Displaying 1-8 of 8 results found.
page
1
Scaled Chebyshev U-polynomials evaluated at i*sqrt(6)/2. Generalized Fibonacci sequence.
+10
15
1, 6, 42, 288, 1980, 13608, 93528, 642816, 4418064, 30365280, 208700064, 1434392064, 9858552768, 67757668992, 465697330560, 3200729997312, 21998563967232, 151195763787264, 1039165966526976, 7142170381885440
COMMENTS
a(n) gives the length of the word obtained after n steps with the substitution rule 0->1^6, 1->(1^6)0, starting from 0. The number of 1's and 0's of this word is 6*a(n-1) and 6*a(n-2), resp.
FORMULA
a(n) = 6*a(n-1) + 6*a(n-2); a(0)=1, a(1)=6.
a(n) = S(n, i*sqrt(6))*(-i*sqrt(6))^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.
G.f.: 1/(1-6*x-6*x^2).
MATHEMATICA
LinearRecurrence[{6, 6}, {1, 6}, 40] (* Harvey P. Dale, Nov 05 2011 *)
PROG
(Sage) [lucas_number1(n, 6, -6) for n in range(1, 21)] # Zerinvary Lajos, Apr 24 2009
(Magma) I:=[1, 6]; [n le 2 select I[n] else 6*Self(n-1)+6*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
(PARI) x='x+O('x^30); Vec(1/(1-6*x-6*x^2)) \\ G. C. Greubel, Jan 24 2018
CROSSREFS
Cf. A001076, A006190, A007482, A015520, A015521, A015523, A015524, A015525, A015528, A015529, A015530, A015531, A015532, A015533, A015534, A015535, A015536, A015537, A015440, A015441, A015443, A015444, A015445, A015447, A015548, A030195, A053404, A057087, A057088, A083858, A085939, A090017, A091914, A099012, A135030, A135032, A180222, A180226, A180250.
a(n) = 6*a(n-1) + 3*a(n-2) for n > 2, a(0)=1, a(1)=6.
+10
10
1, 6, 39, 252, 1629, 10530, 68067, 439992, 2844153, 18384894, 118841823, 768205620, 4965759189, 32099171994, 207492309531, 1341251373168, 8669985167601, 56043665125110, 362271946253463, 2341762672896108
COMMENTS
a(n) represents the number of n-move routes of a fairy chess piece starting in a given corner or side square on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180032. The central square leads to A180028. (End)
FORMULA
a(n) = (3+2*sqrt(3))^n*(sqrt(3)/4+1/2) + (1/2-sqrt(3)/4)*(3-2*sqrt(3))^n.
a(n) = (-i*sqrt(3))^n * ChebyshevU(n, isqrt(3)), i^2=-1.
G.f.: 1/(1 - 6*x - 3*x^2).
Lim_{k->infinity} a(n+k)/a(k) = A141041(n) + A090018(n-1)*sqrt(12) for n >= 1.
(End)
MAPLE
a:= n-> (<<0|1>, <3|6>>^n. <<1, 6>>)[1, 1]:
seq(a(n), n=0..30);
MATHEMATICA
LinearRecurrence[{6, 3}, {1, 6}, 41] (* G. C. Greubel, Oct 10 2022 *)
PROG
(Sage) [lucas_number1(n, 6, -3) for n in range(1, 31)] # Zerinvary Lajos, Apr 24 2009
(Magma) [n le 2 select 6^(n-1) else 6*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2011
(PARI) my(x='x+O('x^30)); Vec(1/(1-6*x-3*x^2)) \\ G. C. Greubel, Jan 24 2018
CROSSREFS
Sequences with g.f. of the form 1/(1 - 6*x - k*x^2): A106392 (k=-10), A027471 (k=-9), A006516 (k=-8), A081179 (k=-7), A030192 (k=-6), A003463 (k=-5), A084326 (k=-4), A138395 (k=-3), A154244 (k=-2), A001109 (k=-1), A000400 (k=0), A005668 (k=1), A135030 (k=2), this sequence (k=3), A135032 (k=4), A015551 (k=5), A057089 (k=6), A015552 (k=7), A189800 (k=8), A189801 (k=9), A190005 (k=10), A015553 (k=11).
Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1+x)/(1-5*x-7*x^2).
+10
8
1, 6, 37, 227, 1394, 8559, 52553, 322678, 1981261, 12165051, 74694082, 458625767, 2815987409, 17290317414, 106163498933, 651849716563, 4002393075346, 24574913392671, 150891318490777, 926480986202582, 5688644160448349
COMMENTS
The a(n) represent the number of n-move routes of a fairy chess piece starting in a given corner or side square (m = 1, 3, 7, 9; 2, 4, 6, 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a white chess queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen.
