OFFSET
0,2
COMMENTS
a(n) gives the length of the word obtained after n steps with the substitution rule 0->1^8, 1->(1^8)0, starting from 0. The number of 1's and 0's of this word is 8*a(n-1) and 8*a(n-2), resp.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=8, q=8.
Tanya Khovanova, Recursive Sequences
Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs.(39) and (45),rhs, m=8.
Index entries for linear recurrences with constant coefficients, signature (8,8).
FORMULA
a(n) = 8*(a(n-1) + a(n-2)), a(-1)=0, a(0)=1.
a(n) = S(n, i*2*sqrt(2))*(-i*2*sqrt(2))^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.
G.f.: 1/(1 - 8*x - 8*x^2).
a(n) = Sum_{k=0..n} 7^k*A063967(n,k). - Philippe Deléham, Nov 03 2006
a(n) = 2^n*A090017(n+1). - R. J. Mathar, Mar 08 2021
MATHEMATICA
LinearRecurrence[{8, 8}, {1, 8}, 50] (* G. C. Greubel, Jan 24 2018 *)
PROG
(Sage) [lucas_number1(n, 8, -8) for n in range(0, 20)] # Zerinvary Lajos, Apr 25 2009
(PARI) Vec(1/(1-8*x-8*x^2) + O(x^30)) \\ Colin Barker, Jun 14 2015
(Magma) I:=[1, 8]; [n le 2 select I[n] else 8*Self(n-1) + 8*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 11 2000
STATUS
approved