OFFSET
0,2
COMMENTS
A080739 gives number of elements in n-th row.
If k appears in row n, then k-fold rotational symmetry is compatible with some 2n- (or higher) dimensional crystallographic symmetry. - Andrey Zabolotskiy, Jul 08 2017
The set of finite orders of n X n integer matrices = {m : A080737(m) <= n}. This set is also {a(i) : 1<=i <= Sum_{0<=j<=n/2} A080739(j)}. - Günter Rote, Sep 18 2023
LINKS
Reinhard Zumkeller, Rows n = 0..25 of triangle, flattened
J. Bamberg, G. Cairns and D. Kilminster, The crystallographic restriction, permutations and Goldbach's conjecture, Amer. Math. Monthly, 110 (March 2003), 202-209.
W. Steurer and S. Deloudi, Higher-Dimensional Approach. In: Crystallography of Quasicrystals. Springer Series in Materials Science, vol 126. Springer, Berlin, Heidelberg, 2009.
EXAMPLE
The array begins:
1, 2;
3, 4, 6;
5, 8, 10, 12;
7, 9, 14, 15, 18, 20, 24, 30;
...
MATHEMATICA
a080737[1] = a080737[2] = 0; a080737[p_?PrimeQ] := a080737[p] = p-1; a080737[n_] := a080737[n] = If[ Length[fi = FactorInteger[n]] == 1, EulerPhi[n], Total[ a080737 /@ (fi[[All, 1]]^fi[[All, 2]])]]; orders = Table[{n, a080737[n]}, {n, 1, 420}]; row[0] = {1, 2}; row[n_] := Select[ orders, 2n-1 <= #[[2]] <= 2n & ][[All, 1]]; A080738 = Flatten[ Table[ row[n], {n, 0, 8}]] (* Jean-François Alcover, Jun 20 2012 *)
PROG
(Haskell)
import Data.Map (singleton, deleteFindMin, insertWith)
a080738 n k = a080738_tabf !! n !! k
a080738_row n = a080738_tabf !! n
a080738_tabf = f 3 (drop 2 a080737_list) 3 (singleton 0 [2, 1]) where
f i xs'@(x:xs) till m
| i > till = (reverse row) : f i xs' (3 * head row) m'
| otherwise = f (i + 1) xs till (insertWith (++) (div x 2) [i] m)
where ((_, row), m') = deleteFindMin m
-- Reinhard Zumkeller, Jun 13 2012
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane, Mar 08 2003
EXTENSIONS
More terms from Vladeta Jovovic, Mar 09 2003
STATUS
approved