[go: up one dir, main page]

login
Search: a135030 -id:a135030
     Sort: relevance | references | number | modified | created      Format: long | short | data
Scaled Chebyshev U-polynomials evaluated at i*sqrt(6)/2. Generalized Fibonacci sequence.
+10
15
1, 6, 42, 288, 1980, 13608, 93528, 642816, 4418064, 30365280, 208700064, 1434392064, 9858552768, 67757668992, 465697330560, 3200729997312, 21998563967232, 151195763787264, 1039165966526976, 7142170381885440
OFFSET
0,2
COMMENTS
a(n) gives the length of the word obtained after n steps with the substitution rule 0->1^6, 1->(1^6)0, starting from 0. The number of 1's and 0's of this word is 6*a(n-1) and 6*a(n-2), resp.
LINKS
Martin Burtscher, Igor Szczyrba, and Rafał Szczyrba, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=6, q=6.
Tanya Khovanova, Recursive Sequences
Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs.(39) and (45),rhs, m=6.
FORMULA
a(n) = 6*a(n-1) + 6*a(n-2); a(0)=1, a(1)=6.
a(n) = S(n, i*sqrt(6))*(-i*sqrt(6))^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.
G.f.: 1/(1-6*x-6*x^2).
a(n) = Sum_{k=0..n} 5^k*A063967(n,k). - Philippe Deléham, Nov 03 2006
MATHEMATICA
Join[{a=0, b=1}, Table[c=6*b+6*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{6, 6}, {1, 6}, 40] (* Harvey P. Dale, Nov 05 2011 *)
PROG
(Sage) [lucas_number1(n, 6, -6) for n in range(1, 21)] # Zerinvary Lajos, Apr 24 2009
(Magma) I:=[1, 6]; [n le 2 select I[n] else 6*Self(n-1)+6*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
(PARI) x='x+O('x^30); Vec(1/(1-6*x-6*x^2)) \\ G. C. Greubel, Jan 24 2018
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 11 2000
STATUS
approved
a(n) = 6*a(n-1) + 3*a(n-2) for n > 2, a(0)=1, a(1)=6.
+10
10
1, 6, 39, 252, 1629, 10530, 68067, 439992, 2844153, 18384894, 118841823, 768205620, 4965759189, 32099171994, 207492309531, 1341251373168, 8669985167601, 56043665125110, 362271946253463, 2341762672896108
OFFSET
0,2
COMMENTS
From Johannes W. Meijer, Aug 09 2010: (Start)
a(n) represents the number of n-move routes of a fairy chess piece starting in a given corner or side square on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180032. The central square leads to A180028. (End)
FORMULA
a(n) = (3+2*sqrt(3))^n*(sqrt(3)/4+1/2) + (1/2-sqrt(3)/4)*(3-2*sqrt(3))^n.
a(n) = (-i*sqrt(3))^n * ChebyshevU(n, isqrt(3)), i^2=-1.
From Johannes W. Meijer, Aug 09 2010: (Start)
G.f.: 1/(1 - 6*x - 3*x^2).
Lim_{k->infinity} a(n+k)/a(k) = A141041(n) + A090018(n-1)*sqrt(12) for n >= 1.
Lim_{n->infinity} A141041(n)/A090018(n-1) = sqrt(12).
(End)
a(n) = Sum_{k=0..n} A099089(n,k)*3^k. - Philippe Deléham, Nov 21 2011
MAPLE
a:= n-> (<<0|1>, <3|6>>^n. <<1, 6>>)[1, 1]:
seq(a(n), n=0..30);
MATHEMATICA
Join[{a=1, b=6}, Table[c=6*b+3*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
LinearRecurrence[{6, 3}, {1, 6}, 41] (* G. C. Greubel, Oct 10 2022 *)
PROG
(Sage) [lucas_number1(n, 6, -3) for n in range(1, 31)] # Zerinvary Lajos, Apr 24 2009
(Magma) [n le 2 select 6^(n-1) else 6*Self(n-1)+3*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2011
(PARI) my(x='x+O('x^30)); Vec(1/(1-6*x-3*x^2)) \\ G. C. Greubel, Jan 24 2018
CROSSREFS
Sequences with g.f. of the form 1/(1 - 6*x - k*x^2): A106392 (k=-10), A027471 (k=-9), A006516 (k=-8), A081179 (k=-7), A030192 (k=-6), A003463 (k=-5), A084326 (k=-4), A138395 (k=-3), A154244 (k=-2), A001109 (k=-1), A000400 (k=0), A005668 (k=1), A135030 (k=2), this sequence (k=3), A135032 (k=4), A015551 (k=5), A057089 (k=6), A015552 (k=7), A189800 (k=8), A189801 (k=9), A190005 (k=10), A015553 (k=11).
