/5) = 4. So m = u_1 + u_2 = 20 + 4 = 24. - David A. Corneth, Jun 22 2014
MAPLE
A115627 := proc(n, k) local d, p; p := ithprime(k) ; n-add(d, d=convert(n, base, p)) ; %/(p-1) ; end proc: # R. J. Mathar, Oct 29 2010
MATHEMATICA
Flatten[Table[Transpose[FactorInteger[n!]][[2]], {n, 2, 20}]] (* T. D. Noe, Apr 10 2012 *)
T[n_, k_] := Module[{p, jm}, p = Prime[k]; jm = Floor[Log[p, n]]; Sum[Floor[n/p^j], {j, 1, jm}]]; Table[Table[T[n, k], {k, 1, PrimePi[n]}], {n, 2, 20}] // Flatten (* Jean-François Alcover, Feb 23 2015 *)
PROG
(Haskell)
a115627 n k = a115627_tabf !! (n-2) !! (k-1)
a115627_row = map a100995 . a141809_row . a000142
a115627_tabf = map a115627_row [2..]
-- Reinhard Zumkeller, Nov 01 2013
(PARI) a(n)=my(i=2); while(n-primepi(i)>1, n-=primepi(i); i++); p=prime(n-1); sum(j=1, log(i)\log(p), i\=p) \\ David A. Corneth, Jun 21 2014
CROSSREFS
Row lengths are A000720.
Row-sums are A022559.
Row-products are A135291.
Row maxima are A011371.
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved
If n = p_1^e_1 * ... * p_k^e_k, p_1 < ... < p_k primes, then a(n) = p_k^e_k.
+10
28
1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 3, 13, 7, 5, 16, 17, 9, 19, 5, 7, 11, 23, 3, 25, 13, 27, 7, 29, 5, 31, 32, 11, 17, 7, 9, 37, 19, 13, 5, 41, 7, 43, 11, 5, 23, 47, 3, 49, 25, 17, 13, 53, 27, 11, 7, 19, 29, 59, 5, 61, 31, 7, 64, 13, 11, 67, 17, 23, 7, 71, 9, 73, 37, 25, 19, 11, 13, 79
OFFSET
1,2
COMMENTS
Let p be the largest prime dividing n, a(n) is the largest power of p dividing n.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
FORMULA
a(n) = A006530(n)^A071178(n). - Reinhard Zumkeller, Aug 27 2011
a(n) = A141809(n,A001221(n)). - Reinhard Zumkeller, Jan 29 2013
EXAMPLE
a(42)=7 because 42=2*3*7, a(144)=9 because 144=16*9=2^4*3^2.
MAPLE
a:= n-> `if`(n=1, 1, (i->i[1]^i[2])(sort(ifactors(n)[2])[-1])):
seq(a(n), n=1..100); # Alois P. Heinz, Nov 03 2023
MATHEMATICA
Table[Power @@ Last @ FactorInteger @ n, {n, 79}] (* Jean-François Alcover, Apr 01 2011 *)
PROG
(Haskell)
a053585 = last . a141809_row -- Reinhard Zumkeller, Jan 29 2013
(PARI) a(n)=if(n>1, my(f=factor(n)); f[#f~, 1]^f[#f~, 2], 1) \\ Charles R Greathouse IV, Nov 10 2015
(Python)
from sympy import factorint, primefactors
def a(n):
if n==1: return 1
p = primefactors(n)[-1]
return p**factorint(n)[p] # Indranil Ghosh, May 19 2017
CROSSREFS
Different from A034699.
KEYWORD
nonn,easy,nice
AUTHOR
Frederick Magata (frederick.magata(AT)uni-muenster.de), Jan 19 2000
EXTENSIONS
More terms from Andrew Gacek (andrew(AT)dgi.net), Apr 20 2000
STATUS
approved
If n = p_1^e_1 * ... * p_k^e_k, p_1 < ... < p_k primes, then a(n) = p_1^e_1, with a(1) = 1.
+10
27
1, 2, 3, 4, 5, 2, 7, 8, 9, 2, 11, 4, 13, 2, 3, 16, 17, 2, 19, 4, 3, 2, 23, 8, 25, 2, 27, 4, 29, 2, 31, 32, 3, 2, 5, 4, 37, 2, 3, 8, 41, 2, 43, 4, 9, 2, 47, 16, 49, 2, 3, 4, 53, 2, 5, 8, 3, 2, 59, 4, 61, 2, 9, 64, 5, 2, 67, 4, 3, 2, 71, 8, 73, 2, 3, 4, 7, 2, 79, 16, 81, 2, 83, 4, 5, 2
OFFSET
1,2
COMMENTS
Highest power of smallest prime dividing n. - Reinhard Zumkeller, Apr 09 2015
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
FORMULA
a(n) = A020639(n)^A067029(n). - Reinhard Zumkeller, May 13 2006
a(n) = A141809(n,1). - Reinhard Zumkeller, Jun 04 2012
a(n) = n / A028234(n). - Antti Karttunen, May 29 2017
EXAMPLE
From Muniru A Asiru, Jan 27 2018: (Start)
If n=10, then a(10) = 2 since 10 = 2^1*5^1.
