[go: up one dir, main page]

login
Search: a210208 -id:a210208
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows in which row n lists the divisors of n.
+10
505
1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 4, 8, 1, 3, 9, 1, 2, 5, 10, 1, 11, 1, 2, 3, 4, 6, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 2, 4, 8, 16, 1, 17, 1, 2, 3, 6, 9, 18, 1, 19, 1, 2, 4, 5, 10, 20, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 4, 6, 8, 12, 24, 1, 5, 25, 1, 2, 13, 26, 1, 3, 9, 27, 1, 2, 4, 7, 14, 28, 1, 29
OFFSET
1,3
COMMENTS
Or, in the list of natural numbers (A000027), replace n with its divisors.
This gives the first elements of the ordered pairs (a,b) a >= 1, b >= 1 ordered by their product ab.
Also, row n lists the largest parts of the partitions of n whose parts are not distinct. - Omar E. Pol, Sep 17 2008
Concatenation of n-th row gives A037278(n). - Reinhard Zumkeller, Aug 07 2011
{A210208(n,k): k=1..A073093(n)} subset of {T(n,k): k=1..A000005(n)} for all n. - Reinhard Zumkeller, Mar 18 2012
Row sums give A000203. Right border gives A000027. - Omar E. Pol, Jul 29 2012
Indices of records are in A006218. - Irina Gerasimova, Feb 27 2013
The number of primes in the n-th row is omega(n) = A001221(n). - Michel Marcus, Oct 21 2015
The row polynomials P(n,x) = Sum_{k=1..A000005(n)} T(n,k)*x^k with composite n which are irreducible over the integers are given in A292226. - Wolfdieter Lang, Nov 09 2017
T(n,k) is also the number of parts in the k-th partition of n into equal parts (see example). - Omar E. Pol, Nov 20 2019
LINKS
Franklin T. Adams-Watters, Rows 1..1000, flattened
Franklin T. Adams-Watters, Rows 1..10000
Omar E. Pol, Illustration of initial terms, (2009).
Eric Weisstein's World of Mathematics, Divisor
FORMULA
a(A006218(n-1) + k) = k-divisor of n, 1 <= k <= A000005(n). - Reinhard Zumkeller, May 10 2006
T(n,k) = n / A056538(n,k) = A056538(n,n-k+1), 1 <= k <= A000005(n). - Reinhard Zumkeller, Sep 28 2014
EXAMPLE
Triangle begins:
1;
1, 2;
1, 3;
1, 2, 4;
1, 5;
1, 2, 3, 6;
1, 7;
1, 2, 4, 8;
1, 3, 9;
1, 2, 5, 10;
1, 11;
1, 2, 3, 4, 6, 12;
...
For n = 6 the partitions of 6 into equal parts are [6], [3,3], [2,2,2], [1,1,1,1,1,1], so the number of parts are [1, 2, 3, 6] respectively, the same as the divisors of 6. - Omar E. Pol, Nov 20 2019
MAPLE
seq(op(numtheory:-divisors(a)), a = 1 .. 20) # Matt C. Anderson, May 15 2017
MATHEMATICA
Flatten[ Table[ Flatten [ Divisors[ n ] ], {n, 1, 30} ] ]
PROG
(Magma) [Divisors(n) : n in [1..20]];
(Haskell)
a027750 n k = a027750_row n !! (k-1)
a027750_row n = filter ((== 0) . (mod n)) [1..n]
a027750_tabf = map a027750_row [1..]
-- Reinhard Zumkeller, Jan 15 2011, Oct 21 2010
(PARI) v=List(); for(n=1, 20, fordiv(n, d, listput(v, d))); Vec(v) \\ Charles R Greathouse IV, Apr 28 2011
(Python)
from sympy import divisors
for n in range(1, 16):
print(divisors(n)) # Indranil Ghosh, Mar 30 2017
CROSSREFS
Cf. A000005 (row length), A001221, A027749, A027751, A056534, A056538, A127093, A135010, A161700, A163280, A240698 (partial sums of rows), A240694 (partial products of rows), A247795 (parities), A292226, A244051.
