# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a008475 Showing 1-1 of 1 %I A008475 #76 Oct 30 2023 07:15:03 %S A008475 0,2,3,4,5,5,7,8,9,7,11,7,13,9,8,16,17,11,19,9,10,13,23,11,25,15,27, %T A008475 11,29,10,31,32,14,19,12,13,37,21,16,13,41,12,43,15,14,25,47,19,49,27, %U A008475 20,17,53,29,16,15,22,31,59,12,61,33,16,64,18,16,67,21,26,14,71,17,73 %N A008475 If n = Product (p_j^k_j) then a(n) = Sum (p_j^k_j) (a(1) = 0 by convention). %C A008475 For n>1, a(n) is the minimal number m such that the symmetric group S_m has an element of order n. - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 26 2001 %C A008475 If gcd(u,w) = 1, then a(u*w) = a(u) + a(w); behaves like logarithm; compare A001414 or A056239. - _Labos Elemer_, Mar 31 2003 %D A008475 F. J. Budden, The Fascination of Groups, Cambridge, 1972; pp. 322, 573. %D A008475 József Sándor, Dragoslav S. Mitrinovic and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter IV, p. 147. %D A008475 T. Z. Xuan, On some sums of large additive number theoretic functions (in Chinese), Journal of Beijing normal university, No. 2 (1984), pp. 11-18. %H A008475 Daniel Forgues, Table of n, a(n) for n = 1..100000 (first 10000 terms from T. D. Noe) %H A008475 John Bamberg, Grant Cairns and Devin Kilminster, The crystallographic restriction, permutations and Goldbach's conjecture, Amer. Math. Monthly, Vol. 110, No. 3 (March 2003), pp. 202-209. %H A008475 Roger B. Eggleton and William P. Galvin, Upper Bounds on the Sum of Principal Divisors of an Integer, Mathematics Magazine, Vol. 77, No. 3 (Jun., 2004), pp. 190-200. %F A008475 Additive with a(p^e) = p^e. %F A008475 a(A000961(n)) = A000961(n); a(A005117(n)) = A001414(A005117(n)). %F A008475 a(n) = Sum_{k=1..A001221(n)} A027748(n,k) ^ A124010(n,k) for n>1. - _Reinhard Zumkeller_, Oct 10 2011 %F A008475 a(n) = Sum_{k=1..A001221(n)} A141809(n,k) for n > 1. - _Reinhard Zumkeller_, Jan 29 2013 %F A008475 Sum_{k=1..n} a(k) ~ (Pi^2/12)* n^2/log(n) + O(n^2/log(n)^2) (Xuan, 1984). - _Amiram Eldar_, Mar 04 2021 %e A008475 a(180) = a(2^2 * 3^2 * 5) = 2^2 + 3^2 + 5 = 18. %p A008475 A008475 := proc(n) local e,j; e := ifactors(n)[2]: %p A008475 add(e[j][1]^e[j][2], j=1..nops(e)) end: %p A008475 seq(A008475(n), n=1..60); # _Peter Luschny_, Jan 17 2010 %t A008475 f[n_] := Plus @@ Power @@@ FactorInteger@ n; f[1] = 0; Array[f, 73] %o A008475 (PARI) for(n=1,100,print1(sum(i=1,omega(n), component(component(factor(n),1),i)^component(component(factor(n),2),i)),",")) %o A008475 (PARI) a(n)=local(t);if(n<1,0,t=factor(n);sum(k=1,matsize(t)[1],t[k,1]^t[k,2])) /* _Michael Somos_, Oct 20 2004 */ %o A008475 (PARI) A008475(n) = { my(f=factor(n)); vecsum(vector(#f~,i,f[i,1]^f[i,2])); }; \\ _Antti Karttunen_, Nov 17 2017 %o A008475 (Haskell) %o A008475 a008475 1 = 0 %o A008475 a008475 n = sum $ a141809_row n %o A008475 -- _Reinhard Zumkeller_, Jan 29 2013, Oct 10 2011 %o A008475 (Python) %o A008475 from sympy import factorint %o A008475 def a(n): %o A008475 f=factorint(n) %o A008475 return 0 if n==1 else sum([i**f[i] for i in f]) # _Indranil Ghosh_, May 20 2017 %Y A008475 Cf. A001414, A000961, A005117, A051613, A072691, A081402, A081403, A081404, A027748, A124010, A001221, A028233, A034684, A053585, A159077, A023888, A078771, A092509, A286875. %Y A008475 See A222416 for the variant with a(1)=1. %K A008475 nonn,nice %O A008475 1,2 %A A008475 _Olivier Gérard_ # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE