[go: up one dir, main page]

login
A041015
Denominators of continued fraction convergents to sqrt(11).
7
1, 3, 19, 60, 379, 1197, 7561, 23880, 150841, 476403, 3009259, 9504180, 60034339, 189607197, 1197677521, 3782639760, 23893516081, 75463188003, 476672644099, 1505481120300, 9509559365899, 30034159217997
OFFSET
0,2
COMMENTS
Sqrt(11) = 3 + continued fraction [3, 6, 3, 6, 3, 6, ...] = 6/2 + 6/19 + 6/(19*379) + 6/(379*7561) + ... - Gary W. Adamson, Dec 21 2007
Let X = the 2 X 2 matrix [1, 6; 3, 19], then X^n * [1, 0] = [a(n+1), a(n+2)]; e.g., X^3 * [1, 0] = [379, 1197] = [a(4), a(5)]. - Gary W. Adamson, Dec 21 2007
FORMULA
G.f.: (1+3*x-x^2)/(1-20*x^2+x^4). - Colin Barker, Dec 31 2011
From Gerry Martens, Jul 11 2015: (Start)
Interspersion of 2 sequences [a0(n),a1(n)]:
a0(n) = ((11+3*sqrt(11))/(10+3*sqrt(11))^n + (11-3*sqrt(11))*(10+3*sqrt(11))^n)/22.
a1(n) = 3*Sum_{i=1..n} a0(i). (End)
MATHEMATICA
Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[11], n]]], {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Mar 16 2011 *)
a0[n_] := (11+3*Sqrt[11]+(11-3*Sqrt[11])*(10+3*Sqrt[11])^(2*n))/(22*(10+3*Sqrt[11])^n) // Simplify
a1[n_] := 3*Sum[a0[i], {i, 1, n}]
Flatten[MapIndexed[{a0[#], a1[#]}&, Range[11]]] (* Gerry Martens, Jul 10 2015 *)
CROSSREFS
Sequence in context: A012863 A269156 A370434 * A185448 A114250 A249994
KEYWORD
nonn,cofr,frac,easy
STATUS
approved