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Nov 19 2003
EXTENSIONS
Typo in Mathematica program corrected by Vincenzo Librandi, Nov 15 2011
STATUS
approved
Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1+x)/(1-5*x-7*x^2).
+10
8
1, 6, 37, 227, 1394, 8559, 52553, 322678, 1981261, 12165051, 74694082, 458625767, 2815987409, 17290317414, 106163498933, 651849716563, 4002393075346, 24574913392671, 150891318490777, 926480986202582, 5688644160448349
OFFSET
0,2
COMMENTS
The a(n) represent the number of n-move routes of a fairy chess piece starting in a given corner or side square (m = 1, 3, 7, 9; 2, 4, 6, 8) on a 3 X 3 chessboard. This fairy chess piece behaves like a white chess queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen.
On a 3 X 3 chessboard there are 2^9 = 512 ways to explode with fury on the central square (we assume here that a red queen might behave like a white queen). The red queen is represented by the A[5] vector in the fifth row of the adjacency matrix A, see the Maple program. For the corner and side squares the 512 red queens lead to 17 red queen sequences, see the cross-references for the complete set.
The sequence above corresponds to 8 red queen vectors, i.e., A[5] vectors, with decimal values 239, 367, 431, 463, 487, 491, 493 and 494. The central square leads for these vectors to A152240.
This sequence belongs to a family of sequences with g.f. (1+x)/(1 - 5*x - k*x^2). The members of this family that are red queen sequences are A180030 (k=8), A180032 (k=7; this sequence), A000400 (k=6), A180033 (k=5), A126501 (k=4), A180035 (k=3), A180037 (k=2) A015449 (k=1) and A003948 (k=0). Other members of this family are A030221 (k=-1), A109114 (k=-3), A020989 (k=-4), A166060 (k=-6).
Inverse binomial transform of A054413.
FORMULA
G.f.: (1+x)/(1 - 5*x - 7*x^2).
a(n) = 5*a(n-1) + 7*a(n-2) with a(0) = 1 and a(1) = 6.
a(n) = ((7+9*A)*A^(-n-1) + (7+9*B)*B^(-n-1))/53 with A = (-5+sqrt(53))/14 and B = (-5-sqrt(53))/14.
MAPLE
with(LinearAlgebra): nmax:=20; m:=1; A[5]:= [1, 1, 1, 1, 0, 1, 1, 1, 0]: A:=Matrix([[0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 1, 1, 1, 1, 0, 1, 0], [1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 0, 0, 1, 1, 1, 1, 0], A[5], [0, 1, 1, 1, 1, 0, 0, 1, 1], [1, 0, 1, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 1, 1, 1, 0, 1], [1, 0, 1, 0, 1, 1, 1, 1, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
MATHEMATICA
LinearRecurrence[{5, 7}, {1, 6}, 40] (* Vincenzo Librandi, Nov 15 2011 *)
CoefficientList[Series[(1+x)/(1-5x-7x^2), {x, 0, 30}], x] (* Harvey P. Dale, Apr 04 2024 *)
PROG
(Magma) I:=[1, 6]; [n le 2 select I[n] else 5*Self(n-1)+7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 15 2011
CROSSREFS
Cf. A180028 (Central square).
Cf. Red queen sequences corner and side squares [decimal value A[5]]: A090018 [511], A135030 [255], A180030 [495], A005668 [127], A180032 [239], A000400 [63], A180033 [47], A001109 [31], A126501 [15], A154244 [23], A180035 [7], A138395 [19], A180037 [3], A084326 [17], A015449 [1], A003463 [16], A003948 [0].
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Aug 09 2010
STATUS
approved
Expansion of x/(1 - 6*x - 5*x^2).