KEYWORD
nonn,easy,tabf,look
EXTENSIONS
More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)
STATUS
approved
Largest prime power factor of n.
+10
67
1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 4, 13, 7, 5, 16, 17, 9, 19, 5, 7, 11, 23, 8, 25, 13, 27, 7, 29, 5, 31, 32, 11, 17, 7, 9, 37, 19, 13, 8, 41, 7, 43, 11, 9, 23, 47, 16, 49, 25, 17, 13, 53, 27, 11, 8, 19, 29, 59, 5, 61, 31, 9, 64, 13, 11, 67, 17, 23, 7, 71, 9, 73, 37, 25, 19, 11, 13, 79
OFFSET
1,2
COMMENTS
n divides lcm(1, 2, ..., a(n)).
a(n) = A210208(n,A073093(n)) = largest term of n-th row in A210208. - Reinhard Zumkeller, Mar 18 2012
a(n) = smallest m > 0 such that n divides A003418(m). - Thomas Ordowski, Nov 15 2013
a(n) = n when n is a prime power (A000961). - Michel Marcus, Dec 03 2013
Conjecture: For all n between two consecutive prime numbers, all a(n) are different. - I. V. Serov, Jun 19 2019
Disproved with between p=prime(574) = 4177 and prime(575) = 4201, a(4180) = a(4199) = 19. See A308752. - Michel Marcus, Jun 19 2019
Conjecture: For any N > 0, there exist numbers n and m, N < n < n+a(n) <= m, such that all n..m are composite and a(n) = a(m). - I. V. Serov, Jun 21 2019
Conjecture: For all n between two consecutive prime numbers, all (-1)^n*a(n) are different. Checked up to 5*10^7. - I. V. Serov, Jun 23 2019
Disproved: between p = prime(460269635) = 10120168277 and p = prime(460269636) = 10120168507 the numbers n = 10120168284 and m = 10120168498 form a pair such that (-1)^n*a(n) = (-1)^m*a(m) = 107. - L. Joris Perrenet, Jan 05 2020
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537 (first 1000 terms from T. D. Noe)
FORMULA
If n = p_1^e_1 *...* p_k^e_k, p_1 < ... < p_k primes, then a(n) = Max_i p_i^e_i.
a(n) = A088387(n)^A088388(n). - Antti Karttunen, Jul 22 2018
a(n) = n/A284600(n) = n - A081805(n) = A034684(n) + A100574(n). - Antti Karttunen, Aug 06 2018
a(n) = a(m) iff m = d*a(n), where d is a divisor of A038610(a(n)). - I. V. Serov, Jun 19 2019
MATHEMATICA
f[n_] := If[n == 1, 1, Max[ #[[1]]^#[[2]] & /@ FactorInteger@n]]; Array[f, 79] (* Robert G. Wilson v, Sep 02 2006 *)
Array[Max[Power @@@ FactorInteger@ #] &, 79] (* Michael De Vlieger, Jul 26 2018 *)
PROG
(Haskell)
a034699 = last . a210208_row
-- Reinhard Zumkeller, Mar 18 2012, Feb 14 2012
(PARI) a(n) = if(1==n, n, my(f=factor(n)); vecmax(vector(#f[, 1], i, f[i, 1]^f[i, 2]))); \\ Charles R Greathouse IV, Nov 20 2012, check for a(1) added by Antti Karttunen, Aug 06 2018
(PARI) A034699(n) = if(1==n, n, fordiv(n, d, if(isprimepower(n/d), return(n/d)))); \\ Antti Karttunen, Aug 06 2018
(Python)
from sympy import factorint
def A034699(n): return max((p**e for p, e in factorint(n).items()), default=1) # Chai Wah Wu, Apr 17 2023
KEYWORD
nonn,easy,nice
STATUS
approved
Number of prime power divisors of n.