On a 3 X 3 chessboard there are 2^9 = 512 ways to explode with fury on the central square (we assume here that a red queen might behave like a white queen). The red queen is represented by the A[5] vector in the fifth row of the adjacency matrix A, see the Maple program. For the corner and side squares the 512 red queens lead to 17 red queen sequences, see the cross-references for the complete set.
The sequence above corresponds to 8 red queen vectors, i.e., A[5] vectors, with decimal values 239, 367, 431, 463, 487, 491, 493 and 494. The central square leads for these vectors to A152240.
Inverse binomial transform of A054413.
FORMULA
G.f.: (1+x)/(1 - 5*x - 7*x^2).
a(n) = 5*a(n-1) + 7*a(n-2) with a(0) = 1 and a(1) = 6.
a(n) = ((7+9*A)*A^(-n-1) + (7+9*B)*B^(-n-1))/53 with A = (-5+sqrt(53))/14 and B = (-5-sqrt(53))/14.
MAPLE
with(LinearAlgebra): nmax:=20; m:=1; A[5]:= [1, 1, 1, 1, 0, 1, 1, 1, 0]: A:=Matrix([[0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 1, 1, 1, 1, 0, 1, 0], [1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 0, 0, 1, 1, 1, 1, 0], A[5], [0, 1, 1, 1, 1, 0, 0, 1, 1], [1, 0, 1, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 1, 1, 1, 0, 1], [1, 0, 1, 0, 1, 1, 1, 1, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
MATHEMATICA
CoefficientList[Series[(1+x)/(1-5x-7x^2), {x, 0, 30}], x] (* Harvey P. Dale, Apr 04 2024 *)
PROG
(Magma) I:=[1, 6]; [n le 2 select I[n] else 5*Self(n-1)+7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2011
CROSSREFS
Cf. Red queen sequences corner and side squares [decimal value A[5]]: A090018 [511], A135030 [255], A180030 [495], A005668 [127], A180032 [239], A000400 [63], A180033 [47], A001109 [31], A126501 [15], A154244 [23], A180035 [7], A138395 [19], A180037 [3], A084326 [17], A015449 [1], A003463 [16], A003948 [0].
Expansion of x/(1 - 6*x - 5*x^2).
+10
6
0, 1, 6, 41, 276, 1861, 12546, 84581, 570216, 3844201, 25916286, 174718721, 1177893756, 7940956141, 53535205626, 360916014461, 2433172114896, 16403612761681, 110587537144566, 745543286675801, 5026197405777636
COMMENTS
Let the generator matrix for the ternary Golay G_12 code be [I|B], where the elements of B are taken from the set {0,1,2}. Then a(n)=(B^n)_1,2 for instance. - Paul Barry, Feb 13 2004
Pisano period lengths: 1, 2, 4, 4, 1, 4, 42, 8, 12, 2, 10, 4, 12, 42, 4, 16, 96, 12, 360, 4, ... - R. J. Mathar, Aug 10 2012
FORMULA
a(n) = 6*a(n-1) + 5*a(n-2).
a(n) = sqrt(14)*(3+sqrt(14))^n/28 - sqrt(14)*(3-sqrt(14))^n/28. - Paul Barry, Feb 13 2004
MATHEMATICA
CoefficientList[Series[x/(1-6x-5x^2), {x, 0, 20}], x] (* or *) LinearRecurrence[ {6, 5}, {0, 1}, 30] (* Harvey P. Dale, Oct 30 2017 *)
PROG
(Sage) [lucas_number1(n, 6, -5) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
(Magma) I:=[0, 1]; [n le 2 select I[n] else 6*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
CROSSREFS
Cf. A001076, A006190, A007482, A015520, A015521, A015523, A015524, A015525, A015528, A015529, A015530, A015531, A015532, A015533, A015534, A015535, A015536, A015537, A015440, A015441, A015443, A015444, A015445, A015447, A015548, A030195, A053404, A057087, A057088, A057089, A083858, A085939, A090017, A091914, A099012, A135030, A135032, A180222, A180226, A180250.
1, 0, 3, 0, 1, 9, 0, 0, 6, 27, 0, 0, 1, 27, 81, 0, 0, 0, 9, 108, 243, 0, 0, 0, 1, 54, 405, 729, 0, 0, 0, 0, 12, 270, 1458, 2187, 0, 0, 0, 0, 1, 90, 1215, 5103, 6561, 0, 0, 0, 0, 0, 15, 540, 5103, 17496, 19683, 0, 0, 0, 0, 0, 1, 135, 2835, 20412, 59049, 59049, 0, 0, 0, 0, 0, 0, 18, 945, 13608, 78732, 196830, 177147
COMMENTS
Row sums are A006190(n+1). Diagonal sums are A052931. The Riordan array (1, s+tx) defines T(n,k) = binomial(k,n-k)*s^k*(t/s)^(n-k). The row sums satisfy a(n) = s*a(n-1) + t*a(n-2) and the diagonal sums satisfy a(n) = s*a(n-2) + t*a(n-3).
Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1/3, -1/3, 0, 0, 0, 0, 0, ...] DELTA [3, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 10 2008
FORMULA
Triangle: T(n, k) = binomial(k, n-k)*3^k*(1/3)^(n-k).
G.f. of column k: (3*x + x^2)^k.
EXAMPLE
Triangle begins:
1;
0, 3;
0, 1, 9;
0, 0, 6, 27;
0, 0, 1, 27, 81;
0, 0, 0, 9, 108, 243;
...
MATHEMATICA
Table[3^(2*k-n)*Binomial[k, n-k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 19 2021 *)
PROG
(Sage) flatten([[3^(2*k-n)*binomial(k, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 19 2021
CROSSREFS
Diagonals are of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), A036217 (m=4), A036219 (m=5), A036220 (m=6), A036221 (m=7), A036222 (m=8), A036223 (m=9), A172362 (m=10).
Numbers of words on alphabet {0,1,...,6} with no subwords ii, where i is from {0,1,...,4}.
+10
5
1, 7, 44, 278, 1756, 11092, 70064, 442568, 2795536, 17658352, 111541184, 704563808, 4450465216, 28111918912, 177572443904, 1121658501248, 7085095895296, 44753892374272, 282693546036224, 1785669060965888, 11279401457867776, 71247746869138432
FORMULA
G.f.: (1 + x)/(1 - 6*x -2*x^2).
a(n) = 6*a(n-1) + 2*a(n-2) with n>1, a(0) = 1, a(1) = 7.
a(n) = ((3-sqrt(11))^n*(-4+sqrt(11)) + (3+sqrt(11))^n*(4+sqrt(11))) / (2*sqrt(11)). - Colin Barker, Jan 21 2017
MATHEMATICA
RecurrenceTable[{a[0] == 1, a[1] == 7, a[n] == 6 a[n - 1] + 2 a[n - 2]}, a[n], {n, 0, 20}]
LinearRecurrence[{6, 2}, {1, 7}, 30] (* Harvey P. Dale, Sep 11 2024 *)
PROG
(PARI) Vec((1 + x) / (1 - 6*x -2*x^2) + O(x^30)) \\ Colin Barker, Jan 21 2017
a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.
+10
4
0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
MATHEMATICA
LinearRecurrence[{6, 8}, {0, 1}, 50]
CoefficientList[Series[-(x/(-1+6 x+8 x^2)), {x, 0, 50}], x] (* Harvey P. Dale, Jul 26 2011 *)
PROG
(Magma) I:=[0, 1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
CROSSREFS
Sequences of the form a(n) = c*a(n-1) + d*a(n-2), with a(0)=0, a(1)=1:
c/d...1.......2.......3.......4.......5.......6.......7.......8.......9......10
Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1 + 2*x)/(1 - 6*x - 2*x^2).
+10
3
1, 8, 50, 316, 1996, 12608, 79640, 503056, 3177616, 20071808, 126786080, 800860096, 5058732736, 31954116608, 201842165120, 1274961223936, 8053451673856, 50870632491008, 321330698293760, 2029725454744576
COMMENTS
The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180028.
The sequence above corresponds to 8 red queen vectors, i.e., A[5] vector, with decimal values 255, 383, 447, 479, 503, 507, 509 and 510. The other squares lead for these vectors to A135030.
FORMULA
G.f.: (1+2*x)/(1 - 6*x - 2*x^2).
a(n) = 6*a(n-1) + 2*a(n-2) with a(0) = 1 and a(1) = 8.
a(n) = ((5-4*A)*A^(-n-1) + (5-4*B)*B^(-n-1))/22 with A = (-3+sqrt(11))/2 and B = (-3-sqrt(11))/2.
Lim_{k->infinity} a(n+k)/a(k) = (-1)^(n-1)* A016116(n+1)/( A041015(n-1)*sqrt(11) - A041014(n-1)) for n >= 1.
MAPLE
with(LinearAlgebra): nmax:=19; m:=5; A[5]:= [0, 1, 1, 1, 1, 1, 1, 1, 1]: A:=Matrix([[0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 1, 1, 1, 1, 0, 1, 0], [1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 0, 0, 1, 1, 1, 1, 0], A[5], [0, 1, 1, 1, 1, 0, 0, 1, 1], [1, 0, 1, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 1, 1, 1, 0, 1], [1, 0, 1, 0, 1, 1, 1, 1, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
PROG
(Magma) I:=[1, 8]; [n le 2 select I[n] else 6*Self(n-1)+2*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 15 2011
Search completed in 0.013 seconds
|