+10
6
0, 1, 6, 41, 276, 1861, 12546, 84581, 570216, 3844201, 25916286, 174718721, 1177893756, 7940956141, 53535205626, 360916014461, 2433172114896, 16403612761681, 110587537144566, 745543286675801, 5026197405777636
OFFSET
0,3
COMMENTS
Let the generator matrix for the ternary Golay G_12 code be [I|B], where the elements of B are taken from the set {0,1,2}. Then a(n)=(B^n)_1,2 for instance. - Paul Barry, Feb 13 2004
Pisano period lengths: 1, 2, 4, 4, 1, 4, 42, 8, 12, 2, 10, 4, 12, 42, 4, 16, 96, 12, 360, 4, ... - R. J. Mathar, Aug 10 2012
LINKS
Lucyna Trojnar-Spelina, Iwona Włoch, On Generalized Pell and Pell-Lucas Numbers, Iranian Journal of Science and Technology, Transactions A: Science (2019), 1-7.
FORMULA
a(n) = 6*a(n-1) + 5*a(n-2).
a(n) = sqrt(14)*(3+sqrt(14))^n/28 - sqrt(14)*(3-sqrt(14))^n/28. - Paul Barry, Feb 13 2004
MATHEMATICA
Join[{a=0, b=1}, Table[c=6*b+5*a; a=b; b=c, {n, 100}]] (* Vladimir Joseph Stephan Orlovsky, Jan 16 2011 *)
CoefficientList[Series[x/(1-6x-5x^2), {x, 0, 20}], x] (* or *) LinearRecurrence[ {6, 5}, {0, 1}, 30] (* Harvey P. Dale, Oct 30 2017 *)
PROG
(Sage) [lucas_number1(n, 6, -5) for n in range(0, 21)] # Zerinvary Lajos, Apr 24 2009
(Magma) I:=[0, 1]; [n le 2 select I[n] else 6*Self(n-1)+5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
(PARI) a(n)=([0, 1; 5, 6]^n*[0; 1])[1, 1] \\ Charles R Greathouse IV, Oct 03 2016
KEYWORD
nonn,easy
STATUS
approved
Riordan array (1, 3+x).
+10
5
1, 0, 3, 0, 1, 9, 0, 0, 6, 27, 0, 0, 1, 27, 81, 0, 0, 0, 9, 108, 243, 0, 0, 0, 1, 54, 405, 729, 0, 0, 0, 0, 12, 270, 1458, 2187, 0, 0, 0, 0, 1, 90, 1215, 5103, 6561, 0, 0, 0, 0, 0, 15, 540, 5103, 17496, 19683, 0, 0, 0, 0, 0, 1, 135, 2835, 20412, 59049, 59049, 0, 0, 0, 0, 0, 0, 18, 945, 13608, 78732, 196830, 177147
OFFSET
0,3
COMMENTS
Row sums are A006190(n+1). Diagonal sums are A052931. The Riordan array (1, s+tx) defines T(n,k) = binomial(k,n-k)*s^k*(t/s)^(n-k). The row sums satisfy a(n) = s*a(n-1) + t*a(n-2) and the diagonal sums satisfy a(n) = s*a(n-2) + t*a(n-3).
Triangle T(n,k), 0 <= k <= n, read by rows given by [0, 1/3, -1/3, 0, 0, 0, 0, 0, ...] DELTA [3, 0, 0, 0, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 10 2008
FORMULA
Triangle: T(n, k) = binomial(k, n-k)*3^k*(1/3)^(n-k).
G.f. of column k: (3*x + x^2)^k.
G.f.: 1/(1 - 3*y*x - y*x^2). - Philippe Deléham, Nov 21 2011
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A006190(n+1), A135030(n+1), A181353(n+1) for x = 0,1,2,3 respectively. - Philippe Deléham, Nov 21 2011
EXAMPLE
Triangle begins:
1;
0, 3;
0, 1, 9;
0, 0, 6, 27;
0, 0, 1, 27, 81;
0, 0, 0, 9, 108, 243;
...
MATHEMATICA
Table[3^(2*k-n)*Binomial[k, n-k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 19 2021 *)
PROG
(Sage) flatten([[3^(2*k-n)*binomial(k, n-k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 19 2021
CROSSREFS
Cf. A027465.
Diagonals are of the form 3^n*binomial(n+m, m): A000244 (m=0), A027471 (m=1), A027472 (m=2), A036216 (m=3), A036217 (m=4), A036219 (m=5), A036220 (m=6), A036221 (m=7), A036222 (m=8), A036223 (m=9), A172362 (m=10).
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Sep 25 2004
STATUS
approved
Numbers of words on alphabet {0,1,...,6} with no subwords ii, where i is from {0,1,...,4}.