+10
42
1, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 4, 2, 3, 3, 5, 2, 4, 2, 4, 3, 3, 2, 5, 3, 3, 4, 4, 2, 4, 2, 6, 3, 3, 3, 5, 2, 3, 3, 5, 2, 4, 2, 4, 4, 3, 2, 6, 3, 4, 3, 4, 2, 5, 3, 5, 3, 3, 2, 5, 2, 3, 4, 7, 3, 4, 2, 4, 3, 4, 2, 6, 2, 3, 4, 4, 3, 4, 2, 6, 5, 3, 2, 5, 3, 3, 3, 5, 2, 5, 3, 4, 3, 3, 3, 7, 2, 4, 4, 5, 2, 4, 2, 5, 4
OFFSET
1,2
COMMENTS
Also, number of prime divisors of 2n (counted with multiplicity).
A001221(n) < a(n) <= A000005(n) for all n; a(n)=A001221(n)+1 iff n is squarefree (A005117); a(n)=A000005(n) iff n is a prime power (A000961).
a(n) is also the number of k<n such that the resultant of the k-th cyclotomic polynomial and the n-th cyclotomic polynomial is not 1. It is well known that if (k,n)=1, res(polcyclo(n),polcyclo(k))=1. - Benoit Cloitre, Oct 13 2002
a(n) is also 1 + the number of divisors of n with omega(d)=1, where omega is A001221. - Enrique Pérez Herrero, Nov 05 2009
Length of n-th row of triangle A210208. - Reinhard Zumkeller, Mar 18 2012
a(n) depends only on the prime signature of n with a(A025487(n)) = 1, 2, 3, 3, 4, 4, 5, 5, 4, 6, 5, 6, 5, 7, 6, 7 ,.. = A036041(n)+1; (n>=1). - R. J. Mathar, May 28 2017
LINKS
T. M. Apostol, Resultants of Cyclotomic Polynomials, Proc. Amer. Math. Soc. 24, 457-462, 1970.
T. M. Apostol, The Resultant of the Cyclotomic Polynomials Fm(ax) and Fn(bx), Math. Comput. 29, 1-6, 1975.
Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
FORMULA
If n = Product (p_j^k_j), a(n) = 1 + Sum (k_j).
a(n) = bigomega(n)+1 = A001222(n)+1 = A001222(2*n).
a(n) = if n=1 then 1 else a(A032742(n)) + 1. - Reinhard Zumkeller, Sep 24 2009
a(n) = max { a(d) ; d<n and d|n } + 1, if n > 1. - David W. Wilson, Dec 08 2010
a(n) = Sum_{k = 1 .. A001221(n)} A010055(A027750(n,k)). - Reinhard Zumkeller, Mar 18 2012
G.f.: x/(1 - x) + Sum_{k>=2} floor(1/omega(k))*x^k/(1 - x^k), where omega(k) is the number of distinct prime factors (A001221). - Ilya Gutkovskiy, Jan 04 2017
MAPLE
seq(numtheory:-bigomega(n)+1, n=1..1000); # Robert Israel, Sep 06 2015
MATHEMATICA
f[n_] := Plus @@ Flatten[ Table[1, {#[[2]]}] & /@ FactorInteger[n]]; Table[ f[2n], {n, 105}] (* Robert G. Wilson v, Dec 23 2004 *)
A001221[n_] := (Length[ FactorInteger[n]]); SetAttributes[A001221, Listable]; A073093[n_]:=Length[Select[A001221[Divisors[n]], # == 1 &]]; (* Enrique Pérez Herrero, Nov 05 2009 *)
PROG
(PARI) a(n)=sum(k=1, n, if(1-polresultant(polcyclo(n), polcyclo(k)), 1, 0))
(PARI) A073093(n)=bigomega(n)+1 \\ M. F. Hasler, Dec 08 2010
(MuPAD) numlib::Omega (2*n)$ n=1..105 // Zerinvary Lajos, May 13 2008
(Haskell)
a073093 = length . a210208_row -- Reinhard Zumkeller, Mar 18 2012
(Magma) [n eq 1 select 1 else &+[p[2]: p in Factorization(n)]+1: n in [1..100]]; // Vincenzo Librandi, Jan 06 2017
CROSSREFS
Cf. A000961, A023888, A054372. Bisection of A001222.