If n=16, then a(16) = 16 since 16 = 2^4.
If n=29, then a(29) = 29 since 29 = 29^1.
(End)
MAPLE
A028233 := proc(n)
local spf, pf;
if n = 1 then
return 1 ;
end if;
spf := A020639(n) ;
for pf in ifactors(n)[2] do
if pf[1] = spf then
return pf[1]^pf[2] ;
end if;
end do:
end proc: # R. J. Mathar, Jul 09 2016
# second Maple program:
a:= n-> `if`(n=1, 1, (i->i[1]^i[2])(sort(ifactors(n)[2])[1])):
seq(a(n), n=1..100); # Alois P. Heinz, Jan 29 2018
MATHEMATICA
a[n_] := Power @@ First[ FactorInteger[n]]; Table[a[n], {n, 1, 86}] (* Jean-François Alcover, Dec 01 2011 *)
PROG
(Haskell)
a028233 = head . a141809_row
-- Reinhard Zumkeller, Jun 04 2012, Aug 17 2011
(PARI) a(n)=if(n>1, n=factor(n); n[1, 1]^n[1, 2], 1) \\ Charles R Greathouse IV, Apr 26 2012
(Python)
from sympy import factorint
def a(n):
f = factorint(n)
return 1 if n==1 else min(f)**f[min(f)] # Indranil Ghosh, May 12 2017
(Scheme)
;; Naive implementation of A020639 is given under that entry. All of these functions could be also defined with definec to make them faster on the later calls. See http://oeis.org/wiki/Memoization#Scheme
(define (A028233 n) (if (< n 2) n (let ((lpf (A020639 n))) (let loop ((m lpf) (n (/ n lpf))) (cond ((not (zero? (modulo n lpf))) m) (else (loop (* m lpf) (/ n lpf)))))))) ;; Antti Karttunen, May 29 2017
(GAP) List(List(List(List([1..10^3], Factors), Collected), i -> i[1]), j -> j[1]^j[2]); # Muniru A Asiru, Jan 27 2018
CROSSREFS
See also A028234.
Cf. A008475.
Cf. A141809.
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
Name edited to include a(1) = 1 by Franklin T. Adams-Watters, Jan 27 2018
STATUS
approved
If n = p_1^e_1 * ... * p_k^e_k, p_1 < ... < p_k primes, then a(n) = min { p_i^e_i }.
+10
24
1, 2, 3, 4, 5, 2, 7, 8, 9, 2, 11, 3, 13, 2, 3, 16, 17, 2, 19, 4, 3, 2, 23, 3, 25, 2, 27, 4, 29, 2, 31, 32, 3, 2, 5, 4, 37, 2, 3, 5, 41, 2, 43, 4, 5, 2, 47, 3, 49, 2, 3, 4, 53, 2, 5, 7, 3, 2, 59, 3, 61, 2, 7, 64, 5, 2, 67, 4, 3, 2, 71, 8, 73, 2, 3, 4, 7, 2, 79, 5, 81, 2, 83, 3, 5, 2, 3, 8, 89, 2, 7, 4
OFFSET
1,2
COMMENTS
a(1) = 1; for n > 1, smallest unitary divisor of n that is larger than 1.
FORMULA
a(n) = min{A141809(n,k): k=1..A001221(n)}. - Reinhard Zumkeller, Jan 29 2013
a(n) = n/A052125(n). - Amiram Eldar, Sep 16 2024
MATHEMATICA
A034684[n_]:=Min[(#[[1]]^#[[2]])&/@FactorInteger[n]]; Array[A034684, 100] (* Enrique Pérez Herrero, Nov 01 2011 *)
PROG
(PARI) A034684(n) = {local(f, m); if(n==1, 1, f=factor(n); m=f[1, 1]^f[1, 2]; for(i=1, matsize(f)[1], m=min(m, f[i, 1]^f[i, 2])); m)} \\ Michael B. Porter, Jan 28 2010
(Haskell)
a034684 = minimum . a141809_row -- Reinhard Zumkeller, Jan 29 2013
KEYWORD
nonn,nice,easy
STATUS
approved
Irregular triangle T(n,k) = A112798(n,1) followed by first differences of A112798(n).