+10
5
1, 7, 44, 278, 1756, 11092, 70064, 442568, 2795536, 17658352, 111541184, 704563808, 4450465216, 28111918912, 177572443904, 1121658501248, 7085095895296, 44753892374272, 282693546036224, 1785669060965888, 11279401457867776, 71247746869138432
OFFSET
0,2
FORMULA
G.f.: (1 + x)/(1 - 6*x -2*x^2).
a(n) = 6*a(n-1) + 2*a(n-2) with n>1, a(0) = 1, a(1) = 7.
a(n) = ((3-sqrt(11))^n*(-4+sqrt(11)) + (3+sqrt(11))^n*(4+sqrt(11))) / (2*sqrt(11)). - Colin Barker, Jan 21 2017
MATHEMATICA
RecurrenceTable[{a[0] == 1, a[1] == 7, a[n] == 6 a[n - 1] + 2 a[n - 2]}, a[n], {n, 0, 20}]
LinearRecurrence[{6, 2}, {1, 7}, 30] (* Harvey P. Dale, Sep 11 2024 *)
PROG
(PARI) Vec((1 + x) / (1 - 6*x -2*x^2) + O(x^30)) \\ Colin Barker, Jan 21 2017
KEYWORD
nonn,easy
AUTHOR
Milan Janjic, Feb 04 2015
STATUS
approved
a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.
+10
4
0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
OFFSET
0,3
FORMULA
G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011
MATHEMATICA
LinearRecurrence[{6, 8}, {0, 1}, 50]
CoefficientList[Series[-(x/(-1+6 x+8 x^2)), {x, 0, 50}], x] (* Harvey P. Dale, Jul 26 2011 *)
PROG
(Magma) I:=[0, 1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
(PARI) a(n)=([0, 1; 8, 6]^n*[0; 1])[1, 1] \\ Charles R Greathouse IV, Oct 03 2016
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
Eight white queens and one red queen on a 3 X 3 chessboard. G.f.: (1 + 2*x)/(1 - 6*x - 2*x^2).
+10
3
1, 8, 50, 316, 1996, 12608, 79640, 503056, 3177616, 20071808, 126786080, 800860096, 5058732736, 31954116608, 201842165120, 1274961223936, 8053451673856, 50870632491008, 321330698293760, 2029725454744576
OFFSET
0,2
COMMENTS
The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a white queen on the eight side and corner squares but on the central square the queen explodes with fury and turns into a red queen, see A180028.
The sequence above corresponds to 8 red queen vectors, i.e., A[5] vector, with decimal values 255, 383, 447, 479, 503, 507, 509 and 510. The other squares lead for these vectors to A135030.
FORMULA
G.f.: (1+2*x)/(1 - 6*x - 2*x^2).
a(n) = 6*a(n-1) + 2*a(n-2) with a(0) = 1 and a(1) = 8.
a(n) = ((5-4*A)*A^(-n-1) + (5-4*B)*B^(-n-1))/22 with A = (-3+sqrt(11))/2 and B = (-3-sqrt(11))/2.
Lim_{k->infinity} a(n+k)/a(k) = (-1)^(n-1)*A016116(n+1)/(A041015(n-1)*sqrt(11) - A041014(n-1)) for n >= 1.
MAPLE
with(LinearAlgebra): nmax:=19; m:=5; A[5]:= [0, 1, 1, 1, 1, 1, 1, 1, 1]: A:=Matrix([[0, 1, 1, 1, 1, 0, 1, 0, 1], [1, 0, 1, 1, 1, 1, 0, 1, 0], [1, 1, 0, 0, 1, 1, 1, 0, 1], [1, 1, 0, 0, 1, 1, 1, 1, 0], A[5], [0, 1, 1, 1, 1, 0, 0, 1, 1], [1, 0, 1, 1, 1, 0, 0, 1, 1], [0, 1, 0, 1, 1, 1, 1, 0, 1], [1, 0, 1, 0, 1, 1, 1, 1, 0]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m, k], k=1..9): od: seq(a(n), n=0..nmax);
MATHEMATICA
LinearRecurrence[{6, 2}, {1, 8}, 50 ] (* Vincenzo Librandi, Nov 15 2011 *)
PROG
(Magma) I:=[1, 8]; [n le 2 select I[n] else 6*Self(n-1)+2*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 15 2011
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Aug 09 2010
STATUS
approved

Search completed in 0.013 seconds