[go: up one dir, main page]

login
A057091
Scaled Chebyshev U-polynomials evaluated at i*sqrt(2). Generalized Fibonacci sequence.
13
1, 8, 72, 640, 5696, 50688, 451072, 4014080, 35721216, 317882368, 2828828672, 25173688320, 224020135936, 1993550594048, 17740565839872, 157872931471360, 1404907978489856, 12502247279689728, 111257242065436672, 990075914761011200, 8810665254611582976
OFFSET
0,2
COMMENTS
a(n) gives the length of the word obtained after n steps with the substitution rule 0->1^8, 1->(1^8)0, starting from 0. The number of 1's and 0's of this word is 8*a(n-1) and 8*a(n-2), resp.
LINKS
A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=8, q=8.
Tanya Khovanova, Recursive Sequences
Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs.(39) and (45),rhs, m=8.
FORMULA
a(n) = 8*(a(n-1) + a(n-2)), a(-1)=0, a(0)=1.
a(n) = S(n, i*2*sqrt(2))*(-i*2*sqrt(2))^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.
G.f.: 1/(1 - 8*x - 8*x^2).
a(n) = Sum_{k=0..n} 7^k*A063967(n,k). - Philippe Deléham, Nov 03 2006
a(n) = 2^n*A090017(n+1). - R. J. Mathar, Mar 08 2021
MATHEMATICA
LinearRecurrence[{8, 8}, {1, 8}, 50] (* G. C. Greubel, Jan 24 2018 *)
PROG
(Sage) [lucas_number1(n, 8, -8) for n in range(0, 20)] # Zerinvary Lajos, Apr 25 2009
(PARI) Vec(1/(1-8*x-8*x^2) + O(x^30)) \\ Colin Barker, Jun 14 2015
(Magma) I:=[1, 8]; [n le 2 select I[n] else 8*Self(n-1) + 8*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
CROSSREFS
Sequence in context: A242160 A343365 A062541 * A156566 A055275 A155198
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 11 2000
STATUS
approved