+10
22
0, 1, 2, 1, 0, 3, 1, 1, 4, 1, 0, 0, 2, 0, 1, 2, 5, 1, 0, 1, 6, 1, 3, 2, 1, 1, 0, 0, 0, 7, 1, 1, 0, 8, 1, 0, 2, 2, 2, 1, 4, 9, 1, 0, 0, 1, 3, 0, 1, 5, 2, 0, 0, 1, 0, 3, 10, 1, 1, 1, 11, 1, 0, 0, 0, 0, 2, 3, 1, 6, 3, 1, 1, 0, 1, 0, 12, 1, 7, 2, 4, 1, 0, 0, 2, 13
OFFSET
1,3
COMMENTS
Irregular triangle T(n,k) = first differences of indices of prime divisors p of n.
Row lengths = (big) Omega(n) = A001222(n).
Row sums = A061395(n).
Row maxima = A286469(n).
We can concatenate the rows 1 <= n <= 28 as none of the values of k in this range exceed 9: {0, 1, 2, 10, 3, 11, 4, 100, 20, 12, 5, 101, 6, 13, 21, 1000, 7, 110, 8, 102, 22, 14, 9, 1001, 30, 15, 200, 103}; a(29) = {10}, which would require a digit greater than 9.
a(1) = 0 by convention.
a(0) is not defined (i.e., null set). a(n) is defined for positive nonzero n.
a(p) = A000720(p) for p prime.
a(p^e) = A000720(p) followed by (e - 1) zeros.
a(Product(p^e)) is the concatenation of the a(p^e) of the unitary prime power divisors p^e of n, sorted by the prime p (i.e. the function a(n) mapped across the terms of row n of A141809).
a(A002110(n)) = an array of n 1s.
T(n,k) could be used to furnish A054841(n). We read data in row n of T(n,k). If T(n,1) = 0, then write 0. If T(n,1) > 0, then increment the k-th place from the right. For k > 1, increment the k-th place to the right of the last-incremented place.
T(n,k) can be used to render n in decimal. If T(n,1) = 0, then write 1. If T(n,1) > 0, then multiply 1 by A000720(T(n,1)). For k > 1, multiply the previous product by pi(x) = A000720(x) of the running total of T(n,k) for each k.
Ignoring zeros in row n > 1 and decoding the remaining values of T(n,k) as immediately above yields the squarefree kernel of n = A007947(n).
Leading zeros of a(n) are trimmed, but as in decimal notation numbers that include leading zeros symbolize the same n as without them. Zeros that precede nonzero values merely multiply implicit 1 by itself until we encounter nonzero values. Thus, {0,0,2} = 1*1*pi(2) = 3, as {2} = pi(2) = 3. Because of this no row n > 1 has 0 for k = 1 of T(n,k).
Interpreting n written in binary as a row of a(n) yields A057335(n).
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..15568 (rows 1 <= n <= 5000).
FORMULA
T(n,1) = A117798(n,1); T(n,k) = A117798(n,k) - A117798(n, k - 1) for 2 <= k <= A001222(n).
EXAMPLE
a(1) = {0} by convention.
a(2) = {pi(2)} = {1}.
a(4) = {pi(2), pi(2) - pi(2)}, = {1, 0} since 4 = 2 * 2.
a(6) = {pi(2), pi(3) - pi(2)} = {1, 1} since 6 = 2 * 3.
a(12) = {pi(2), pi(2) - pi(2), pi(3) - pi(2) - pi(2)} = {1, 0, 1}, since 12 = 2 * 2 * 3.
The triangle starts:
1: 0;
2: 1;
3: 2;
4: 1, 0;
5: 3;
6: 1, 1;
7: 4;
8: 1, 0, 0;
9: 2, 0;
10: 1, 2;
11: 5;
12: 1, 0, 1;
13: 6;
14: 1, 3;
15: 2, 1;
16: 1, 0, 0, 0;
17: 7;
18: 1, 1, 0;
19: 8;
20: 1, 0, 2;
...
MATHEMATICA
Table[Prepend[Differences@ #, First@ #] & Flatten[FactorInteger[n] /. {p_, e_} /; p > 0 :> ConstantArray[PrimePi@ p, e]], {n, 41}] // Flatten (* Michael De Vlieger, May 23 2017 *)
KEYWORD
nonn,tabf,easy
AUTHOR
Michael De Vlieger, May 23 2017
STATUS
approved
Number of maximal strictly increasing runs in the weakly increasing prime factors of n.
+10
14
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 2, 2, 1, 1, 1, 4, 4, 1, 1, 2, 1, 1, 1
OFFSET
1,4
COMMENTS
For n > 1, this is one more than the number of adjacent equal terms in the multiset of prime factors of n.
FORMULA
For n > 1, a(n) = A046660(n) + 1 = A001222(n) - A001221(n) + 1.
EXAMPLE
The prime factors of 540 are {2,2,3,3,3,5}, with maximal strictly increasing runs ({2},{2,3},{3},{3,5}), so a(540) = 4.
