[go: up one dir, main page]

login
A325508
Product of primes indexed by the prime exponents of n!.
20
1, 1, 2, 4, 10, 20, 42, 84, 204, 476, 798, 1596, 3828, 7656, 12276, 24180, 36660, 73320, 120840, 241680, 389424, 785680, 1294440, 2588880, 3848880, 7147920, 11264760, 15926040, 26057304, 52114608, 74421648, 148843296, 187159392, 340949280, 527531760, 926505360
OFFSET
0,3
COMMENTS
The prime indices of a(n) are the signature of n!, which is row n of A115627.
FORMULA
a(n) = A181819(n!).
A001221(a(n)) = A071626(n).
A001222(a(n)) = A000720(n).
A056239(a(n)) = A022559(n).
A003963(a(n)) = A135291(n).
A061395(a(n)) = A011371(n).
A007814(a(n)) = A056171(n).
a(n) = A122111(A307035(n)). - Antti Karttunen, Nov 19 2019
EXAMPLE
We have 7! = 2^4 * 3^2 * 5^1 * 7^1, so a(7) = prime(4)*prime(2)*prime(1)*prime(1) = 84.
The sequence of terms together with their prime indices begins:
1: {}
1: {}
2: {1}
4: {1,1}
10: {1,3}
20: {1,1,3}
42: {1,2,4}
84: {1,1,2,4}
204: {1,1,2,7}
476: {1,1,4,7}
798: {1,2,4,8}
1596: {1,1,2,4,8}
3828: {1,1,2,5,10}
7656: {1,1,1,2,5,10}
12276: {1,1,2,2,5,11}
24180: {1,1,2,3,6,11}
36660: {1,1,2,3,6,15}
73320: {1,1,1,2,3,6,15}
120840: {1,1,1,2,3,8,16}
241680: {1,1,1,1,2,3,8,16}
MATHEMATICA
Table[Times@@Prime/@Last/@If[(n!)==1, {}, FactorInteger[n!]], {n, 0, 30}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 08 2019
STATUS
approved