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Aug 24 2002
STATUS
approved
Sum of prime power divisors of n (1 included).
+10
11
1, 3, 4, 7, 6, 6, 8, 15, 13, 8, 12, 10, 14, 10, 9, 31, 18, 15, 20, 12, 11, 14, 24, 18, 31, 16, 40, 14, 30, 11, 32, 63, 15, 20, 13, 19, 38, 22, 17, 20, 42, 13, 44, 18, 18, 26, 48, 34, 57, 33, 21, 20, 54, 42, 17, 22, 23, 32, 60, 15, 62, 34, 20, 127, 19, 17, 68, 24, 27
OFFSET
1,2
COMMENTS
Sum of n-th row of triangle A210208. [Reinhard Zumkeller, Mar 18 2012]
LINKS
FORMULA
a(n) = A000203(n) - A035321(n) = A023889(n) + 1.
a(1) = 1, a(p) = p+1, a(pq) = p+q+1, a(pq...z) = (p+q+...+z) + 1, a(p^k) = (p^(k+1)-1) / (p-1), for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
G.f.: x/(1 - x) + Sum_{k>=2} floor(1/omega(k))*k*x^k/(1 - x^k), where omega(k) is the number of distinct prime factors (A001221). - Ilya Gutkovskiy, Jan 04 2017
EXAMPLE
For n = 12, set of such divisors is {1, 2, 3, 4}; a(12) = 1+2+3+4 = 10. From
MAPLE
f:= n -> 1 + add((t[1]^(t[2]+1)-t[1])/(t[1]-1), t=ifactors(n)[2]):
map(f, [$1..100]); # Robert Israel, Jan 04 2017
MATHEMATICA
Array[ Plus @@ (Select[ Divisors[ # ], (Length[ FactorInteger[ # ] ]<=1)& ])&, 70 ]
PROG
(PARI) for(n=1, 100, s=1; fordiv(n, d, if((ispower(d, , &z)&&isprime(z)) || isprime(d), s+=d)); print1(s, ", "))
(Haskell)
a023888 = sum . a210208_row -- Reinhard Zumkeller, Mar 18 2012
(PARI)
a(n) = {
my(f = factor(n), fsz = matsize(f)[1]);
1 + sum(k = 1, fsz, f[k, 1]*(f[k, 1]^f[k, 2] - 1)\(f[k, 1]-1));
};
vector(100, n, a(n)) \\ Gheorghe Coserea, Jan 04 2017
CROSSREFS
KEYWORD
nonn
STATUS
approved
a(n) is the product of the divisors p^k of n where p is prime and k >= 1.
+10
5
1, 2, 3, 8, 5, 6, 7, 64, 27, 10, 11, 24, 13, 14, 15, 1024, 17, 54, 19, 40, 21, 22, 23, 192, 125, 26, 729, 56, 29, 30, 31, 32768, 33, 34, 35, 216, 37, 38, 39, 320, 41, 42, 43, 88, 135, 46, 47, 3072, 343, 250, 51, 104, 53, 1458
OFFSET
1,2
COMMENTS
Product of n-th row of triangle A210208. - Reinhard Zumkeller, Mar 18 2012
LINKS
FORMULA
a(n) = A007955(n) / A183092(n).
Multiplicative with a(p^k) = p^(k*(k+1)/2).
The Dirichlet g.f. of a(n) / abs(A153038(n)) is Product_{k >= 0} zeta(s+k). - Álvar Ibeas, Nov 10 2014
EXAMPLE
For n = 12, set of such divisors is {1, 2, 3, 4}; a(12) = 1*2*3*4 = 24.
MAPLE
A183091 := proc(n) local a, d; a := 1 ; for d in numtheory[divisors](n) minus {1} do if nops( numtheory[factorset](d)) = 1 then a := a*d; end if; end do: a ; end proc: # R. J. Mathar, Apr 14 2011
MATHEMATICA
Table[Product[d, {d, Select[Divisors[n], Length[FactorInteger[#]] == 1 &]}], {n, 1, 54}] (* Geoffrey Critzer, Mar 18 2015 *)
f[p_, e_] := p^(e*(e+1)/2); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 31 2023 *)
PROG
(Haskell)
a183091 = product . a210208_row -- Reinhard Zumkeller, Mar 18 2012
(PARI) a(n)=my(f=factor(n)); prod(i=1, #f~, f[i, 1]^binomial(f[i, 2]+1, 2)) \\ Charles R Greathouse IV, Nov 11 2014
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Jaroslav Krizek, Dec 25 2010
STATUS
approved
Partial sums of A073093.
+10
2
1, 3, 5, 8, 10, 13, 15, 19, 22, 25, 27, 31, 33, 36, 39, 44, 46, 50, 52, 56, 59, 62, 64, 69, 72, 75, 79, 83, 85, 89, 91, 97, 100, 103, 106, 111, 113, 116, 119, 124, 126, 130, 132, 136, 140, 143, 145, 151, 154, 158, 161, 165, 167, 172, 175, 180, 183, 186, 188
OFFSET
1,2
COMMENTS
Number of terms in the first n rows of triangle A210208;
a(n) = A022559(n) + n.
LINKS
PROG
(Haskell)
a210241 n = a210241_list !! (n-1)
a210241_list = scanl1 (+) a073093_list
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Mar 19 2012
STATUS
approved
Binary representation of prime power divisors of n: Sum_{p^k | n} 2^(A065515(p^k)-1).
+10
2
0, 1, 2, 5, 8, 3, 16, 37, 66, 9, 128, 7, 256, 17, 10, 549, 1024, 67, 2048, 13, 18, 129, 4096, 39, 8200, 257, 16450, 21, 32768, 11, 65536, 131621, 130, 1025, 24, 71, 262144, 2049, 258, 45, 524288, 19, 1048576, 133, 74, 4097, 2097152, 551, 4194320, 8201
OFFSET
1,3
LINKS
FORMULA
Additive with a(p^k) = Sum_{j=1..k} 2^(A065515(p^j)-1).
a(A051451(k)) = 2^k - 1.
a(n) = Sum_{k=1..A073093(n)} 2^(A095874(A210208(n,k))-2). - Reinhard Zumkeller, Mar 07 2015
EXAMPLE
The prime power divisors of 12 are 2, 3, and 4. These are indices 1, 2, and 3 in the list of prime powers, so a(12) = 2^(1-1) + 2^(2-1) + 2^(3-1) = 7.
PROG
(PARI) al(n) = my(r=vector(n), pps=[p| p <- [1..n], isprimepower(p)], p2); for(k=1, #pps, p2=2^(k-1); forstep(j=pps[k], n, pps[k], r[j]+=p2)); r
(Haskell)
a248906 = sum . map ((2 ^) . subtract 2 . a095874) . tail . a210208_row
-- Reinhard Zumkeller, Mar 07 2015
KEYWORD
nonn
AUTHOR
STATUS
approved
Product of largest prime power factors of numbers <= n.
+10
0
1, 1, 2, 6, 24, 120, 360, 2520, 20160, 181440, 907200, 9979200, 39916800, 518918400, 3632428800, 18162144000, 290594304000, 4940103168000, 44460928512000, 844757641728000, 4223788208640000, 29566517460480000, 325231692065280000, 7480328917501440000, 59842631340011520000
OFFSET
0,3
COMMENTS
Partial products of A034699.
FORMULA
A001221(a(n)) = A000720(n).
MATHEMATICA
a[n_] := Product[Max[#[[1]]^#[[2]] & /@ FactorInteger@k], {k, 1, n}]; Table[a[n], {n, 0, 24}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 28 2019
STATUS
approved

Search completed in 0.054 seconds