MATHEMATICA
Table[Length[Split[Flatten[ConstantArray@@@FactorInteger[n]], Less]], {n, 100}]
CROSSREFS
For compositions we have A124768, row-lengths of A374683, sum A374684.
For sum of prime indices we have A374706.
Row-lengths of A375128.
A112798 lists prime indices:
- distinct A001221
- length A001222
- leader A055396
- sum A056239
- reverse A296150
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 04 2024
STATUS
approved
a(1) = a(2) = 0; for n > 2, the least dimension of a lattice possessing a symmetry of order n.
+10
10
0, 0, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 6, 8, 16, 6, 18, 6, 8, 10, 22, 6, 20, 12, 18, 8, 28, 6, 30, 16, 12, 16, 10, 8, 36, 18, 14, 8, 40, 8, 42, 12, 10, 22, 46, 10, 42, 20, 18, 14, 52, 18, 14, 10, 20, 28, 58, 8, 60, 30, 12, 32, 16, 12, 66, 18, 24, 10, 70, 10, 72, 36, 22, 20, 16, 14
OFFSET
1,3
LINKS
J. Bamberg, G. Cairns and D. Kilminster, The crystallographic restriction, permutations and Goldbach's conjecture, Amer. Math. Monthly, 110 (March 2003), 202-209.
Savinien Kreczman, Luca Prigioniero, Eric Rowland, and Manon Stipulanti, Magic numbers in periodic sequences, Univ. Liège (Belgium, 2023). See p. 7.
FORMULA
For n > 2, a(2^r) = 2^(r-1) with r>1, a(p^r) = phi(p^r) with p > 2 prime, r >= 1, where phi is Euler's function A000010; in general if a(Product p_i^e_i) = Sum a(p_i^e_i).
MATHEMATICA
a[1] = a[2] = 0; a[p_?PrimeQ] := a[p] = p-1; a[n_] := a[n] = If[Length[fi = FactorInteger[n]] == 1, EulerPhi[n], Total[a /@ (fi[[All, 1]]^fi[[All, 2]])]]; Table[a[n], {n, 1, 78}] (* Jean-François Alcover, Jun 20 2012 *)
PROG
(PARI) for(n=1, 78, k=0; if(n>1, f=factor(n); k=sum(j=1, matsize(f)[1], eulerphi(f[j, 1]^f[j, 2])); if(f[1, 1]==2&&f[1, 2]==1, k--)); print1(k, ", ")) \\ Klaus Brockhaus, Mar 10 2003
(Haskell)
a080737 n = a080737_list !! (n-1)
a080737_list = 0 : (map f [2..]) where
f n | mod n 4 == 2 = a080737 $ div n 2
| otherwise = a067240 n
-- Reinhard Zumkeller, Jun 13 2012, Jun 11 2012
CROSSREFS
See A152455 for another version.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 08 2003
EXTENSIONS
More terms from Klaus Brockhaus, Mar 10 2003
STATUS
approved
Triangle read by rows in which row n lists the divisors of n that are prime powers, A000961.
+10
9
1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 3, 1, 7, 1, 2, 4, 8, 1, 3, 9, 1, 2, 5, 1, 11, 1, 2, 3, 4, 1, 13, 1, 2, 7, 1, 3, 5, 1, 2, 4, 8, 16, 1, 17, 1, 2, 3, 9, 1, 19, 1, 2, 4, 5, 1, 3, 7, 1, 2, 11, 1, 23, 1, 2, 3, 4, 8, 1, 5, 25, 1, 2, 13, 1, 3, 9, 27, 1, 2, 4, 7
OFFSET
1,3
COMMENTS
A073093(n) = length of n-th row;
A023888(n) = sum of n-th row;
A183091(n) = product of n-th row;
A034699(n) = T(n,A073093(n)) = maximum of n-th row;
{T(n,k):k=1..A073093(n)} subset of {A027750(n,k):k=1..A000005(n)} for all n.
LINKS
Eric Weisstein's World of Mathematics, Divisor
EXAMPLE
1;
1, 2;
1, 3;
1, 2, 4;
1, 5;
1, 2, 3;
1, 7;
1, 2, 4, 8;
1, 3, 9;
1, 2, 5;
1, 11;
1, 2, 3, 4; - Geoffrey Critzer, Feb 08 2015
MATHEMATICA
Table[Prepend[Select[Divisors[n], PrimeNu[#] == 1 &], 1], {n, 1, 10}]//Grid (* Geoffrey Critzer, Feb 08 2015 *)
PROG
(Haskell)
a210208 n k = a210208_tabf !! (n-1) !! (n-1)
a210208_row n = a210208_tabf !! (n-1)
a210208_tabf = map (filter ((== 1) . a010055)) a027750_tabf
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Reinhard Zumkeller, Mar 18 2012
STATUS
approved

Search completed in 0.015 seconds